US8309991B2 - Nanowire FET having induced radial strain - Google Patents
Nanowire FET having induced radial strain Download PDFInfo
- Publication number
- US8309991B2 US8309991B2 US12/631,218 US63121809A US8309991B2 US 8309991 B2 US8309991 B2 US 8309991B2 US 63121809 A US63121809 A US 63121809A US 8309991 B2 US8309991 B2 US 8309991B2
- Authority
- US
- United States
- Prior art keywords
- nanowire
- gate
- gate conductor
- strain
- poly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000002070 nanowire Substances 0.000 title claims abstract description 106
- 239000004020 conductor Substances 0.000 claims abstract description 35
- 239000000463 material Substances 0.000 claims abstract description 31
- 239000012212 insulator Substances 0.000 claims abstract description 6
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 31
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 31
- 229910021332 silicide Inorganic materials 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 21
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 14
- 230000008859 change Effects 0.000 claims description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 238000000151 deposition Methods 0.000 claims description 8
- 238000000407 epitaxy Methods 0.000 claims description 7
- 230000007935 neutral effect Effects 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000005669 field effect Effects 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 3
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 125000006850 spacer group Chemical group 0.000 claims description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims 2
- 230000008569 process Effects 0.000 description 9
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 238000001020 plasma etching Methods 0.000 description 7
- 235000012431 wafers Nutrition 0.000 description 7
- 238000000137 annealing Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- SCCCLDWUZODEKG-UHFFFAOYSA-N germanide Chemical compound [GeH3-] SCCCLDWUZODEKG-UHFFFAOYSA-N 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000011165 process development Methods 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
- H01L29/0665—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
- H01L29/0665—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
- H01L29/0669—Nanowires or nanotubes
- H01L29/0673—Nanowires or nanotubes oriented parallel to a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42384—Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
- H01L29/42392—Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4908—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66439—Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66742—Thin film unipolar transistors
- H01L29/66772—Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/775—Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7842—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
- H01L29/7845—Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being a conductive material, e.g. silicided S/D or Gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78696—Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66446—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
- H01L29/66469—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with one- or zero-dimensional channel, e.g. quantum wire field-effect transistors, in-plane gate transistors [IPG], single electron transistors [SET], Coulomb blockade transistors, striped channel transistors
Definitions
- aspects of the present invention are directed to a nanowire field effect transistor (FET) and, more particularly, to a nanowire FET with a metal gate that is surrounded with silicide around the metal gate for inducing radial and, in some cases, longitudinal strain in the nanowire channel.
- FET nanowire field effect transistor
- a device in accordance with an aspect of the invention, includes a nanowire connecting first and second silicon-on-insulator (SOI) pads and a gate including a gate conductor surrounding the nanowire and a fully silicided material surrounding the gate conductor to radially strain the nanowire.
- SOI silicon-on-insulator
- a device in accordance with an aspect of the invention, includes first and second pads, a nanowire, formed in a silicon-on-insulator (SOI) layer disposed over a buried oxide (BOX) layer, connecting the first and second pads and a gate surrounding the nanowire and including a dielectric adjacent the nanowire, a gate conductor adjacent the dielectric and a fully silicided material surrounding the gate conductor to radially strain the nanowire.
- SOI silicon-on-insulator
- BOX buried oxide
- a method to induce radial strain in a field effect transistor (FET) nanowire includes surrounding the nanowire with a gate conductor and surrounding the gate conductor with poly-Si, depositing a silicide forming metal onto the poly-Si and reacting the poly-Si with the silicide forming metal to form a fully silicided (FUSI) material to induce radial strain in the nanowire.
- FET field effect transistor
- a method for testing induced strain includes measuring device characteristics with a strain neutral doped poly-Si gate, re-measuring the device characteristics following conversion of the strain neutral doped poly-Si gate to a FUSI gate and correlating a change in the device characteristics with a strain intensity.
- FIG. 1 is a perspective view of a nanowire under strain
- FIGS. 2A and 2B are views of a nanowire extending across a recessed oxide
- FIGS. 3A and 3B are views of a reshaped nanowire extending across the recessed oxide
- FIGS. 4A and 4B are views of a nanowire and a poly-Si coated with a gate dielectric and partially coated with TaN;
- FIGS. 4C and 4D are views of the nanowire and the poly-Si fully coated with the gate dielectric and the TaN;
- FIG. 5 is a side sectional view of a poly-Si gate with epitaxy, silicide and oxide coatings.
