US8230230B2 - Secure data cartridge - Google Patents
Secure data cartridge Download PDFInfo
- Publication number
- US8230230B2 US8230230B2 US12/371,407 US37140709A US8230230B2 US 8230230 B2 US8230230 B2 US 8230230B2 US 37140709 A US37140709 A US 37140709A US 8230230 B2 US8230230 B2 US 8230230B2
- Authority
- US
- United States
- Prior art keywords
- data
- data cartridge
- cartridge
- authorization system
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000013475 authorization Methods 0.000 claims abstract description 39
- 238000004891 communication Methods 0.000 claims abstract description 20
- 238000003860 storage Methods 0.000 claims abstract description 20
- 230000002596 correlated effect Effects 0.000 claims abstract description 4
- 230000004044 response Effects 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 33
- 230000008859 change Effects 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 27
- 230000008569 process Effects 0.000 description 21
- 230000006870 function Effects 0.000 description 12
- 230000007547 defect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- KJLPSBMDOIVXSN-UHFFFAOYSA-N 4-[4-[2-[4-(3,4-dicarboxyphenoxy)phenyl]propan-2-yl]phenoxy]phthalic acid Chemical compound C=1C=C(OC=2C=C(C(C(O)=O)=CC=2)C(O)=O)C=CC=1C(C)(C)C(C=C1)=CC=C1OC1=CC=C(C(O)=O)C(C(O)=O)=C1 KJLPSBMDOIVXSN-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/64—Protecting data integrity, e.g. using checksums, certificates or signatures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/10—Protecting distributed programs or content, e.g. vending or licensing of copyrighted material ; Digital rights management [DRM]
- G06F21/16—Program or content traceability, e.g. by watermarking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/30—Authentication, i.e. establishing the identity or authorisation of security principals
- G06F21/44—Program or device authentication
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/30—Authentication, i.e. establishing the identity or authorisation of security principals
- G06F21/44—Program or device authentication
- G06F21/445—Program or device authentication by mutual authentication, e.g. between devices or programs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/70—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
- G06F21/78—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure storage of data
Definitions
- This disclosure relates in general to removable data cartridges and, more specifically, but not by way of limitation, to protecting removable data cartridges.
- Digital media today has varying levels of quality. Inferior quality is especially an issue where counterfeiting of digital media is prevalent. A consumer who receives a counterfeit media may believe the authentic media are of inferior quality. Counterfeit media can damage the drive used to read the media. Drive makers would have increased warranty repairs should substandard media be used in the market.
- FIGS. 1A 1 B, 1 C and 1 D are block diagrams of embodiments of a cartridge security system
- FIGS. 2A , 2 B, 2 C, 2 D, and 2 E are block diagrams of embodiments of a data cartridge drive
- FIGS. 3A and 3B are flow diagrams of embodiments of a process for securing data cartridges
- FIGS. 4A and 4B are flow diagrams of embodiments of a process for programming data cartridges for security
- FIGS. 5A , 5 B, 5 C, and 5 D are flow diagrams of embodiments of a process for unlocking data cartridges.
- the embodiments may be described as a process which is depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a block diagram. Although a flowchart may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged.
- a process is terminated when its operations are completed, but could have additional steps not included in the figure.
- a process may correspond to a method, a function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a function, its termination corresponds to a return of the function to the calling function or the main function.
- the term “storage medium” may represent one or more devices for storing data, including read only memory (ROM), random access memory (RAM), magnetic RAM, core memory, magnetic disk storage mediums, optical storage mediums, flash memory devices and/or other machine readable mediums for storing information.
- ROM read only memory
- RAM random access memory
- magnetic RAM magnetic RAM
- core memory magnetic disk storage mediums
- optical storage mediums flash memory devices and/or other machine readable mediums for storing information.
- computer-readable medium includes, but is not limited to portable or fixed storage devices, optical storage devices, wireless channels and various other mediums capable of storing, containing or carrying instruction(s) and/or data.
- embodiments may be implemented by hardware, software, firmware, middleware, microcode, hardware description languages, or any combination thereof.
- the program code or code segments to perform the necessary tasks may be stored in a machine readable medium such as storage medium.
- a processor(s) may perform the necessary tasks.
- a code segment or computer-executable instructions may represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software package, a class, or any combination of instructions, data structures, or program statements.
- a code segment may be coupled to another code segment or a hardware circuit by passing and/or receiving information, data, arguments, parameters, or memory contents. Information, arguments, parameters, data, etc. may be passed, forwarded, or transmitted via any suitable means including memory sharing, message passing, token passing, network transmission, etc.
- the present disclosure provides an authorization system for authorizing access to a data cartridge.
- the authorization system includes a code, a data cartridge interface, a fingerprint processor, a password generator, and an authorization engine.
- the code is obtained from outside the data cartridge.
- the data cartridge interface is used to read data from the data cartridge, where the data includes first information and a fingerprint.
- the fingerprint generator generates second information using at least the code.
- the password generator unlocks the data cartridge using the code and the data.
