US8046584B2 - Message authentication device - Google Patents
Message authentication device Download PDFInfo
- Publication number
- US8046584B2 US8046584B2 US10/706,021 US70602103A US8046584B2 US 8046584 B2 US8046584 B2 US 8046584B2 US 70602103 A US70602103 A US 70602103A US 8046584 B2 US8046584 B2 US 8046584B2
- Authority
- US
- United States
- Prior art keywords
- message
- signature
- certificate
- microprocessor card
- display device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 230000009467 reduction Effects 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 abstract description 11
- 238000012545 processing Methods 0.000 description 12
- 238000004891 communication Methods 0.000 description 6
- 241000700605 Viruses Species 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 101100217298 Mus musculus Aspm gene Proteins 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/602—Providing cryptographic facilities or services
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/64—Protecting data integrity, e.g. using checksums, certificates or signatures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3247—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
- H04L9/3263—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving certificates, e.g. public key certificate [PKC] or attribute certificate [AC]; Public key infrastructure [PKI] arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2221/00—Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/21—Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/2153—Using hardware token as a secondary aspect
Definitions
- the present invention concerns a method for checking the signature of a message.
- the invention can in particular be advantageously applied in the field of telecommunications via the transmission of messages in the form of electronic files.
- the electronic signature is based on the following principles:
- the electronic signature depends on the contents of the message and the private key of the signer whereas the handwritten signature identifies the author but is independent of the message.
- the signer and/or the recipient can dispute validity of the signature.
- the simplest situation to calculate an electronic signature could consist of using the computer as a device for storing the message and the, keys and as a device for writing the signature.
- This solution is clearly unacceptable as the keys stored in the computer can be read by a hacker via the communication network and the same hacker could remotely use the computer to calculate a signature on a message the owner of the computer does not wish to sign.
- microprocessor card also called a microchip card.
- the microchip card offers the following services:
- a typical example of the architecture of installing this application basically includes a computer to which the microchip is connected by means of a box. From the computer point of view, the operations occur as follows:
- the technical problem to be resolved by the object of the present invention is to provide a method for checking the signature of a message, the message, signature and a certificate having been sent by a signer possessing a public key to a recipient having a message storage device for putting right the drawbacks of known cryptographic processing systems so as to attain a suitable level of protection to give the message sent an indisputable legal value and enable a recipient to check the identity of the signer and ensure that the latter is unable, to revoke the message he has sent.
- the recipient of a signed message could be certain that the identity of the signer is authentic and that the message is genuine and could not be cancelled since shown on the display device shall be the checking result data of the certificate, possibly the certificate, the message on which signature checking is carried out and the checking result of the signature without all these elements circulating in the “uncertain” storage device, on a computer for example, likely to encourage attempts of fraud, the display function (printing, display or filing) being a closed environment considered as “certain”.
- FIG. 1 is a perspective diagram of an authentication device used by a method conforming to the invention.
- FIG. 2 is a block diagram of the authentication device of FIG. 1 .
- the authentication device shown on FIG. 1 is intended to authenticate a message during an operation for the cryptographic processing of said message.
- the message authentication device of FIG. 1 comprises a device for storing said message constituted for example by a memory in the central unit 11 of a computer 10 .
- the stored message is the one the author has written using the keyboard 12 and which needs to be covered by an electronic signature.
- the written message appears on the screen 13 of the computer 10 .
- the central unit 11 communicates with the outside world, especially with the communication networks, with the aid of a cable 14 by which the messages to be signed and sent or the received signed messages are conveyed.
- the central unit 11 is connected by a linking cable 15 to a protected cryptographic processing device 21 , in this case constituted by a microprocessor card placed in a box 22 .
- said box 22 includes an interface circuit 221 called a data/command circuit.
- the data/command circuit 221 has an inlet by activating a button 222 for receiving a signal for triggering the signature operation and the data on a keyboard 224 of the box, such as a confidential code.
- the microchip card 21 is connected directly to a display device 30 , in this case a printer but which could also be a screen or filing device so as to be able to transmit at least the message received from the central unit 11 during the cryptographic processing operation.
- a display device 30 in this case a printer but which could also be a screen or filing device so as to be able to transmit at least the message received from the central unit 11 during the cryptographic processing operation.
- the link between the microchip card 21 and the printer 30 is embodied by a display interface 223 of the box 22 through which the message and other data needing to be authenticated shall pass.
