US8233654B2 - Methods and apparatus for processing audio signals - Google Patents
Methods and apparatus for processing audio signals Download PDFInfo
- Publication number
- US8233654B2 US8233654B2 US12862933 US86293310A US8233654B2 US 8233654 B2 US8233654 B2 US 8233654B2 US 12862933 US12862933 US 12862933 US 86293310 A US86293310 A US 86293310A US 8233654 B2 US8233654 B2 US 8233654B2
- Authority
- US
- Grant status
- Grant
- Patent type
- Prior art keywords
- signals
- user
- audio
- signal
- transducers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets providing an auditory perception; Electric tinnitus maskers providing an auditory perception
- H04R25/60—Mounting, assembling or interconnection of hearing aid parts, e.g. inside tips, housing or to ossicles; Apparatus or processes therefor
- H04R25/604—Arrangements for mounting transducers
- H04R25/606—Arrangements for mounting transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C5/00—Filling or capping teeth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C8/00—Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
- A61C8/0093—Features of implants not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C8/00—Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
- A61C8/0093—Features of implants not otherwise provided for
- A61C8/0098—Immediate loaded implants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/46—Special adaptations for use as contact microphones, e.g. on musical instrument, on stethoscope
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets providing an auditory perception; Electric tinnitus maskers providing an auditory perception
- H04R25/55—Deaf-aid sets providing an auditory perception; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
- H04R25/554—Deaf-aid sets providing an auditory perception; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired using a wireless connection, e.g. between microphone and amplifier or using T-coils
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets providing an auditory perception; Electric tinnitus maskers providing an auditory perception
- H04R25/60—Mounting, assembling or interconnection of hearing aid parts, e.g. inside tips, housing or to ossicles; Apparatus or processes therefor
- H04R25/602—Arrangements for mounting batteries
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R3/00—Circuits for transducers, loudspeakers or microphones
- H04R3/04—Circuits for transducers, loudspeakers or microphones for correcting frequency response
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2225/00—Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
- H04R2225/31—Aspects of the use of accumulators in hearing aids, e.g. rechargeable batteries or fuel cells
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2225/00—Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
- H04R2225/67—Implantable hearing aids or parts thereof not covered by H04R25/606
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2420/00—Details of connection covered by H04R, not provided for in its groups
- H04R2420/07—Applications of wireless loudspeakers or wireless microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2460/00—Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
- H04R2460/01—Hearing devices using active noise cancellation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2460/00—Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
- H04R2460/13—Hearing devices using bone conduction transducers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets providing an auditory perception; Electric tinnitus maskers providing an auditory perception
- H04R25/60—Mounting, assembling or interconnection of hearing aid parts, e.g. inside tips, housing or to ossicles; Apparatus or processes therefor
- H04R25/604—Arrangements for mounting transducers
Abstract
Description
This application is a continuation of U.S. patent application Ser. No. 11/672,271 filed Feb. 7, 2007, which claims the benefit of priority to U.S. Prov. Pat. App. Ser. Nos. 60/809,244 filed May 30, 2006 and 60/820,223 filed Jul. 24, 2006, each of which is incorporated herein by reference in its entirety.
The present invention relates to methods and apparatus for processing and/or enhancing audio signals for transmitting these signals as vibrations through teeth or bone structures in and/or around a mouth. More particularly, the present invention relates to methods and apparatus for receiving audio signals and processing them to enhance its quality and/or to emulate various auditory features for transmitting these signals via sound conduction through teeth or bone structures in and/or around the mouth such that the transmitted signals correlate to auditory signals received by a user.
Hearing loss affects over 31 million people in the United States (about 13% of the population). As a chronic condition, the incidence of hearing impairment rivals that of heart disease and, like heart disease, the incidence of hearing impairment increases sharply with age.
While the vast majority of those with hearing loss can be helped by a well-fitted, high quality hearing device, only 22% of the total hearing impaired population own hearing devices. Current products and distribution methods are not able to satisfy or reach over 20 million persons with hearing impairment in the U.S. alone.
Hearing loss adversely affects a person's quality of life and psychological well-being. Individuals with hearing impairment often withdraw from social interactions to avoid frustrations resulting from inability to understand conversations. Recent studies have shown that hearing impairment causes increased stress levels, reduced self-confidence, reduced sociability and reduced effectiveness in the workplace.
The human ear generally comprises three regions: the outer ear, the middle ear, and the inner ear. The outer ear generally comprises the external auricle and the ear canal, which is a tubular pathway through which sound reaches the middle ear. The outer ear is separated from the middle ear by the tympanic membrane (eardrum). The middle ear generally comprises three small bones, known as the ossicles, which form a mechanical conductor from the tympanic membrane to the inner ear. Finally, the inner ear includes the cochlea, which is a fluid-filled structure that contains a large number of delicate sensory hair cells that are connected to the auditory nerve.
Hearing loss can also be classified in terms of being conductive, sensorineural, or a combination of both. Conductive hearing impairment typically results from diseases or disorders that limit the transmission of sound through the middle ear. Most conductive impairments can be treated medically or surgically. Purely conductive hearing loss represents a relatively small portion of the total hearing impaired population (estimated at less than 5% of the total hearing impaired population).
Sensorineural hearing losses occur mostly in the inner ear and account for the vast majority of hearing impairment (estimated at 90-95% of the total hearing impaired population). Sensorineural hearing impairment (sometimes called “nerve loss”) is largely caused by damage to the sensory hair cells inside the cochlea. Sensorineural hearing impairment occurs naturally as a result of aging or prolonged exposure to loud music and noise. This type of hearing loss cannot be reversed nor can it be medically or surgically treated; however, the use of properly fitted hearing devices can improve the individual's quality of life.
Conventional hearing devices are the most common devices used to treat mild to severe sensorineural hearing impairment. These are acoustic devices that amplify sound to the tympanic membrane. These devices are individually customizable to the patient's physical and acoustical characteristics over four to six separate visits to an audiologist or hearing instrument specialist. Such devices generally comprise a microphone, amplifier, battery, and speaker. Recently, hearing device manufacturers have increased the sophistication of sound processing, often using digital technology, to provide features such as programmability and multi-band compression. Although these devices have been miniaturized and are less obtrusive, they are still visible and have major acoustic limitation.
Industry research has shown that the primary obstacles for not purchasing a hearing device generally include: a) the stigma associated with wearing a hearing device; b) dissenting attitudes on the part of the medical profession, particularly ENT physicians; c) product value issues related to perceived performance problems; d) general lack of information and education at the consumer and physician level; and e) negative word-of-mouth from dissatisfied users.
Other devices such as cochlear implants have been developed for people who have severe to profound hearing loss and are essentially deaf (approximately 2% of the total hearing impaired population). The electrode of a cochlear implant is inserted into the inner ear in an invasive and non-reversible surgery. The electrode electrically stimulates the auditory nerve through an electrode array that provides audible cues to the user, which are not usually interpreted by the brain as normal sound. Users generally require intensive and extended counseling and training following surgery to achieve the expected benefit.
Other devices such as electronic middle ear implants generally are surgically placed within the middle ear of the hearing impaired. They are surgically implanted devices with an externally worn component.
The manufacture, fitting and dispensing of hearing devices remain an arcane and inefficient process. Most hearing devices are custom manufactured, fabricated by the manufacturer to fit the ear of each prospective purchaser. An impression of the ear canal is taken by the dispenser (either an audiologist or licensed hearing instrument specialist) and mailed to the manufacturer for interpretation and fabrication of the custom molded rigid plastic casing. Hand-wired electronics and transducers (microphone and speaker) are then placed inside the casing, and the final product is shipped back to the dispensing professional after some period of time, typically one to two weeks.
The time cycle for dispensing a hearing device, from the first diagnostic session to the final fine-tuning session, typically spans a period over several weeks, such as six to eight weeks, and involves multiple with the dispenser.
Moreover, typical hearing aid devices fail to eliminate background noises or fail to distinguish between background noise and desired sounds. Accordingly, there exists a need for methods and apparatus for receiving audio signals and processing them to enhance its quality and/or to emulate various auditory features for transmitting these signals via sound conduction through teeth or bone structures in and/or around the mouth for facilitating the treatment of hearing loss in patients.
An electronic and transducer device may be attached, adhered, or otherwise embedded into or upon a removable dental or oral appliance to form a hearing aid assembly. Such a removable oral appliance may be a custom-made device fabricated from a thermal forming process utilizing a replicate model of a dental structure obtained by conventional dental impression methods. The electronic and transducer assembly may receive incoming sounds either directly or through a receiver to process and amplify the signals and transmit the processed sounds via a vibrating transducer element coupled to a tooth or other bone structure, such as the maxillary, mandibular, or palatine bone structure.
The assembly for transmitting vibrations via at least one tooth may generally comprise a housing having a shape which is conformable to at least a portion of the at least one tooth, and an actuatable transducer disposed within or upon the housing and in vibratory communication with a surface of the at least one tooth. Moreover, the transducer itself may be a separate assembly from the electronics and may be positioned along another surface of the tooth, such as the occlusal surface, or even attached to an implanted post or screw embedded into the underlying bone.
In receiving and processing the various audio signals typically received by a user, various configurations of the oral appliance and processing of the received audio signals may be utilized to enhance and/or optimize the conducted vibrations which are transmitted to the user. For instance, in configurations where one or more microphones are positioned within the user's mouth, filtering features such as Acoustic Echo Cancellation (AEC) may be optionally utilized to eliminate or mitigate undesired sounds received by the microphones. In such a configuration, at least two intra-buccal microphones may be utilized to separate out desired sounds (e.g., sounds received from outside the body such as speech, music, etc.) from undesirable sounds (e.g., sounds resulting from chewing, swallowing, breathing, self-speech, teeth grinding, etc.).
If these undesirable sounds are not filtered or cancelled, they may be amplified along with the desired audio signals making for potentially unintelligible audio quality for the user. Additionally, desired audio sounds may be generally received at relatively lower sound pressure levels because such signals are more likely to be generated at a distance from the user and may have to pass through the cheek of the user while the undesired sounds are more likely to be generated locally within the oral cavity of the user. Samples of the undesired sounds may be compared against desired sounds to eliminate or mitigate the undesired sounds prior to actuating the one or more transducers to vibrate only the resulting desired sounds to the user.
Independent from or in combination with acoustic echo cancellation, another processing feature for the oral appliance may include use of a multiband actuation system to facilitate the efficiency with which audio signals may be conducted to the user. Rather than utilizing a single transducer to cover the entire range of the frequency spectrum (e.g., 200 Hz to 10,000 Hz), one variation may utilize two or more transducers where each transducer is utilized to deliver sounds within certain frequencies. For instance, a first transducer may be utilized to deliver sounds in the 200 Hz to 2000 Hz frequency range and a second transducer may be used to deliver sounds in the 2000 Hz to 10,000 Hz frequency range. Alternatively, these frequency ranges may be discrete or overlapping. As individual transducers may be configured to handle only a subset of the frequency spectrum, the transducers may be more efficient in their design.
Yet another process which may utilize the multiple transducers may include the utilization of directionality via the conducted vibrations to emulate the directional perception of audio signals received by the user. In one example for providing the perception of directionality with an oral appliance, two or more transducers may be positioned apart from one another along respective retaining portions. One transducer may be actuated corresponding to an audio signal while the other transducer may be actuated corresponding to the same audio signal but with a phase and/or amplitude and/or delay difference intentionally induced corresponding to a direction emulated for the user. Generally, upon receiving a directional audio signal and depending upon the direction to be emulated and the separation between the respective transducers, a particular phase and/or gain and/or delay change to the audio signal may be applied to the respective transducer while leaving the other transducer to receive the audio signal unchanged.
Another feature which may utilize the oral appliance and processing capabilities may include the ability to vibrationally conduct ancillary audio signals to the user, e.g., the oral appliance may be configured to wirelessly receive and conduct signals from secondary audio sources to the user. Examples may include the transmission of an alarm signal which only the user may hear or music conducted to the user in public locations, etc. The user may thus enjoy privacy in receiving these ancillary signals while also being able to listen and/or converse in an environment where a primary audio signal is desired.
An electronic and transducer device may be attached, adhered, or otherwise embedded into or upon a removable oral appliance or other oral device to form a hearing aid assembly. Such an oral appliance may be a custom-made device fabricated from a thermal forming process utilizing a replicate model of a dental structure obtained by conventional dental impression methods. The electronic and transducer assembly may receive incoming sounds either directly or through a receiver to process and amplify the signals and transmit the processed sounds via a vibrating transducer element coupled to a tooth or other bone structure, such as the maxillary, mandibular, or palatine bone structure.
As shown in
Generally, the volume of electronics and/or transducer assembly 16 may be minimized so as to be unobtrusive and as comfortable to the user when placed in the mouth. Although the size may be varied, a volume of assembly 16 may be less than 800 cubic millimeters. This volume is, of course, illustrative and not limiting as size and volume of assembly 16 and may be varied accordingly between different users.
Moreover, removable oral appliance 18 may be fabricated from various polymeric or a combination of polymeric and metallic materials using any number of methods, such as computer-aided machining processes using computer numerical control (CNC) systems or three-dimensional printing processes, e.g., stereolithography apparatus (SLA), selective laser sintering (SLS), and/or other similar processes utilizing three-dimensional geometry of the patient's dentition, which may be obtained via any number of techniques. Such techniques may include use of scanned dentition using intra-oral scanners such as laser, white light, ultrasound, mechanical three-dimensional touch scanners, magnetic resonance imaging (MRI), computed tomography (CT), other optical methods, etc.
In forming the removable oral appliance 18, the appliance 18 may be optionally formed such that it is molded to fit over the dentition and at least a portion of the adjacent gingival tissue to inhibit the entry of food, fluids, and other debris into the oral appliance 18 and between the transducer assembly and tooth surface. Moreover, the greater surface area of the oral appliance 18 may facilitate the placement and configuration of the assembly 16 onto the appliance 18.
Additionally, the removable oral appliance 18 may be optionally fabricated to have a shrinkage factor such that when placed onto the dentition, oral appliance 18 may be configured to securely grab onto the tooth or teeth as the appliance 18 may have a resulting size slightly smaller than the scanned tooth or teeth upon which the appliance 18 was formed. The fitting may result in a secure interference fit between the appliance 18 and underlying dentition.
In one variation, with assembly 14 positioned upon the teeth, as shown in
The transmitter assembly 22, as described in further detail below, may contain a microphone assembly as well as a transmitter assembly and may be configured in any number of shapes and forms worn by the user, such as a watch, necklace, lapel, phone, belt-mounted device, etc.
With respect to microphone 30, a variety of various microphone systems may be utilized. For instance, microphone 30 may be a digital, analog, and/or directional type microphone. Such various types of microphones may be interchangeably configured to be utilized with the assembly, if so desired. Moreover, various configurations and methods for utilizing multiple microphones within the user's mouth may also be utilized, as further described below.
Power supply 36 may be connected to each of the components in transmitter assembly 22 to provide power thereto. The transmitter signals 24 may be in any wireless form utilizing, e.g., radio frequency, ultrasound, microwave, Blue Tooth® (BLUETOOTH SIG, INC., Bellevue, Wash.), etc. for transmission to assembly 16. Assembly 22 may also optionally include one or more input controls 28 that a user may manipulate to adjust various acoustic parameters of the electronics and/or transducer assembly 16, such as acoustic focusing, volume control, filtration, muting, frequency optimization, sound adjustments, and tone adjustments, etc.
The signals transmitted 24 by transmitter 34 may be received by electronics and/or transducer assembly 16 via receiver 38, which may be connected to an internal processor for additional processing of the received signals. The received signals may be communicated to transducer 40, which may vibrate correspondingly against a surface of the tooth to conduct the vibratory signals through the tooth and bone and subsequently to the middle ear to facilitate hearing of the user. Transducer 40 may be configured as any number of different vibratory mechanisms. For instance, in one variation, transducer 40 may be an electromagnetically actuated transducer. In other variations, transducer 40 may be in the form of a piezoelectric crystal having a range of vibratory frequencies, e.g., between 250 to 4000 kHz.