- the authorizing engine is coupled to at least one of the password generator or the fingerprint processor. At least some of the data or the second information is compared to authorize the data cartridge.
- FIG. 1A a block diagram of an embodiment of a cartridge security system 100 - 1 is shown that is interfaced with a data cartridge 124 .
- the cartridge security system 100 secures data cartridges 124 such that authentication is required for use of the data cartridge 124 .
- the cartridge security system 100 would program many data cartridges 124 before releasing them in the stream of commerce. They could be programmed serially or in parallel, depending on the manufacturing configuration.
- This embodiment 100 - 1 includes an authorizing system 128 - 1 and a cartridge programmer 132 shown coupled to a data cartridge 124 .
- the data cartridge 124 is a self contained storage medium that can be plugged into systems to store information and is not part of the cartridge security system 100 .
- a password authentication feature of the data cartridge can be activated to require a password before reading or writing data to the cartridge 124 .
- the data cartridge includes a 2.5′′ hard disk drive (HDD) for storage, but other embodiments could use flash memory, optical disk drives, magnetic tape, holographic media, or other sized hard drives.
- the HDD could communicate with the cartridge programmer 132 with a SATA, PATA, SAS, SCSI, USB, Ethernet, BlueTooth, Zigbee, WiFi and/or any other wired or wireless communication protocol.
- Each data cartridge 124 has an electronically-accessible serial number and/or other unique information that can be used in the authentication process.
- the other unique information could include a sector defect list of the data cartridge, a model number of the data cartridge, a manufacturer identifier of the data cartridge, a manufacturer date code, a RFID-read code of the data cartridge, and/or head optimization information of the data cartridge.
- Embodiments could use any unique information electronically readable from the storage medium that is impractical to modify or would render the HDD inoperable if modified.
- the authorizing system 128 - 1 manages the security for the cartridge security system 100 .
- a key is created for each data cartridge 124 .
- Communication with the cartridge programmer 132 allows recording each key uniquely for a data cartridge 124 .
- Unique information from the data cartridge 124 minimizes the risk that a key is used twice. Where duplicate information is received, an error is reported to the cartridge programmer 132 .
- Included in the authorizing system 128 are a global key database 138 , a key manager 130 and a secure channel 134 .
- data on the data cartridge 124 can be encrypted with the key for the data cartridge 124 , while other embodiments do not encrypt the information on the data cartridge.
- the secure channel 134 allows communicating with the one or more cartridge programmers through a wide area network (WAN) 130 that may not be totally secure.
- WAN wide area network
- a virtual private network VPN and/or encryption could be used by the secure channel to communicate with the cartridge programmer 132 .
- a leased line, private network, public network, and/or the Internet could be used for the WAN 130 .
- the secure channel 134 protects the keys and key algorithm from interception and/or hacking in transport to the cartridge programmer 132 , who is typically remotely located.
- the key manager 130 generates keys for each of the data cartridges 124 .
- the key and unique identification for the data cartridge 124 is stored in the global key database 138 .
- the authorizing system 128 - 1 can be queried for the key after the unique identification is produced. Any device requesting key information is authenticated also to be sure that keys aren't handed out to unauthorized sources. In this embodiment, private keying is used, but other embodiments use public keying.
- each data cartridge 124 has its own key, but other embodiments could have a group of data cartridges 124 that share a key. Counterfeit or hacked devices and data cartridges 124 can be removed from the global key database 138 to prevent further use as data cartridges 124 without keys are not usable by cartridge drives.
- the cartridge programmer 132 enables data cartridges 124 for use by the cartridge security system 100 - 1 . Included in this embodiment of the cartridge programmer 132 are the secure channel 134 , the fingerprint generator 116 and the password generator 120 . Often, the cartridge programmer 132 is also the manufacturer of the data cartridge 124 . Although not shown, there can be any number of cartridge programmers 132 in the cartridge security system 100 .
- the key is reported back to the cartridge programmer 132 .
- the key is used by the fingerprint generator 116 to generate information written to the data cartridge 124 .
- the fingerprint written to the data cartridge is checked to authenticate the data cartridge 124 .
- the key is also used in formulating a password for the data cartridge 124 , where the password locks access to the data on the data cartridge 124 .
- this embodiment has a key for each data cartridge 124
- other embodiments could have a keys used for more than one data cartridge.
- Grouping of the data cartridges 124 could be by serial number range, manufacturer, model, lot date, size, number of defects, number of heads, and/or any other category. All the data cartridges 124 in a particular group could share a key.
- the keys are stored in the global key database 138 and accessible to cartridge programmers 132 and cartridge drives 204 as needed over the secure channel 134 .
- FIG. 1B a block diagram of another embodiment of a cartridge security system 100 - 2 is shown coupled to a separate data cartridge 124 .
- a set of keys is made for each cartridge programmer 132 .
- the keys are a function of information specific to a particular data cartridge or a class of data cartridges 124 and a function of a root key of the authorizing system 128 - 2 .