- the architecture of the authentication device shown on FIGS. 1 and 2 is therefore based on a microprocessor card 21 forming the bridge between an “uncertain” zone, the computer 10 , and a “certain” zone, the printer 30 , the card itself being considered as “extremely certain”.
- the inlets/outlets of the commands/data 221 and display 223 circuits are electrically independent when no microprocessor card is present in the box 22 .
- the electric earth is then shared between the two circuits 221 and 223 .
- the data derived from the card 21 towards the display circuit 223 come out via a specific outlet 0 2 physically distinct from the outlet 0 1 used for the transfer of commands/data.
- the commands/data and display inlets I 1 and I 2 of the card 21 are physically separate.
- the only logic link between the data circulating in the data/commands 221 and display 223 circuits is the software of the card, considered as “extremely certain”.
- the card 21 has been designed to be able to transmit to the printer 30 the message to be processed and other data in encrypted form.
- the mechanism used shall for example be a symmetrical algorithm, such as the triple DES whose key can be fixed or negotiated between the card 21 and the display device 30 .
- a message signature operation takes place as follows:
- the message to be signed is edited in the storage device 11 of the computer and subsequently appears on the screen 13 and then the signer asks the computer to start the signature operation.
- the software 211 of the card 21 sends an initialisation command from the display device 30 which will make it possible to definitively authenticate the message.
- the software 211 of the card 21 calculates from this on-line reduction and recopies it onto the display outlet 0 2 , so that the display device 30 could display, that is print, the message during the reduction operation.
- the signer has the time to authenticate the printed message, and then if he accepts its contents, write said command message in the form of a confidential code entered on the keyboard 224 of the box 22 .
- the data/commands circuit 221 generates the command for encrypting the reduced message by displaying the command and the confidential code entered on the keyboard 224 by the signer.
- the computer cannot see the contents of this command. It is also possible to have available a physically separate inlet on the microprocessor card 21 so as to re-enter the confidential code.
- the microprocessor card 21 calculates the signature, sends the value to the computer 10 and, if appropriate, to the display device 30 .
- the software 211 of the card 21 could also include other data to be displayed, such as and not exclusively the series number of the card, the name of the signer, etc., if this data is present in the card 21 .
- signature operation could only be activated on the card 21 following a reduction and the entering of the confidential code as a command message of encrypting the reduced message. Furthermore, subsequent to signature calculation, signature authorisation is deleted, thus requiring the confidential code to be deliberately entered for any subsequent signature operation.
- the message and its signature are sent to the recipient into the central unit 11 of his computer 10 .
- the recipient shall then want to check the authenticity of the signature with respect to the message and the signer. This shall occur when the certificate of the signer is also sent to the recipient.
- the recipient needs to carry out two types of checking. First of all, checking of the link between the identity of the signer and the public checking key, that is checking of the certificate, and secondly checking of the value of the signature with respect to the message received and the certificate.
- the recipient triggers the checking operation by loading into the microprocessor card 21 the certificate of the signer and the public key of the reliable third party who has issued the certificate.
- the computer 10 sends out a command to check the certificate with the public key of the reliable third party. This command triggers initialisation by the card of the display device 30 .
- the card 21 checks the certificate and sends the display device 30 via the display circuit 223 the following data: validity of the certificate (with the dates), public key of the reliable third party used to verify the certificate, public key of the signer, name of the signer and other data able to be linked to the use context.
- validity of the certificate with the dates
- public key of the reliable third party used to verify the certificate
- public key of the signer public key of the signer
- name of the signer and other data able to be linked to the use context.
- the recipient can authenticate the identity of the signer and, by means of a date of validity of the certificate, can be certain concerning the date on which a signer signed the message and the non-obsolescence of said certificate. It is also possible to have a data element transmitted to the display device 30 , namely a message stating that the certificate is genuine or false. In this case, the recipient merely checks the message and deduces from this that he has received a false or genuine certificate. In a further example, if the certificate is correct, the certificate can be sent to the display device 30 and the recipient then compares the displayed certificate with the certificate sent.
- the computer 10 triggers the reduction operation command and sends the message to the card 21 .
- the software 211 of the card calculates on line its reduction and recopies it onto the display screen O 2 , so that the display device 30 shall display, that is in this case print, the message during the reduction operation. The recipient is thus able to verify that the calculated reduced message is genuine.
- the microprocessor card 21 When the entire message has been sent to the microprocessor card 21 by the computer 10 , the latter then sends a command to verify the signature. It parameterizes the value of the signature received from the signer.
- the software 211 of the card deciphers the signature with the public key of the signer and compares it with the result of the reduction carried out in stage 5. If there is no equality, the card 21 sends a message to the computer 10 stating that the signature conforms to the message and the public key of the certificate put forward.
- the card sends to the display circuit 223 the message “Signature OK. End of verification” which can be seen by the checker. If the signature is not correct, the card then sends a message to the computer indicating that the signature does not conform to the message or the public key of the certificate put forward.
- the card sends the display circuit 223 the message ⁇ Signature incorrect” End of verification able to be seen by the checker>>.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Bioethics (AREA)
- General Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Storage Device Security (AREA)
- Computer And Data Communications (AREA)
- Communication Control (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
Abstract
Description
-
- The writer of a message who wishes to authenticate its origin, that is sign it, has available a secret number called a private key Kpr intended for writing an electronic signature for said message. Another key, known as a public key Kpu, is available to any recipient of a message originating from the same sender so as to be able to check the electronic signature of the received message. Said public key is generally associated with the name of the sender and other data, such as the period of validity of the key, in a protected structure called a certificate. The protecting of the certificate rests on the fact that all the data is itself signed by a “reliable third party” with his private key Kprtc and whose public key Kputc is accessible to all.
- The writing of the signature is made in two stages. First of all, the message is reduced, known as “hatched”, by means of a sole direction reduction algorithm, such as those known under the names of SHA1 or MD5. Then the reduced message is encrypted by public key algorithm, RSA, ECC for example, with the aid of the private key of the signer. The result of this encrypting constitutes the signature.
- The uncoded message, the signature and possibly the certificate containing the public key Kpu are sent to the recipient via the communication network.
- The recipient must then check that the signature received fully corresponds to the message and its author. In order to do this, he reduces the message using the sole direction reduction algorithm selected by the signer and decrypts the signature by using the public key Kpu of the signer. The signature is recognised valid if the result of reduction of the message equals the result of decrypting of the signature. The same method can be used to check the data contained in the certificate with the aid of the public key Kputc of the reliable third party who sent it.
-
- The signer must have a private key held by nobody else;
- The signer needs to be sure of the message he signs;
- The recipient needs to be sure that checking of the signature is properly carried out on the received message;
- The recipient needs to be certain of the result of checking.
-
- Storing the private key of the signer;
- Calculation of reduction of the message;
- Encrypting of the reduced message.
-
- Storage of the message in a storage element of the computer;
- Editing the message on the computer;
- Calculation of the reduced message on the microchip card;
- Encrypting of the reduced message by the card after checking the confidential code introduced by the signer by means of the box;
- Sending of the message and signature by the card to the computer for communication to the network.
-
- The signer is not certain of the message he signs since he is not guaranteed that a virus in the computer has not modified the message before the reduction operation;
- The recipient is not certain that checking has been properly carried out concerning the message received since there is no guarantee that a virus in the computer has not made the message appear correctly on the screen when the signed message is not the one displayed;
- The recipient is not certain of the result of checking since there is no guarantee that a virus in the computer does not reveal any signature as verified when the latter is false.