- FIG. 6 is a side sectional view of a FUSI stressor with the structures of FIG. 5 .
- GAA gate-all-around
- FET nanowire field effect transistor
- the present methods are described using silicon (Si) nanowires and Si processing.
- the present techniques can also be practiced with other semiconductor materials such as, for example, germanium (Ge) or III-V semiconductors.
- the processing steps of the present teachings are basically the same except that growth temperature and dopant species applied are adapted to the specific semiconductor used.
- Use of Si-containing semiconductor materials such as Si, silicon germanium (SiGe), Si/SiGe, silicon carbide (SiC) or silicon germanium carbide (SiGeC) are exemplary. It is noted that a portion of the nanowires is used herein as the device channel or body.
- ⁇ r/r radial strain
- ⁇ L/L longitudinal strain
- r and L being the nanowire's radius and length, respectively
- ⁇ r and ⁇ L being the change in radius and the change in length, respectively, as a result of stress.
- P residual stress
- a method to induce radial strain and, in some cases, longitudinal strain in a nanowire channel, without the need to change the gate conductor or the process that is used to define the gate is provided and makes use of a thin metal all-around-gate (e.g., about 2-4 nm and, in some cases, about 3 nm thick tantalum nitride (TaN)) while the “filler” material that connects all the nanowires' metal gates and forms a solid gate line is initially poly-Si that is later converted into fully silicided material (FUSI).
- a thin metal all-around-gate e.g., about 2-4 nm and, in some cases, about 3 nm thick tantalum nitride (TaN)
- the “filler” material that connects all the nanowires' metal gates and forms a solid gate line is initially poly-Si that is later converted into fully silicided material (FUSI).
- the FUSI surrounding the metal gate effectively induces strain in the nanowire channel, but does not impact other device properties (such as the work function) since the latter is set by the metal gate.
- the gate definition process therefore, remains substantially constant even if various silicides are used for the FUSI.
- the device structure and process operations are summarized and relate to embodiments in which the FUSI gate is formed last.
- a wafer is provided and includes a Si substrate 101 , a buried oxide (BOX) layer 102 and a silicon-on-insulator (SOI) layer 103 .
- the wafer can be fabricated using methods such as Separation by IMplanted OXygen (SIMOX) or wafer bonding (for example, SmartCutTM). These wafer fabrication techniques are known to those of skill in the art and thus are not described further herein. Also, the substitution of other SOI substrates known in the art for the SOI on BOX configuration described herein may be made and would be within the scope of the present teachings.
- Nanowires 104 connected to SOI pads 103 A are patterned in SOI layer 103 to form a ladder-like structure.
- SOI layer 103 is made to have a typical thickness of about 20-30 nanometers (nm).
- the as-patterned nanowires 104 have a height that is about 20-30 nm.
- a width of the nanowires 104 can be in the range of about 10-30 nm.
- the patterning of the nanowires 104 and SOI pads 103 A may be achieved by lithography (e.g., optical or e-beam) followed by reactive ion etching (RIE) or by a sidewall transfer technique. These patterning techniques are known to those of skill in the art and thus are not described further herein.
- the nanowires 104 can be suspended or released from the BOX layer 102 by etching and a recessing of the BOX layer 102 under the nanowires 104 .
- the nanowires 104 thus form a suspended bridge between the SOI pads 103 A over recessed oxide 105 .
- the recessing of the BOX layer 102 can be achieved with a diluted hydrofluoric (DHF) etch.
- DHF diluted hydrofluoric
- the lateral component of this etching undercuts the BOX layer 102 under the nanowires 104 .
- the suspension of the nanowires 104 may be obtained during an annealing process to re-shape the nanowires 104 .
- While SOI substrates provide an easy path to define and suspend nanowires 104 , it is possible to obtain suspended nanowires 104 with other substrates.
- a SiGe/Si stack epitaxially grown on bulk Si wafers can also be patterned to form the nanowires 104 .
- the SiGe layer can be used as a sacrificial layer (analogous to the BOX layer 102 ) which is undercut to suspend the nanowires 104 .