Power supply 42 may also be included with assembly 16 to provide power to the receiver, transducer, and/or processor, if also included. Although power supply 42 may be a simple battery, replaceable or permanent, other variations may include a power supply 42 which is charged by inductance via an external charger. Additionally, power supply 42 may alternatively be charged via direct coupling to an alternating current (AC) or direct current (DC) source. Other variations may include a power supply 42 which is charged via a mechanical mechanism, such as an internal pendulum or slidable electrical inductance charger as known in the art, which is actuated via, e.g., motions of the jaw and/or movement for translating the mechanical motion into stored electrical energy for charging power supply 42.
In another variation of assembly 16, rather than utilizing an extra-buccal transmitter, hearing aid assembly 50 may be configured as an independent assembly contained entirely within the user's mouth, as shown in
In order to transmit the vibrations corresponding to the received auditory signals efficiently and with minimal loss to the tooth or teeth, secure mechanical contact between the transducer and the tooth is ideally maintained to ensure efficient vibratory communication. Accordingly, any number of mechanisms may be utilized to maintain this vibratory communication.
For any of the variations described above, they may be utilized as a single device or in combination with any other variation herein, as practicable, to achieve the desired hearing level in the user. Moreover, more than one oral appliance device and electronics and/or transducer assemblies may be utilized at any one time. For example,
Moreover, each of the different transducers 60, 62, 64, 66 can also be programmed to vibrate in a manner which indicates the directionality of sound received by the microphone worn by the user. For example, different transducers positioned at different locations within the user's mouth can vibrate in a specified manner by providing sound or vibrational queues to inform the user which direction a sound was detected relative to an orientation of the user, as described in further detail below. For instance, a first transducer located, e.g., on a user's left tooth, can be programmed to vibrate for sound detected originating from the user's left side. Similarly, a second transducer located, e.g., on a user's right tooth, can be programmed to vibrate for sound detected originating from the user's right side. Other variations and queues may be utilized as these examples are intended to be illustrative of potential variations.
In yet another variation for separating the microphone from the transducer assembly,
In utilizing multiple transducers and/or processing units, several features may be incorporated with the oral appliance(s) to effect any number of enhancements to the quality of the conducted vibratory signals and/or to emulate various perceptual features to the user to correlate auditory signals received by a user for transmitting these signals via sound conduction through teeth or bone structures in and/or around the mouth.
As illustrated in
Moreover, the one or more transducers 114, 116, 118 may be positioned along respective retaining portions 21, 23 and configured to emulate directionality of audio signals received by the user to provide a sense of direction with respect to conducted audio signals. Additionally, one or more processors 120, 124 may also be provided along one or both retaining portions 21, 23 to process received audio signals, e.g., to translate the audio signals into vibrations suitable for conduction to the user, as well as other providing for other functional features. Furthermore, an optional processor 122 may also be provided along one or both retaining portions 21, 23 for interfacing and/or receiving wireless signals from other external devices such as an input control, as described above, or other wireless devices.
In configurations particularly where the one or more microphones are positioned within the user's mouth, filtering features such as Acoustic Echo Cancellation (AEC) may be optionally utilized to eliminate or mitigate undesired sounds received by the microphones. AEC algorithms are well utilized and are typically used to anticipate the signal which may re-enter the transmission path from the microphone and cancel it out by digitally sampling an initial received signal to form a reference signal. Generally, the received signal is produced by the transducer and any reverberant signal which may be picked up again by the microphone is again digitally sampled to form an echo signal. The reference and echo signals may be compared such that the two signals are summed ideally at 180° out of phase to result in a null signal, thereby cancelling the echo.
In the variation shown in
Samples of the undesired sounds may be compared against desired sounds to eliminate or mitigate the undesired sounds prior to actuating the one or more transducers to vibrate only the resulting desired sounds to the user. In this example, first microphone 110 may be positioned along a buccal surface of the retaining portion 23 to receive desired sounds while second microphone 112 may be positioned along a lingual surface of retaining portion 21 to receive the undesirable sound signals. Processor 120 may be positioned along either retaining portion 21 or 23, in this case along a lingual surface of retaining portion 21, and may be in wired or wireless communication with the microphones 110, 112.
Although audio signals may be attenuated by passing through the cheek of the user, especially when the mouth is closed, first microphone 110 may still receive the desired audio signals for processing by processor 120, which may also amplify the received audio signals. As illustrated schematically in
The desired audio signals may be transmitted via wired or wireless communication along a receive path 142 where the signal 144 may be sampled and received by AEC processor 120. A portion of the far end speech 140 may be transmitted to one or more transducers 114 where it may initially conduct the desired audio signals via vibration 146 through the user's bones. Any resulting echo or reverberations 148 from the transmitted vibration 146 may be detected by second microphone 112 along with any other undesirable noises or audio signals 150, as mentioned above. The undesired signals 148, 150 detected by second microphone 112 or the sampled signal 144 received by AEC processor 120 may be processed and shifted out of phase, e.g., ideally 180° out of phase, such that the summation 154 of the two signals results in a cancellation of any echo 148 and/or other undesired sounds 150.
The resulting summed audio signal may be redirected through an adaptive filter 156 and re-summed 154 to further clarify the audio signal until the desired audio signals is passed along to the one or more transducers 114 where the filtered signal 162, free or relatively free from the undesired sounds, may be conducted 160 to the user. Although two microphones 110, 112 are described in this example, an array of additional microphones may be utilized throughout the oral cavity of the user. Alternatively, as mentioned above, one or more microphones may also be positioned or worn by the user outside the mouth, such as in a bracelet, necklace, etc. and used alone or in combination with the one or more intra-buccal microphones. Furthermore, although three transducers 114, 116, 118 are illustrated, other variations may utilize a single transducer or more than three transducers positioned throughout the user's oral cavity, if so desired.
Independent from or in combination with acoustic echo cancellation, another processing feature for the oral appliance may include use of a multiband actuation system to facilitate the efficiency with which audio signals may be conducted to the user. Rather than utilizing a single transducer to cover the entire range of the frequency spectrum (e.g., 200 Hz to 10,000 Hz), one variation may utilize two or more transducers where each transducer is utilized to deliver sounds within certain frequencies. For instance, a first transducer may be utilized to deliver sounds in the 200 Hz to 2000 Hz frequency range and a second transducer may be used to deliver sounds in the 2000 Hz to 10,000 Hz frequency range. Alternatively, these frequency ranges may be discrete or overlapping. As individual transducers may be configured to handle only a subset of the frequency spectrum, the transducers may be more efficient in their design.
Additionally, for certain applications where high fidelity signals are not necessary to be transmitted to the user, individual higher frequency transducers may be shut off to conserve power. In yet another alternative, certain transducers may be omitted, particularly transducers configured for lower frequency vibrations.
As illustrated in
One or both processors 120 and/or 124, which are in communication with the one or more transducers (in this example transducers 114, 116, 118), may be programmed to treat the audio signals for each particular frequency range similarly or differently. For instance, processors 120 and/or 124 may apply a higher gain level to the signals from one band with respect to another band. Additionally, one or more of the transducers 114, 116, 118 may be configured differently to optimally transmit vibrations within their respective frequency ranges. In one variation, one or more of the transducers 114, 116, 118 may be varied in size or in shape to effectuate an optimal configuration for transmission within their respective frequencies.
As mentioned above, the one or more of transducers 114, 116, 118 may also be powered on or off by the processor to save on power consumption in certain listening applications. As an example, higher frequency transducers 114, 118 may be shut off when higher frequency signals are not utilized such as when the user is driving. In other examples, the user may activate all transducers 114, 116, 118 such as when the user is listening to music. In yet another variation, higher frequency transducers 114, 118 may also be configured to deliver high volume audio signals, such as for alarms, compared to lower frequency transducers 116. Thus, the perception of a louder sound may be achieved just by actuation of the higher frequency transducers 114, 118 without having to actuate any lower frequency transducers 116.
An example of how audio signals received by a user may be split into sub-frequency ranges for actuation by corresponding lower or higher frequency transducers is schematically illustrated in
Each respective filtered signal 178, 180 may be passed on to a respective processor 182, 184 to further process each band's signal according to an algorithm to achieve any desired output per transducer. Thus, processor 182 may process the signal 178 to create the output signal 194 to vibrate the lower frequency transducer 116 accordingly while the processor 184 may process the signal 180 to create the output signal 196 to vibrate the higher frequency transducers 114 and/or 118 accordingly. An optional controller 186 may receive control data 188 from user input controls, as described above, for optionally sending signals 190, 192 to respective processors 182, 184 to shut on/off each respective processor and/or to append ancillary data and/or control information to the subsequent transducers.
In addition to or independent from either acoustic echo cancellation and/or multiband actuation of transducers, yet another process which may utilize the multiple transducers may include the utilization of directionality via the conducted vibrations to emulate the directional perception of audio signals received by the user. Generally, human hearing is able to distinguish the direction of a sound wave by perceiving differences in sound pressure levels between the two cochlea. In one example for providing the perception of directionality with an oral appliance, two or more transducers, such as transducers 114, 118, may be positioned apart from one another along respective retaining portions 21, 23, as shown in
One transducer may be actuated corresponding to an audio signal while the other transducer is actuated corresponding to the same audio signal but with a phase and/or amplitude and/or delay difference intentionally induced corresponding to a direction emulated for the user. Generally, upon receiving a directional audio signal and depending upon the direction to be emulated and the separation between the respective transducers, a particular phase and/or gain and/or delay change to the audio signal may be applied to the respective transducer while leaving the other transducer to receive the audio signal unchanged.
As illustrated in the schematic illustration of
With the estimated direction of arrival of the detected sound 200 determined, the data may be modified for phase and/or amplitude and/or delay adjustments 204 as well as for orientation compensation 208, if necessary, based on additional information received the microphones 110, 112 and relative orientation of the transducers 114, 116, 118, as described in further detail below. The process of adjusting for phase and/or amplitude and/or delay 204 may involve calculating one phase adjustment for one of the transducers. This may simply involve an algorithm where given a desired direction to be emulated, a table of values may correlate a set of given phase and/or amplitude and/or delay values for adjusting one or more of the transducers. Because the adjustment values may depend on several different factors, e.g., speed of sound conductance through a user's skull, distance between transducers, etc., each particular user may have a specific table of values. Alternatively, standard set values may be determined for groups of users having similar anatomical features, such as jaw size among other variations, and requirements. In other variations, rather than utilizing a table of values in adjusting for phase and/or amplitude and/or delay 204, set formulas or algorithms may be programmed in processor 120 and/or 124 to determine phase and/or amplitude and/or delay adjustment values. Use of an algorithm could simply utilize continuous calculations in determining any adjustment which may be needed or desired whereas the use of a table of values may simply utilize storage in memory.
Once any adjustments in phase and/or amplitude and/or delay 204 are determined and with the reproduced signals 202 processed from the microphones 110, 112, these signals may then be processed to calculate any final phase and/or amplitude and/or delay adjustments 206 and these final signals may be applied to the transducers 114, 116, 118, as illustrated, to emulate the directionality of received audio signals to the user. A detailed schematic illustration of the final phase and/or amplitude and/or delay adjustments 206 is illustrated in
As mentioned above, compensating 208 for an orientation of the transducers relative to one another as well as relative to an orientation of the user may be taken into account in calculating any adjustments to phase and/or amplitude and/or delay of the signals applied to the transducers. For example, the direction 230 perpendicular to a line 224 connecting the microphones 226, 228 (intra-buccal and/or extra-buccal) may define a zero degree direction of the microphones. A zero degree direction of the user's head may be indicated by the direction 222, which may be illustrated as in
In addition to or independent from any of the processes described above, another feature which may utilize the oral appliance and processing capabilities may include the ability to vibrationally conduct ancillary audio signals to the user, e.g., the oral appliance may be configured to wirelessly receive and conduct signals from secondary audio sources to the user. Examples may include the transmission of an alarm signal which only the user may hear or music conducted to the user in public locations, etc. The user may thus enjoy privacy in receiving these ancillary signals while also being able to listen and/or converse in an environment where a primary audio signal is desired.
The audio receiver processor 230 may communicate wirelessly or via wire with the audio application processor 232. During one example of use, a primary audio signal 240 (e.g., conversational speech) along with one or more ancillary audio signals 236 (e.g., alarms, music players, cell phones, PDA's, etc.) may be received by the one or more microphones of a receiver unit 250 of audio receiver processor 230. The primary signal 250 and ancillary signals 254 may be transmitted electrically to a multiplexer 256 which may combine the various signals 252, 254 in view of optional methods, controls and/or priority data 262 received from a user control 264, as described above. Parameters such as prioritization of the signals as well as volume, timers, etc., may be set by the user control 264. The multiplexed signal 258 having the combined audio signals may then be transmitted to processor 260, which may transmit the multiplexed signal 266 to the audio application processor 232, as illustrated in
As described above, the various audio signals 236, 240 may be combined and multiplexed in various forms 258 for transmission to the user 242. For example, one variation for multiplexing the audio signals via multiplexer 256 may entail combining the audio signals such that the primary 240 and ancillary 236 signals are transmitted by the transducers in parallel where all audio signals are conducted concurrently to the user, as illustrated in
Alternatively, the multiplexed signal 258 may be transmitted such that the primary 240 and ancillary 236 signals are transmitted in series, as graphically illustrated in
In yet another example, the transmitted signals may be conducted to the user in a hybrid form combining the parallel and serial methods described above and as graphically illustrated in
The applications of the devices and methods discussed above are not limited to the treatment of hearing loss but may include any number of further treatment applications. Moreover, such devices and methods may be applied to other treatment sites within the body. Modification of the above-described assemblies and methods for carrying out the invention, combinations between different variations as practicable, and variations of aspects of the invention that are obvious to those of skill in the art are intended to be within the scope of the claims.