- This embodiment has a key used for a group of data cartridges 124 . Whenever new groups are formed, the cartridge programmer 132 requests a new key for use with the group.
- the authorizing system 128 includes a root key 104 , a manufacturer key generator 108 , a key seed generator 112 and a seed database 144 .
- the seed database 144 stores the various seeds that are used for the various groups of data cartridges 124 .
- the seed could be any information related to the cartridge HDD, for example, serial number range, manufacturer, model number, lot date, size, number of defects, sector defect map data, number of heads, and/or any other category.
- Table I shows an example of where the seed is a function of drive model and manufacture month and Tables II and III show examples of where the manufacturer and model number is correlated to the seed.
- the seeds in Tables I and II are scrambled according to a known algorithm, whereas the seeds in Table III are intelligible.
- the key seed generator produces a manufacturer seed, using some sort of cryptographic algorithm. Any cryptographic algorithm could be used, for example, AES, DES, triple-DES, SHA-1, SHA-256, SHA-512, MD4, MD5, HMAC, etc.
- the key seed is sent the manufacturer key generator 108 along with the root key 104 to produce a manufacturer key for that class of data cartridges 124 .
- the manufacturer key is passed to the cartridge programmer 132 .
- the manufacturer key generator 108 produces the manufacturer key using the key seed for a particular group of data cartridges 124 along with the root key 104 using a standard cryptographic algorithm, for example, AES, DES, triple-DES, SHA-1, SHA-256, SHA-512, MD4, MD5, HMAC, or a proprietary algorithm.
- the root key may change at particular times, but if not communicated to the cartridge drives, new data cartridges 124 programmed with the new root key 104 cannot be authenticated for use.
- the cartridge programmer 132 includes a manufacturer key database 140 , a fingerprint generator 116 , and a password generator 120 .
- the manufacturer key database 140 stores all the manufacturer keys requested for this particular cartridge programmer 132 . If a manufacturing key is not found in the manufacturer key database 140 , it is requested from the authorizing system 128 .
- This embodiment has a direct connection between the cartridge programmer 132 and the authorizing system 128 , but other embodiments could use a WAN of some sort.
- the fingerprint generator 116 generates the fingerprint written to the data cartridge 124 and the password generator 120 password protects the data cartridge 124 .
- FIG. IC a block diagram of yet another embodiment of a cartridge security system 100 - 3 is shown coupled to a data cartridge 124 .
- This embodiment includes the fingerprint generator 116 and password generator 120 in the authorizing system 128 - 3 .
- the root key can be the only key used to generate fingerprints and passwords.
- a cartridge interface 136 in the cartridge programmer 132 - 3 interacts with the data cartridge 124 to gather information to use in remotely generating the password and fingerprint.
- communication back to the authorizing system 128 - 4 allows unlocking the data cartridge 124 for use.
- FIG. ID a block diagram of still another embodiment of a cartridge security system 100 - 4 is shown coupled to a data cartridge 124 .
- the manufacturer key(s) 142 is securely stored in the cartridge programmer 132 - 4 .
- the manufacturer key(s) are generated by the authorizing system 128 - 2 and manually loaded when the cartridge programmer 132 is produced or at a later time when the cartridge programmer 132 is in the field.
- this embodiment has a two-level key system, a single-level key system could be used where all cartridge programmers 132 - 4 hold the root key securely.
- FIG. 2A a block diagram of an embodiment of a data cartridge drive 204 - 1 is shown interfaced to a WAN 130 and a data cartridge 124 .
- This embodiment requests a key for a particular data cartridge 124 once encountered, but other embodiments could store keys to avoid a request in some circumstances.
- Information is read from the data cartridge 124 by an authorizing engine 208 and passed over the secure channel 134 using the WAN 130 to the authorizing system 128 - 1 .
- the authorizing engine 208 receives the key from the authorizing system 128 - 1 , the key is passed to the fingerprint generator 116 and password generator 120 to allow unlocking the data cartridge for use.
- the key is also used to cryptographically encode the information stored on the data cartridge.
- FIG. 2B a block diagram of another embodiment of the data cartridge drive 204 - 2 is shown interfaced to the data cartridge 124 .
- This embodiment works with the embodiment of the cartridge security system 100 - 1 of FIG. 1B .
- the cartridge drive 204 - 2 holds the root key 104 , which is a copy of the root key 104 stored in the authorizing system 128 - 2 .
- the root key 104 information gathered from a particular data cartridge 124 is used by the key seed generator 112 to produce a key seed for the manufacturer key generator 108 .
- the key for the data cartridge 124 is generated and passed to the authorizing engine 208 to unlock the data cartridge 124 .
- the root key could be hard coded into an encryption engine or secure processor such that uncovering the root key is unlikely.
- the population of cartridge drives could have different root keys. For example, each manufacturer could have a different root key. In this configuration, only data cartridges 124 programmed with a particular root key could work with a cartridge drive that used that root key.
- the root key is stored in the data cartridge drive 204 - 2 in this embodiment, other embodiments allow updating the root key or adding new keys.
- the root key could be stored on a card to allow updating or could be in a firmware update.
- Some embodiments allow adding new root keys for new data cartridges to allow use with newer data cartridges using a different root key.
- FIG. 2C a block diagram of still another embodiment of the data cartridge drive 204 - 3 is shown interfaced to a WAN 130 and a data cartridge 124 .
- This embodiment relies upon the authorizing system 128 to interact with the data cartridge to unlock the data cartridge 124 and check the fingerprint.
- the WAN 130 allows the real-time interaction with the data cartridge 124 .
- FIG. 2D a block diagram of another embodiment of a data cartridge drive 204 - 4 is shown interfaced to a WAN 130 and a data cartridge 124 .
- This embodiment stores keys for each data cartridge or for groups of data cartridges. Updates to the stored keys can be performed each time a new data cartridge 124 is encountered or periodically as new keys are issued.
- keys are stored in a local key database 212 for groups of data cartridges 124 .
- the secure channel 134 uses the WAN 130 to gather any new keys from the authorizing system 128 - 1 . Should a data cartridge 124 be encountered where the local key database 212 doesn't have a key, a query can be made to the authorizing system 128 - 1 to gather the key. Once the key is available, the authorizing engine 208 can unlock the data cartridge 124 using the fingerprint generator 116 and password generator 120 .
- FIG. 2E a block diagram of another embodiment of a data cartridge drive 204 - 5 is shown interfaced to a data cartridge 124 .
- the root key 104 is stored in the data cartridge drive 204 - 5 and can be used to generate manufacturer keys as needed. Other embodiments could download the manufacturer keys instead.
- the cartridge programmer 132 writes an encrypted fingerprint to the data cartridge 124 using the relevant manufacturer key.
- the fingerprint decoder decrypts the fingerprint stored on the data cartridge 124 with the manufacturer key. Decryption reveals unique information that can be read from the data cartridge to compare them. For example, the decryption can reveal the data cartridge serial number that can be read from the data cartridge 124 and compared by the authorizing engine 208 .
- a flow diagram of an embodiment of a process 300 - 1 for securing data cartridges 124 is shown.
- the depicted portion of the process begins in step 304 where a key request is received by the authorizing system 128 from the cartridge programmer 132 .
- the key request could be for a single data cartridge or a group of data cartridges 124 .
- the authorizing system 128 gathers information on the data cartridges or class of data cartridges in step 308 . The information may be presented by the cartridge programmer 132 as part of the key request in some embodiments.
- the key(s) is determined. There are many different ways to determine the key in various embodiments. Generally, the key is a function of the information unique to the data cartridge or group of data cartridges 124 . The key manager 130 produces the key(s) in this embodiment. In step 316 , the key is recorded in the global key database 138 . Using a secured channel 134 over a WAN or a secure connection, the key(s) is transmitted to the cartridge programmer 132 .
- This embodiment only has a single key for a particular data cartridge, but other embodiments could have multiple keys that are used under different circumstances. For example, a first key might be used for a first time period and a second key used for a second time period.
- the cartridge programmer 132 can be enabled for use.
- at least two steps are performed to prepare a data cartridge for use.
- a fingerprint is generated with the key and written to the data cartridge in step 324 . Since the key is affected by information relating to the data cartridge, the fingerprint will also vary with the information.
- the fingerprint is a multi-level hash of information from the data cartridge that uses the key.
- a password is generated using the key in step 328 .
- the password is applied to the data cartridge such that subsequent use of the data requires knowing the password.
- the data cartridge includes a hard drive that has password protection.
- the password is a function of drive information and the key.
- the key could be used to encrypt the hard drive serial number to generate the password.
- FIG. 3B a flow diagram of an embodiment of a process 300 - 2 for securing data cartridges 124 is shown.
- This embodiment uses a root key to generate a manufacturer key.
- the manufacturer key can be later derived from the root key and information from the data cartridge 124 such that storage of the manufacturer key is not necessary where the root key is available.
- This embodiment does not store the key at the authorizing system 128 , but determines the key in step 312 as needed to generate a manufacturer key.
- This embodiment differs from the embodiment of FIG. 3A in that step 316 is skipped.
- FIG. 4A a flow diagram of an embodiment of a process 400 - 1 for programming data cartridges 124 for security is shown.
- the programming of data cartridges 124 is performed by the cartridge programmer 132 .
- Data cartridges 124 that are not properly programmed may not be usable by cartridge drives 204 .
- the depicted portion of the process 400 - 1 begins in step 404 where a new data cartridge is recognized.
- Information is read from the data cartridge in step 408 . This information is used to identify the data cartridge and generate or find the appropriate key used in generating the fingerprint and password.
- Some or all the information gathered from the data cartridge 124 is passed to the authorizing system 128 in step 412 .
- a key is obtained at the authorizing system in step 416 .
- Some embodiments store keys at the cartridge drive such that requesting a key from the authorizing system is unnecessary in some cases.
- the key is transmitted from the authorizing system 128 to the drive programmer 204 in step 420 .