- the nanowires 104 are then reshaped to form reshaped nanowires 108 , as shown in FIGS. 3A and 3B .
- the reshaping refers to a smoothing of the respective surfaces of the nanowires 104 to thereby change their respective cross-sections to be more cylindrical, and to a thinning of the respective nanowire 104 bodies by moving silicon from the nanowire 104 bodies to the SOI pads 103 A.
- the reshaped nanowires 108 may be formed by way of an annealing process during which the SOI wafer contacts an inert gas at a temperature, pressure and for a duration sufficient to cause Si to migrate from the nanowires 104 to the SOI pads 103 A.
- the term “inert gas” refers to a gas that does not react with Si and may include hydrogen (H 2 ), xenon (Xe), helium (He) and potentially others.
- the wafer may be annealed in an exemplary H 2 gas.
- native oxide is etched off from the surfaces of the nanowires 104 and the SOI pads 103 A.
- the annealing in H 2 smoothes the nanowire sidewalls, realigns the sidewalls and the SOI pads 103 A and re-shapes the nanowire 104 cross-section from a rectangular cross-section to a more cylindrical cross-section.
- the H 2 anneal may also thin the nanowire 104 body by re-distributing Si to the SOI pads 103 A.
- the inert gas anneal may be performed with a gas pressure of from about 30 torr to about 1000 torr, at a temperature of from about 600 degrees Celsius (° C.) to about 1100° C. and for a duration of about 1-120 minutes.
- a gas pressure of from about 30 torr to about 1000 torr, at a temperature of from about 600 degrees Celsius (° C.) to about 1100° C. and for a duration of about 1-120 minutes.
- the rate of Si re-distribution increases with temperature and decrease with an increase in pressure.
- a conformal gate dielectric 112 is deposited over the structure.
- the gate dielectric 112 may include silicon dioxide (SiO 2 ), silicon oxynitride (SiON), hafnium oxide (HfO 2 ) or any other suitable hi-K dielectric(s) and may be deposited over SOI pads 103 A and around the reshaped nanowires 108 using chemical vapor deposition (CVD), atomic layer deposition (ALD) or an oxidation furnace in the case of SiO 2 and SiON.
- CVD chemical vapor deposition
- ALD atomic layer deposition
- a mask 115 is employed to facilitate the etching of a gate line by reactive ion etching (RIE).
- RIE reactive ion etching
- the thin gate conductor 117 may be removed by RIE as shown in FIGS. 4A and 4B .
- the removal of the thin gate conductor 117 from surfaces outside gate line 118 A may require an additional wet etch step as shown in FIGS. 4C and 4D .
- a poly-Si 113 is blanket deposited.
- RIE e.g., hydrogen bromide (HBr)-based chemistry
- the poly-Si 113 is selectively etched except where the etching is blocked by mask 115 to define a cleared region 119 .
- the RIE process includes a first phase, during which etching is directional to obtain a substantially straight profile for the gate line 118 A, and a second phase, during which the gate line 118 A is trimmed sideways by an amount sufficient to clear the gate material under the reshaped nanowires 108 in the regions outside the gate stack 118 .
- the gate etching can include the etching of the thin gate conductor 117 , as shown in FIGS. 4A and 4B , or it can be limited to an etching of the poly-Si 113 while leaving the thin gate conductor 117 relatively intact, as illustrated in FIGS. 4C and 4D .
- gate sidewall spacers 121 are formed and epitaxy 122 may be selectively used to thicken the reshaped nanowire 108 portions that are not encapsulated by the gate stack 118 and sidewall spaces.
- the SOI pads 103 A may also be thickened as necessary by epitaxy 122 .
- Epitaxy 122 can include in-situ doping to incorporate dopants into the source/drain regions. Alternatively, ion-implantation can be used to dope the source and drain region. A self-aligned silicide may be applied to form silicide 124 over the source and drain regions.
- the FUSI surrounding the thin gate conductor 117 is formed in a last set of processes referred to as “FUSI last,” since the FET source and drain junctions including silicide 124 over the source and drain regions are fabricated before the FUSI surrounding the gate stack 118 is formed.