Claims (26)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US80924406 true | 2006-05-30 | 2006-05-30 | |
US82022306 true | 2006-07-24 | 2006-07-24 | |
US11672271 US7801319B2 (en) | 2006-05-30 | 2007-02-07 | Methods and apparatus for processing audio signals |
US12862933 US8233654B2 (en) | 2006-05-30 | 2010-08-25 | Methods and apparatus for processing audio signals |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12862933 US8233654B2 (en) | 2006-05-30 | 2010-08-25 | Methods and apparatus for processing audio signals |
US13526923 US9185485B2 (en) | 2006-05-30 | 2012-06-19 | Methods and apparatus for processing audio signals |
US14936548 US9781526B2 (en) | 2006-05-30 | 2015-11-09 | Methods and apparatus for processing audio signals |
US15676807 US20170347210A1 (en) | 2006-05-30 | 2017-08-14 | Methods and apparatus for processing audio signals |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date | |
---|---|---|---|---|
US11672271 Continuation US7801319B2 (en) | 2006-05-30 | 2007-02-07 | Methods and apparatus for processing audio signals |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13526923 Continuation US9185485B2 (en) | 2006-05-30 | 2012-06-19 | Methods and apparatus for processing audio signals |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100322449A1 true US20100322449A1 (en) | 2010-12-23 |
US8233654B2 true US8233654B2 (en) | 2012-07-31 |
Family
ID=38779406
Family Applications (28)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11672250 Active US7844070B2 (en) | 2006-05-30 | 2007-02-07 | Methods and apparatus for processing audio signals |
US11672239 Active 2027-10-04 US7796769B2 (en) | 2006-05-30 | 2007-02-07 | Methods and apparatus for processing audio signals |
US11672264 Active 2027-03-10 US7876906B2 (en) | 2006-05-30 | 2007-02-07 | Methods and apparatus for processing audio signals |
US11672271 Active US7801319B2 (en) | 2006-05-30 | 2007-02-07 | Methods and apparatus for processing audio signals |
US11741648 Active US7724911B2 (en) | 2006-05-30 | 2007-04-27 | Actuator systems for oral-based appliances |
US11754833 Active US7664277B2 (en) | 2006-05-30 | 2007-05-29 | Bone conduction hearing aid devices and methods |
US11754823 Active US7844064B2 (en) | 2006-05-30 | 2007-05-29 | Methods and apparatus for transmitting vibrations |
US12333259 Active 2029-06-06 US8254611B2 (en) | 2006-05-30 | 2008-12-11 | Methods and apparatus for transmitting vibrations |
US12333272 Active 2028-07-30 US8170242B2 (en) | 2006-05-30 | 2008-12-11 | Actuator systems for oral-based appliances |
US12646789 Active 2027-09-17 US8358792B2 (en) | 2006-05-30 | 2009-12-23 | Actuator systems for oral-based appliances |
US12702629 Abandoned US20110002492A1 (en) | 2006-05-30 | 2010-02-09 | Bone conduction hearing aid devices and methods |
US12779396 Abandoned US20100220883A1 (en) | 2006-05-30 | 2010-05-13 | Actuator systems for oral-based appliances |
US12840213 Active 2029-03-07 US8712077B2 (en) | 2006-05-30 | 2010-07-20 | Methods and apparatus for processing audio signals |
US12848758 Abandoned US20100312568A1 (en) | 2006-05-30 | 2010-08-02 | Methods and apparatus for processing audio signals |
US12862933 Active 2027-09-27 US8233654B2 (en) | 2006-05-30 | 2010-08-25 | Methods and apparatus for processing audio signals |
US13011762 Abandoned US20110116659A1 (en) | 2006-05-30 | 2011-01-21 | Methods and apparatus for processing audio signals |
US13526923 Active US9185485B2 (en) | 2006-05-30 | 2012-06-19 | Methods and apparatus for processing audio signals |
US13551158 Active US8588447B2 (en) | 2006-05-30 | 2012-07-17 | Methods and apparatus for transmitting vibrations |
US13615067 Active 2027-05-18 US8649535B2 (en) | 2006-05-30 | 2012-09-13 | Actuator systems for oral-based appliances |
US14056821 Active 2027-07-20 US9113262B2 (en) | 2006-05-30 | 2013-10-17 | Methods and apparatus for transmitting vibrations |
US14176617 Active US9736602B2 (en) | 2006-05-30 | 2014-02-10 | Actuator systems for oral-based appliances |
US14261759 Active 2027-05-03 US9826324B2 (en) | 2006-05-30 | 2014-04-25 | Methods and apparatus for processing audio signals |
US14828372 Active US9615182B2 (en) | 2006-05-30 | 2015-08-17 | Methods and apparatus for transmitting vibrations |
US14936548 Active US9781526B2 (en) | 2006-05-30 | 2015-11-09 | Methods and apparatus for processing audio signals |
US15438403 Active US9906878B2 (en) | 2006-05-30 | 2017-02-21 | Methods and apparatus for transmitting vibrations |
US15644538 Pending US20170311100A1 (en) | 2006-05-30 | 2017-07-07 | Actuator systems for oral-based appliances |
US15646892 Pending US20170311102A1 (en) | 2006-05-30 | 2017-07-11 | Methods and apparatus for processing audio signals |
US15676807 Pending US20170347210A1 (en) | 2006-05-30 | 2017-08-14 | Methods and apparatus for processing audio signals |
Family Applications Before (14)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11672250 Active US7844070B2 (en) | 2006-05-30 | 2007-02-07 | Methods and apparatus for processing audio signals |
US11672239 Active 2027-10-04 US7796769B2 (en) | 2006-05-30 | 2007-02-07 | Methods and apparatus for processing audio signals |
US11672264 Active 2027-03-10 US7876906B2 (en) | 2006-05-30 | 2007-02-07 | Methods and apparatus for processing audio signals |
US11672271 Active US7801319B2 (en) | 2006-05-30 | 2007-02-07 | Methods and apparatus for processing audio signals |
US11741648 Active US7724911B2 (en) | 2006-05-30 | 2007-04-27 | Actuator systems for oral-based appliances |
US11754833 Active US7664277B2 (en) | 2006-05-30 | 2007-05-29 | Bone conduction hearing aid devices and methods |
US11754823 Active US7844064B2 (en) | 2006-05-30 | 2007-05-29 | Methods and apparatus for transmitting vibrations |
US12333259 Active 2029-06-06 US8254611B2 (en) | 2006-05-30 | 2008-12-11 | Methods and apparatus for transmitting vibrations |
US12333272 Active 2028-07-30 US8170242B2 (en) | 2006-05-30 | 2008-12-11 | Actuator systems for oral-based appliances |
US12646789 Active 2027-09-17 US8358792B2 (en) | 2006-05-30 | 2009-12-23 | Actuator systems for oral-based appliances |
US12702629 Abandoned US20110002492A1 (en) | 2006-05-30 | 2010-02-09 | Bone conduction hearing aid devices and methods |
US12779396 Abandoned US20100220883A1 (en) | 2006-05-30 | 2010-05-13 | Actuator systems for oral-based appliances |
US12840213 Active 2029-03-07 US8712077B2 (en) | 2006-05-30 | 2010-07-20 | Methods and apparatus for processing audio signals |
US12848758 Abandoned US20100312568A1 (en) | 2006-05-30 | 2010-08-02 | Methods and apparatus for processing audio signals |
Family Applications After (13)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13011762 Abandoned US20110116659A1 (en) | 2006-05-30 | 2011-01-21 | Methods and apparatus for processing audio signals |
US13526923 Active US9185485B2 (en) | 2006-05-30 | 2012-06-19 | Methods and apparatus for processing audio signals |
US13551158 Active US8588447B2 (en) | 2006-05-30 | 2012-07-17 | Methods and apparatus for transmitting vibrations |
US13615067 Active 2027-05-18 US8649535B2 (en) | 2006-05-30 | 2012-09-13 | Actuator systems for oral-based appliances |
US14056821 Active 2027-07-20 US9113262B2 (en) | 2006-05-30 | 2013-10-17 | Methods and apparatus for transmitting vibrations |
US14176617 Active US9736602B2 (en) | 2006-05-30 | 2014-02-10 | Actuator systems for oral-based appliances |
US14261759 Active 2027-05-03 US9826324B2 (en) | 2006-05-30 | 2014-04-25 | Methods and apparatus for processing audio signals |
US14828372 Active US9615182B2 (en) | 2006-05-30 | 2015-08-17 | Methods and apparatus for transmitting vibrations |
US14936548 Active US9781526B2 (en) | 2006-05-30 | 2015-11-09 | Methods and apparatus for processing audio signals |
US15438403 Active US9906878B2 (en) | 2006-05-30 | 2017-02-21 | Methods and apparatus for transmitting vibrations |
US15644538 Pending US20170311100A1 (en) | 2006-05-30 | 2017-07-07 | Actuator systems for oral-based appliances |
US15646892 Pending US20170311102A1 (en) | 2006-05-30 | 2017-07-11 | Methods and apparatus for processing audio signals |
US15676807 Pending US20170347210A1 (en) | 2006-05-30 | 2017-08-14 | Methods and apparatus for processing audio signals |
Country Status (7)
Country | Link |
---|---|
US (28) | US7844070B2 (en) |
EP (4) | EP2036397B1 (en) |
JP (5) | JP4677042B2 (en) |
CN (1) | CN103124393B (en) |
CA (3) | CA2654134C (en) |
DK (1) | DK2030477T3 (en) |
WO (2) | WO2007140367A3 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100189288A1 (en) * | 2006-05-30 | 2010-07-29 | Sonitus Medical, Inc. | Actuator systems for oral-based appliances |
US20120243714A9 (en) * | 2006-05-30 | 2012-09-27 | Sonitus Medical, Inc. | Microphone placement for oral applications |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI115046B (en) * | 2001-11-01 | 2005-02-28 | Kautar Oy | The hydraulically-curable binder composition and method for its preparation |
US8270638B2 (en) | 2007-05-29 | 2012-09-18 | Sonitus Medical, Inc. | Systems and methods to provide communication, positioning and monitoring of user status |
WO2007150003A3 (en) | 2006-06-23 | 2008-11-06 | Neurovista Corp | Minimally invasive monitoring systems and methods |
US8291912B2 (en) | 2006-08-22 | 2012-10-23 | Sonitus Medical, Inc. | Systems for manufacturing oral-based hearing aid appliances |
US20120235632A9 (en) * | 2007-08-20 | 2012-09-20 | Sonitus Medical, Inc. | Intra-oral charging systems and methods |
CA2663017C (en) * | 2006-09-08 | 2014-03-25 | Sonitus Medical, Inc. | Methods and apparatus for treating tinnitus |
US8224013B2 (en) * | 2007-08-27 | 2012-07-17 | Sonitus Medical, Inc. | Headset systems and methods |
US20120195448A9 (en) * | 2006-09-08 | 2012-08-02 | Sonitus Medical, Inc. | Tinnitus masking systems |
US8085942B2 (en) * | 2006-11-22 | 2011-12-27 | Nordicneurolab As | Audio apparatus and method for use in proximity to a magnetic resonance imaging system |
US8189838B1 (en) * | 2007-04-13 | 2012-05-29 | Rich Donna L | Oral hearing aid device and method of use thereof |
US20080304677A1 (en) * | 2007-06-08 | 2008-12-11 | Sonitus Medical Inc. | System and method for noise cancellation with motion tracking capability |
US20090028352A1 (en) * | 2007-07-24 | 2009-01-29 | Petroff Michael L | Signal process for the derivation of improved dtm dynamic tinnitus mitigation sound |
US8433080B2 (en) | 2007-08-22 | 2013-04-30 | Sonitus Medical, Inc. | Bone conduction hearing device with open-ear microphone |
US7682303B2 (en) | 2007-10-02 | 2010-03-23 | Sonitus Medical, Inc. | Methods and apparatus for transmitting vibrations |
US20090105523A1 (en) * | 2007-10-18 | 2009-04-23 | Sonitus Medical, Inc. | Systems and methods for compliance monitoring |
US20090124849A1 (en) * | 2007-11-08 | 2009-05-14 | Nicholas Pergola | Spanning connector for implantable hearing instrument |
US8795172B2 (en) | 2007-12-07 | 2014-08-05 | Sonitus Medical, Inc. | Systems and methods to provide two-way communications |
US8270637B2 (en) * | 2008-02-15 | 2012-09-18 | Sonitus Medical, Inc. | Headset systems and methods |
US7974845B2 (en) | 2008-02-15 | 2011-07-05 | Sonitus Medical, Inc. | Stuttering treatment methods and apparatus |
US8023676B2 (en) | 2008-03-03 | 2011-09-20 | Sonitus Medical, Inc. | Systems and methods to provide communication and monitoring of user status |
US20090226020A1 (en) * | 2008-03-04 | 2009-09-10 | Sonitus Medical, Inc. | Dental bone conduction hearing appliance |
US8150075B2 (en) * | 2008-03-04 | 2012-04-03 | Sonitus Medical, Inc. | Dental bone conduction hearing appliance |
US20090248085A1 (en) | 2008-03-31 | 2009-10-01 | Cochlear Limited | Tissue injection fixation system for a prosthetic device |
US20090292161A1 (en) * | 2008-03-31 | 2009-11-26 | Cochlear Limited | Multi-mode hearing prosthesis |
US8503930B2 (en) | 2008-04-25 | 2013-08-06 | Sonitus Medical, Inc. | Signal transmission via body conduction |
US20090270673A1 (en) * | 2008-04-25 | 2009-10-29 | Sonitus Medical, Inc. | Methods and systems for tinnitus treatment |
US8160279B2 (en) * | 2008-05-02 | 2012-04-17 | Sonitus Medical, Inc. | Methods and apparatus for transmitting vibrations |
US20090281433A1 (en) * | 2008-05-07 | 2009-11-12 | Sonitus Medical, Inc. | Systems and methods for pulmonary monitoring and treatment |
US8333203B2 (en) * | 2008-07-08 | 2012-12-18 | Sonitus Medical, Inc. | Custom fitted intra-oral appliances |
US8295506B2 (en) * | 2008-07-17 | 2012-10-23 | Sonitus Medical, Inc. | Systems and methods for intra-oral based communications |
US8144909B2 (en) * | 2008-08-12 | 2012-03-27 | Cochlear Limited | Customization of bone conduction hearing devices |
US20100098269A1 (en) * | 2008-10-16 | 2010-04-22 | Sonitus Medical, Inc. | Systems and methods to provide communication, positioning and monitoring of user status |
US20100166240A1 (en) * | 2008-12-27 | 2010-07-01 | Prior Richard W | Hearing apparatus for pets |
US8229147B2 (en) * | 2009-03-12 | 2012-07-24 | Strakey Laboratories, Inc. | Hearing assistance devices with echo cancellation |
US20100238042A1 (en) * | 2009-03-19 | 2010-09-23 | Gary Paul | Dental fixture with anti-lost system |
DE102009014774A1 (en) * | 2009-03-25 | 2010-09-30 | Cochlear Ltd., Lane Cove | hearing aid |
WO2010138911A1 (en) | 2009-05-29 | 2010-12-02 | Otologics, Llc | Implantable auditory stimulation system and method with offset implanted microphones |
US20110007920A1 (en) * | 2009-07-13 | 2011-01-13 | Sonitus Medical, Inc. | Intra-oral brackets for transmitting vibrations |
US8433082B2 (en) | 2009-10-02 | 2013-04-30 | Sonitus Medical, Inc. | Intraoral appliance for sound transmission via bone conduction |
US8622885B2 (en) | 2010-02-19 | 2014-01-07 | Audiodontics, Llc | Methods and apparatus for aligning antennas of low-powered intra- and extra-oral electronic wireless devices |
WO2011109533A3 (en) | 2010-03-02 | 2011-12-29 | Bio-Applications, L.L.C | Intra-extra oral shock-sensing and indicating systems and other shock-sensing and indicating systems |
US8104324B2 (en) | 2010-03-02 | 2012-01-31 | Bio-Applications, LLC | Intra-extra oral shock-sensing and indicating systems and other shock-sensing and indicating systems |
US8376967B2 (en) | 2010-04-13 | 2013-02-19 | Audiodontics, Llc | System and method for measuring and recording skull vibration in situ |
US20110319021A1 (en) * | 2010-05-28 | 2011-12-29 | Sonitus Medical, Inc. | Intra-oral tissue conduction microphone |
