US8039113B2 - Environmental barrier coatings providing CMAS mitigation capability for ceramic substrate components - Google Patents

Environmental barrier coatings providing CMAS mitigation capability for ceramic substrate components Download PDF

Info

Publication number
US8039113B2
US8039113B2 US12/340,138 US34013808A US8039113B2 US 8039113 B2 US8039113 B2 US 8039113B2 US 34013808 A US34013808 A US 34013808A US 8039113 B2 US8039113 B2 US 8039113B2
Authority
US
United States
Prior art keywords
layer
bond coat
transition
silicon
aluminide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/340,138
Other versions
US20100159253A1 (en
Inventor
Glen Harold Kirby
Brett Allen Boutwell
John Frederick Ackerman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US12/340,138 priority Critical patent/US8039113B2/en
Publication of US20100159253A1 publication Critical patent/US20100159253A1/en
Application granted granted Critical
Publication of US8039113B2 publication Critical patent/US8039113B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31667Next to addition polymer from unsaturated monomers, or aldehyde or ketone condensation product

Abstract

Environmental barrier coating having CMAS mitigation capability for oxide components. In one embodiment, the barrier coating includes an outer layer selected from AeAl2O19, AeHfO3, AeZrO3, ZnAl2O4, MgAl2O4, Ln4Al2O9, Lna4Ga2O9, Ln3Al5O12, Ln3Ga5O12, and Ga2O3.

Description

TECHNICAL FIELD

Embodiments described herein generally relate to environmental barrier coatings (EBCS) providing CMAS mitigation capability for use with ceramic substrate components.

BACKGROUND OF THE INVENTION

Higher operating temperatures for gas turbine engines are continuously being sought in order to improve their efficiency. However, as operating temperatures increase, the high temperature durability of the components of the engine must correspondingly increase. Significant advances in high temperature capabilities have been achieved through the formulation of iron, nickel, and cobalt-based superalloys. While superalloys have found wide use for components used throughout gas turbine engines, and especially in the higher temperature sections, alternative lighter-weight substrate materials have been proposed.

Ceramic matrix composites (CMCs) are a class of materials that consist of a reinforcing material surrounded by a ceramic matrix phase. Such materials, along with certain monolithic ceramics (i.e. ceramic materials without a reinforcing material), are currently being used for higher temperature applications. Using these ceramic materials can decrease the weight, yet maintain the strength and durability, of turbine components. Furthermore, since these materials have higher temperature capability than metals, significant cooling air savings can be realized that increase the efficiency of a turbine engine. Therefore, such materials are currently being considered for many gas turbine components used in higher temperature sections of gas turbine engines, such as airfoils (e.g. turbines, and vanes), combustors, shrouds and other like components that would benefit from the lighter-weight and higher temperature capability these materials can offer.

CMC and monolithic ceramic components can be coated with EBCs to protect them from the harsh environment of high temperature engine sections. EBCs can provide a dense, hermetic seal against the corrosive gases in the hot combustion environment. In dry, high temperature environments, silicon-based (nonoxide) CMCs and monolithic ceramics undergo oxidation to form a protective silicon oxide scale. However, the silicon oxide reacts rapidly with high temperature steam, such as found in gas turbine engines, to form volatile silicon species. This oxidation/volatilization process can result in significant material loss, or recession, over the lifetime of an engine component. This recession also occurs in CMC and monolithic ceramic components comprising aluminum oxide, as aluminum oxide reacts with high temperature steam to form volatile aluminum species as well.

Currently, most EBCs used for CMC and monolithic ceramic components consist of a three-layer coating system generally including a bond coat layer, at least one transition layer applied to the bond coat layer, and an optional outer layer applied to the transition layer. Optionally, a silica layer may be present between the bond coat layer and the adjacent transition layer. Together these layers can provide environmental protection for the CMC or monolithic ceramic component.

More specifically, the bond coat layer may comprise silicon and may generally have a thickness of from about 0.5 mils to about 6 mils. For silicon-based nonoxide CMCs and monolithic ceramics, the bond coat layer serves as an oxidation barrier to prevent oxidation of the substrate. The silica layer may be applied to the bond coat layer, or alternately, may be formed naturally or intentionally on the bond coat layer. The transition layer may typically comprise mullite, barium strontium aluminosilicate (BSAS), a rare earth disilicate, and various combinations thereof, while the optional outer layer may comprise BSAS, a rare earth monosilicate, and combinations thereof. There may be from 1 to 3 transition layers present, each layer having a thickness of from about 0.1 mils to about 6 mils, and the optional outer layer may have a thickness of from about 0.1 mils to about 40 mils.

Each of the transition and outer layers can have differing porosity. At a porosity of about 10% or less, a hermetic seal to the hot gases in the combustion environment can form. From about 10% to about 40% porosity, the layer can display mechanical integrity, but hot gases can penetrate through the coating layer damaging the underlying EBC. While it is necessary for at least one of the transition layer or outer layer to be hermetic, it can be beneficial to have some layers of higher porosity range to mitigate mechanical stress induced by any thermal expansion mismatch between the coating materials and the substrate.

Unfortunately, deposits of calcium magnesium aluminosilicate (CMAS) have been observed to form on components located within higher temperature sections of gas turbine engines, particularly in combustor and turbine sections. These CMAS deposits have been shown to have a detrimental effect on the life of thermal barrier coatings, and it is known that BSAS and CMAS chemically interact at high temperatures, i.e. above the melting point of CMAS (approximately 1150° C. to 1650° C.). It is also known that the reaction byproducts formed by the interaction of BSAS and CMAS are detrimental to EBCs as well as being susceptible to volatilization in the presence of steam at high temperatures. Such volatilization can result in the loss of coating material and protection for the underlying component. Thus, it is expected that the presence of CMAS will interact with the EBC, thereby jeopardizing the performance of the component along with component life.

Accordingly, there remains a need for novel environmental barrier coatings that provide CMAS mitigation capability for use in conjunction with ceramic substrate components.