- the FUSI formation temperature is, therefore, limited to about 550° C. but is compatible with standard fabrication techniques and requires relatively little process development.
- an oxide layer 126 is deposited and chemical mechanical polishing (CMP) is employed to polish back the oxide layer 126 and planarize its surface.
- CMP chemical mechanical polishing
- the polishing exposes the top portion of the gate line 118 A.
- the silicide 125 can then be used as a stop-CMP film.
- a standard M 1 planarization process can be used, where the oxide film is substituted with a nitride/oxide film stack.
- the CMP process then polishes the oxide layer 126 and uses the nitride as a polish-stop film.
- the nitride film is etched to expose the top portion of the gate line 118 A.
- a silicide forming metal such as nickel (Ni) and/or platinum (Pt) is then blanket deposited.
- the thickness of the silicide forming metal is chosen such that, when it is reacted with the poly-Si 113 all or a substantial portion of the poly-Si will be converted into a metal-silicide.
- the metal is chosen such that it is the main diffuser in the silicide reaction. Examples of metals that can form silicide at temperatures below about 550° C. and are the primary diffusing species are nickel (Ni) and platinum (Pt) as well as other similar metals.
- annealing or some other reaction initiating operation is performed to cause the metal to react with the poly-Si 113 and form silicide 127 all-around the metal gate 117 .
- the unreacted metal over the oxide 126 is selectively etched.
- the final structure has a FUSI 127 surrounding the thin gate conductor 117 , which is exposed through the oxide 126 . Due to thermal mismatch at the temperature of silicide formation and due to volume change, the FUSI 127 induces radial strain in the reshaped nanowire 108 .
- Poly-germanium or another suitable composition can be used as a substitute to poly-Si 113 and, in this case, in similar fashion to the process described for forming FUSI 127 , the poly-germanium can be reacted with a germanide forming metal such as nickel. Additionally, any poly-SiGe alloy can also be used to substitute poly-Si 113 . Still further, poly-Si 113 can be deposited in a poly-crystalline form or deposited in an amorphous form which is later transformed into poly-Si when exposed to high temperature.
- the methods disclosed herein can be applied to an omega-shaped gate nanowire FET, where the nanowire 104 or reshaped nanowire 108 is attached to the buried oxide 102 such that it is not suspended.
- the strain profile may not have perfect radial symmetry. Volume expansion plays a smaller role in producing stress in the silicided films, and it is assumed that thermal mismatch between the silicide and the nanowire is the main contributor to stress. As such, an intensity of the induced strain can be controlled and tuned by changes in the silicide formation temperature. In general, the higher the formation temperature, the higher the induced strain due to thermal mismatch.
- the above embodiments describe a method and structure to induce radial strain in a nanowire FET channel.
- the radial strain can be decoupled from the longitudinal strain.
- the choice of stressor (FUSI) does not change the gate stack properties (work function).
- a method for testing induced strain on, e.g., a nanowire 104 includes measuring device characteristics of the nanowire 104 with a strain neutral doped poly-Si gate. The device characteristics are then re-measured following conversion of the strain neutral doped poly-Si gate to a FUSI gate in a manner similar to the operations described above. Finally, a change in the device characteristics is correlated with a strain intensity.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Computer Hardware Design (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/631,218 US8309991B2 (en) | 2009-12-04 | 2009-12-04 | Nanowire FET having induced radial strain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/631,218 US8309991B2 (en) | 2009-12-04 | 2009-12-04 | Nanowire FET having induced radial strain |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110133166A1 US20110133166A1 (en) | 2011-06-09 |
US8309991B2 true US8309991B2 (en) | 2012-11-13 |
Family