- the cartridge drive 204 generates a password using the key and possibly other information gathered from the data cartridge 124 .
- the data cartridge 124 has its password authentication feature activated to lock down the cartridge 124 .
- the password can be entered to allow further reading/writing to the data cartridge 124 .
- the fingerprint is generated based upon the key and possibly additional unique information from the data cartridge.
- This embodiment uses the same key for the password and fingerprint generation, but other embodiments could use different keys for each of these tasks.
- the generated fingerprint is written to the data cartridge in a predetermined location.
- the fingerprint may or may not be modifiable after the cartridge programmer 132 finishes, but modification of the fingerprint causes any subsequent authentication of the fingerprint to fail.
- Some embodiments store the fingerprint and/or password at the cartridge programmer 132 and/or the authorizing system 128 .
- FIG. 4B a flow diagram of an embodiment of a process 400 - 2 for programming data cartridges 124 for security is shown.
- This embodiment can generate passwords and fingerprints without reference to the authorizing system 128 - 1 .
- steps 412 , 416 and 420 are replaced with step 418 .
- the key(s) are either stored or derivable locally in step 418 . Where the key(s) are stored locally, information from the data cartridge 124 is used to find the appropriate key(s). In another embodiment, a root key is used with information from the data cartridge to determine the key(s).
- FIG. 5A a flow diagram of an embodiment of a process 500 - 1 for unlocking data cartridges 124 is shown. Unlocking occurs before a cartridge drive 204 will use a data cartridge 124 . Only data cartridges 124 properly initialized by the cartridge programmer 132 can be used. Additionally, a data cartridge 124 using a hard drive for storage cannot be used if it were removed from the data cartridge 124 because the password would be unknown. Some embodiments further encrypt the data on the cartridge 124 such that if authentication were thwarted, the data would be unintelligible.
- the depicted portion of the process 500 - 1 begins in step 404 where a data cartridge is newly coupled to the cartridge drive 204 .
- Steps 408 , 412 , and 416 are performed largely in the same way as the cartridge programmer 132 performed these steps in relation to FIG. 4A .
- the key for the particular data cartridge 124 is transmitted from the authorizing system 128 to the cartridge drive 204 in step 520 .
- a cryptographically or physically secure channel can be used for this purpose.
- the password is generated by the password generator 120 to unlock the data portion of the data cartridge 124 .
- the finger print is generated in step 428 before reading the fingerprint recorded on the data cartridge 124 in step 532 .
- the generated and read fingerprints are compared in step 536 . Where there is a match, the data portion of the data cartridge can be read and written to in step 540 . Where there is no match, processing goes from step 536 to step 544 where access to the drive is prevented. Some embodiments further report the failure immediately to the authorizing system 128 or report it at a later time.
- FIG. 5B a flow diagram of another embodiment of a process 500 - 2 for unlocking data cartridges 124 is shown.
- This embodiment differs from the embodiment of FIG. 5A in that steps 412 , 416 , and 420 are replaced with step 418 .
- this embodiment uses the cartridge drive 204 - 2 to generate keys locally in step 418 .
- the locally-stored root key 104 is used with a seed determined from information retrieved from the data cartridge 124 to generate a key that is used to unlock the drive and verify the fingerprint.
- FIG. 5C a flow diagram of still another embodiment of a process 500 - 3 for unlocking data cartridges 124 is shown.
- This embodiment replaces steps 412 , 416 , and 420 from the embodiment of FIG. 5A with steps 414 and 418 .
- a local key database is checked to determine if the key for the data cartridge is stored locally. Where it cannot be found locally, it can be requested.
- the key is available locally in step 418 for use in unlocking the drive and verifying the fingerprint.
- FIG. 5D a flow diagram of yet another embodiment of a process 500 - 4 for unlocking data cartridges 124 is shown.
- This embodiment is largely the same as the embodiment of FIG. 5B until after step 524 where an encrypted fingerprint is read from the data cartridge 124 .
- the fingerprint is encrypted with a two-way algorithm such that after decryption in step 546 , unique information is available in plain-text form.
- the unique information read from the data cartridge in step 400 is compared to that found by decrypting the fingerprint in step 548 . Where there is a match, access is allow in step 540 , whereas access is prevented in step 544 should there be no match.
- non-standard communication protocols to a data cartridge could be used in addition applications that use standard communications protocols.
- a particular optical disk cartridge, magnetic tape cartridge, etc. could have a proprietary communication protocol that could use the claimed principals regardless of communication protocol.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Multimedia (AREA)
- Technology Law (AREA)
- Health & Medical Sciences (AREA)
- Bioethics (AREA)
- General Health & Medical Sciences (AREA)
- Storage Device Security (AREA)
- Signal Processing For Digital Recording And Reproducing (AREA)
Abstract
Description
TABLE I |
Seed Generation Examples |
Drive Model | Manufacture Date | Seed |
CNC120GB | July 2005 | 234AB7890F |
June 2005 | F2783GE90A | |
May 2005 | 324G32E909 | |
April 2005 | E89D898AE | |
HST80G | July 2005 | 67E2399898 |
June 2005 | 0982GGA89 | |
May 2005 | A7621G90E | |
TABLE II |
Seed Generation Examples |
Manufacturer | Model | Seed |
AMCE | CNC120GB | 234AB7890F |
CNC60GB | F2783GE90A | |
ABC Co. | HST120G | 67E2399898 |
HST100G | 0982GGA89 | |
HST80G | A7621G90E | |
TABLE III |
Seed Generation Examples |
Manufacturer | Model | Seed |
AMCE | CNC120GB | ACME120B |
CNC60GB | ACME060C | |
ABC Co. | HST120G | ABC120A |
HST100G | ABC100B | |
HST80G | ABC080F | |
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/371,407 US8230230B2 (en) | 2005-11-03 | 2009-02-13 | Secure data cartridge |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/266,806 US7493494B2 (en) | 2005-11-03 | 2005-11-03 | Secure data cartridge |
US12/371,407 US8230230B2 (en) | 2005-11-03 | 2009-02-13 | Secure data cartridge |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/266,806 Continuation US7493494B2 (en) | 2005-11-03 | 2005-11-03 | Secure data cartridge |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090150679A1 US20090150679A1 (en) | 2009-06-11 |
US8230230B2 true US8230230B2 (en) | 2012-07-24 |
Family
ID=37998199
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/266,806 Active 2027-02-07 US7493494B2 (en) | 2005-11-03 | 2005-11-03 | Secure data cartridge |
US12/371,407 Expired - Fee Related US8230230B2 (en) | 2005-11-03 | 2009-02-13 | Secure data cartridge |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/266,806 Active 2027-02-07 US7493494B2 (en) | 2005-11-03 | 2005-11-03 | Secure data cartridge |
Country Status (6)
Country | Link |
---|---|
US (2) | US7493494B2 (en) |
EP (1) | EP1946209B1 (en) |
JP (1) | JP2009516871A (en) |
CN (1) | CN101507224B (en) |
BR (1) | BRPI0617922A2 (en) |
WO (1) | WO2007055921A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9858441B2 (en) | 2013-04-03 | 2018-01-02 | Hewlett Packard Enterprise Development Lp | Disabling counterfeit cartridges |
US11228423B2 (en) | 2020-01-12 | 2022-01-18 | Advanced New Technologies Co., Ltd. | Method and device for security assessment of encryption models |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11734393B2 (en) | 2004-09-20 | 2023-08-22 | Warner Bros. Entertainment Inc. | Content distribution with renewable content protection |
US20060064386A1 (en) | 2004-09-20 | 2006-03-23 | Aaron Marking | Media on demand via peering |
GB2431250A (en) * | 2005-10-11 | 2007-04-18 | Hewlett Packard Development Co | Data transfer system |
US7493494B2 (en) * | 2005-11-03 | 2009-02-17 | Prostor Systems, Inc. | Secure data cartridge |
US20070168664A1 (en) * | 2006-01-10 | 2007-07-19 | Goodman Brian G | Data encryption/decryption for data storage drives |
US10073743B2 (en) * | 2006-07-26 | 2018-09-11 | Hewlett Packard Enterprise Development Lp | Data storage arrangement and key distribution |
US20080040564A1 (en) * | 2006-08-10 | 2008-02-14 | International Business Machines Corporation | Sychronized Light Path Scheme Across Mutiple SAS Storage Enclosures |
US8230235B2 (en) * | 2006-09-07 | 2012-07-24 | International Business Machines Corporation | Selective encryption of data stored on removable media in an automated data storage library |
US20080226082A1 (en) * | 2007-03-12 | 2008-09-18 | Storage Appliance Corporation | Systems and methods for secure data backup |
EP2203911A4 (en) | 2007-10-25 | 2011-12-28 | Trilliant Networks Inc | Gas meter having ultra-sensitive magnetic material retrofitted onto meter dial and method for performing meter retrofit |
WO2009067261A1 (en) * | 2007-11-25 | 2009-05-28 | Trilliant Networks, Inc. | System and method for transmitting and receiving information on a neighborhood area network |
US8332055B2 (en) | 2007-11-25 | 2012-12-11 | Trilliant Networks, Inc. | Energy use control system and method |
WO2009067254A1 (en) * | 2007-11-25 | 2009-05-28 | Trilliant Networks, Inc. | System and method for operating mesh devices in multi-tree overlapping mesh networks |
WO2009067248A1 (en) * | 2007-11-25 | 2009-05-28 | Trilliant Networks, Inc. | Application layer authorization token and method |
EP2215556B1 (en) | 2007-11-25 | 2019-08-28 | Trilliant Networks, Inc. | System and method for transmitting power status notifications in an advanced metering infrastructure network |
US9251382B2 (en) * | 2007-12-20 | 2016-02-02 | International Business Machines Corporation | Mapping encrypted and decrypted data via key management system |
WO2010076666A1 (en) * | 2009-01-05 | 2010-07-08 | Freescale Semiconductor, Inc. | Method, system and integrated circuit for enabling access to a memory element |
US8613065B2 (en) * | 2010-02-15 | 2013-12-17 | Ca, Inc. | Method and system for multiple passcode generation |
US20110295908A1 (en) * | 2010-05-27 | 2011-12-01 | International Business Machines Corporation | Detecting counterfeit devices |
US9084120B2 (en) | 2010-08-27 | 2015-07-14 | Trilliant Networks Inc. | System and method for interference free operation of co-located transceivers |
EP2641137A2 (en) | 2010-11-15 | 2013-09-25 | Trilliant Holdings, Inc. | System and method for securely communicating across multiple networks using a single radio |
WO2012097204A1 (en) | 2011-01-14 | 2012-07-19 | Trilliant Holdings, Inc. | Process, device and system for volt/var optimization |
US8970394B2 (en) | 2011-01-25 | 2015-03-03 | Trilliant Holdings Inc. | Aggregated real-time power outages/restoration reporting (RTPOR) in a secure mesh network |
EP3429163B1 (en) | 2011-02-10 | 2020-08-19 | Trilliant Holdings, Inc. | Device and method for facilitating secure communications over a cellular network |
WO2012122310A1 (en) | 2011-03-08 | 2012-09-13 | Trilliant Networks, Inc. | System and method for managing load distribution across a power grid |
US9001787B1 (en) | 2011-09-20 | 2015-04-07 | Trilliant Networks Inc. | System and method for implementing handover of a hybrid communications module |
CN104077243A (en) * | 2014-07-10 | 2014-10-01 | 王爱华 | SATA hard disc device encryption method and system |
JP7314744B2 (en) * | 2019-09-27 | 2023-07-26 | ブラザー工業株式会社 | Tape cassette and printer |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6494749B1 (en) * | 2001-07-05 | 2002-12-17 | Comax Technology Inc. | Connector with mounting fixture for removable storage device |
US20030188162A1 (en) * | 2002-03-29 | 2003-10-02 | Brant Candelore | Locking a hard drive to a host |
US20050039032A1 (en) * | 2001-04-16 | 2005-02-17 | Stanley Babowicz | Apparatus and method for authentication of computer-readable medium |
US20050138392A1 (en) * | 2001-06-28 | 2005-06-23 | Johnson Harold J. | Secure method and system for biometric verification |
US7213118B2 (en) * | 2003-09-29 | 2007-05-01 | International Business Machines Corporation | Security in an automated data storage library |
US7310820B2 (en) * | 2002-09-13 | 2007-12-18 | Fujifilm Corporation | Recording and reproducing apparatus |
US7493494B2 (en) | 2005-11-03 | 2009-02-17 | Prostor Systems, Inc. | Secure data cartridge |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW529267B (en) * | 1999-03-15 | 2003-04-21 | Sony Corp | Data processing system and method for mutual identification between apparatuses |
CN1141678C (en) * | 2000-08-31 | 2004-03-10 | 优硕资讯科技股份有限公司 | Method and system for preventing electronic file pirary |
US20020157011A1 (en) * | 2001-04-20 | 2002-10-24 | Thomas Iii Fred C. | Method and apparatus for secure transmission of identifier for removable storage media |
CN100349399C (en) * | 2004-02-20 | 2007-11-14 | 胡祥义 | Method for preventing pirate based on ciphered algorithmic technique |
-
2005
- 2005-11-03 US US11/266,806 patent/US7493494B2/en active Active
-
2006
- 2006-10-24 EP EP06826760.8A patent/EP1946209B1/en not_active Not-in-force
- 2006-10-24 JP JP2008538925A patent/JP2009516871A/en not_active Withdrawn
- 2006-10-24 CN CN200680040696.4A patent/CN101507224B/en not_active Expired - Fee Related
- 2006-10-24 BR BRPI0617922-3A patent/BRPI0617922A2/en not_active Application Discontinuation
- 2006-10-24 WO PCT/US2006/041824 patent/WO2007055921A2/en active Application Filing
-
2009
- 2009-02-13 US US12/371,407 patent/US8230230B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050039032A1 (en) * | 2001-04-16 | 2005-02-17 | Stanley Babowicz | Apparatus and method for authentication of computer-readable medium |
US20050138392A1 (en) * | 2001-06-28 | 2005-06-23 | Johnson Harold J. | Secure method and system for biometric verification |
US6494749B1 (en) * | 2001-07-05 | 2002-12-17 | Comax Technology Inc. | Connector with mounting fixture for removable storage device |
US20030188162A1 (en) * | 2002-03-29 | 2003-10-02 | Brant Candelore | Locking a hard drive to a host |
US7310820B2 (en) * | 2002-09-13 | 2007-12-18 | Fujifilm Corporation | Recording and reproducing apparatus |
US7213118B2 (en) * | 2003-09-29 | 2007-05-01 | International Business Machines Corporation | Security in an automated data storage library |