-
- The message, signature and certificate are loaded from the storage device into a protected device connected to said storage device of the recipient,
- The certificate in the protected device is checked with the aid of a public key of a reliable third party associated with said certificate and at least one item of data of the result of checking is transmitted by a display device connected directly to the protected device,
- The result data is checked on the display device,
- When the certificate is verified, a reduction of the message is calculated in the protected device and the message is recopied onto the display device during the reduction operation,
- The signature with the public key of the signer is decrypted in said protected device,
- The decrypted signature is compared with the reduction carried out, and
- According to the result of this comparison, a message is sent from the protected device to the display device indicating that the signature conforms or does not conform to the message or to the public key of the signer as specified.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/706,021 US8046584B2 (en) | 1999-03-17 | 2003-11-12 | Message authentication device |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9903330A FR2791203A1 (en) | 1999-03-17 | 1999-03-17 | DEVICE FOR AUTHENTICATING A MESSAGE DURING A CRYPTOGRAPHIC PROCESSING OPERATION OF SAID MESSAGE |
FR99/03330 | 1999-03-17 | ||
FR9903330 | 1999-03-17 | ||
US09/936,645 US7039808B1 (en) | 1999-03-17 | 2000-03-17 | Method for verifying a message signature |
PCT/FR2000/000679 WO2000056007A1 (en) | 1999-03-17 | 2000-03-17 | Method for verifying a message signature |
US10/706,021 US8046584B2 (en) | 1999-03-17 | 2003-11-12 | Message authentication device |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2000/000679 Continuation WO2000056007A1 (en) | 1999-03-17 | 2000-03-17 | Method for verifying a message signature |
US09/936,645 Continuation US7039808B1 (en) | 1999-03-17 | 2000-03-17 | Method for verifying a message signature |
US09936645 Continuation | 2000-03-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040098590A1 US20040098590A1 (en) | 2004-05-20 |
US8046584B2 true US8046584B2 (en) | 2011-10-25 |
Family
ID=9543324
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/936,645 Expired - Lifetime US7039808B1 (en) | 1999-03-17 | 2000-03-17 | Method for verifying a message signature |
US10/706,021 Expired - Lifetime US8046584B2 (en) | 1999-03-17 | 2003-11-12 | Message authentication device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/936,645 Expired - Lifetime US7039808B1 (en) | 1999-03-17 | 2000-03-17 | Method for verifying a message signature |
Country Status (8)
Country | Link |
---|---|
US (2) | US7039808B1 (en) |
EP (2) | EP1159801B1 (en) |
JP (2) | JP2002539501A (en) |
CN (2) | CN1160903C (en) |
AT (2) | ATE372007T1 (en) |
DE (2) | DE60022320T2 (en) |
FR (1) | FR2791203A1 (en) |
WO (1) | WO2000056007A1 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002030038A2 (en) * | 2000-10-05 | 2002-04-11 | Certicom Corp. | A method for providing information security for wireless transmissions |
CA2426865A1 (en) * | 2000-10-24 | 2002-05-02 | It Security Solutions Llc | Process and apparatus for improving the security of digital signatures and public key infrastructures for real-world applications |
DE10152462A1 (en) * | 2001-10-24 | 2003-06-18 | Giesecke & Devrient Gmbh | Signature of a document |
JP2005522900A (en) * | 2002-02-12 | 2005-07-28 | ナグラカード エス. アー. | Electronic certificate storage and transport method |
US7130886B2 (en) | 2002-03-06 | 2006-10-31 | Research In Motion Limited | System and method for providing secure message signature status and trust status indication |
DE60309446T2 (en) * | 2002-03-01 | 2007-08-30 | Research In Motion Ltd., Waterloo | SYSTEM AND METHOD FOR DISPLAYING A SIGNATURE AND TRUSTWORTH STATUS OF A SECURED MESSAGE |
US20030174841A1 (en) * | 2002-03-15 | 2003-09-18 | Novell Inc. | Methods, systems, and data structures for secure data content presentation |
US7392375B2 (en) | 2002-09-18 | 2008-06-24 | Colligo Networks, Inc. | Peer-to-peer authentication for real-time collaboration |
EP1486907A1 (en) * | 2003-06-12 | 2004-12-15 | Axalto S.A. | Method and system for multiplexing smart card electric connections |
EP1486908A1 (en) * | 2003-06-12 | 2004-12-15 | Axalto S.A. | Smart card with two I/O ports for linking secure and insecure environments |
US8010783B1 (en) | 2004-04-15 | 2011-08-30 | Aol Inc. | Service provider invocation |
US7886144B2 (en) | 2004-10-29 | 2011-02-08 | Research In Motion Limited | System and method for retrieving certificates associated with senders of digitally signed messages |
JP2007115136A (en) * | 2005-10-21 | 2007-05-10 | Dainippon Printing Co Ltd | Ic card and ic card program |
DE102005050878A1 (en) * | 2005-10-21 | 2007-04-26 | Fiducia It Ag | Data processing devices e.g. personal computer, communicating method for bank institute, involves signaling declaration of intention to customer using output unit, where acknowledgement on intention is requested by data processing device |
ES2332675B1 (en) * | 2006-08-09 | 2011-01-17 | Juan Jose Pons Bordes | METHOD AND DEVICE FOR INFORMATION REMISSION FOR THE PERFORMANCE OF SAFE ELECTRONIC TRANSACTIONS. |
EP2040229A1 (en) | 2007-09-18 | 2009-03-25 | Axalto SA | Method and system for obtaining a pin validation signal in a data processing unit |
US8605097B1 (en) | 2007-12-14 | 2013-12-10 | Nvidia Corporation | Method and system for determining the compliance encrypted and non-encrypted display outputs |
US8046586B1 (en) * | 2007-12-14 | 2011-10-25 | Nvidia Corporation | Method and system for determining the compliance of encrypted and non-encrypted display outputs |
EP2180654A1 (en) * | 2008-10-24 | 2010-04-28 | Gemalto SA | Method of securing messages sent to an evolved terminal in a distributed architecture |
CN101562524B (en) * | 2009-05-31 | 2011-08-03 | 河海大学 | Digital signature method based on identity |
US8799754B2 (en) * | 2009-12-07 | 2014-08-05 | At&T Intellectual Property I, L.P. | Verification of data stream computations using third-party-supplied annotations |
GB2517732A (en) * | 2013-08-29 | 2015-03-04 | Sim & Pin Ltd | System for accessing data from multiple devices |
US11323424B2 (en) * | 2018-12-04 | 2022-05-03 | Journey.ai | Sourcing information for a zero-knowledge data management network |
US11128609B1 (en) * | 2018-12-13 | 2021-09-21 | Secure Channels, Inc. | System and method to improve user authentication for enhanced security of cryptographically protected communication sessions |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4682285A (en) * | 1982-08-06 | 1987-07-21 | Maurice Ozil | Universal coupling means |
US4839793A (en) * | 1987-07-01 | 1989-06-13 | Baytec, Inc. | Multiple computer interface |
US4935962A (en) * | 1988-05-19 | 1990-06-19 | Ncr Corporation | Method and system for authentication |
US5237609A (en) * | 1989-03-31 | 1993-08-17 | Mitsubishi Denki Kabushiki Kaisha | Portable secure semiconductor memory device |
US5502617A (en) * | 1992-11-13 | 1996-03-26 | Seiko Epson Corporation | Electronic device having a flat, card-like casing enclosing components for a complete computer system |
US5515440A (en) * | 1992-06-04 | 1996-05-07 | Integrated Technologies Of America, Inc. | Preboot protection of unauthorized use of programs and data with a card reader interface |
US5606609A (en) * | 1994-09-19 | 1997-02-25 | Scientific-Atlanta | Electronic document verification system and method |
US5701343A (en) * | 1994-12-01 | 1997-12-23 | Nippon Telegraph & Telephone Corporation | Method and system for digital information protection |
US5818955A (en) * | 1994-08-31 | 1998-10-06 | Penop Limited | Document and signature verification system and method |
US5912974A (en) * | 1994-04-05 | 1999-06-15 | International Business Machines Corporation | Apparatus and method for authentication of printed documents |
US6125405A (en) * | 1994-07-28 | 2000-09-26 | Sgs-Thomson Microelectronics S.A. | Memory card or chip card reader system |
US6463537B1 (en) * | 1999-01-04 | 2002-10-08 | Codex Technologies, Inc. | Modified computer motherboard security and identification system |
US6510514B1 (en) * | 1997-08-06 | 2003-01-21 | Infineon Technologies Ag | Device for reliability creating electronic signatures |
US6694430B1 (en) * | 1999-03-05 | 2004-02-17 | Symbol Technologies, Inc. | Data encryption integrated circuit with on-board dual-use memory |
US6769620B2 (en) * | 1996-07-30 | 2004-08-03 | Oberthur Card Systems Sa | IC card reader with improved man-machined interface |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4529870A (en) * | 1980-03-10 | 1985-07-16 | David Chaum | Cryptographic identification, financial transaction, and credential device |
FR2514593B1 (en) * | 1981-10-09 | 1986-12-26 | Bull Sa | METHOD AND DEVICE FOR AUTHENTICATING THE SIGNATURE OF A SIGNED MESSAGE |
FR2718311A1 (en) * | 1994-03-30 | 1995-10-06 | Trt Telecom Radio Electr | Device for implementing a message signature system and chip card comprising such a device. |
JPH08202566A (en) * | 1995-01-24 | 1996-08-09 | Nissin Electric Co Ltd | Inter-processor communication system |
US5559889A (en) * | 1995-03-31 | 1996-09-24 | International Business Machines Corporation | System and methods for data encryption using public key cryptography |
CN1145506A (en) * | 1995-05-24 | 1997-03-19 | 招商银行 | I.C card general code variable seal device |
JPH09146914A (en) * | 1995-09-06 | 1997-06-06 | Seiko Epson Corp | Single-chip microcomputer and electronic equipment having the same built in |
FR2743910B1 (en) * | 1996-01-19 | 1998-02-27 | Solaic Sa | METHOD FOR IMPLEMENTING A SECURE PROGRAM IN A MICROPROCESSOR CARD AND MICROPROCESSOR CARD COMPRISING A SECURE PROGRAM |
JP2739573B2 (en) * | 1996-09-13 | 1998-04-15 | 株式会社日立製作所 | Single chip microcomputer |
JPH1120273A (en) * | 1997-07-03 | 1999-01-26 | Fuji Xerox Co Ltd | Device and method for image processing |
US6170058B1 (en) * | 1997-12-23 | 2001-01-02 | Arcot Systems, Inc. | Method and apparatus for cryptographically camouflaged cryptographic key storage, certification and use |
-
1999
- 1999-03-17 FR FR9903330A patent/FR2791203A1/en not_active Withdrawn
-
2000
- 2000-03-17 AT AT03023236T patent/ATE372007T1/en not_active IP Right Cessation
- 2000-03-17 CN CNB008050902A patent/CN1160903C/en not_active Expired - Lifetime
- 2000-03-17 EP EP00910996A patent/EP1159801B1/en not_active Expired - Lifetime
- 2000-03-17 WO PCT/FR2000/000679 patent/WO2000056007A1/en active IP Right Grant
- 2000-03-17 EP EP03023236A patent/EP1381183B1/en not_active Expired - Lifetime
- 2000-03-17 CN CN200310102977.6A patent/CN1496073B/en not_active Expired - Lifetime
- 2000-03-17 DE DE60022320T patent/DE60022320T2/en not_active Expired - Lifetime
- 2000-03-17 US US09/936,645 patent/US7039808B1/en not_active Expired - Lifetime
- 2000-03-17 JP JP2000605338A patent/JP2002539501A/en active Pending
- 2000-03-17 AT AT00910996T patent/ATE303688T1/en not_active IP Right Cessation
- 2000-03-17 DE DE60036231T patent/DE60036231T2/en not_active Expired - Lifetime
-
2003
- 2003-11-12 US US10/706,021 patent/US8046584B2/en not_active Expired - Lifetime
-
2004
- 2004-03-08 JP JP2004063809A patent/JP2004229316A/en active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4682285A (en) * | 1982-08-06 | 1987-07-21 | Maurice Ozil | Universal coupling means |
US4839793A (en) * | 1987-07-01 | 1989-06-13 | Baytec, Inc. | Multiple computer interface |
US4935962A (en) * | 1988-05-19 | 1990-06-19 | Ncr Corporation | Method and system for authentication |
US5237609A (en) * | 1989-03-31 | 1993-08-17 | Mitsubishi Denki Kabushiki Kaisha | Portable secure semiconductor memory device |
US5515440A (en) * | 1992-06-04 | 1996-05-07 | Integrated Technologies Of America, Inc. | Preboot protection of unauthorized use of programs and data with a card reader interface |
US5502617A (en) * | 1992-11-13 | 1996-03-26 | Seiko Epson Corporation | Electronic device having a flat, card-like casing enclosing components for a complete computer system |
US5912974A (en) * | 1994-04-05 | 1999-06-15 | International Business Machines Corporation | Apparatus and method for authentication of printed documents |
US6125405A (en) * | 1994-07-28 | 2000-09-26 | Sgs-Thomson Microelectronics S.A. | Memory card or chip card reader system |
US5818955A (en) * | 1994-08-31 | 1998-10-06 | Penop Limited | Document and signature verification system and method |
US5606609A (en) * | 1994-09-19 | 1997-02-25 | Scientific-Atlanta | Electronic document verification system and method |
US5701343A (en) * | 1994-12-01 | 1997-12-23 | Nippon Telegraph & Telephone Corporation | Method and system for digital information protection |
US6769620B2 (en) * | 1996-07-30 | 2004-08-03 | Oberthur Card Systems Sa | IC card reader with improved man-machined interface |
US6510514B1 (en) * | 1997-08-06 | 2003-01-21 | Infineon Technologies Ag | Device for reliability creating electronic signatures |
US6463537B1 (en) * | 1999-01-04 | 2002-10-08 | Codex Technologies, Inc. | Modified computer motherboard security and identification system |
US6694430B1 (en) * | 1999-03-05 | 2004-02-17 | Symbol Technologies, Inc. | Data encryption integrated circuit with on-board dual-use memory |
Also Published As
Publication number | Publication date |
---|---|
WO2000056007A1 (en) | 2000-09-21 |
CN1160903C (en) | 2004-08-04 |
EP1381183A1 (en) | 2004-01-14 |
DE60022320T2 (en) | 2006-07-13 |
DE60036231D1 (en) | 2007-10-11 |
EP1159801B1 (en) | 2005-08-31 |
JP2002539501A (en) | 2002-11-19 |
JP2004229316A (en) | 2004-08-12 |
CN1344453A (en) | 2002-04-10 |
CN1496073B (en) | 2010-05-12 |
US20040098590A1 (en) | 2004-05-20 |
US7039808B1 (en) | 2006-05-02 |
DE60036231T2 (en) | 2008-05-21 |
CN1496073A (en) | 2004-05-12 |
FR2791203A1 (en) | 2000-09-22 |
EP1381183B1 (en) | 2007-08-29 |
ATE303688T1 (en) | 2005-09-15 |
DE60022320D1 (en) | 2005-10-06 |
EP1159801A1 (en) | 2001-12-05 |
ATE372007T1 (en) | 2007-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8046584B2 (en) | Message authentication device | |
EP0422757B1 (en) | Public/key date-time notary facility | |
JP4127862B2 (en) | IC card delivery key set | |
US4799258A (en) | Apparatus and methods for granting access to computers | |
US6671804B1 (en) | Method and apparatus for supporting authorities in a public key infrastructure | |
JP3674869B2 (en) | Recovery when the root key is in danger | |
EP1442554B1 (en) | A method, system and computer program product for integrity-protected storage in a personal communication device | |
US8099769B2 (en) | System and method for trusted communication | |
US20020026578A1 (en) | Secure usage of digital certificates and related keys on a security token | |
EP2042966A1 (en) | Original data circulation method, system, apparatus, and computer readable medium | |
US20050123142A1 (en) | Method and apparatus for secure key replacement | |
US7096365B1 (en) | Digital signature | |
JP2010134933A (en) | Key delivery unit for ic card | |
JPH11282982A (en) | User card, communication terminal equipment, communication server, communication system and user authentication method for communication system | |
US20060214006A1 (en) | Tamper resistant device and file generation method | |
US6983364B2 (en) | System and method for restoring a secured terminal to default status | |
US20040143741A1 (en) | Multi-stage authorisation system | |
JPH1131130A (en) | Service providing device | |
WO2000031644A1 (en) | High assurance digital signatures | |
US20040049679A1 (en) | Authenticating method and device | |
WO2000028493A1 (en) | A method of encryption and apparatus therefor | |
WO2004015918A1 (en) | System and method for signing a document and verifying its authenticity | |
JP4545517B2 (en) | Program execution control device and execution right information transfer method | |
AU760021B2 (en) | High assurance digital signatures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AXALTO S.A., FRANCE Free format text: CHANGE OF NAME;ASSIGNOR:SCHLUMBERGER SYSTEMES;REEL/FRAME:017377/0977 Effective date: 20040311 |
|
AS | Assignment |
Owner name: GEMALTO SA, FRANCE Free format text: CHANGE OF NAME;ASSIGNOR:AXALTO SA;REEL/FRAME:026232/0001 Effective date: 20081001 |
|
AS | Assignment |
Owner name: SCHLUMBERGER SYSTEMES, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FAUSSE, ARNAUD;REEL/FRAME:026464/0176 Effective date: 20011105 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: THALES DIS FRANCE SA, FRANCE Free format text: CHANGE OF NAME;ASSIGNOR:GEMALTO SA;REEL/FRAME:064163/0431 Effective date: 20190719 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
AS | Assignment |
Owner name: THALES DIS FRANCE SAS, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THALES DIS FRANCE SA;REEL/FRAME:064717/0255 Effective date: 20211215 |