ID=44081138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/631,218 Active 2030-05-20 US8309991B2 (en) | 2009-12-04 | 2009-12-04 | Nanowire FET having induced radial strain |
Country Status (1)
Country | Link |
---|---|
US (1) | US8309991B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110108804A1 (en) * | 2009-02-04 | 2011-05-12 | International Business Machines Corporation | Maskless Process for Suspending and Thinning Nanowires |
US8575009B2 (en) * | 2012-03-08 | 2013-11-05 | International Business Machines Corporation | Two-step hydrogen annealing process for creating uniform non-planar semiconductor devices at aggressive pitch |
US9324812B2 (en) | 2013-10-02 | 2016-04-26 | Samsung Electronics Co., Ltd. | Semiconductor device including nanowire transistor |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8394710B2 (en) * | 2010-06-21 | 2013-03-12 | International Business Machines Corporation | Semiconductor devices fabricated by doped material layer as dopant source |
JP5325932B2 (en) | 2011-05-27 | 2013-10-23 | 株式会社東芝 | Semiconductor device and manufacturing method thereof |
KR101271787B1 (en) | 2012-03-13 | 2013-06-07 | 포항공과대학교 산학협력단 | Nanowire field effect transistor and method for fabricating the same |
CN103579295B (en) * | 2012-07-25 | 2016-12-28 | 中国科学院微电子研究所 | Semiconductor device and method for manufacturing the same |
US8785909B2 (en) * | 2012-09-27 | 2014-07-22 | Intel Corporation | Non-planar semiconductor device having channel region with low band-gap cladding layer |
US8735869B2 (en) | 2012-09-27 | 2014-05-27 | Intel Corporation | Strained gate-all-around semiconductor devices formed on globally or locally isolated substrates |
US20140151757A1 (en) * | 2012-12-03 | 2014-06-05 | International Business Machines Corporation | Substrate-templated epitaxial source/drain contact structures |
US8768271B1 (en) | 2012-12-19 | 2014-07-01 | Intel Corporation | Group III-N transistors on nanoscale template structures |
US9911848B2 (en) * | 2014-08-29 | 2018-03-06 | Taiwan Semiconductor Manufacturing Co., Ltd. | Vertical transistor and method of manufacturing the same |
US9502505B2 (en) * | 2014-12-31 | 2016-11-22 | Stmicroelectronics, Inc. | Method and structure of making enhanced UTBB FDSOI devices |
US9397005B1 (en) * | 2015-07-20 | 2016-07-19 | International Business Machines Corporation | Dual-material mandrel for epitaxial crystal growth on silicon |
US11538806B2 (en) * | 2018-09-27 | 2022-12-27 | Intel Corporation | Gate-all-around integrated circuit structures having high mobility |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060022197A1 (en) * | 2004-07-30 | 2006-02-02 | Frank Wirbeleit | Technique for evaluating local electrical characteristics in semiconductor devices |
US20060091428A1 (en) * | 2003-06-27 | 2006-05-04 | Yee-Chia Yeo | Structure and method for forming the gate electrode in a multiple-gate transistor |
US7145246B2 (en) | 2003-07-28 | 2006-12-05 | Intel Corporation | Method of fabricating an ultra-narrow channel semiconductor device |
WO2006135336A1 (en) | 2005-06-16 | 2006-12-21 | Qunano Ab | Semiconductor nanowire transistor |
US20070099360A1 (en) | 2005-11-03 | 2007-05-03 | International Business Machines Corporation | Integrated circuits having strained channel field effect transistors and methods of making |
EP1804286A1 (en) | 2005-12-27 | 2007-07-04 | Interuniversitair Microelektronica Centrum | Elongate nanostructure semiconductor device |
US20080067495A1 (en) | 2006-09-15 | 2008-03-20 | Interuniversitair Microelektronica Centrum (Imec) | Tunnel effect transistors based on silicon nanowires |
US7416949B1 (en) | 2007-02-14 | 2008-08-26 | Texas Instruments Incorporated | Fabrication of transistors with a fully silicided gate electrode and channel strain |
US20080305621A1 (en) | 2007-06-08 | 2008-12-11 | International Business Machines Corporation | Channel strain engineering in field-effect-transistor |
US20090104746A1 (en) | 2007-10-17 | 2009-04-23 | Paul Clifton | Channel strain induced by strained metal in fet source or drain |
US7534675B2 (en) | 2007-09-05 | 2009-05-19 | International Business Machiens Corporation | Techniques for fabricating nanowire field-effect transistors |