US7493494B2 (en) | 2005-11-03 | 2009-02-17 | Prostor Systems, Inc. | Secure data cartridge |
Non-Patent Citations (2)
Title |
---|
U.S. Appl. No. 11/266,806, filed Nov. 3, 2005, Non-Final Office Action mailed Apr. 8, 2008, 11 pages. |
U.S. Appl. No. 11/266,806, filed Nov. 3, 2005, Notice of Allowance mailed Oct. 17, 2008, 7 pages. |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9858441B2 (en) | 2013-04-03 | 2018-01-02 | Hewlett Packard Enterprise Development Lp | Disabling counterfeit cartridges |
US10223551B2 (en) | 2013-04-03 | 2019-03-05 | Hewlett Packard Enterprise Development Lp | Disabling counterfeit cartridges |
US11228423B2 (en) | 2020-01-12 | 2022-01-18 | Advanced New Technologies Co., Ltd. | Method and device for security assessment of encryption models |
Also Published As
Publication number | Publication date |
---|---|
WO2007055921A3 (en) | 2009-04-30 |
WO2007055921A2 (en) | 2007-05-18 |
US7493494B2 (en) | 2009-02-17 |
EP1946209B1 (en) | 2020-11-25 |
CN101507224A (en) | 2009-08-12 |
JP2009516871A (en) | 2009-04-23 |
CN101507224B (en) | 2014-05-07 |
US20090150679A1 (en) | 2009-06-11 |
EP1946209A2 (en) | 2008-07-23 |
US20070101442A1 (en) | 2007-05-03 |
EP1946209A4 (en) | 2013-01-09 |
BRPI0617922A2 (en) | 2014-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8230230B2 (en) | Secure data cartridge | |
US8312269B2 (en) | Challenge and response access control providing data security in data storage devices | |
US9489508B2 (en) | Device functionality access control using unique device credentials | |
US9490982B2 (en) | Method and storage device for protecting content | |
US7765373B1 (en) | System for controlling use of a solid-state storage subsystem | |
US9443111B2 (en) | Device security using an encrypted keystore data structure | |
JP5793709B2 (en) | Key implementation system | |
TWI635394B (en) | Memory system and binding method between the same and host | |
US11409872B2 (en) | Confirming a version of firmware loaded to a processor-based device | |
JPWO2005096158A1 (en) | Usage authentication method, usage authentication program, information processing apparatus, and recording medium | |
JPH09134330A (en) | Security protection system | |
CN103907308A (en) | Host device, semiconductor memory device, and authentication method | |
US7213267B2 (en) | Method of protecting a microcomputer system against manipulation of data stored in a storage assembly of the microcomputer system | |
US20090187770A1 (en) | Data Security Including Real-Time Key Generation | |
US10700857B2 (en) | Secure programming of secret data | |
JP2008005408A (en) | Recorded data processing apparatus | |
CN113836516B (en) | Printer selenium drum anti-counterfeiting and printing frequency protection system and method | |
US20070180250A1 (en) | Apparatus and Method for Improving Security Level In Card Authentication System | |
US20190095353A1 (en) | Protected datasets on tape cartridges | |
JPH0973416A (en) | Ic card | |
JP4573350B2 (en) | IC card, IC card security system, IC card transport safety ensuring method, control program, and readable recording medium | |
JP3652409B2 (en) | Portable information recording medium | |
CN118298530A (en) | Authorization method and device for door lock IC card, computer equipment and storage medium | |
CN103198029B (en) | There is Portable disk and the data storage system of preventing mechanism | |
JP2005250636A (en) | Ic card |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PROSTOR SYSTEMS, INC., COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BONDURANT, MATTHEW D.;REEL/FRAME:026196/0349 Effective date: 20051202 |
|
AS | Assignment |
Owner name: TANDBERG DATA HOLDINGS S.A.R.L., LUXEMBOURG Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROSTOR SYSTEMS, INC.;REEL/FRAME:026583/0756 Effective date: 20110512 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: FBC HOLDINGS S.A. R.L., LUXEMBOURG Free format text: SECURITY INTEREST;ASSIGNOR:TANDBERG DATA HOLDINGS S.A. R.L.;REEL/FRAME:039837/0701 Effective date: 20160916 |
|
AS | Assignment |
Owner name: OPUS BANK, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:TANDBERG DATA HOLDINGS S.A R.L.;REEL/FRAME:044292/0315 Effective date: 20171117 |
|
AS | Assignment |
Owner name: TANDBERG DATA HOLDINGS S.A R.L, LUXEMBOURG Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:FBC HOLDINGS S.A R.L;REEL/FRAME:047552/0491 Effective date: 20181113 |
|
AS | Assignment |
Owner name: JMB CAPITAL PARTNERS LENDING, LLC, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNORS:OVERLAND STORAGE, INC.;OVERLAND TECHNOLOGIES LUXEMBOURG S.A R.L.;TANDBERG DATA HOLDINGS S.A R.L.;REEL/FRAME:050681/0213 Effective date: 20190925 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240724 |