BRIEF DESCRIPTION OF THE INVENTION

Embodiments herein generally relate to environmental barrier coatings having CMAS mitigation capability for oxide components, the barrier coating comprising: an outer layer selected from the group consisting of AeAl2O19, AeHfO3, AeZrO3, ZnAl2O4, MgAl2O4, Ln4Al2O9, Lna4Ga2O9, Ln3Al5O12, Ln3Ga5O12, and Ga2O3.

Embodiments herein also generally relate to environmental barrier coatings having CMAS mitigation capability for oxide components, the barrier coating comprising: a transition layer comprising BSAS; and an outer layer selected from the group consisting of ZnAl2O4, MgAl2O4, Ln2Si2O7,LnPO4, and Ln2SiO5.

Embodiments herein also generally relate to environmental barrier coatings having CMAS mitigation capability for oxide components, the barrier coating comprising: a transition layer comprising AeAl2O19; and an outer layer comprising AeAl4O7.

Embodiments herein also generally relate to environmental barrier coatings having CMAS mitigation capability for oxide-oxide CMC components, the barrier coating comprising: a transition layer comprising HfO2 and YPO4; and an outer layer selected from the group consisting of AeAl2O19, AeHfO3, AeZrO3, ZnAl2O4, MgAl2O4, Ln4Al2O9, Lna4Ga2O9, Ln3Al5O12, Ln3Ga5O12, Ln2Si2O7, Ln2SiO5, and Ga2O3.

These and other features, aspects and advantages will become evident to those skilled in the art from the following disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

While the specification concludes with claims particularly pointing out and distinctly claiming the invention, it is believed that the embodiments set forth herein will be better understood from the following description in conjunction with the accompanying figures, in which like reference numerals identify like elements.

FIG. 1 is a schematic cross sectional view of one embodiment of an environmental barrier coating providing CMAS mitigation in accordance with the description herein.

DETAILED DESCRIPTION OF THE INVENTION

Embodiments described herein generally relate to EBCs providing CMAS mitigation capability for ceramic substrate components.

The environmental barrier coatings having CMAS mitigation capability described herein may be suitable for use in conjunction with substrates comprising CMCs, and monolithic ceramics. As used herein, “CMCs” refers to silicon-containing, or oxide-oxide, matrix and reinforcing materials. Some examples of silicon-containing CMCs acceptable for use herein can include, but should not be limited to, materials having a matrix and reinforcing fibers comprising non-oxide silicon-based materials such as silicon carbide, silicon nitride, silicon oxycarbides, silicon oxynitrides, and mixtures thereof. Examples include, but are not limited to, CMCs with silicon carbide matrix and silicon carbide fiber; silicon nitride matrix and silicon carbide fiber; and silicon carbide/silicon nitride matrix mixture and silicon carbide fiber. Furthermore, CMCs can have a matrix and reinforcing fibers comprised of oxide ceramics. These oxide-oxide composites are described below.

Specifically, the “oxide-oxide CMCs” may be comprised of a matrix and reinforcing fibers comprising oxide-based materials such as aluminum oxide (Al2O3), silicon dioxide (SiO2), aluminosilicates, and mixtures thereof Aluminosilicates can include crystalline materials such as mullite (3Al2O3 2SiO2), as well as glassy aluminosilicates.

As used herein, “monolithic ceramics” refers to materials comprising only silicon carbide, only silicon nitride, only alumina, or only mullite. Herein, CMCs and monolithic ceramics are collectively referred to as “ceramics.”

As used herein, the term “barrier coating(s)” refers to environmental barrier coatings (EBCs). The barrier coatings herein may be suitable for use on ceramic substrate components 10 found in high temperature environments, such as those present in gas turbine engines. “Substrate component” or simply “component” refers to a component made from “ceramics,” as defined herein.

More specifically, as explained herein below, EBC 12 may comprise an optional bond coat layer 14, an optional silica layer 15, optionally at least one transition layer 16, and an outer layer 18, as shown generally in FIG. 1. The bond coat layer 14 may comprise silicon, silicide, aluminide, or aluminide with a thermally grown aluminide oxide scale (henceforth “aluminide-alumina TGO”). By “thermally grown” it is meant that the intermetallic aluminide layer is applied to the CMC, then an aluminum oxide layer forms on top of the deposited aluminide layer after subsequent thermal exposure. As used herein “silicide” may include, but is not limited to, niobium disilicide, molybdenum disilicide, rare earth (Ln) silicides, noble metal silicides, chromium silicide (e.g. CrSi3), niobium silicide (e.g. NbSi2, NbSi3), molybdenum silicide (e.g. MoSi2, MoSi3), tantalum silicide (e.g.TaSi2, TaSi3), titanium silicide (e.g. TiSi2, TiSi3), tungsten silicide (e.g. WSi2, W5Si3), zirconium silicide (e.g. ZrSi2), hafnium silicide (e.g. HfSi2).

As used herein, “Ln” refers to the rare earth elements of scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), and mixtures thereof, while “Lna” refers to the rare earth elements of lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), and mixtures thereof.

More particularly, as used herein, “rare earth silicides” may include scandium silicide (e.g. ScSi2, Sc5Si3, Sc3Si5, ScSi, Sc3Si4), yttrium silicide (e.g. YSi2, Y5Si3, Y3Si5, YSi, Y3Si4), lanthanum silicide (e.g. LaSi2, La5Si3, La3Si5, LaSi, La3Si4), cerium silicide (e.g. CeSi2, Ce5Si3, Ce3Si5, CeSi, Ce3Si4), praseodymium silicide (e.g. PrSi2, Pr5Si3, Pr3Si5, PrSi, Pr3Si4), neodymium silicide (e.g. NdSi2, Nd5Si3, Nd3Si5, NdSi, Nd3Si4), promethium silicide (e.g. PmSi2, Pm5Si3, Pm3Si5, PmSi, Pm3Si4), samarium silicide (e.g. SmSi2, Sm5Si3, Sm3Si5, SmSi, Sm3Si4), europium silicide (e.g. EuSi2, Eu5Si3, Eu3Si5, EuSi, Eu3Si4, Eu3Si4), gadolinium silicide (e.g. GdSi2, Gd5Si3, Gd3Si5, GdSi, Gd3Si4), terbium silicide (e.g. TbSi2, Tb5Si3, Tb3Si5, TbSi, Tb3Si4), dysprosium silicide (DySi2, Dy5Si3, Dy3Si5, DySi, Dy3Si4), holmium silicide (HoSi2, Ho5Si3, Ho3Si5, HoSi, Ho3Si4), erbium silicide (ErSi2, Er5Si3, Er3Si5, ErSi, Er3Si4), thulium silicide (TmSi2, Tm5Si3, Tm3Si5, TmSi, Tm3Si4), ytterbium silicide (e.g. YbSi2, Yb5Si3, Yb3Si5, YbSi, Yb3Si4), lutetium silicide (e.g. LuSi2, Lu5Si3, Lu3Si5, LuSi, Lu3Si4), and mixtures thereof. It should be noted that only non-oxide, silicon-based monolithic ceramics and composites require a bond coat.