US7538339B2 (en) | 2006-12-22 | 2009-05-26 | International Business Machines Corporation | Scalable strained FET device and method of fabricating the same |
US20090174003A1 (en) * | 2007-11-13 | 2009-07-09 | Interuniversitair Microelektronica Centrum Vzw (Imec) | Dual work function device with stressor layer and method for manufacturing the same |
US20090242986A1 (en) | 2008-03-27 | 2009-10-01 | Kabushiki Kaisha Toshiba | Multi-gate field effect transistor and method for manufacturing the same |
US20100167492A1 (en) | 2006-10-20 | 2010-07-01 | Renesas Technology Corp. | Semiconductor device and method of manufacturing the same |
US7755144B2 (en) * | 2005-11-15 | 2010-07-13 | Infineon Technologies Ag | Multiple-gate MOS transistors |
US7829916B2 (en) * | 2005-06-06 | 2010-11-09 | Commissariat A L'energie Atomique | Transistor with a germanium-based channel encased by a gate electrode and method for producing one such transistor |
US20110012090A1 (en) * | 2007-12-07 | 2011-01-20 | Agency For Science, Technology And Research | Silicon-germanium nanowire structure and a method of forming the same |
US20110020987A1 (en) * | 2003-06-27 | 2011-01-27 | Hareland Scott A | Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication |
US20110027919A1 (en) * | 2007-09-07 | 2011-02-03 | Kla-Tencor Corporation | Measurement and control of strained devices |
US20110049639A1 (en) * | 2008-04-29 | 2011-03-03 | Nxp B.V. | Integrated circuit manufacturing method and integrated circuit |
-
2009
- 2009-12-04 US US12/631,218 patent/US8309991B2/en active Active
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060091428A1 (en) * | 2003-06-27 | 2006-05-04 | Yee-Chia Yeo | Structure and method for forming the gate electrode in a multiple-gate transistor |
US20110020987A1 (en) * | 2003-06-27 | 2011-01-27 | Hareland Scott A | Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication |
US7145246B2 (en) | 2003-07-28 | 2006-12-05 | Intel Corporation | Method of fabricating an ultra-narrow channel semiconductor device |
US20060022197A1 (en) * | 2004-07-30 | 2006-02-02 | Frank Wirbeleit | Technique for evaluating local electrical characteristics in semiconductor devices |
US7829916B2 (en) * | 2005-06-06 | 2010-11-09 | Commissariat A L'energie Atomique | Transistor with a germanium-based channel encased by a gate electrode and method for producing one such transistor |
WO2006135336A1 (en) | 2005-06-16 | 2006-12-21 | Qunano Ab | Semiconductor nanowire transistor |
US20070099360A1 (en) | 2005-11-03 | 2007-05-03 | International Business Machines Corporation | Integrated circuits having strained channel field effect transistors and methods of making |
US7755144B2 (en) * | 2005-11-15 | 2010-07-13 | Infineon Technologies Ag | Multiple-gate MOS transistors |
EP1804286A1 (en) | 2005-12-27 | 2007-07-04 | Interuniversitair Microelektronica Centrum | Elongate nanostructure semiconductor device |
US20080067495A1 (en) | 2006-09-15 | 2008-03-20 | Interuniversitair Microelektronica Centrum (Imec) | Tunnel effect transistors based on silicon nanowires |
US20100167492A1 (en) | 2006-10-20 | 2010-07-01 | Renesas Technology Corp. | Semiconductor device and method of manufacturing the same |
US7538339B2 (en) | 2006-12-22 | 2009-05-26 | International Business Machines Corporation | Scalable strained FET device and method of fabricating the same |
US7416949B1 (en) | 2007-02-14 | 2008-08-26 | Texas Instruments Incorporated | Fabrication of transistors with a fully silicided gate electrode and channel strain |
US20080305621A1 (en) | 2007-06-08 | 2008-12-11 | International Business Machines Corporation | Channel strain engineering in field-effect-transistor |
US7534675B2 (en) | 2007-09-05 | 2009-05-19 | International Business Machiens Corporation | Techniques for fabricating nanowire field-effect transistors |
US20110027919A1 (en) * | 2007-09-07 | 2011-02-03 | Kla-Tencor Corporation | Measurement and control of strained devices |
US20090104746A1 (en) | 2007-10-17 | 2009-04-23 | Paul Clifton | Channel strain induced by strained metal in fet source or drain |
US20090174003A1 (en) * | 2007-11-13 | 2009-07-09 | Interuniversitair Microelektronica Centrum Vzw (Imec) | Dual work function device with stressor layer and method for manufacturing the same |