EP2403271A1 (en) * | 2010-06-29 | 2012-01-04 | Oticon Medical A/S | Vibrator with adjustment system |
US8731923B2 (en) * | 2010-08-20 | 2014-05-20 | Adacel Systems, Inc. | System and method for merging audio data streams for use in speech recognition applications |
US8908891B2 (en) | 2011-03-09 | 2014-12-09 | Audiodontics, Llc | Hearing aid apparatus and method |
WO2012127445A3 (en) | 2011-03-23 | 2013-01-03 | Cochlear Limited | Fitting of hearing devices |
US9526810B2 (en) * | 2011-12-09 | 2016-12-27 | Sophono, Inc. | Systems, devices, components and methods for improved acoustic coupling between a bone conduction hearing device and a patient's head or skull |
US9044291B2 (en) | 2012-05-09 | 2015-06-02 | Plantronics, Inc. | Jaw powered electric generator |
JP6135184B2 (en) * | 2013-02-28 | 2017-05-31 | セイコーエプソン株式会社 | Ultrasonic transducer device, the head unit, the probe and ultrasound imaging device |
JP6160120B2 (en) * | 2013-02-28 | 2017-07-12 | セイコーエプソン株式会社 | Ultrasonic transducer device, an ultrasonic measuring device, the head unit, the probe and ultrasound imaging device |
JP6135185B2 (en) * | 2013-02-28 | 2017-05-31 | セイコーエプソン株式会社 | Ultrasonic transducer device, the head unit, a probe, an ultrasonic image device and electronic equipment |
US8722924B1 (en) | 2013-11-01 | 2014-05-13 | WB Technologies LLC | Integrated ethanol and biodiesel facility |
KR101398124B1 (en) * | 2014-01-20 | 2014-05-27 | 김병건 | Implant for wireless communication, and communication system thereof |
KR101388960B1 (en) * | 2014-01-20 | 2014-04-29 | 김병건 | Implant teeth connector for wireless communication, and communication system thereof |
GB201409547D0 (en) * | 2014-05-29 | 2014-07-16 | Gill Instr Ltd | An electroacoustic transducer |
WO2016130095A1 (en) | 2015-02-12 | 2016-08-18 | Mikro Protez Sanayi Ve Ticaret Ltd. Sti. | Wireless implantable bone conduction energy harvesting hearing aid device |
Citations (179)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2045404A (en) | 1933-05-24 | 1936-06-23 | Sonotone Corp | Piezoelectric vibrator device |
US2161169A (en) | 1938-01-24 | 1939-06-06 | Erwin H Wilson | Dentiphone |
US2230397A (en) | 1937-09-06 | 1941-02-04 | Abraham Lewis Crowford | Acoustic apparatus for the deaf |
US2242118A (en) | 1938-08-25 | 1941-05-13 | Fischer Erich | Microphone |
US2318872A (en) | 1941-07-17 | 1943-05-11 | Goodman Mfg Co | Extensible conveyer |
US2977425A (en) | 1959-09-14 | 1961-03-28 | Irwin H Cole | Hearing aid |
US2995633A (en) | 1958-09-25 | 1961-08-08 | Henry K Puharich | Means for aiding hearing |
US3156787A (en) | 1962-10-23 | 1964-11-10 | Henry K Puharich | Solid state hearing system |
US3170993A (en) | 1962-01-08 | 1965-02-23 | Henry K Puharich | Means for aiding hearing by electrical stimulation of the facial nerve system |
US3267931A (en) | 1963-01-09 | 1966-08-23 | Henry K Puharich | Electrically stimulated hearing with signal feedback |
GB1066299A (en) | 1964-12-28 | 1967-04-26 | Brown Ltd S G | Improvements in or relating to electro-acoustical transducing systems |
US3325743A (en) | 1965-12-23 | 1967-06-13 | Zenith Radio Corp | Bimorph flexural acoustic amplifier |
US3712962A (en) | 1971-04-05 | 1973-01-23 | J Epley | Implantable piezoelectric hearing aid |
US3787641A (en) | 1972-06-05 | 1974-01-22 | Setcom Corp | Bone conduction microphone assembly |
US3894196A (en) | 1974-05-28 | 1975-07-08 | Zenith Radio Corp | Binaural hearing aid system |
US3985977A (en) | 1975-04-21 | 1976-10-12 | Motorola, Inc. | Receiver system for receiving audio electrical signals |
US4025732A (en) | 1975-08-04 | 1977-05-24 | Hartmut Traunmuller | Method and device for presenting information to deaf persons |
US4150262A (en) | 1974-11-18 | 1979-04-17 | Hiroshi Ono | Piezoelectric bone conductive in ear voice sounds transmitting and receiving apparatus |
US4498461A (en) | 1981-12-01 | 1985-02-12 | Bo Hakansson | Coupling to a bone-anchored hearing aid |
US4591668A (en) | 1984-05-08 | 1986-05-27 | Iwata Electric Co., Ltd. | Vibration-detecting type microphone |
US4612915A (en) | 1985-05-23 | 1986-09-23 | Xomed, Inc. | Direct bone conduction hearing aid device |
US4642769A (en) | 1983-06-10 | 1987-02-10 | Wright State University | Method and apparatus for providing stimulated exercise of paralyzed limbs |
US4738268A (en) | 1985-07-24 | 1988-04-19 | Tokos Medical Corporation | Relative time clock |
US4791673A (en) | 1986-12-04 | 1988-12-13 | Schreiber Simeon B | Bone conduction audio listening device and method |
US4817044A (en) | 1987-06-01 | 1989-03-28 | Ogren David A | Collection and reporting system for medical appliances |
US4832033A (en) | 1985-04-29 | 1989-05-23 | Bio-Medical Research Limited | Electrical stimulation of muscle |
US4904233A (en) | 1985-05-10 | 1990-02-27 | Haakansson Bo | Arrangement in a hearing aid device |
US4920984A (en) | 1986-10-15 | 1990-05-01 | Sunstar Kabushiki Kaisha | Mouthpiece and method for producing the same |
US4962559A (en) | 1988-11-16 | 1990-10-16 | Rainbow Lifegard Products, Inc. | Submersible vacuum cleaner |
US4982434A (en) | 1989-05-30 | 1991-01-01 | Center For Innovative Technology | Supersonic bone conduction hearing aid and method |
US5012520A (en) | 1988-05-06 | 1991-04-30 | Siemens Aktiengesellschaft | Hearing aid with wireless remote control |
US5033999A (en) | 1989-10-25 | 1991-07-23 | Mersky Barry L | Method and apparatus for endodontically augmenting hearing |
US5047994A (en) | 1989-05-30 | 1991-09-10 | Center For Innovative Technology | Supersonic bone conduction hearing aid and method |
US5060526A (en) | 1989-05-30 | 1991-10-29 | Schlumberger Industries, Inc. | Laminated semiconductor sensor with vibrating element |
US5082007A (en) | 1990-01-24 | 1992-01-21 | Loren S. Adell | Multi-laminar mouthguards |
US5233987A (en) | 1992-07-09 | 1993-08-10 | Empi, Inc. | System and method for monitoring patient's compliance |
US5323468A (en) | 1992-06-30 | 1994-06-21 | Bottesch H Werner | Bone-conductive stereo headphones |
US5325436A (en) | 1993-06-30 | 1994-06-28 | House Ear Institute | Method of signal processing for maintaining directional hearing with hearing aids |
US5354326A (en) | 1993-01-27 | 1994-10-11 | Medtronic, Inc. | Screening cable connector for interface to implanted lead |
US5372142A (en) | 1993-02-17 | 1994-12-13 | Poul Madsen Medical Devices Ltd. | Cochlear response audiometer |
US5402496A (en) | 1992-07-13 | 1995-03-28 | Minnesota Mining And Manufacturing Company | Auditory prosthesis, noise suppression apparatus and feedback suppression apparatus having focused adaptive filtering |
US5403262A (en) | 1993-03-09 | 1995-04-04 | Microtek Medical, Inc. | Minimum energy tinnitus masker |
US5447489A (en) | 1989-08-17 | 1995-09-05 | Issalene; Robert | Bone conduction hearing aid device |
US5455842A (en) | 1994-01-12 | 1995-10-03 | Mersky; Barry | Method and apparatus for underwater communication |
US5460593A (en) | 1993-08-25 | 1995-10-24 | Audiodontics, Inc. | Method and apparatus for imparting low amplitude vibrations to bone and similar hard tissue |
US5477489A (en) | 1995-03-20 | 1995-12-19 | Exponential Technology, Inc. | High-stability CMOS multi-port register file memory cell with column isolation and current-mirror row line driver |
EP0715838A2 (en) | 1994-12-02 | 1996-06-12 | P & B RESEARCH AB | A device in hearing aids |
US5546459A (en) | 1993-11-01 | 1996-08-13 | Qualcomm Incorporated | Variable block size adaptation algorithm for noise-robust acoustic echo cancellation |
US5558618A (en) | 1995-01-23 | 1996-09-24 | Maniglia; Anthony J. | Semi-implantable middle ear hearing device |
US5565759A (en) | 1994-12-15 | 1996-10-15 | Intel Corporation | Smart battery providing battery life and recharge time prediction |
US5579284A (en) | 1995-07-21 | 1996-11-26 | May; David F. | Scuba diving voice and communication system using bone conducted sound |
US5616027A (en) | 1995-04-18 | 1997-04-01 | Jacobs; Allison J. | Custom dental tray |
US5624376A (en) | 1993-07-01 | 1997-04-29 | Symphonix Devices, Inc. | Implantable and external hearing systems having a floating mass transducer |
US5661813A (en) | 1994-10-26 | 1997-08-26 | Nippon Telegraph And Telephone Corporation | Method and apparatus for multi-channel acoustic echo cancellation |
US5706251A (en) | 1995-07-21 | 1998-01-06 | Trigger Scuba, Inc. | Scuba diving voice and communication system using bone conducted sound |
EP0824889A1 (en) | 1996-08-20 | 1998-02-25 | Buratto Advanced Technology S.r.l. | Transmission system using the human body as wave guide |
US5760692A (en) | 1996-10-18 | 1998-06-02 | Block; Douglas A. | Intra-oral tracking device |
US5800336A (en) | 1993-07-01 | 1998-09-01 | Symphonix Devices, Inc. | Advanced designs of floating mass transducers |
US5812496A (en) | 1997-10-20 | 1998-09-22 | Peck/Pelissier Partnership | Water resistant microphone |
US5828765A (en) | 1996-05-03 | 1998-10-27 | Gable; Tony L. | Audio loudspeaker assembly for recessed lighting fixture and audio system using same |
US5902167A (en) | 1997-09-09 | 1999-05-11 | Sonic Bites, Llc | Sound-transmitting amusement device and method |
US5914701A (en) | 1995-05-08 | 1999-06-22 | Massachusetts Institute Of Technology | Non-contact system for sensing and signalling by externally induced intra-body currents |
US5961443A (en) | 1996-07-31 | 1999-10-05 | East Carolina University | Therapeutic device to ameliorate stuttering |
US5984681A (en) | 1997-09-02 | 1999-11-16 | Huang; Barney K. | Dental implant and method of implanting |
US6029558A (en) | 1997-05-12 | 2000-02-29 | Southwest Research Institute | Reactive personnel protection system |
US6047074A (en) | 1996-07-09 | 2000-04-04 | Zoels; Fred | Programmable hearing aid operable in a mode for tinnitus therapy |
US6057668A (en) | 1998-09-17 | 2000-05-02 | Shi-Ming Chen | Battery charging device for mobile phone |
US6068590A (en) | 1997-10-24 | 2000-05-30 | Hearing Innovations, Inc. | Device for diagnosing and treating hearing disorders |
US6072885A (en) | 1994-07-08 | 2000-06-06 | Sonic Innovations, Inc. | Hearing aid device incorporating signal processing techniques |
US6072884A (en) | 1997-11-18 | 2000-06-06 | Audiologic Hearing Systems Lp | Feedback cancellation apparatus and methods |
US6075557A (en) | 1997-04-17 | 2000-06-13 | Sharp Kabushiki Kaisha | Image tracking system and method and observer tracking autostereoscopic display |
US6115477A (en) | 1995-01-23 | 2000-09-05 | Sonic Bites, Llc | Denta-mandibular sound-transmitting system |
US6118882A (en) | 1995-01-25 | 2000-09-12 | Haynes; Philip Ashley | Communication method |
US6171229B1 (en) | 1996-08-07 | 2001-01-09 | St. Croix Medical, Inc. | Ossicular transducer attachment for an implantable hearing device |
US6223018B1 (en) | 1996-12-12 | 2001-04-24 | Nippon Telegraph And Telephone Corporation | Intra-body information transfer device |
US6239705B1 (en) | 2000-04-19 | 2001-05-29 | Jeffrey Glen | Intra oral electronic tracking device |
US20010003788A1 (en) | 1993-07-01 | 2001-06-14 | Ball Geoffrey R. | Implantable and external hearing system having a floating mass transducer |
US20010051776A1 (en) | 1998-10-14 | 2001-12-13 | Lenhardt Martin L. | Tinnitus masker/suppressor |
US6333269B2 (en) | 1997-09-16 | 2001-12-25 | Tokyo Electron Limited | Plasma treatment system and method |
US20020026091A1 (en) | 2000-08-25 | 2002-02-28 | Hans Leysieffer | Implantable hearing system with means for measuring its coupling quality |
US6371758B1 (en) | 1996-08-05 | 2002-04-16 | Bite Tech, Inc. | One-piece customizable dental appliance |
US6377693B1 (en) | 1994-06-23 | 2002-04-23 | Hearing Innovations Incorporated | Tinnitus masking using ultrasonic signals |
US6394969B1 (en) | 1998-10-14 | 2002-05-28 | Sound Techniques Systems Llc | Tinnitis masking and suppressor using pulsed ultrasound |
US20020071581A1 (en) | 2000-03-28 | 2002-06-13 | Hans Leysieffer | Partially or fully implantable hearing system |
US20020077831A1 (en) | 2000-11-28 | 2002-06-20 | Numa Takayuki | Data input/output method and system without being notified |
US20020122563A1 (en) | 2001-03-02 | 2002-09-05 | Schumaier Daniel R. | Bone conduction hearing aid |
US6504942B1 (en) | 1998-01-23 | 2003-01-07 | Sharp Kabushiki Kaisha | Method of and apparatus for detecting a face-like region and observer tracking display |
US20030048915A1 (en) | 2000-01-27 | 2003-03-13 | New Transducers Limited | Communication device using bone conduction |
US6538558B2 (en) | 1996-09-20 | 2003-03-25 | Alps Electric Co., Ltd. | Communication system |
US20030059078A1 (en) | 2001-06-21 | 2003-03-27 | Downs Edward F. | Directional sensors for head-mounted contact microphones |
EP1299052A1 (en) | 2000-07-12 | 2003-04-09 | Entific Medical Systems AB | Anchoring element |
US20030091200A1 (en) | 2001-10-09 | 2003-05-15 | Pompei Frank Joseph | Ultrasonic transducer for parametric array |
US6585637B2 (en) | 1998-10-15 | 2003-07-01 | St. Croix Medical, Inc. | Method and apparatus for fixation type feedback reduction in implantable hearing assistance systems |
US6629922B1 (en) | 1999-10-29 | 2003-10-07 | Soundport Corporation | Flextensional output actuators for surgically implantable hearing aids |
US6631197B1 (en) | 2000-07-24 | 2003-10-07 | Gn Resound North America Corporation | Wide audio bandwidth transduction method and device |
US6633747B1 (en) | 2000-07-12 | 2003-10-14 | Lucent Technologies Inc. | Orthodontic appliance audio receiver |
US20030212319A1 (en) | 2000-10-10 | 2003-11-13 | Magill Alan Remy | Health monitoring garment |
US6658124B1 (en) | 2000-04-06 | 2003-12-02 | Advanced Bionics Corporation | Rechargeable hearing aid |
US6682472B1 (en) | 1999-03-17 | 2004-01-27 | Tinnitech Ltd. | Tinnitus rehabilitation device and method |
US6694035B1 (en) | 2001-07-05 | 2004-02-17 | Martin Teicher | System for conveying musical beat information to the hearing impaired |
US20040057591A1 (en) | 2002-06-26 | 2004-03-25 | Frank Beck | Directional hearing given binaural hearing aid coverage |
US6754472B1 (en) | 2000-04-27 | 2004-06-22 | Microsoft Corporation | Method and apparatus for transmitting power and data using the human body |
US20040141624A1 (en) | 1999-03-17 | 2004-07-22 | Neuromonics Limited | Tinnitus rehabilitation device and method |
US6778674B1 (en) | 1999-12-28 | 2004-08-17 | Texas Instruments Incorporated | Hearing assist device with directional detection and sound modification |
US20040202339A1 (en) | 2003-04-09 | 2004-10-14 | O'brien, William D. | Intrabody communication with ultrasound |
US20040202344A1 (en) | 2003-04-08 | 2004-10-14 | Muniswamappa Anjanappa | Method and apparatus for tooth bone conduction microphone |
US6826284B1 (en) | 2000-02-04 | 2004-11-30 | Agere Systems Inc. | Method and apparatus for passive acoustic source localization for video camera steering applications |
US20040243481A1 (en) | 2000-04-05 | 2004-12-02 | Therics, Inc. | System and method for rapidly customizing design, manufacture and/or selection of biomedical devices |
US20040247143A1 (en) | 2001-10-01 | 2004-12-09 | Amphicom | Device for listening to voice and/or musical signals by means of cranial bone transmission |
US20050037312A1 (en) | 2003-06-20 | 2005-02-17 | Aso International, Inc | Orthodontic retainer |
US20050070782A1 (en) | 2003-07-17 | 2005-03-31 | Dmitri Brodkin | Digital technologies for planning and carrying out dental restorative procedures |
US20050067816A1 (en) | 2002-12-18 | 2005-03-31 | Buckman Robert F. | Method and apparatus for body impact protection |
US20050129257A1 (en) | 2003-12-12 | 2005-06-16 | Nec Tokin Corporation | Acoustic vibration generating element |
US6917688B2 (en) | 2002-09-11 | 2005-07-12 | Nanyang Technological University | Adaptive noise cancelling microphone system |
US20050189910A1 (en) | 2002-06-10 | 2005-09-01 | Hui Shu-Yuen R. | Planar inductive battery charger |
US20050196008A1 (en) | 2003-04-08 | 2005-09-08 | Muniswamappa Anjanappa | Method and apparatus for tooth bone conduction microphone |
US6941952B1 (en) | 2004-12-02 | 2005-09-13 | Rush, Iii Gus A. | Athletic mouthpiece capable of sensing linear and rotational forces and protective headgear for use with the same |
US6954668B1 (en) | 2001-10-11 | 2005-10-11 | Cuozzo John W | Apparatus and method for intra-oral stimulation of the trigeminal nerve |
US20050241646A1 (en) | 2004-03-10 | 2005-11-03 | Apneos Corp. | System and method for treatment of upper airway disorders |
US6985599B2 (en) | 2000-06-02 | 2006-01-10 | P&B Research Ab | Vibrator for bone conducted hearing aids |
US20060008106A1 (en) | 2004-07-06 | 2006-01-12 | Harper Patrick S | System and method for securing headphone transducers |
US20060025648A1 (en) | 2002-12-11 | 2006-02-02 | No. 182 Corporate Ventures Ltd. | Surgically implantable hearing aid |
US7003099B1 (en) | 2002-11-15 | 2006-02-21 | Fortmedia, Inc. | Small array microphone for acoustic echo cancellation and noise suppression |
US7010139B1 (en) | 2003-12-02 | 2006-03-07 | Kees Smeehuyzen | Bone conducting headset apparatus |
EP1633284A1 (en) | 2003-05-30 | 2006-03-15 | Entific Medical Systems AB | Implant device |
US20060064037A1 (en) | 2004-09-22 | 2006-03-23 | Shalon Ventures Research, Llc | Systems and methods for monitoring and modifying behavior |
US7035415B2 (en) | 2000-05-26 | 2006-04-25 | Koninklijke Philips Electronics N.V. | Method and device for acoustic echo cancellation combined with adaptive beamforming |
US7076077B2 (en) | 2001-07-05 | 2006-07-11 | Temco Japan Co., Ltd. | Bone conduction headset |
US20060167335A1 (en) | 2005-01-26 | 2006-07-27 | Samsung Electronics Co., Ltd. | Method and device for tinnitus therapy |
US7099822B2 (en) | 2002-12-10 | 2006-08-29 | Liberato Technologies, Inc. | System and method for noise reduction having first and second adaptive filters responsive to a stored vector |
US20060207611A1 (en) | 2005-03-18 | 2006-09-21 | Mauna Kea Divers | Reusable customizable breathing apparatus mouthpiece with bitewings |
EP1718255A1 (en) | 2003-10-22 | 2006-11-08 | Entific Medical Systems AB | Anti-stuttering device |
US20060270467A1 (en) | 2005-05-25 | 2006-11-30 | Song Jianming J | Method and apparatus of increasing speech intelligibility in noisy environments |
US20060275739A1 (en) | 2005-06-03 | 2006-12-07 | Ray Charles D | Dental vibrator and acoustical unit with method for the inhibition of operative pain |
US7162420B2 (en) | 2002-12-10 | 2007-01-09 | Liberato Technologies, Llc | System and method for noise reduction having first and second adaptive filters |
US7171003B1 (en) | 2000-10-19 | 2007-01-30 | Lear Corporation | Robust and reliable acoustic echo and noise cancellation system for cabin communication |
US7171008B2 (en) | 2002-02-05 | 2007-01-30 | Mh Acoustics, Llc | Reducing noise in audio systems |
JP2007028610A (en) | 2005-07-11 | 2007-02-01 | Siemens Audiologische Technik Gmbh | Hearing apparatus and method for operating the same |
JP2007028248A (en) | 2005-07-19 | 2007-02-01 | Matsushita Electric Ind Co Ltd | Method for manufacturing hearing aid shell |
US7174022B1 (en) | 2002-11-15 | 2007-02-06 | Fortemedia, Inc. | Small array microphone for beam-forming and noise suppression |
US7174026B2 (en) | 2002-01-14 | 2007-02-06 | Siemens Audiologische Technik Gmbh | Selection of communication connections in hearing aids |
US20070036370A1 (en) | 2004-10-12 | 2007-02-15 | Microsoft Corporation | Method and apparatus for multi-sensory speech enhancement on a mobile device |
US20070035917A1 (en) | 2005-08-09 | 2007-02-15 | Apple Computer, Inc. | Methods and apparatuses for docking a portable electronic device that has a planar like configuration and that operates in multiple orientations |
JP2007049658A (en) | 2005-08-09 | 2007-02-22 | Nakayo Telecommun Inc | Bone conduction type receiver using piezoelectric vibrator |
US20070041595A1 (en) | 2005-07-07 | 2007-02-22 | Carazo Alfredo V | Bone-conduction hearing-aid transducer having improved frequency response |
JP2007049599A (en) | 2005-08-12 | 2007-02-22 | Nec Tokin Corp | Bone conduction speaker |
JP2007044284A (en) | 2005-08-10 | 2007-02-22 | Kazuo Okuma | Apparatus and method for modulating bone conduction |
US7206423B1 (en) | 2000-05-10 | 2007-04-17 | Board Of Trustees Of University Of Illinois | Intrabody communication for a hearing aid |
EP1783919A1 (en) | 2004-08-27 | 2007-05-09 | Victorion Technology Co., Ltd. | The nasal bone conduction wireless communication transmission equipment |
US20070142072A1 (en) | 2005-12-19 | 2007-06-21 | Teodoro Lassally | Two way radio |
US7246058B2 (en) | 2001-05-30 | 2007-07-17 | Aliph, Inc. | Detecting voiced and unvoiced speech using both acoustic and nonacoustic sensors |
US7258533B2 (en) | 2004-12-30 | 2007-08-21 | Adaptivenergy, Llc | Method and apparatus for scavenging energy during pump operation |
US7271569B2 (en) | 2004-09-21 | 2007-09-18 | Motorola Inc. | Contact less charger with alignment indicator |
US20070223735A1 (en) | 2006-03-27 | 2007-09-27 | Knowles Electronics, Llc | Electroacoustic Transducer System and Manufacturing Method Thereof |
US20070265533A1 (en) | 2006-05-12 | 2007-11-15 | Bao Tran | Cuffless blood pressure monitoring appliance |
US20070276270A1 (en) | 2006-05-24 | 2007-11-29 | Bao Tran | Mesh network stroke monitoring appliance |
US20070280492A1 (en) | 2006-05-30 | 2007-12-06 | Sonitus Medical, Inc. | Methods and apparatus for processing audio signals |
US7310427B2 (en) | 2002-08-01 | 2007-12-18 | Virginia Commonwealth University | Recreational bone conduction audio device, system |
US20080019557A1 (en) | 2006-07-19 | 2008-01-24 | Bevirt Joeben | Headset with fit adjustments and magnetic accessories |
US20080021327A1 (en) | 2006-05-12 | 2008-01-24 | Tarek Hessin Ahmed El-Bialy | Ultrasound stimulation devices and techniques |
US7329226B1 (en) | 2004-07-06 | 2008-02-12 | Cardiac Pacemakers, Inc. | System and method for assessing pulmonary performance through transthoracic impedance monitoring |
US7331349B2 (en) | 2003-01-23 | 2008-02-19 | Surgical Devices, Ltd., Co. Morningstar Holding Ltd. | Method and device for the prevention of snoring and sleep apnea |
US7333624B2 (en) | 2003-09-24 | 2008-02-19 | Siemens Audiologische Technik Gmbh | Hearing aid device and operating method for automatically switching voltage supply to a connected external device |
US20080064993A1 (en) | 2006-09-08 | 2008-03-13 | Sonitus Medical Inc. | Methods and apparatus for treating tinnitus |
US20080070181A1 (en) | 2006-08-22 | 2008-03-20 | Sonitus Medical, Inc. | Systems for manufacturing oral-based hearing aid appliances |
US7361216B2 (en) | 2004-05-17 | 2008-04-22 | 3M Innovative Properties Company | Dental compositions containing nanofillers and related methods |
US20080109972A1 (en) | 2006-11-09 | 2008-05-15 | Mah Pat Y | Pool vacuum |
US20080205678A1 (en) | 2007-02-26 | 2008-08-28 | Siemens Audiologische Technik Gmbh | Hearing apparatus with a special energy acceptance system and corresponding method |
US20080304677A1 (en) | 2007-06-08 | 2008-12-11 | Sonitus Medical Inc. | System and method for noise cancellation with motion tracking capability |
US20090028352A1 (en) | 2007-07-24 | 2009-01-29 | Petroff Michael L | Signal process for the derivation of improved dtm dynamic tinnitus mitigation sound |
US20090052698A1 (en) | 2007-08-22 | 2009-02-26 | Sonitus Medical, Inc. | Bone conduction hearing device with open-ear microphone |
US20090088598A1 (en) | 2007-10-02 | 2009-04-02 | Sonitus Medical, Inc. | Methods and apparatus for transmitting vibrations |
US7522740B2 (en) | 2000-01-07 | 2009-04-21 | Etymotic Research, Inc. | Multi-coil coupling system for hearing aid applications |
US7522738B2 (en) | 2005-11-30 | 2009-04-21 | Otologics, Llc | Dual feedback control system for implantable hearing instrument |
US20090105523A1 (en) | 2007-10-18 | 2009-04-23 | Sonitus Medical, Inc. | Systems and methods for compliance monitoring |
US20090149722A1 (en) | 2007-12-07 | 2009-06-11 | Sonitus Medical, Inc. | Systems and methods to provide two-way communications |
US20090147976A1 (en) | 2006-09-08 | 2009-06-11 | Sonitus Medical, Inc. | Tinnitus masking systems |
US20090220115A1 (en) | 2005-10-31 | 2009-09-03 | Audiodent Israel Ltd. | Miniature Bio-Compatible Piezoelectric Transducer Apparatus |
US20090226020A1 (en) | 2008-03-04 | 2009-09-10 | Sonitus Medical, Inc. | Dental bone conduction hearing appliance |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US724058A (en) * | 1902-04-22 | 1903-03-31 | John C Smith | Smoke-consuming furnace. |
JPS546329Y2 (en) * | 1974-11-28 | 1979-03-24 | ||
JPS5626490Y2 (en) | 1976-03-09 | 1981-06-24 | ||
JPS5760308Y2 (en) * | 1979-08-08 | 1982-12-22 | ||
JPS638194B2 (en) | 1979-08-09 | 1988-02-22 | Nippon Electric Co | |
EP0100933B1 (en) * | 1982-08-02 | 1987-01-21 | Institut für Kerntechnik und Energiewandlung e.V. | Method of and device for treating a workpiece by a focused electron beam |
US4496461A (en) * | 1983-06-17 | 1985-01-29 | Amf Incorporated | Chromatography column |
US4801319A (en) * | 1987-11-09 | 1989-01-31 | American Glass Research, Inc. | Apparatus and associated method for container sampling for inspection |
FR2650987B1 (en) | 1989-08-17 | 1995-05-05 | Issalene Robert | Device forming a tip for snorkel or diving regulator |
US4982559A (en) * | 1989-09-22 | 1991-01-08 | Calais Anthony J | Nut harvester |
US5913815A (en) | 1993-07-01 | 1999-06-22 | Symphonix Devices, Inc. | Bone conducting floating mass transducers |
JP3817757B2 (en) * | 1994-11-17 | 2006-09-06 | ユニマテック株式会社 | Novel vinyl ether compound, their production and methods of making the copolymer |
US5793875A (en) | 1996-04-22 | 1998-08-11 | Cardinal Sound Labs, Inc. | Directional hearing system |
JP3358086B2 (en) * | 2000-04-18 | 2002-12-16 | 株式会社 ドウミテク | Bone conduction vibrator and the bone conduction speaker headset using the same |
US6533747B1 (en) | 2000-05-23 | 2003-03-18 | Chf Solutions, Inc. | Extracorporeal circuit for peripheral vein fluid removal |
US20020039427A1 (en) | 2000-10-04 | 2002-04-04 | Timothy Whitwell | Audio apparatus |
WO2003001845A1 (en) * | 2001-06-21 | 2003-01-03 | P & B Research Ab | A coupling device for a two-part bone-anchored hearing aid apparatus |
US6695616B2 (en) | 2001-10-04 | 2004-02-24 | Sterngold | Apparatus and method for anchoring a dental appliance |
JP3825734B2 (en) | 2002-09-27 | 2006-09-27 | バイオマップ有限会社 | Ultrasound therapy device |
WO2004045242A3 (en) | 2002-11-14 | 2004-07-01 | Brainsgate Ltd | Stimulation for treating ear pathologies |
US7512448B2 (en) | 2003-01-10 | 2009-03-31 | Phonak Ag | Electrode placement for wireless intrabody communication between components of a hearing system |
JP3950420B2 (en) | 2003-01-15 | 2007-08-01 | 株式会社テムコジャパン | Bone conduction hearing aid |
US20040214130A1 (en) * | 2003-04-25 | 2004-10-28 | Ultradent Products, Inc. | Flexible translucent protective covers used to protect dental appliances from rigid light emitting devices |
WO2005000391B1 (en) | 2003-06-30 | 2005-04-14 | Entific Medical Systems Ab | Inductive link for a medical implant |
EP1569088A3 (en) | 2004-02-27 | 2008-08-27 | LG Electronics Inc. | Apparatus and method for controlling operation of low frequency sound output means |
US7331649B2 (en) * | 2004-07-21 | 2008-02-19 | Konica Minolta Holdings, Inc. | Inkjet recording method and inkjet recording apparatus |
US7168950B2 (en) * | 2004-10-18 | 2007-01-30 | 3M Innovative Properties Company | Orthodontic methods and apparatus for applying a composition to a patient's teeth |
US7637229B2 (en) | 2005-02-08 | 2009-12-29 | Ididit, Inc. | Breakable odor control additive for animal litter having gypsum composition barrier coating |
US8363870B2 (en) | 2005-02-21 | 2013-01-29 | Cochlear Bone Anchored Solutions Ab | Vibrator |
EP1893089A4 (en) | 2005-06-10 | 2012-04-25 | Neuromonics Pty Ltd | Digital playback device and method and apparatus for spectrally modifying a digital audio signal |
KR20080072645A (en) | 2005-10-11 | 2008-08-06 | 조마 인터내셔널 에이에스 | A process for the production of titanium products |
US7629897B2 (en) | 2005-10-21 | 2009-12-08 | Reino Koljonen | Orally Mounted wireless transcriber device |
DK1955575T3 (en) | 2005-11-14 | 2012-10-29 | Audiofusion Inc | Apparatus, systems and methods for the relief of tinnitus, hyperakucis and / or hearing loss |
US8270638B2 (en) | 2007-05-29 | 2012-09-18 | Sonitus Medical, Inc. | Systems and methods to provide communication, positioning and monitoring of user status |
WO2007140373A3 (en) | 2006-05-30 | 2008-11-27 | Sonitus Medical Inc | Actuator systems for oral-based appliances |
WO2007140368A3 (en) | 2006-05-30 | 2008-11-13 | Amir Abolfathi | Methods and apparatus for processing audio signals |
US8189838B1 (en) | 2007-04-13 | 2012-05-29 | Rich Donna L | Oral hearing aid device and method of use thereof |
US20100271147A1 (en) | 2007-11-21 | 2010-10-28 | Audiodent Israel, Ltd. | Low-power piezoelectric amplifier and method thereof |
US8270637B2 (en) | 2008-02-15 | 2012-09-18 | Sonitus Medical, Inc. | Headset systems and methods |
US8023676B2 (en) | 2008-03-03 | 2011-09-20 | Sonitus Medical, Inc. | Systems and methods to provide communication and monitoring of user status |
US8150075B2 (en) * | 2008-03-04 | 2012-04-03 | Sonitus Medical, Inc. | Dental bone conduction hearing appliance |
US9049527B2 (en) * | 2012-08-28 | 2015-06-02 | Cochlear Limited | Removable attachment of a passive transcutaneous bone conduction device with limited skin deformation |
Patent Citations (211)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2045404A (en) | 1933-05-24 | 1936-06-23 | Sonotone Corp | Piezoelectric vibrator device |
US2230397A (en) | 1937-09-06 | 1941-02-04 | Abraham Lewis Crowford | Acoustic apparatus for the deaf |
US2161169A (en) | 1938-01-24 | 1939-06-06 | Erwin H Wilson | Dentiphone |
US2242118A (en) | 1938-08-25 | 1941-05-13 | Fischer Erich | Microphone |
US2318872A (en) | 1941-07-17 | 1943-05-11 | Goodman Mfg Co | Extensible conveyer |
US2995633A (en) | 1958-09-25 | 1961-08-08 | Henry K Puharich | Means for aiding hearing |
US2977425A (en) | 1959-09-14 | 1961-03-28 | Irwin H Cole | Hearing aid |
US3170993A (en) | 1962-01-08 | 1965-02-23 | Henry K Puharich | Means for aiding hearing by electrical stimulation of the facial nerve system |
US3156787A (en) | 1962-10-23 | 1964-11-10 | Henry K Puharich | Solid state hearing system |
US3267931A (en) | 1963-01-09 | 1966-08-23 | Henry K Puharich | Electrically stimulated hearing with signal feedback |
GB1066299A (en) | 1964-12-28 | 1967-04-26 | Brown Ltd S G | Improvements in or relating to electro-acoustical transducing systems |
US3325743A (en) | 1965-12-23 | 1967-06-13 | Zenith Radio Corp | Bimorph flexural acoustic amplifier |
US3712962A (en) | 1971-04-05 | 1973-01-23 | J Epley | Implantable piezoelectric hearing aid |
US3787641A (en) | 1972-06-05 | 1974-01-22 | Setcom Corp | Bone conduction microphone assembly |
US3894196A (en) | 1974-05-28 | 1975-07-08 | Zenith Radio Corp | Binaural hearing aid system |
US4150262A (en) | 1974-11-18 | 1979-04-17 | Hiroshi Ono | Piezoelectric bone conductive in ear voice sounds transmitting and receiving apparatus |
US3985977A (en) | 1975-04-21 | 1976-10-12 | Motorola, Inc. | Receiver system for receiving audio electrical signals |
US4025732A (en) | 1975-08-04 | 1977-05-24 | Hartmut Traunmuller | Method and device for presenting information to deaf persons |
US4498461A (en) | 1981-12-01 | 1985-02-12 | Bo Hakansson | Coupling to a bone-anchored hearing aid |
US4642769A (en) | 1983-06-10 | 1987-02-10 | Wright State University | Method and apparatus for providing stimulated exercise of paralyzed limbs |
US4591668A (en) | 1984-05-08 | 1986-05-27 | Iwata Electric Co., Ltd. | Vibration-detecting type microphone |
US4832033A (en) | 1985-04-29 | 1989-05-23 | Bio-Medical Research Limited | Electrical stimulation of muscle |
US4904233A (en) | 1985-05-10 | 1990-02-27 | Haakansson Bo | Arrangement in a hearing aid device |
US4612915A (en) | 1985-05-23 | 1986-09-23 | Xomed, Inc. | Direct bone conduction hearing aid device |
US4738268A (en) | 1985-07-24 | 1988-04-19 | Tokos Medical Corporation | Relative time clock |
US4920984A (en) | 1986-10-15 | 1990-05-01 | Sunstar Kabushiki Kaisha | Mouthpiece and method for producing the same |
US4791673A (en) | 1986-12-04 | 1988-12-13 | Schreiber Simeon B | Bone conduction audio listening device and method |
US4817044A (en) | 1987-06-01 | 1989-03-28 | Ogren David A | Collection and reporting system for medical appliances |
US5012520A (en) | 1988-05-06 | 1991-04-30 | Siemens Aktiengesellschaft | Hearing aid with wireless remote control |
US4962559A (en) | 1988-11-16 | 1990-10-16 | Rainbow Lifegard Products, Inc. | Submersible vacuum cleaner |
US4982434A (en) | 1989-05-30 | 1991-01-01 | Center For Innovative Technology | Supersonic bone conduction hearing aid and method |
US5060526A (en) | 1989-05-30 | 1991-10-29 | Schlumberger Industries, Inc. | Laminated semiconductor sensor with vibrating element |
US5047994A (en) | 1989-05-30 | 1991-09-10 | Center For Innovative Technology | Supersonic bone conduction hearing aid and method |
US5447489A (en) | 1989-08-17 | 1995-09-05 | Issalene; Robert | Bone conduction hearing aid device |
US5033999A (en) | 1989-10-25 | 1991-07-23 | Mersky Barry L | Method and apparatus for endodontically augmenting hearing |
US5082007A (en) | 1990-01-24 | 1992-01-21 | Loren S. Adell | Multi-laminar mouthguards |
US5323468A (en) | 1992-06-30 | 1994-06-21 | Bottesch H Werner | Bone-conductive stereo headphones |
US5233987A (en) | 1992-07-09 | 1993-08-10 | Empi, Inc. | System and method for monitoring patient's compliance |
US5402496A (en) | 1992-07-13 | 1995-03-28 | Minnesota Mining And Manufacturing Company | Auditory prosthesis, noise suppression apparatus and feedback suppression apparatus having focused adaptive filtering |
US5354326A (en) | 1993-01-27 | 1994-10-11 | Medtronic, Inc. | Screening cable connector for interface to implanted lead |
US5372142A (en) | 1993-02-17 | 1994-12-13 | Poul Madsen Medical Devices Ltd. | Cochlear response audiometer |
US5403262A (en) | 1993-03-09 | 1995-04-04 | Microtek Medical, Inc. | Minimum energy tinnitus masker |
US5325436A (en) | 1993-06-30 | 1994-06-28 | House Ear Institute | Method of signal processing for maintaining directional hearing with hearing aids |
US20010003788A1 (en) | 1993-07-01 | 2001-06-14 | Ball Geoffrey R. | Implantable and external hearing system having a floating mass transducer |
US5800336A (en) | 1993-07-01 | 1998-09-01 | Symphonix Devices, Inc. | Advanced designs of floating mass transducers |
US5624376A (en) | 1993-07-01 | 1997-04-29 | Symphonix Devices, Inc. | Implantable and external hearing systems having a floating mass transducer |
US5460593A (en) | 1993-08-25 | 1995-10-24 | Audiodontics, Inc. | Method and apparatus for imparting low amplitude vibrations to bone and similar hard tissue |
US5546459A (en) | 1993-11-01 | 1996-08-13 | Qualcomm Incorporated | Variable block size adaptation algorithm for noise-robust acoustic echo cancellation |
US5455842A (en) | 1994-01-12 | 1995-10-03 | Mersky; Barry | Method and apparatus for underwater communication |
EP0741940A1 (en) | 1994-01-12 | 1996-11-13 | Barry Mersky | Method and apparatus for underwater communication |
US6377693B1 (en) | 1994-06-23 | 2002-04-23 | Hearing Innovations Incorporated | Tinnitus masking using ultrasonic signals |
US6072885A (en) | 1994-07-08 | 2000-06-06 | Sonic Innovations, Inc. | Hearing aid device incorporating signal processing techniques |
US5661813A (en) | 1994-10-26 | 1997-08-26 | Nippon Telegraph And Telephone Corporation | Method and apparatus for multi-channel acoustic echo cancellation |
EP0715838A2 (en) | 1994-12-02 | 1996-06-12 | P & B RESEARCH AB | A device in hearing aids |
US5565759A (en) | 1994-12-15 | 1996-10-15 | Intel Corporation | Smart battery providing battery life and recharge time prediction |
US6115477A (en) | 1995-01-23 | 2000-09-05 | Sonic Bites, Llc | Denta-mandibular sound-transmitting system |
US5558618A (en) | 1995-01-23 | 1996-09-24 | Maniglia; Anthony J. | Semi-implantable middle ear hearing device |
US6118882A (en) | 1995-01-25 | 2000-09-12 | Haynes; Philip Ashley | Communication method |
US5477489A (en) | 1995-03-20 | 1995-12-19 | Exponential Technology, Inc. | High-stability CMOS multi-port register file memory cell with column isolation and current-mirror row line driver |
US5616027A (en) | 1995-04-18 | 1997-04-01 | Jacobs; Allison J. | Custom dental tray |
US5914701A (en) | 1995-05-08 | 1999-06-22 | Massachusetts Institute Of Technology | Non-contact system for sensing and signalling by externally induced intra-body currents |
US5579284A (en) | 1995-07-21 | 1996-11-26 | May; David F. | Scuba diving voice and communication system using bone conducted sound |
US5706251A (en) | 1995-07-21 | 1998-01-06 | Trigger Scuba, Inc. | Scuba diving voice and communication system using bone conducted sound |
US5828765A (en) | 1996-05-03 | 1998-10-27 | Gable; Tony L. | Audio loudspeaker assembly for recessed lighting fixture and audio system using same |
US6047074A (en) | 1996-07-09 | 2000-04-04 | Zoels; Fred | Programmable hearing aid operable in a mode for tinnitus therapy |
US5961443A (en) | 1996-07-31 | 1999-10-05 | East Carolina University | Therapeutic device to ameliorate stuttering |
US6371758B1 (en) | 1996-08-05 | 2002-04-16 | Bite Tech, Inc. | One-piece customizable dental appliance |
US6171229B1 (en) | 1996-08-07 | 2001-01-09 | St. Croix Medical, Inc. | Ossicular transducer attachment for an implantable hearing device |
EP0824889A1 (en) | 1996-08-20 | 1998-02-25 | Buratto Advanced Technology S.r.l. | Transmission system using the human body as wave guide |
US6538558B2 (en) | 1996-09-20 | 2003-03-25 | Alps Electric Co., Ltd. | Communication system |
US5760692A (en) | 1996-10-18 | 1998-06-02 | Block; Douglas A. | Intra-oral tracking device |
US6223018B1 (en) | 1996-12-12 | 2001-04-24 | Nippon Telegraph And Telephone Corporation | Intra-body information transfer device |
US6075557A (en) | 1997-04-17 | 2000-06-13 | Sharp Kabushiki Kaisha | Image tracking system and method and observer tracking autostereoscopic display |
US6029558A (en) | 1997-05-12 | 2000-02-29 | Southwest Research Institute | Reactive personnel protection system |
US5984681A (en) | 1997-09-02 | 1999-11-16 | Huang; Barney K. | Dental implant and method of implanting |
US5902167A (en) | 1997-09-09 | 1999-05-11 | Sonic Bites, Llc | Sound-transmitting amusement device and method |
US6333269B2 (en) | 1997-09-16 | 2001-12-25 | Tokyo Electron Limited | Plasma treatment system and method |
US5812496A (en) | 1997-10-20 | 1998-09-22 | Peck/Pelissier Partnership | Water resistant microphone |
US6068590A (en) | 1997-10-24 | 2000-05-30 | Hearing Innovations, Inc. | Device for diagnosing and treating hearing disorders |
US6072884A (en) | 1997-11-18 | 2000-06-06 | Audiologic Hearing Systems Lp | Feedback cancellation apparatus and methods |
US6504942B1 (en) | 1998-01-23 | 2003-01-07 | Sharp Kabushiki Kaisha | Method of and apparatus for detecting a face-like region and observer tracking display |
US6057668A (en) | 1998-09-17 | 2000-05-02 | Shi-Ming Chen | Battery charging device for mobile phone |
US20020173697A1 (en) | 1998-10-14 | 2002-11-21 | Sound Techniques Systems Llc | Tinnitis masking |
US6394969B1 (en) | 1998-10-14 | 2002-05-28 | Sound Techniques Systems Llc | Tinnitis masking and suppressor using pulsed ultrasound |
US20010051776A1 (en) | 1998-10-14 | 2001-12-13 | Lenhardt Martin L. | Tinnitus masker/suppressor |
US6585637B2 (en) | 1998-10-15 | 2003-07-01 | St. Croix Medical, Inc. | Method and apparatus for fixation type feedback reduction in implantable hearing assistance systems |
US20090180652A1 (en) | 1999-03-17 | 2009-07-16 | Neuromonics Pty Limited | Tinnitus rehabilitation device and method |
US20070230713A1 (en) | 1999-03-17 | 2007-10-04 | Davis Paul B | Tinnitus rehabilitation device and method |
US20070242835A1 (en) | 1999-03-17 | 2007-10-18 | Davis Paul B | Tinnitus rehabilitation device and method |
US20040131200A1 (en) | 1999-03-17 | 2004-07-08 | Tinnitech Ltd. | Tinnitus rehabilitation device and method |
US6682472B1 (en) | 1999-03-17 | 2004-01-27 | Tinnitech Ltd. | Tinnitus rehabilitation device and method |
US7520851B2 (en) | 1999-03-17 | 2009-04-21 | Neurominics Pty Limited | Tinnitus rehabilitation device and method |
US20040141624A1 (en) | 1999-03-17 | 2004-07-22 | Neuromonics Limited | Tinnitus rehabilitation device and method |
US6629922B1 (en) | 1999-10-29 | 2003-10-07 | Soundport Corporation | Flextensional output actuators for surgically implantable hearing aids |
US6778674B1 (en) | 1999-12-28 | 2004-08-17 | Texas Instruments Incorporated | Hearing assist device with directional detection and sound modification |
US7522740B2 (en) | 2000-01-07 | 2009-04-21 | Etymotic Research, Inc. | Multi-coil coupling system for hearing aid applications |
US20030048915A1 (en) | 2000-01-27 | 2003-03-13 | New Transducers Limited | Communication device using bone conduction |
US6885753B2 (en) | 2000-01-27 | 2005-04-26 | New Transducers Limited | Communication device using bone conduction |
US6826284B1 (en) | 2000-02-04 | 2004-11-30 | Agere Systems Inc. | Method and apparatus for passive acoustic source localization for video camera steering applications |
US20020071581A1 (en) | 2000-03-28 | 2002-06-13 | Hans Leysieffer | Partially or fully implantable hearing system |
US20040243481A1 (en) | 2000-04-05 | 2004-12-02 | Therics, Inc. | System and method for rapidly customizing design, manufacture and/or selection of biomedical devices |
US6658124B1 (en) | 2000-04-06 | 2003-12-02 | Advanced Bionics Corporation | Rechargeable hearing aid |
US6239705B1 (en) | 2000-04-19 | 2001-05-29 | Jeffrey Glen | Intra oral electronic tracking device |
US6754472B1 (en) | 2000-04-27 | 2004-06-22 | Microsoft Corporation | Method and apparatus for transmitting power and data using the human body |
US7206423B1 (en) | 2000-05-10 | 2007-04-17 | Board Of Trustees Of University Of Illinois | Intrabody communication for a hearing aid |
US7035415B2 (en) | 2000-05-26 | 2006-04-25 | Koninklijke Philips Electronics N.V. | Method and device for acoustic echo cancellation combined with adaptive beamforming |
US6985599B2 (en) | 2000-06-02 | 2006-01-10 | P&B Research Ab | Vibrator for bone conducted hearing aids |
US7074222B2 (en) | 2000-07-12 | 2006-07-11 | Entific Medical Systems Ab | Anchoring element |
US6633747B1 (en) | 2000-07-12 | 2003-10-14 | Lucent Technologies Inc. | Orthodontic appliance audio receiver |
EP1299052A1 (en) | 2000-07-12 | 2003-04-09 | Entific Medical Systems AB | Anchoring element |
US6631197B1 (en) | 2000-07-24 | 2003-10-07 | Gn Resound North America Corporation | Wide audio bandwidth transduction method and device |
US20020026091A1 (en) | 2000-08-25 | 2002-02-28 | Hans Leysieffer | Implantable hearing system with means for measuring its coupling quality |
US20030212319A1 (en) | 2000-10-10 | 2003-11-13 | Magill Alan Remy | Health monitoring garment |
US7171003B1 (en) | 2000-10-19 | 2007-01-30 | Lear Corporation | Robust and reliable acoustic echo and noise cancellation system for cabin communication |
US20020077831A1 (en) | 2000-11-28 | 2002-06-20 | Numa Takayuki | Data input/output method and system without being notified |
US20020122563A1 (en) | 2001-03-02 | 2002-09-05 | Schumaier Daniel R. | Bone conduction hearing aid |
US7246058B2 (en) | 2001-05-30 | 2007-07-17 | Aliph, Inc. | Detecting voiced and unvoiced speech using both acoustic and nonacoustic sensors |
US20030059078A1 (en) | 2001-06-21 | 2003-03-27 | Downs Edward F. | Directional sensors for head-mounted contact microphones |
US6694035B1 (en) | 2001-07-05 | 2004-02-17 | Martin Teicher | System for conveying musical beat information to the hearing impaired |
US7076077B2 (en) | 2001-07-05 | 2006-07-11 | Temco Japan Co., Ltd. | Bone conduction headset |
US20040247143A1 (en) | 2001-10-01 | 2004-12-09 | Amphicom | Device for listening to voice and/or musical signals by means of cranial bone transmission |
US20030091200A1 (en) | 2001-10-09 | 2003-05-15 | Pompei Frank Joseph | Ultrasonic transducer for parametric array |
US6954668B1 (en) | 2001-10-11 | 2005-10-11 | Cuozzo John W | Apparatus and method for intra-oral stimulation of the trigeminal nerve |
US7174026B2 (en) | 2002-01-14 | 2007-02-06 | Siemens Audiologische Technik Gmbh | Selection of communication connections in hearing aids |
US7171008B2 (en) | 2002-02-05 | 2007-01-30 | Mh Acoustics, Llc | Reducing noise in audio systems |
US20050189910A1 (en) | 2002-06-10 | 2005-09-01 | Hui Shu-Yuen R. | Planar inductive battery charger |
US20040057591A1 (en) | 2002-06-26 | 2004-03-25 | Frank Beck | Directional hearing given binaural hearing aid coverage |
US7310427B2 (en) | 2002-08-01 | 2007-12-18 | Virginia Commonwealth University | Recreational bone conduction audio device, system |
US6917688B2 (en) | 2002-09-11 | 2005-07-12 | Nanyang Technological University | Adaptive noise cancelling microphone system |
US7003099B1 (en) | 2002-11-15 | 2006-02-21 | Fortmedia, Inc. | Small array microphone for acoustic echo cancellation and noise suppression |
US7174022B1 (en) | 2002-11-15 | 2007-02-06 | Fortemedia, Inc. | Small array microphone for beam-forming and noise suppression |
US7099822B2 (en) | 2002-12-10 | 2006-08-29 | Liberato Technologies, Inc. | System and method for noise reduction having first and second adaptive filters responsive to a stored vector |
US7162420B2 (en) | 2002-12-10 | 2007-01-09 | Liberato Technologies, Llc | System and method for noise reduction having first and second adaptive filters |
US20060025648A1 (en) | 2002-12-11 | 2006-02-02 | No. 182 Corporate Ventures Ltd. | Surgically implantable hearing aid |
US7033313B2 (en) | 2002-12-11 | 2006-04-25 | No. 182 Corporate Ventures Ltd. | Surgically implantable hearing aid |
US20050067816A1 (en) | 2002-12-18 | 2005-03-31 | Buckman Robert F. | Method and apparatus for body impact protection |
US7331349B2 (en) | 2003-01-23 | 2008-02-19 | Surgical Devices, Ltd., Co. Morningstar Holding Ltd. | Method and device for the prevention of snoring and sleep apnea |
US7269266B2 (en) | 2003-04-08 | 2007-09-11 | Mayur Technologies | Method and apparatus for tooth bone conduction microphone |
US7486798B2 (en) | 2003-04-08 | 2009-02-03 | Mayur Technologies, Inc. | Method and apparatus for tooth bone conduction microphone |
US20050196008A1 (en) | 2003-04-08 | 2005-09-08 | Muniswamappa Anjanappa | Method and apparatus for tooth bone conduction microphone |
US20040202344A1 (en) | 2003-04-08 | 2004-10-14 | Muniswamappa Anjanappa | Method and apparatus for tooth bone conduction microphone |
US20040202339A1 (en) | 2003-04-09 | 2004-10-14 | O'brien, William D. | Intrabody communication with ultrasound |
EP1633284A1 (en) | 2003-05-30 | 2006-03-15 | Entific Medical Systems AB | Implant device |
US7409070B2 (en) | 2003-05-30 | 2008-08-05 | Entific Medical Systems As | Implant device |
US20050037312A1 (en) | 2003-06-20 | 2005-02-17 | Aso International, Inc | Orthodontic retainer |
US20050070782A1 (en) | 2003-07-17 | 2005-03-31 | Dmitri Brodkin | Digital technologies for planning and carrying out dental restorative procedures |
US7333624B2 (en) | 2003-09-24 | 2008-02-19 | Siemens Audiologische Technik Gmbh | Hearing aid device and operating method for automatically switching voltage supply to a connected external device |
EP1718255A1 (en) | 2003-10-22 | 2006-11-08 | Entific Medical Systems AB | Anti-stuttering device |
US20070010704A1 (en) | 2003-10-22 | 2007-01-11 | Dan Pitulia | Anti-stuttering device |
US7010139B1 (en) | 2003-12-02 | 2006-03-07 | Kees Smeehuyzen | Bone conducting headset apparatus |
EP1691686A1 (en) | 2003-12-04 | 2006-08-23 | Neuromonics Limited | Tinnitus rehabilitation device and method |
US20050129257A1 (en) | 2003-12-12 | 2005-06-16 | Nec Tokin Corporation | Acoustic vibration generating element |
US20050241646A1 (en) | 2004-03-10 | 2005-11-03 | Apneos Corp. | System and method for treatment of upper airway disorders |
US7361216B2 (en) | 2004-05-17 | 2008-04-22 | 3M Innovative Properties Company | Dental compositions containing nanofillers and related methods |
US7329226B1 (en) | 2004-07-06 | 2008-02-12 | Cardiac Pacemakers, Inc. | System and method for assessing pulmonary performance through transthoracic impedance monitoring |
US20060008106A1 (en) | 2004-07-06 | 2006-01-12 | Harper Patrick S | System and method for securing headphone transducers |
EP1783919A1 (en) | 2004-08-27 | 2007-05-09 | Victorion Technology Co., Ltd. | The nasal bone conduction wireless communication transmission equipment |
US7271569B2 (en) | 2004-09-21 | 2007-09-18 | Motorola Inc. | Contact less charger with alignment indicator |
US20060064037A1 (en) | 2004-09-22 | 2006-03-23 | Shalon Ventures Research, Llc | Systems and methods for monitoring and modifying behavior |
US20070036370A1 (en) | 2004-10-12 | 2007-02-15 | Microsoft Corporation | Method and apparatus for multi-sensory speech enhancement on a mobile device |
US6941952B1 (en) | 2004-12-02 | 2005-09-13 | Rush, Iii Gus A. | Athletic mouthpiece capable of sensing linear and rotational forces and protective headgear for use with the same |
US7258533B2 (en) | 2004-12-30 | 2007-08-21 | Adaptivenergy, Llc | Method and apparatus for scavenging energy during pump operation |
US20060167335A1 (en) | 2005-01-26 | 2006-07-27 | Samsung Electronics Co., Ltd. | Method and device for tinnitus therapy |
US20060207611A1 (en) | 2005-03-18 | 2006-09-21 | Mauna Kea Divers | Reusable customizable breathing apparatus mouthpiece with bitewings |
US20060270467A1 (en) | 2005-05-25 | 2006-11-30 | Song Jianming J | Method and apparatus of increasing speech intelligibility in noisy environments |
US20060275739A1 (en) | 2005-06-03 | 2006-12-07 | Ray Charles D | Dental vibrator and acoustical unit with method for the inhibition of operative pain |
US20070041595A1 (en) | 2005-07-07 | 2007-02-22 | Carazo Alfredo V | Bone-conduction hearing-aid transducer having improved frequency response |
JP2007028610A (en) | 2005-07-11 | 2007-02-01 | Siemens Audiologische Technik Gmbh | Hearing apparatus and method for operating the same |
JP2007028248A (en) | 2005-07-19 | 2007-02-01 | Matsushita Electric Ind Co Ltd | Method for manufacturing hearing aid shell |
US20070035917A1 (en) | 2005-08-09 | 2007-02-15 | Apple Computer, Inc. | Methods and apparatuses for docking a portable electronic device that has a planar like configuration and that operates in multiple orientations |
JP2007049658A (en) | 2005-08-09 | 2007-02-22 | Nakayo Telecommun Inc | Bone conduction type receiver using piezoelectric vibrator |
JP2007044284A (en) | 2005-08-10 | 2007-02-22 | Kazuo Okuma | Apparatus and method for modulating bone conduction |
JP2007049599A (en) | 2005-08-12 | 2007-02-22 | Nec Tokin Corp | Bone conduction speaker |
US20090220115A1 (en) | 2005-10-31 | 2009-09-03 | Audiodent Israel Ltd. | Miniature Bio-Compatible Piezoelectric Transducer Apparatus |
US7522738B2 (en) | 2005-11-30 | 2009-04-21 | Otologics, Llc | Dual feedback control system for implantable hearing instrument |
US20070142072A1 (en) | 2005-12-19 | 2007-06-21 | Teodoro Lassally | Two way radio |
US20070223735A1 (en) | 2006-03-27 | 2007-09-27 | Knowles Electronics, Llc | Electroacoustic Transducer System and Manufacturing Method Thereof |
US20070265533A1 (en) | 2006-05-12 | 2007-11-15 | Bao Tran | Cuffless blood pressure monitoring appliance |
US20080021327A1 (en) | 2006-05-12 | 2008-01-24 | Tarek Hessin Ahmed El-Bialy | Ultrasound stimulation devices and techniques |
US20070276270A1 (en) | 2006-05-24 | 2007-11-29 | Bao Tran | Mesh network stroke monitoring appliance |
US7664277B2 (en) | 2006-05-30 | 2010-02-16 | Sonitus Medical, Inc. | Bone conduction hearing aid devices and methods |
US7801319B2 (en) | 2006-05-30 | 2010-09-21 | Sonitus Medical, Inc. | Methods and apparatus for processing audio signals |
US20070280492A1 (en) | 2006-05-30 | 2007-12-06 | Sonitus Medical, Inc. | Methods and apparatus for processing audio signals |
US7796769B2 (en) | 2006-05-30 | 2010-09-14 | Sonitus Medical, Inc. | Methods and apparatus for processing audio signals |
US7844070B2 (en) | 2006-05-30 | 2010-11-30 | Sonitus Medical, Inc. | Methods and apparatus for processing audio signals |
US20100189288A1 (en) | 2006-05-30 | 2010-07-29 | Sonitus Medical, Inc. | Actuator systems for oral-based appliances |
US7724911B2 (en) | 2006-05-30 | 2010-05-25 | Sonitus Medical, Inc. | Actuator systems for oral-based appliances |
US20070280493A1 (en) | 2006-05-30 | 2007-12-06 | Sonitus Medical, Inc. | Methods and apparatus for processing audio signals |
US20070280495A1 (en) | 2006-05-30 | 2007-12-06 | Sonitus Medical, Inc. | Methods and apparatus for processing audio signals |
US20070280491A1 (en) | 2006-05-30 | 2007-12-06 | Sonitus Medical, Inc. | Methods and apparatus for processing audio signals |
US20080019542A1 (en) | 2006-05-30 | 2008-01-24 | Sonitus Medical, Inc. | Actuator systems for oral-based appliances |
US7844064B2 (en) | 2006-05-30 | 2010-11-30 | Sonitus Medical, Inc. | Methods and apparatus for transmitting vibrations |
US20090097685A1 (en) | 2006-05-30 | 2009-04-16 | Sonitus Medical, Inc. | Actuator systems for oral-based appliances |
US20090097684A1 (en) | 2006-05-30 | 2009-04-16 | Sonitus Medical, Inc. | Methods and apparatus for transmitting vibrations |
US20070291972A1 (en) | 2006-05-30 | 2007-12-20 | Sonitus Medical, Inc. | Bone conduction hearing aid devices and methods |
US7876906B2 (en) | 2006-05-30 | 2011-01-25 | Sonitus Medical, Inc. | Methods and apparatus for processing audio signals |
US20070286440A1 (en) | 2006-05-30 | 2007-12-13 | Sonitus Medical, Inc. | Methods and apparatus for transmitting vibrations |
US20080019557A1 (en) | 2006-07-19 | 2008-01-24 | Bevirt Joeben | Headset with fit adjustments and magnetic accessories |
US20080070181A1 (en) | 2006-08-22 | 2008-03-20 | Sonitus Medical, Inc. | Systems for manufacturing oral-based hearing aid appliances |
US20090099408A1 (en) | 2006-09-08 | 2009-04-16 | Sonitus Medical, Inc. | Methods and apparatus for treating tinnitus |
US20090147976A1 (en) | 2006-09-08 | 2009-06-11 | Sonitus Medical, Inc. | Tinnitus masking systems |
US20080064993A1 (en) | 2006-09-08 | 2008-03-13 | Sonitus Medical Inc. | Methods and apparatus for treating tinnitus |
US20080109972A1 (en) | 2006-11-09 | 2008-05-15 | Mah Pat Y | Pool vacuum |
US20080205678A1 (en) | 2007-02-26 | 2008-08-28 | Siemens Audiologische Technik Gmbh | Hearing apparatus with a special energy acceptance system and corresponding method |
US20080304677A1 (en) | 2007-06-08 | 2008-12-11 | Sonitus Medical Inc. | System and method for noise cancellation with motion tracking capability |
US20090028352A1 (en) | 2007-07-24 | 2009-01-29 | Petroff Michael L | Signal process for the derivation of improved dtm dynamic tinnitus mitigation sound |
US20090052698A1 (en) | 2007-08-22 | 2009-02-26 | Sonitus Medical, Inc. | Bone conduction hearing device with open-ear microphone |
US20090088598A1 (en) | 2007-10-02 | 2009-04-02 | Sonitus Medical, Inc. | Methods and apparatus for transmitting vibrations |
US20090105523A1 (en) | 2007-10-18 | 2009-04-23 | Sonitus Medical, Inc. | Systems and methods for compliance monitoring |
US20090149722A1 (en) | 2007-12-07 | 2009-06-11 | Sonitus Medical, Inc. | Systems and methods to provide two-way communications |
US20090226020A1 (en) | 2008-03-04 | 2009-09-10 | Sonitus Medical, Inc. | Dental bone conduction hearing appliance |
Non-Patent Citations (61)
Title |
---|
"Special Forces Smart Noise Cancellation Ear Buds with Built-In GPS," http://www.gizmag.com/special-forces-smart-noise-cancellation-ear-buds-with-built-in-gps/9428/, 2 pages, 2008. |
Altmann, et al. Foresighting the new technology waves-Exper Group. In: State of the Art Reviews and Related Papers-Center on Nanotechnology and Society. 2004 Conference. Published Jun. 14, 2004. p. 1-291. Available at http://www.nano-and-society.org/NELSI/documents/ECreviewsandpapers061404.pdf. Accessed Jan. 11, 2009. |
Altmann, et al. Foresighting the new technology waves—Exper Group. In: State of the Art Reviews and Related Papers—Center on Nanotechnology and Society. 2004 Conference. Published Jun. 14, 2004. p. 1-291. Available at http://www.nano-and-society.org/NELSI/documents/ECreviewsandpapers061404.pdf. Accessed Jan. 11, 2009. |
Australia Patent Application No. 2007256878 filed May 29, 2007 in the name of Abolfathi et al., Office Action mailed Oct. 15, 2010. |
Australian Patent Application No. 2007256878 filed May 29, 2007 in the name of Abolfathi et al., Office Action mailed Jun. 29, 2010. |
Australian Patent Application No. 2007266517 filed May 29, 2007 in the name of Abolfathi et al., Notice of Acceptance mailed Sep. 24, 2010. |
Australian Patent Application No. 2007266517 filed May 29, 2007 in the name of Abolfathi et al., Office Action mailed Jun. 9, 2010. |
Australian Patent Application No. 2007266518 filed May 29, 2007 in the name of Abolfathi, Office Action mailed Jul. 1, 2010. |
Berard, G., "Hearing Equals Behavior" [summary], 1993, http://www.bixby.org/faq/tinnitus/treatment.html. |
Bozkaya, D. et al., "Mechanics of the Tapered Interference Fit in Dental Implants," published Oct. 2002 [online], retrieved Oct. 14, 2010. http://www1.coe.neu.edu/~smuftu/Papers/paper-interference-fit-elsevier-2.pdf. |
Bozkaya, D. et al., "Mechanics of the Tapered Interference Fit in Dental Implants," published Oct. 2002 [online], retrieved Oct. 14, 2010. http://www1.coe.neu.edu/˜smuftu/Papers/paper-interference-fit-elsevier-2.pdf. |
Broyhill, D., "Battlefield Medical Information System-Telemedicine," A research paper presented to the U.S. Army Command and General Staff College in partial Fulfillment of the requirement for A462 Combat Health Support Seminar, 12 pages, 2003. |
Broyhill, D., "Battlefield Medical Information System—Telemedicine," A research paper presented to the U.S. Army Command and General Staff College in partial Fulfillment of the requirement for A462 Combat Health Support Seminar, 12 pages, 2003. |
Dental Cements-Premarket Notification, U.S. Department of Health and Human Services Food and Drug Administration Center for Devices and Radiological Health, pp. 1-10, Aug. 18, 1998. |
Dental Cements—Premarket Notification, U.S. Department of Health and Human Services Food and Drug Administration Center for Devices and Radiological Health, pp. 1-10, Aug. 18, 1998. |
European Patent Application No. 07797846.8 filed May 29, 2007 in the name of Menzel et al., Search Report and Opinion mailed Aug. 16, 2010. |
Henry, et al. "Comparison of Custom Sounds for Achieving Tinnitus Relief," J Am Acad Audiol, 15:585-598, 2004. |
Jaepanese Patent Applicaton No. 2009-513420 filed May 29, 2007 in the name of Menzel et al., Notice of Allowance mailed Sepember 10, 2010. |
Japanese Patent Application No. 2009-513417 filed May 29, 2007 in the name of Abolfathi et al., Office Action mailed Sep. 21, 2010. |
Japanese Patent Application No. 2009-513420 filed May 29, 2007 in the name of Menzel et al., Office Action mailed Jul. 27, 2010. |
Jastreboff, Pawel, J., "Phantom auditory perception (tinnitus): mechanisms of generation and perception," Neuroscience Research, 221-254, 1990, Elsevier Scientific Publishers Ireland, Ltd. |
PCT Patent Application No. PCT/US2007/069874 filed May 29, 2007 in the name of Abolfathi et al., International Search Report and Written Opinion mailed Sep. 12, 2008. |
PCT Patent Application No. PCT/US2007/069885 filed May 29, 2007 in the name of Abolfathi et al., International Search Report and Written Opinion mailed Sep. 15, 2008. |
PCT Patent Application No. PCT/US2007/069886 filed May 29, 2007 in the name of Abolfathi, International Search Report and Written Opinion mailed Sep. 11, 2008. |
PCT Patent Application No. PCT/US2007/069892 filed May 29, 2007 in the name of Menzel et al., International Search Report and Written Opinion mailed Sep. 24, 2008. |
Robb, "Tinnitus Device Directory Part I," Tinnitus Today, p. 22, Jun. 2003. |
Song, S. et al., "A 0.2-mW 2-Mb/s Digital Transceiver Based on Wideband Signaling for Human Body Communications," IEEE J Solid-State Cir, 42(9), 2021-2033, Sep. 2007. |
Stuart, A., et al., "Investigations of the Impact of Altered Auditory Feedback In-The-Ear Devices on the Speech of People Who Stutter: Initial Fitting and 4-Month Follow-Up," Int J Lang Commun Disord, 39(1), Jan. 2004, [abstract only]. |
U.S. Appl. No. 11/672,239, filed Feb. 7, 2007 in the name of Abolfathi, Non-final Office Action mailed Dec. 29, 2009. |
U.S. Appl. No. 11/672,239, filed Feb. 7, 2007 in the name of Abolfathi, Non-final Office Action mailed Jun. 18, 2009. |
U.S. Appl. No. 11/672,239, filed Feb. 7, 2007 in the name of Abolfathi, Non-final Office Action mailed Nov. 13, 2008. |
U.S. Appl. No. 11/672,239, filed Feb. 7, 2007 in the name of Abolfathi, Notice of Allowance mailed Jul. 26, 2010. |
U.S. Appl. No. 11/672,250, filed Feb. 7, 2007 in the name of Abolfath, Final Office Action mailed Jan. 11, 2010. |
U.S. Appl. No. 11/672,250, filed Feb. 7, 2007 in the name of Abolfathi, Non-final Office Action mailed Apr. 21, 2009. |
U.S. Appl. No. 11/672,250, filed Feb. 7, 2007 in the name of Abolfathi, Non-final Office Action mailed Aug. 8, 2008. |
U.S. Appl. No. 11/672,250, filed Feb. 7, 2007 in the name of Abolfathi, Notice of Allowance mailed Jul. 9, 2010. |
U.S. Appl. No. 11/672,264, filed Feb. 7, 2007 in the name of Abolfathi, Final Office Action mailed Jan. 11, 2010. |
U.S. Appl. No. 11/672,264, filed Feb. 7, 2007 in the name of Abolfathi, Non-Final Rejection mailed Apr. 28, 2009. |
U.S. Appl. No. 11/672,264, filed Feb. 7, 2007 in the name of Abolfathi, Non-Final Rejection mailed Aug. 6, 2008. |
U.S. Appl. No. 11/672,264, filed Feb. 7, 2007 in the name of Abolfathi, Notice of Allowance mailed Oct. 21, 2010. |
U.S. Appl. No. 11/672,271, filed Feb. 7, 2007 in the name of Abolfathi, Final Office Action mailed May 18, 2009. |
U.S. Appl. No. 11/672,271, filed Feb. 7, 2007 in the name of Abolfathi, Non-final Office Action mailed Aug. 20, 2008. |
U.S. Appl. No. 11/672,271, filed Feb. 7, 2007 in the name of Abolfathi, Non-final Office Action mailed Jan. 21, 2010. |
U.S. Appl. No. 11/672,271, filed Feb. 7, 2007 in the name of Abolfathi, Notice of Allowance mailed Aug. 5, 2010. |
U.S. Appl. No. 11/741,648, filed Apr. 27, 2007 in the name of Menzel et al., Final Office Action mailed May 18, 2009. |
U.S. Appl. No. 11/741,648, filed Apr. 27, 2007 in the name of Menzel et al., Non-final Office Action mailed Nov. 27, 2009. |
U.S. Appl. No. 11/741,648, filed Apr. 27, 2007 in the name of Menzel et al., Non-final Office Action mailed Sep. 4, 2008. |
U.S. Appl. No. 11/741,648, filed Apr. 27, 2007 in the name of Menzel et al., Notice of Allowance mailed Apr. 2, 2010. |
U.S. Appl. No. 11/754,823, filed May 29, 2007 in the name of Abolfathi et al., Final Office Action mailed Aug. 3, 2010. |
U.S. Appl. No. 11/754,823, filed May 29, 2007 in the name of Abolfathi et al., Final Office Action mailed May 12, 2009. |
U.S. Appl. No. 11/754,823, filed May 29, 2007 in the name of Abolfathi et al., Non-final Office Action mailed Aug. 14, 2008. |
U.S. Appl. No. 11/754,823, filed May 29, 2007 in the name of Abolfathi et al., Non-final Office Action mailed Nov. 30, 2009. |
U.S. Appl. No. 11/754,823, filed May 29, 2007 in the name of Abolfathi et al., Notice of Allowance mailed Oct. 18, 2010. |
U.S. Appl. No. 11/754,833, filed May 29, 2007 in the name of Abolfathi et al., Final Office Action mailed May 14, 2009. |
U.S. Appl. No. 11/754,833, filed May 29, 2007 in the name of Abolfathi et al., Non-final Office Action mailed Aug. 6, 2008. |
U.S. Appl. No. 11/754,833, filed May 29, 2007 in the name of Abolfathi et al., Notice of Allowance mailed Dec. 23, 2009. |
U.S. Appl. No. 11/866,345, filed May 29, 2007 in the name of Abolfathi et al., Final Office Action mailed Apr. 15, 2009. |
U.S. Appl. No. 11/866,345, filed May 29, 2007 in the name of Abolfathi et al., Non-final Office Action mailed Mar. 19, 2008. |
U.S. Appl. No. 11/866,345, filed Oct. 2, 2007 in the name of Abolfathi, Notice of Allowance mailed Jan. 15, 2010. |
United Kingdom Patent Application No. 1000894.4 filed Jan. 20, 2010 in the name of Abolfathi et al., Search Report mailed Mar. 26, 2010. |
Wen, Y. et al, "Online Prediction of Battery Lifetime for Embedded and Mobile Devices," Special Issue on Embedded Systems: Springer-Verlag Heidelberg Lecture Notes in Computer Science, V3164/2004, 15 pages, Dec. 2004. |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100189288A1 (en) * | 2006-05-30 | 2010-07-29 | Sonitus Medical, Inc. | Actuator systems for oral-based appliances |
US20120243714A9 (en) * | 2006-05-30 | 2012-09-27 | Sonitus Medical, Inc. | Microphone placement for oral applications |
US8358792B2 (en) * | 2006-05-30 | 2013-01-22 | Sonitus Medical, Inc. | Actuator systems for oral-based appliances |
Also Published As
Publication number | Publication date | Type |
---|---|---|
US9736602B2 (en) | 2017-08-15 | grant |
US8170242B2 (en) | 2012-05-01 | grant |
US20140321667A1 (en) | 2014-10-30 | application |
US20090097685A1 (en) | 2009-04-16 | application |
JP4677042B2 (en) | 2011-04-27 | grant |
JP2009539332A (en) | 2009-11-12 | application |
CA2654134C (en) | 2011-11-15 | grant |
US20170347210A1 (en) | 2017-11-30 | application |
US9185485B2 (en) | 2015-11-10 | grant |
JP4594440B2 (en) | 2010-12-08 | grant |
US20110116659A1 (en) | 2011-05-19 | application |
EP2030477A2 (en) | 2009-03-04 | application |
US20170171675A1 (en) | 2017-06-15 | application |
US20140177879A1 (en) | 2014-06-26 | application |
JP5570578B2 (en) | 2014-08-13 | grant |
US20170311100A1 (en) | 2017-10-26 | application |
US20070280492A1 (en) | 2007-12-06 | application |
JP2013046827A (en) | 2013-03-07 | application |
US7796769B2 (en) | 2010-09-14 | grant |
US20160134980A1 (en) | 2016-05-12 | application |
EP2033484A4 (en) | 2012-02-22 | application |
EP2036397A4 (en) | 2011-01-05 | application |
US20100189288A1 (en) | 2010-07-29 | application |
US8358792B2 (en) | 2013-01-22 | grant |
US20070280493A1 (en) | 2007-12-06 | application |
US9113262B2 (en) | 2015-08-18 | grant |
US8649535B2 (en) | 2014-02-11 | grant |
US20120321113A1 (en) | 2012-12-20 | application |
US8588447B2 (en) | 2013-11-19 | grant |
CA2653945C (en) | 2011-10-18 | grant |
US7724911B2 (en) | 2010-05-25 | grant |
US20110002492A1 (en) | 2011-01-06 | application |
CA2653945A1 (en) | 2007-12-13 | application |
US9615182B2 (en) | 2017-04-04 | grant |
US7844064B2 (en) | 2010-11-30 | grant |
US7876906B2 (en) | 2011-01-25 | grant |
EP2036397A2 (en) | 2009-03-18 | application |
US20070280491A1 (en) | 2007-12-06 | application |
CA2653922C (en) | 2011-11-01 | grant |
JP5230615B2 (en) | 2013-07-10 | grant |
EP2030477A4 (en) | 2010-09-15 | application |
US20150358723A1 (en) | 2015-12-10 | application |
US20080019542A1 (en) | 2008-01-24 | application |
US20130010987A1 (en) | 2013-01-10 | application |
US20100322449A1 (en) | 2010-12-23 | application |
US7844070B2 (en) | 2010-11-30 | grant |
EP2036397B1 (en) | 2013-10-16 | grant |
US8254611B2 (en) | 2012-08-28 | grant |
JP2009538715A (en) | 2009-11-12 | application |
EP2030477B1 (en) | 2011-09-07 | grant |
US20100220883A1 (en) | 2010-09-02 | application |
US20130003996A1 (en) | 2013-01-03 | application |
CN103124393A (en) | 2013-05-29 | application |
US9826324B2 (en) | 2017-11-21 | grant |
WO2007140367A2 (en) | 2007-12-06 | application |
US9906878B2 (en) | 2018-02-27 | grant |
WO2007140367A3 (en) | 2008-11-13 | application |
US7801319B2 (en) | 2010-09-21 | grant |
US20100312568A1 (en) | 2010-12-09 | application |
US8712077B2 (en) | 2014-04-29 | grant |
US20170311102A1 (en) | 2017-10-26 | application |
JP2009538713A (en) | 2009-11-12 | application |
US20070291972A1 (en) | 2007-12-20 | application |
JP2009538714A (en) | 2009-11-12 | application |
CN103124393B (en) | 2016-06-22 | grant |
US20110026740A1 (en) | 2011-02-03 | application |
EP2039219A4 (en) | 2012-02-08 | application |
US20070286440A1 (en) | 2007-12-13 | application |
DK2030477T3 (en) | 2011-10-03 | grant |
US20140169592A1 (en) | 2014-06-19 | application |
EP2033484A2 (en) | 2009-03-11 | application |
EP2039219A2 (en) | 2009-03-25 | application |
WO2007143453A3 (en) | 2008-12-11 | application |
CA2654134A1 (en) | 2007-12-06 | application |
WO2007143453A2 (en) | 2007-12-13 | application |
US20090097684A1 (en) | 2009-04-16 | application |
CA2653922A1 (en) | 2007-12-06 | application |
US9781526B2 (en) | 2017-10-03 | grant |
US7664277B2 (en) | 2010-02-16 | grant |
US20070280495A1 (en) | 2007-12-06 | application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6084975A (en) | Promontory transmitting coil and tympanic membrane magnet for hearing devices | |
US7512448B2 (en) | Electrode placement for wireless intrabody communication between components of a hearing system | |
US7266208B2 (en) | Auditory aid device for the rehabilitation of patients suffering from partial neurosensory hearing loss | |
US7668325B2 (en) | Hearing system having an open chamber for housing components and reducing the occlusion effect | |
US20090097681A1 (en) | Multifunction System and Method for Integrated Hearing and Communication with Noise Cancellation and Feedback Management | |
US6445805B1 (en) | Hearing aid assembly | |
US20040202344A1 (en) | Method and apparatus for tooth bone conduction microphone | |
US6137889A (en) | Direct tympanic membrane excitation via vibrationally conductive assembly | |
US5430801A (en) | Hearing aid | |
US20080070181A1 (en) | Systems for manufacturing oral-based hearing aid appliances | |
US20040047483A1 (en) | Hearing aid | |
US7778434B2 (en) | Self forming in-the-ear hearing aid with conical stent | |
US6048305A (en) | Apparatus and method for an open ear auditory pathway stimulator to manage tinnitus and hyperacusis | |
US20070127757A2 (en) | Behind-The-Ear-Auditory Device | |
US8340335B1 (en) | Hearing device with semipermanent canal receiver module | |
US7127078B2 (en) | Implanted outer ear canal hearing aid | |
US20130018218A1 (en) | Systems, Devices, Components and Methods for Bone Conduction Hearing Aids | |
US20070055321A1 (en) | Wearable alarm system for a prosthetic hearing implant | |
US7570777B1 (en) | Earset assembly | |
Dillon | Hearing aids | |
US7043040B2 (en) | Hearing aid apparatus | |
Lidén et al. | Ten years of experience with the Swedish bone-anchored hearing system | |
US20100048983A1 (en) | Multipath Stimulation Hearing Systems | |
EP1718255A1 (en) | Anti-stuttering device | |
US8433082B2 (en) | Intraoral appliance for sound transmission via bone conduction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SONITUS MEDICAL, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABOLFATHI, AMIR;REEL/FRAME:024883/0829 Effective date: 20070315 |
|
AS | Assignment |
Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT, MA Free format text: SECURITY INTEREST;ASSIGNOR:SONITUS MEDICAL INC.;REEL/FRAME:034912/0276 Effective date: 20150203 |
|
AS | Assignment |
Owner name: HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS AGENT, MAR Free format text: ASSIGNMENT OF SECURITY INTEREST;ASSIGNOR:GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT;REEL/FRAME:037154/0115 Effective date: 20151123 |
|
AS | Assignment |
Owner name: HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS AGENT DBA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY ZIP CODE PREVIOUSLY RECORDED AT REEL: 037154 FRAME: 0115. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT OF SECURITY INTEREST;ASSIGNOR:GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT;REEL/FRAME:037461/0095 Effective date: 20151123 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: SONITUS (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SONITUS MEDICAL, INC.;REEL/FRAME:038060/0943 Effective date: 20150204 Owner name: SOUNDMED, LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SONITUS (ASSIGNMENT FOR THE BENEFIT OF CREDITORS), LLC;REEL/FRAME:038061/0168 Effective date: 20151026 |