Also, as used herein throughout, “aluminides” may include, but should not be limited to, ruthenium aluminide, platinum aluminide, nickel aluminide, titanium aluminide, or mixtures thereof.

When a silicon-containing component is selected, the bond coat layer 14 may comprise any of a silicon bond coat layer, a silicide bond coat layer, or an aluminide-alumina TGO bond coat layer, each of which is described herein below. As used herein throughout, “silicon-containing component” includes silicon-containing CMCs, monolithic silicon carbide ceramics and monolithic silicon nitride ceramics.

In one embodiment, a silicon-containing component may have a silicon bond coat layer 14. In this instance, the EBC may comprise one of the following architectures: a silicon bond coat layer 14, an optional silica layer 15, and a Ln4Al2O9 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, and a Lna4Ga2O9 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a HfO2 transition layer 16, and a Ln4Al2O9 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a HfO2 transition layer 16, and a Ln4Ga2O9 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a LnPO4 transition layer 16, and a Ln2SiO5 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a LnPO4 transition layer 16, and a Ln2Si2O7 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a LnPO4 transition layer 16, and a Ln4Al2O9 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a LnPO4 transition layer 16, and a Ln4Ga2O9 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Ln4Al2O9 transition layer 16, and a Ln2SiO5 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Lna4Ga2O9 transition layer 16, and a Ln2SiO5 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a LnPO4 transition layer 16, and a Ln2SiO5 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Ln4Al2O9 transition layer 16, and a AeZrO3 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Ln4Al2O9 transition layer 16, and a HfO2 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Ln4Al2O9 transition layer 16, and a LnPO4 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Lna4Ga2O9 transition layer 16, and a HfO2 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Lna4Ga2O9 transition layer 16, and a LnPO4 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Ln4Al2O9 transition layer 16, and a AeHfO3 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Lna4Ga2O9 transition layer 16, and a AeZrO3 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Lna4Ga2O9 transition layer 16, and a AeHfO3 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a HfO2 transition layer 16, and a AeZrO3 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a HfO2 transition layer 16, and a AeHfO3 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a LnPO4 transition layer 16, and a AeZrO3 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a LnPO4 transition layer 16, and a AeHfO3 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a HfO2 transition layer 16, and a ZnAl2O4 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a LnPO4 transition layer 16, and a ZnAl2O4 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Ln4Al2O9 transition layer 16, and a ZnAl2O4 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Lna4Ga2O9 transition layer 16, and a ZnAl2O4 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a HfO2 transition layer 16, and a MgAl2O4 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a LnPO4 transition layer 16, and a MgAl2O4 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Ln4Al2O9 transition layer 16, and a MgAl2O4 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Lna4Ga2O9 transition layer, and a MgAl2O4 outer layer; a silicon bond coat layer 14, an optional silica layer 15, a Ln2Si2O7 first transition layer, a Ln2SiO5 second transition layer, and a Ln3Ga5O12 outer layer; a silicon bond coat layer 14, an optional silica layer 15, a HfO2 transition layer, and a Ln3Ga5O12 outer layer; a silicon bond coat layer 14, an optional silica layer 15, a LnPO4 transition layer, and a Ln3Ga5O12 outer layer; a silicon bond coat layer 14, an optional silica layer 15, a Ln4Al2O9 transition layer, and a Ln3Ga5O12 outer layer; a silicon bond coat layer 14, an optional silica layer 15, a Lna4Ga2O9 transition layer and a Ln3Ga5O12 outer layer; a silicon bond coat layer 14, an optional silica layer 15, a Ln2Si2O7 first transition layer, a Ln2SiO5 second transition layer, and a Ln3Al5O12 outer layer; a silicon bond coat layer 14, an optional silica layer 15, a HfO2 transition layer, and a Ln3Al5O12 outer layer; a silicon bond coat layer 14, an optional silica layer 15, a LnPO4 transition layer, and a Ln3Al5O12 outer layer; a silicon bond coat layer 14, an optional silica layer 15, a Ln4Al2O9 transition layer, and a Ln3Al5O12 outer layer; a silicon bond coat layer 14, an optional silica layer 15, a Lna4Ga2O9 transition layer, and a Ln3Al5O12 outer layer; a silicon bond coat layer 14, an optional silica layer 15, a HfO2 transition layer, and a AeAl12O19 outer layer; a silicon bond coat layer 14, an optional silica layer 15, a LnPO4 transition layer, and a AeAl12O19 outer layer; a silicon bond coat layer 14, an optional silica layer 15, a Ln4Al2O9 transition layer, and a AeAl12O19 outer layer; a silicon bond coat layer 14, an optional silica layer 15, a Lna4Ga2O9 transition layer, and a AeAl12O19 outer layer; a silicon bond coat layer 14, an optional silica layer 15, a HfO2 transition layer, a AeAl12O19 transition layer, and a AeAl4O7 outer layer; a silicon bond coat layer 14, an optional silica layer 15, a LnPO4 first transition layer, a AeAl12O19 second transition layer, and a AeAl4O7 outer layer; a silicon bond coat layer 14, an optional silica layer 15, a Ln4Al2O9 first transition layer, a AeAl12O19 second transition layer, and a AeAl4O7 outer layer; a silicon bond coat layer 14, an optional silica layer 15, a Lna4Ga2O9 first transition layer 16, a AeAl12O19 second transition layer 16, and a AeAl4O7 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a HfO2 transition layer 16, and a Ga2O3 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a LnPO4 transition layer 16, and a Ga2O3 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Ln4Al2O9 transition layer 16, and a Ga2O3 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Lna4Ga2O9 transition layer 16, and a Ga2O3 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Ln4Al2O9 transition layer 16, and a BSAS outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Ln4Ga2O9 transition layer 16, and a BSAS outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Ln4Al2O9 first transition layer 16, a BSAS second transition layer 16, and a ZnAl2O4 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Ln4Ga2O9 first transition layer 16, a BSAS second transition layer 16, and a ZnAl2O4 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Ln4Al2O9 first transition layer 16, a BSAS second transition layer 16, and a MgAl2O4 outer layer 18; a silicon bond coat layer 14, an optional silica layer 15, a Ln4Ga2O9 first transition layer 16, a BSAS second transition layer 16, and a MgAl2O4 outer layer 18. As used herein, “Ae” represents the alkaline earth elements of magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and mixtures thereof As used herein, “mullite/BSAS mixture” refers to a mixture comprising from about 1% to about 99% mullite and from about 1% to about 99% BSAS.

Similarly, in another embodiment, a silicon-containing component may comprise a silicide bond coat layer 14. In this instance, the EBC may comprise any of the previously listed architectures with the exception that the silicon bond coat layer is replaced with a silicide bond coat layer. In addition, when using a silicide bond coat layer 14, the EBC may comprise on of the following architectures: a silicide bond coat layer 14, an optional silica layer 15, a Ln2Si2O7 first transition layer 16, a BSAS second transition layer 16, and a ZnAl2O4 outer layer 18; a silicide bond coat layer 14, an optional silica layer 15, a Ln2Si2O7 transition layer 16, and a Ln4Ga2O9 outer layer 18; a silicide bond coat layer 14, an optional silica layer 15, a Ln2Si2O7 transition layer 16, and a Ln3Ga5O12 outer layer 18.

Alternately, in another embodiment, a silicon-containing component may comprise an aluminide-alumina TGO bond coat layer 14. In this embodiment, the EBC does not need a silica layer and may comprise one of the following architectures: an aluminide-alumina TGO bond coat layer 14 and a AeAl2O19 outer layer 18; an aluminide-alumina TGO bond coat layer 14 and an HfO2 outer layer; an aluminide-alumina TGO bond coat layer 14 and a LnPO4 outer layer; an aluminide-alumina TGO bond coat layer 14, AeAl2O19 transition layer 16, and a AeAl4O7 outer layer 18; an aluminide-alumina TGO bond coat layer 14 and a AeHfO3 outer layer 18; an aluminide-alumina TGO bond coat layer 14 and a AeZrO3 outer layer 18; an aluminide-alumina TGO bond coat layer 14 and a ZnAl2O4 outer layer 18; an aluminide-alumina TGO bond coat layer 14 and a MgAl2O4 outer layer 18; an aluminide-alumina TGO bond coat layer 14 and a Ln4Al2O9 outer layer 18; an aluminide-alumina TGO bond coat layer 14, and a Lna4Ga2O9 outer layer 18; an aluminide-alumina TGO bond coat layer 14, and a Ln3Al5O12 outer layer 18; an aluminide-alumina TGO bond coat layer 14, and a Ln3Ga5O12 outer layer 18; an aluminide-alumina TGO bond coat layer 14, and a Ga2O3 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a BSAS transition layer 16, and a ZnAl2O4 outer layer 18; or an aluminide-alumina TGO bond coat layer 14, a BSAS transition layer 16, and a MgAl2O4 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a BSAS transition layer 16, and a Ln2Si2O7 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a BSAS transition layer 16, and a HfO2 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a BSAS transition layer 16, and a LnPO4 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a BSAS transition layer 16, and a Ln2SiO5 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a HfO2 transition layer 16, and a AeAl2O19 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a HfO2 transition layer 16, and a AeHfO3 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a HfO2 transition layer 16, and a AeZrO3 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a HfO2 transition layer 16, and a ZnAl2O4 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a HfO2 transition layer 16, and a MgAl2O4 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a HfO2 transition layer 16, and a Ln4Al2O9 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a HfO2 transition layer 16, and a Lna4Ga2O9 outer layer 19; an aluminide-alumina TGO bond coat layer 14, a HfO2 transition layer 16, and a Ln3Al5O12 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a HfO2 transition layer 16, and a Ln3Ga5O12 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a HfO2 transition layer 16, and a Ln2Si2O7 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a HfO2 transition layer 16, and a Ln2SiO5 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a HfO2 transition layer 16, and a Ga2O3 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a YPO4 transition layer 16, and a AeAl2O19 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a YPO4 transition layer 16, and a AeHfO3 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a YPO4 transition layer 16, and a AeZrO3 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a YPO4 transition layer 16, and a ZnAl2O4 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a YPO4 transition layer 16, and a MgAl2O4 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a YPO4 transition layer 16, and a Ln4Al2O9 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a YPO4 transition layer 16, and a Lna4Ga2O9 outer layer 19; an aluminide-alumina TGO bond coat layer 14, a YPO4 transition layer 16, and a Ln3Al5O12 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a YPO4 transition layer 16, and a Ln3Ga5O12 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a YPO4 transition layer 16, and a Ln2Si2O7 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a YPO4 transition layer 16, and a Ln2SiO5 outer layer 18; an aluminide-alumina TGO bond coat layer 14, a YPO4 transition layer 16, and a Ga2O3 outer layer 18.

In embodiments utilizing an oxide component, neither a bond coat, nor a silica layer, is needed. As used herein throughout, “oxide component” includes oxide-oxide CMCs, monolithic alumina ceramics, and monolithic mullite ceramics. The following EBC architectures are thus possible for oxide components: a AeAl2O19 outer layer 18; an AeAl2O19 transition layer 16 and a AeAl4O7 outer layer 18; a AeHfO3 outer layer 18; a AeZrO3 outer layer 18; a ZnAl2O4 outer layer 18; a MgAl2O4 outer layer 18; a Ln4Al2O9 outer layer 18; a Lna4Ga2O9 outer layer 18; a Ln3Al5O12 outer layer 18; a Ln3Ga5O12 outer layer 18; a Ga2O3 outer layer 18; a BSAS transition layer 16 and a ZnAl2O4 outer layer 18; a BSAS transition layer 16 and a MgAl2O4 outer layer 18; a BSAS transition layer 16, and a Ln2Si2O7 outer layer 18; a BSAS transition layer 16, and a LnPO4 outer layer 18; a BSAS transition layer 16, and a Ln2SiO5 outer layer 18; a HfO2 transition layer 16, and a AeAl2O19 outer layer 18; a HfO2 transition layer 16, and a AeHfO3 outer layer 18; a HfO2 transition layer 16, and a AeZrO3 outer layer 18; a HfO2 transition layer 16, and a ZnAl2O4 outer layer 18; a HfO2 transition layer 16, and a MgAl2O4 outer layer 18; a HfO2 transition layer 16, and a Ln4Al2O9 outer layer 18; a HfO2 transition layer 16, and a Lna4Ga2O9 outer layer 19; a HfO2 transition layer 16, and a Ln3Al5O12 outer layer 18; a HfO2 transition layer 16, and a Ln3Ga5O12 outer layer 18; a HfO2 transition layer 16, and a Ln2Si2O7 outer layer 18; a HfO2 transition layer 16, and a Ln2SiO5 outer layer 18; a HfO2 transition layer 16, and a Ga2O3 outer layer 18; a YPO4 transition layer 16, and a AeAl2O19 outer layer 18; a YPO4 transition layer 16, and a AeHfO3 outer layer 18; a YPO4 transition layer 16, and a AeZrO3 outer layer 18; a YPO4 transition layer 16, and a ZnAl2O4 outer layer 18; a YPO4 transition layer 16, and a MgAl2O4 outer layer 18; a YPO4 transition layer 16, and a Ln4Al2O9 outer layer 18; a YPO4 transition layer 16, and a Lna4Ga2O9 outer layer 19; a YPO4 transition layer 16, and a Ln3Al5O12 outer layer 18; a YPO4 transition layer 16, and a Ln3Ga5O12 outer layer 18; a YPO4 transition layer 16, and a Ln2Si2O7 outer layer 18; a YPO4 transition layer 16, and a Ln2SiO5 outer layer 18; a YPO4 transition layer 16, and a Ga2O3 outer layer 18.

Together, the previously described EBC layers can provide CMAS mitigation capability to high temperature ceramic components such as those present in gas turbine engines such as combustor components, turbine blades, shrouds, nozzles, heat shields, and vanes, which are exposed to temperatures of about 3000 F (1649° C.) during routine engine operations.

Any bond coat layer 14, silica layer 15, transition layer 16, and outer layer 18 present may be made using conventional methods known to those skilled in the art. More particularly, and regardless of the particular architecture of the EBC having CMAS mitigation capability, the substrate component can be coated using conventional methods known to those skilled in the art, including, but not limited to, plasma spraying, high velocity plasma spraying, low pressure plasma spraying, solution plasma spraying, suspension plasma spraying, chemical vapor deposition (CVD), electron beam physical vapor deposition (EBPVD), sol-gel, sputtering, slurry processes such as dipping, spraying, tape-casting, rolling, and painting, and combinations of these methods. Once coated, the substrate component may be dried and sintered using either conventional methods, or unconventional methods such as microwave sintering, laser sintering or infrared sintering.

Regardless of the architecture of the EBC having CMAS mitigation capability, the benefits are the same. Namely, the inclusion of the present CMAS mitigation compositions can help prevent the EBC from degradation due to reaction with CMAS in high temperature engine environments. More particularly, these CMAS mitigation compositions can help prevent or slow the reaction of CMAS with the barrier coating that can form secondary phases that rapidly volatilize in steam. Additionally, the present CMAS mitigation compositions can help prevent or slow the penetration of CMAS through the barrier coating along the grain boundaries into a nonoxide, silicon-based substrate. Reaction of CMAS with substrates such as silicon nitrate and silicon carbide evolve nitrogen-containing and carbonaceous gases, respectively. Pressure from this gas evolution can result in blister formation within the EBC coating. These blisters can easily rupture and destroy the hermetic seal against water vapor provided by the EBC in the first instance.

The presence of the CMAS mitigation compositions described herein can help prevent or slow the attack of molten silicates on the EBC, thereby allowing the EBC to perform its function of sealing the ceramic component from corrosive attack in high temperature steam. Moreover, the CMAS mitigation compositions can help prevent recession of the ceramic component, and also any layers of the EBC that may be susceptible to steam recession if CMAS reacts with it, to form steam-volatile secondary phases. Dimensional changes of ceramic components due to steam recession can limit the life and/or functionality of the component in turbine engine applications. Thus, the CMAS mitigation compositions are important to allow the barrier coating to perform its functions; thereby allowing the ceramic component to function properly and for its intended time span. Additionally, any transition layers present can provide moderate to strong barriers to high temperature steam penetration. This can help reduce the occurrence of a reaction between the layers of the barrier coating. Multiple transition layers can be included to further help reduce the occurrence of interlayer reactions, which can arise after long-term thermal exposure of the barrier coating.

This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.

Claims (1)

1. An environmental barrier coating having CMAS mitigation capability for oxide components, the barrier coating comprising:
a transition layer comprising BSAS; and
an outer layer selected from the group consisting of ZnAl2O4, Ln2Si2O7, and Ln2SiO5
wherein the transition layer is adapted to be disposed between an oxide component and the outer layer.
US12/340,138 2008-12-19 2008-12-19 Environmental barrier coatings providing CMAS mitigation capability for ceramic substrate components Active 2029-07-19 US8039113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/340,138 US8039113B2 (en) 2008-12-19 2008-12-19 Environmental barrier coatings providing CMAS mitigation capability for ceramic substrate components

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US12/340,138 US8039113B2 (en) 2008-12-19 2008-12-19 Environmental barrier coatings providing CMAS mitigation capability for ceramic substrate components
PCT/US2009/067857 WO2010071770A1 (en) 2008-12-19 2009-12-14 Environmental barrier coatings providing cmas mitigation capability for ceramic substrate components
EP09793402A EP2379777A1 (en) 2008-12-19 2009-12-14 Environmental barrier coatings providing cmas mitigation capability for ceramic substrate components
JP2011542304A JP5759383B2 (en) 2008-12-19 2009-12-14 Environmentally resistant coating providing CMAS reduction performance for ceramic substrate parts
CA2747416A CA2747416C (en) 2008-12-19 2009-12-14 Environmental barrier coatings providing cmas mitigation capability for ceramic substrate components

Publications (2)

Publication Number Publication Date
US20100159253A1 US20100159253A1 (en) 2010-06-24
US8039113B2 true US8039113B2 (en) 2011-10-18

Family

ID=41571880

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/340,138 Active 2029-07-19 US8039113B2 (en) 2008-12-19 2008-12-19 Environmental barrier coatings providing CMAS mitigation capability for ceramic substrate components

Country Status (5)

Country Link
US (1) US8039113B2 (en)
EP (1) EP2379777A1 (en)
JP (1) JP5759383B2 (en)
CA (1) CA2747416C (en)
WO (1) WO2010071770A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015095303A1 (en) 2013-12-20 2015-06-25 General Electric Company Systems and methods for recovery of rare-earth constituents from environmental barrier coatings
EP2933023A1 (en) 2014-04-17 2015-10-21 General Electric Company System and methods for recovery of rare-earth constituents from environmental barrier coatings
US9598777B2 (en) 2013-03-12 2017-03-21 Rolls-Royce Corporation Method for fabricating multilayer environmental barrier coatings
US10072506B2 (en) 2014-06-30 2018-09-11 Rolls-Royce Corporation Coated gas turbine engine components
US10233760B2 (en) 2008-01-18 2019-03-19 Rolls-Royce Corporation CMAS-resistant thermal barrier coatings
US10392312B2 (en) 2014-01-14 2019-08-27 United Technologies Corporation Silicon oxycarbide environmental barrier coating

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10717678B2 (en) 2008-09-30 2020-07-21 Rolls-Royce Corporation Coating including a rare earth silicate-based layer including a second phase
JP5620577B2 (en) 2010-07-23 2014-11-05 ロールス−ロイス コーポレイション Thermal barrier coating comprising a CMAS resistant thermal barrier coating layer
US20140261080A1 (en) 2010-08-27 2014-09-18 Rolls-Royce Corporation Rare earth silicate environmental barrier coatings
US10774682B2 (en) * 2012-06-22 2020-09-15 The United States of America as Represented by the Administrator of National Aeromautics and Space Administration Advanced high temperature and fatigue resistant environmental barrier coating bond coat systems for SiC/SiC ceramic matrix composites
US20140011038A1 (en) * 2012-07-05 2014-01-09 General Electric Company Coating system for a gas turbine component
US10329205B2 (en) 2014-11-24 2019-06-25 Rolls-Royce Corporation Bond layer for silicon-containing substrates
US9718735B2 (en) * 2015-02-03 2017-08-01 General Electric Company CMC turbine components and methods of forming CMC turbine components
US10604454B1 (en) 2016-06-16 2020-03-31 United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Advanced high temperature environmental barrier coating for SiC/SiC ceramic matrix composites

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057627A (en) * 1988-06-09 1991-10-15 Shell Oil Company Alkoxylation process catalyzed by phosphate salts of the rare earth elements
US5851678A (en) 1995-04-06 1998-12-22 General Electric Company Composite thermal barrier coating with impermeable coating
US6159553A (en) 1998-11-27 2000-12-12 The United States Of America As Represented By The Secretary Of The Air Force Thermal barrier coating for silicon nitride
US6210791B1 (en) * 1995-11-30 2001-04-03 General Electric Company Article with a diffuse reflective barrier coating and a low-emissity coating thereon, and its preparation
US6296941B1 (en) 1999-04-15 2001-10-02 General Electric Company Silicon based substrate with yttrium silicate environmental/thermal barrier layer
US6361888B1 (en) * 1999-01-19 2002-03-26 The Board Of Trustees Of The University Of Illinois Toughening of ceramic composites by transformation weakening of interphases
US20020181513A1 (en) * 2001-06-05 2002-12-05 Fredrik Laurell Q-switched laser
US20030027012A1 (en) 2001-08-03 2003-02-06 Irene Spitsberg Low thermal conductivity thermal barrier coating system and method therefor
US20030035907A1 (en) 2001-08-09 2003-02-20 Siemens Westinghouse Power Corporation Protective overlayer for ceramics
US20030049500A1 (en) * 2001-08-29 2003-03-13 Shin-Etsu Chemical Co., Ltd. Rare earth-containing oxide member
WO2003026886A2 (en) 2001-09-26 2003-04-03 Siemens Westinghouse Power Corporation Hybrid ceramic material composed of insulating and structural ceramic layers
US6602814B1 (en) 1998-02-20 2003-08-05 Mtu Aero Engines Gmbh Thermal insulating material and method of producing same
US6617037B2 (en) 2001-12-19 2003-09-09 United Technologies Corporation Silicon based substrate with a CTE compatible layer on the substrate
US6699607B1 (en) * 2002-10-30 2004-03-02 General Electric Company Thermal/environmental barrier coating for silicon-containing substrates
US6759151B1 (en) 2002-05-22 2004-07-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer article characterized by low coefficient of thermal expansion outer layer
US20050074625A1 (en) 2003-10-06 2005-04-07 General Electric Company Aluminate coating for a silicon containing substrate
US20050238888A1 (en) * 2004-04-27 2005-10-27 General Electric Company Environmental barrier coating for silicon-containing substrates and process therefor
EP1683773A2 (en) 2005-01-21 2006-07-26 General Electric Company Environmental barrier coating with physical barrier layer for silicon-comprising materials
US20060280952A1 (en) 2005-06-13 2006-12-14 Hazel Brian T Bond coat for corrosion resistant EBC for silicon-containing substrate and processes for preparing same
US20060280963A1 (en) 2005-06-14 2006-12-14 General Electric Company Thermal/environmental barrier coating system for silicon-containing materials
US20060280954A1 (en) 2005-06-13 2006-12-14 Irene Spitsberg Corrosion resistant sealant for outer EBL of silicon-containing substrate and processes for preparing same
US20060280955A1 (en) 2005-06-13 2006-12-14 Irene Spitsberg Corrosion resistant sealant for EBC of silicon-containing substrate and processes for preparing same
US7298077B2 (en) * 2002-03-04 2007-11-20 Koninklijke Philips Electronics, N.V. Device for generating UV radiation
US20080044686A1 (en) 2006-08-18 2008-02-21 Schlichting Kevin W High sodium containing thermal barrier coating
US20080044662A1 (en) 2006-08-18 2008-02-21 Schlichting Kevin W Thermal barrier coating with a plasma spray top layer
US20080057326A1 (en) 2006-09-06 2008-03-06 United Technologies Corporation Silicate resistant thermal barrier coating with alternating layers
US20080113217A1 (en) 2006-01-10 2008-05-15 United Technologies Corporation Thermal barrier coating compositions, processes for applying same and articles coated with same
US20080113218A1 (en) 2006-01-10 2008-05-15 United Technologies Corporation Thermal barrier coating compositions, processes for applying same and articles coated with same
US7374818B2 (en) 2005-05-23 2008-05-20 United Technologies Corporation Coating system for silicon based substrates
US20090004427A1 (en) 2007-06-26 2009-01-01 General Electric Company Articles for high temperature service and methods for their manufacture
US20100159252A1 (en) * 2008-12-19 2010-06-24 Glen Harold Kirby Environmental barrier coatings providing cmas mitigation capability for ceramic substrate components
US20100159261A1 (en) * 2008-12-19 2010-06-24 Glen Harold Kirby Environmental barrier coatings providing cmas mitigation capability for ceramic substrate components

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057627A (en) * 1988-06-09 1991-10-15 Shell Oil Company Alkoxylation process catalyzed by phosphate salts of the rare earth elements
US5851678A (en) 1995-04-06 1998-12-22 General Electric Company Composite thermal barrier coating with impermeable coating
US6210791B1 (en) * 1995-11-30 2001-04-03 General Electric Company Article with a diffuse reflective barrier coating and a low-emissity coating thereon, and its preparation
US6602814B1 (en) 1998-02-20 2003-08-05 Mtu Aero Engines Gmbh Thermal insulating material and method of producing same
US20030207155A1 (en) * 1998-03-27 2003-11-06 Siemens Westinghouse Power Corporation Hybrid ceramic material composed of insulating and structural ceramic layers
US6159553A (en) 1998-11-27 2000-12-12 The United States Of America As Represented By The Secretary Of The Air Force Thermal barrier coating for silicon nitride
US6361888B1 (en) * 1999-01-19 2002-03-26 The Board Of Trustees Of The University Of Illinois Toughening of ceramic composites by transformation weakening of interphases
US6312763B1 (en) 1999-04-15 2001-11-06 United Technologies Corporation Silicon based substrate with yttrium silicate environmental/thermal barrier layer
US6296941B1 (en) 1999-04-15 2001-10-02 General Electric Company Silicon based substrate with yttrium silicate environmental/thermal barrier layer
US20020181513A1 (en) * 2001-06-05 2002-12-05 Fredrik Laurell Q-switched laser
US20030027012A1 (en) 2001-08-03 2003-02-06 Irene Spitsberg Low thermal conductivity thermal barrier coating system and method therefor
US20030035907A1 (en) 2001-08-09 2003-02-20 Siemens Westinghouse Power Corporation Protective overlayer for ceramics
US7001679B2 (en) 2001-08-09 2006-02-21 Siemens Westinghouse Power Corporation Protective overlayer for ceramics
US20030049500A1 (en) * 2001-08-29 2003-03-13 Shin-Etsu Chemical Co., Ltd. Rare earth-containing oxide member
WO2003026886A2 (en) 2001-09-26 2003-04-03 Siemens Westinghouse Power Corporation Hybrid ceramic material composed of insulating and structural ceramic layers
US6617037B2 (en) 2001-12-19 2003-09-09 United Technologies Corporation Silicon based substrate with a CTE compatible layer on the substrate
US7298077B2 (en) * 2002-03-04 2007-11-20 Koninklijke Philips Electronics, N.V. Device for generating UV radiation
US6759151B1 (en) 2002-05-22 2004-07-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multilayer article characterized by low coefficient of thermal expansion outer layer
US6699607B1 (en) * 2002-10-30 2004-03-02 General Electric Company Thermal/environmental barrier coating for silicon-containing substrates
US20050074625A1 (en) 2003-10-06 2005-04-07 General Electric Company Aluminate coating for a silicon containing substrate
US20050238888A1 (en) * 2004-04-27 2005-10-27 General Electric Company Environmental barrier coating for silicon-containing substrates and process therefor
EP1683773A2 (en) 2005-01-21 2006-07-26 General Electric Company Environmental barrier coating with physical barrier layer for silicon-comprising materials
US7374818B2 (en) 2005-05-23 2008-05-20 United Technologies Corporation Coating system for silicon based substrates
US7354651B2 (en) 2005-06-13 2008-04-08 General Electric Company Bond coat for corrosion resistant EBC for silicon-containing substrate and processes for preparing same
US20060280954A1 (en) 2005-06-13 2006-12-14 Irene Spitsberg Corrosion resistant sealant for outer EBL of silicon-containing substrate and processes for preparing same
US20060280955A1 (en) 2005-06-13 2006-12-14 Irene Spitsberg Corrosion resistant sealant for EBC of silicon-containing substrate and processes for preparing same
US20060280952A1 (en) 2005-06-13 2006-12-14 Hazel Brian T Bond coat for corrosion resistant EBC for silicon-containing substrate and processes for preparing same
US20060280963A1 (en) 2005-06-14 2006-12-14 General Electric Company Thermal/environmental barrier coating system for silicon-containing materials
US7357994B2 (en) 2005-06-14 2008-04-15 General Electric Company Thermal/environmental barrier coating system for silicon-containing materials
US20080113217A1 (en) 2006-01-10 2008-05-15 United Technologies Corporation Thermal barrier coating compositions, processes for applying same and articles coated with same
US20080113218A1 (en) 2006-01-10 2008-05-15 United Technologies Corporation Thermal barrier coating compositions, processes for applying same and articles coated with same
US20080044686A1 (en) 2006-08-18 2008-02-21 Schlichting Kevin W High sodium containing thermal barrier coating
US20080044662A1 (en) 2006-08-18 2008-02-21 Schlichting Kevin W Thermal barrier coating with a plasma spray top layer
US20080057326A1 (en) 2006-09-06 2008-03-06 United Technologies Corporation Silicate resistant thermal barrier coating with alternating layers
US20090004427A1 (en) 2007-06-26 2009-01-01 General Electric Company Articles for high temperature service and methods for their manufacture
US20100159252A1 (en) * 2008-12-19 2010-06-24 Glen Harold Kirby Environmental barrier coatings providing cmas mitigation capability for ceramic substrate components
US20100159261A1 (en) * 2008-12-19 2010-06-24 Glen Harold Kirby Environmental barrier coatings providing cmas mitigation capability for ceramic substrate components

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
International Search Report issued in connection with corresponding PCT Application No. PCT/US2009/067843 on Feb. 9, 2010.
International Search Report issued in connection with corresponding PCT Application No. PCT/US2009/067852 on Feb. 12, 2010.
International Search Report issued in connection with corresponding PCT Application No. PCT/US2009/067857 on Feb. 10, 2010.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10233760B2 (en) 2008-01-18 2019-03-19 Rolls-Royce Corporation CMAS-resistant thermal barrier coatings
US10351480B2 (en) 2013-03-12 2019-07-16 Rolls-Royce Corporation Multilayer environmental barrier coatings
US9598777B2 (en) 2013-03-12 2017-03-21 Rolls-Royce Corporation Method for fabricating multilayer environmental barrier coatings
US9334549B2 (en) 2013-12-20 2016-05-10 General Electric Company Systems and methods for recovery of rare-earth constituents from environmental barrier coatings
WO2015095303A1 (en) 2013-12-20 2015-06-25 General Electric Company Systems and methods for recovery of rare-earth constituents from environmental barrier coatings
US10392312B2 (en) 2014-01-14 2019-08-27 United Technologies Corporation Silicon oxycarbide environmental barrier coating
US9409185B2 (en) 2014-04-17 2016-08-09 General Electric Company Systems and methods for recovery of rare-earth constituents from environmental barrier coatings
EP2933023A1 (en) 2014-04-17 2015-10-21 General Electric Company System and methods for recovery of rare-earth constituents from environmental barrier coatings
US10072506B2 (en) 2014-06-30 2018-09-11 Rolls-Royce Corporation Coated gas turbine engine components

Also Published As

Publication number Publication date
EP2379777A1 (en) 2011-10-26
CA2747416C (en) 2016-04-05
US20100159253A1 (en) 2010-06-24
JP2012512809A (en) 2012-06-07
CA2747416A1 (en) 2010-06-24
JP5759383B2 (en) 2015-08-05
WO2010071770A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
US9771826B2 (en) Components with environmental barrier coatings having improved surface roughness
US8729161B2 (en) Water based slurry compositions for making environmental barrier coatings and environmental barrier coatings comprising the same
CN102264670B (en) Environmental barrier for a refractory substrate containing silicon
US7544394B2 (en) Method for producing a thermal barrier coating/environmental barrier coating system
DE602004010841T2 (en) Oxidation barrier coatings for silicone based ceramics
US6558814B2 (en) Low thermal conductivity thermal barrier coating system and method therefor
US7910172B2 (en) Method for fabricating a component having an environmental barrier coating
US6630200B2 (en) Method of making a ceramic with preferential oxygen reactive layer
CA2895986C (en) Visual indicator of coating thickness
JP5199234B2 (en) Composite component having a silicon-containing ceramic matrix protected against corrosion
US8999457B2 (en) Methods for making environmental barrier coatings using sintering aids
US8168259B2 (en) Articles for high temperature service and methods for their manufacture
US6929852B2 (en) Protective overlayer for ceramics
DE602005003866T2 (en) An article comprising a silicon-containing substrate and a hafnium oxide-containing barrier layer on the surface
US6759151B1 (en) Multilayer article characterized by low coefficient of thermal expansion outer layer
CA2739008C (en) Coating including a rare earth silicate-based layer including a second phase
KR20070090065A (en) Adhesive protective coatings, non-line of sight methods for their preparation, and coated articles
US10323326B2 (en) Compliant layer for ceramic components and methods of forming the same
US8475945B2 (en) Composite article including silicon oxycarbide layer
EP1764351A2 (en) Silicon based substrate with hafnium silicate containing barrier layer
US20090297718A1 (en) Methods of fabricating environmental barrier coatings for silicon based substrates
JP5221558B2 (en) Composite part with silicon-containing ceramic matrix protected from corrosion
US20030003328A1 (en) Environmental/thermal barrier coating system with silica diffusion barrier layer
EP2971562B1 (en) Recession resistant ceramic matrix composites and environmental barrier coatings
JP2006028015A (en) Article including environmental barrier wall coating system and method for manufacturing the same

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8