US20110012090A1 (en) * | 2007-12-07 | 2011-01-20 | Agency For Science, Technology And Research | Silicon-germanium nanowire structure and a method of forming the same |
US20090242986A1 (en) | 2008-03-27 | 2009-10-01 | Kabushiki Kaisha Toshiba | Multi-gate field effect transistor and method for manufacturing the same |
US20110049639A1 (en) * | 2008-04-29 | 2011-03-03 | Nxp B.V. | Integrated circuit manufacturing method and integrated circuit |
Non-Patent Citations (2)
Title |
---|
Co-pending Patent Application, "Nanowire FET Having Induced Radial Strain", filed Dec. 4, 2009. |
Seike, A. et al., "Strain-induced transconductance enhancement by pattern dependent oxidation in silicon nanowire field-effect transistors", Applied Physics Letters 91, 202117, 2007. |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110108804A1 (en) * | 2009-02-04 | 2011-05-12 | International Business Machines Corporation | Maskless Process for Suspending and Thinning Nanowires |
US8441043B2 (en) * | 2009-02-04 | 2013-05-14 | International Business Machines Corporation | Maskless process for suspending and thinning nanowires |
US8575009B2 (en) * | 2012-03-08 | 2013-11-05 | International Business Machines Corporation | Two-step hydrogen annealing process for creating uniform non-planar semiconductor devices at aggressive pitch |
US8586454B2 (en) * | 2012-03-08 | 2013-11-19 | International Business Machines Corporation | Two-step hydrogen annealing process for creating uniform non-planar semiconductor devices at aggressive pitch |
US9324812B2 (en) | 2013-10-02 | 2016-04-26 | Samsung Electronics Co., Ltd. | Semiconductor device including nanowire transistor |
US9515147B2 (en) | 2013-10-02 | 2016-12-06 | Samsung Electronics Co., Ltd. | Semiconductor device including nanowire transistor |
US9978835B2 (en) | 2013-10-02 | 2018-05-22 | Samsung Electronics Co., Ltd. | Semiconductor device including nanowire transistor |
Also Published As
Publication number | Publication date |
---|---|
US20110133166A1 (en) | 2011-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8309991B2 (en) | Nanowire FET having induced radial strain | |
US8313990B2 (en) | Nanowire FET having induced radial strain | |
US9337264B2 (en) | Process for forming a surrounding gate for a nanowire using a sacrificial patternable dielectric | |
US8927405B2 (en) | Accurate control of distance between suspended semiconductor nanowires and substrate surface | |
US8716695B2 (en) | Compressive (PFET) and tensile (NFET) channel strain in nanowire FETs fabricated with a replacement gate process | |
US9728619B2 (en) | Generation of multiple diameter nanowire field effect transistors | |
US9184301B2 (en) | Planar and nanowire field effect transistors | |
US8445337B2 (en) | Generation of multiple diameter nanowire field effect transistors | |
US7884004B2 (en) | Maskless process for suspending and thinning nanowires | |
US8936972B2 (en) | Epitaxially thickened doped or undoped core nanowire FET structure and method for increasing effective device width | |
JP5883432B2 (en) | Field effect transistor (FET) and method of forming the same | |
US8901655B2 (en) | Diode structure for gate all around silicon nanowire technologies | |
US9006045B2 (en) | Transistor including a gate electrode extending all around one or more channel regions | |
US20100252810A1 (en) | Gate patterning of nano-channel devices | |
WO2013119342A1 (en) | Tapered nanowire structure with reduced off current |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BANGSARUNTIP, SARUNYA;COHEN, GUY M.;MURRAY, CONAL E.;AND OTHERS;SIGNING DATES FROM 20091202 TO 20091203;REEL/FRAME:023856/0882 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001 Effective date: 20150629 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001 Effective date: 20150910 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, DELAWARE Free format text: SECURITY AGREEMENT;ASSIGNOR:GLOBALFOUNDRIES INC.;REEL/FRAME:049490/0001 Effective date: 20181127 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GLOBALFOUNDRIES INC.;REEL/FRAME:054633/0001 Effective date: 20201022 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:054636/0001 Effective date: 20201117 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:056987/0001 Effective date: 20201117 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |