US8038150B2 - Sheet thickness measurement - Google Patents
Sheet thickness measurement Download PDFInfo
- Publication number
- US8038150B2 US8038150B2 US12/636,965 US63696509A US8038150B2 US 8038150 B2 US8038150 B2 US 8038150B2 US 63696509 A US63696509 A US 63696509A US 8038150 B2 US8038150 B2 US 8038150B2
- Authority
- US
- United States
- Prior art keywords
- reference surface
- sheet
- probe
- value
- positions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H5/00—Feeding articles separated from piles; Feeding articles to machines
- B65H5/06—Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers
- B65H5/062—Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers between rollers or balls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2404/00—Parts for transporting or guiding the handled material
- B65H2404/10—Rollers
- B65H2404/14—Roller pairs
- B65H2404/144—Roller pairs with relative movement of the rollers to / from each other
- B65H2404/1441—Roller pairs with relative movement of the rollers to / from each other involving controlled actuator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2511/00—Dimensions; Position; Numbers; Identification; Occurrences
- B65H2511/10—Size; Dimensions
- B65H2511/13—Thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2511/00—Dimensions; Position; Numbers; Identification; Occurrences
- B65H2511/10—Size; Dimensions
- B65H2511/15—Height, e.g. of stack
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2511/00—Dimensions; Position; Numbers; Identification; Occurrences
- B65H2511/20—Location in space
- B65H2511/22—Distance
- B65H2511/224—Nip between rollers, between belts or between rollers and belts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2553/00—Sensing or detecting means
- B65H2553/60—Details of intermediate means between the sensing means and the element to be sensed
- B65H2553/61—Mechanical means, e.g. contact arms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2557/00—Means for control not provided for in groups B65H2551/00 - B65H2555/00
- B65H2557/20—Calculating means; Controlling methods
- B65H2557/23—Recording or storing data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2557/00—Means for control not provided for in groups B65H2551/00 - B65H2555/00
- B65H2557/20—Calculating means; Controlling methods
- B65H2557/24—Calculating methods; Mathematic models
- B65H2557/242—Calculating methods; Mathematic models involving a particular data profile or curve
- B65H2557/2423—Calculating methods; Mathematic models involving a particular data profile or curve involving an average value
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2701/00—Handled material; Storage means
- B65H2701/10—Handled articles or webs
- B65H2701/19—Specific article or web
- B65H2701/1916—Envelopes and articles of mail
Definitions
- the present invention relates to measuring sheet thickness and, more particularly, to measuring the thickness of a sheet being conveyed on a transport path.
- Inserter machines are used to create mailpieces for many different applications. Inserters contain a generally modular array of components to carry out the various processes associated with mailpiece creation. The processes include preparing documents, assembling the documents associated with a given mailpiece, adding any designated inserts, stuffing the assembly into an envelope, and printing information on the envelope.
- Inserter machines create mailpieces based on a data file that contains information regarding the individual mailpieces, or based on information read directly from a code on the documents of the mailpieces. In both arrangements, the inserter is instructed to create mailpieces having specific content pages and insert materials (or no insert materials), among other features.
- a mailpiece may include one or more fewer or additional content pages than intended. Such errors may be particularly significant where the content relates to private information, such as financial or health related information, for example. Accordingly, it may be desirable to verify that the mailpieces created by an inserter machine actually contain the intended contents.
- one aspect of the invention relates to a method of measuring a thickness of a sheet being conveyed on a transport path comprising rotating a substantially cylindrical reference surface disposed in the transport path and engaging a probe with the reference surface to determine a runout value for each of a set of positions along a circumference of the reference surface.
- sheet means a substantially planar item having a negligible thickness as compared to its length and width. Sheets may include discrete items, as well as continuous items, such as webs, for example. Moreover, a “sheet” may comprise a single item or collations of items. Thus, in the context of mailpieces, for example, a sheet may comprise a single document, a collation of documents, or an assembled mailpiece, comprising a collation of one or more documents in an envelope, with or without other inserted material. Further, as used herein, “runout” means a deviation from a desired radial distance from an axis.
- the method further comprises conveying the sheet on the transport path so that the sheet contacts the reference surface at one position of the set, engaging the probe with the sheet at the one position to determine a measured sheet thickness value, and adjusting the measured sheet thickness value based on the runout value for the one position to obtain an actual sheet thickness value.
- the invention in another aspect, relates to a method of measuring a thickness of a sheet being conveyed on a transport path at a transport speed comprising rotating a substantially cylindrical reference surface disposed in the transport path approximately at the transport speed and engaging a probe with the reference surface to determine a runout value for each of a set of positions along a circumference of the reference surface.
- the method further comprises conveying the sheet on the transport path so that the sheet contacts the reference surface at a plurality of positions of the set, engaging the probe with the sheet at the plurality of positions to determine a measured sheet thickness value for each of the positions, and adjusting each measured sheet thickness value based on the runout value for each of the positions to obtain an actual sheet thickness value for each of the positions.
- FIG. 1 is a schematic view of an inserter system for implementing an embodiment of the method of the present invention
- FIG. 2 is a partially schematic view of an embodiment of the sheet thickness measurement system according to the invention.
- FIG. 3 is a partially schematic view of the sheet thickness measurement system of FIG. 2 ;
- FIG. 4 is a side view of a portion of the sheet thickness measurement system of FIG. 2 in which a probe is engaging the reference surface;
- FIG. 5 is a side view similar to FIG. 4 in which the probe is withdrawn from the reference surface
- FIG. 6 is a side view similar to FIG. 4 in which the probe is engaged with a sheet on the reference surface.
- Embodiments of the sheet thickness measurement system and method according the invention will be described with reference to certain applications in mailpiece inserter systems. It should be understood, however, that embodiments of the invention may be used in association with other systems configured to handle and transport sheets.
- FIG. 1 A schematic view of an inserter system 10 incorporating the sheet thickness measurement system 12 of the invention is shown in FIG. 1 .
- the illustrated exemplary inserter system 10 comprises a document feeder 14 , which provides pre-printed documents for processing.
- the documents which may comprise bills or financial statements, for example, may be provided by the document feeder 14 as individual “cut sheets,” or may be cut from a spool using a web cutter (not shown).
- the documents next move to an accumulator 16 , where the documents for respective mailpieces are assembled and folded.
- the folded accumulations next move to a buffer 18 , which holds the accumulations for sequential processing.
- the accumulations next move to a chassis 20 . As each accumulation moves through the chassis, inserts from a plurality of feeder modules 22 are added to the accumulation.
- the accumulations next enter an insertion area 24 , where the finished accumulations are stuffed into envelopes provided by an envelope hopper 26 , and the envelopes are sealed.
- the stuffed, sealed envelopes then enter a printing area 28 , where markings, such as a postage indicia and/or address information, for example, are applied using a printer 30 to form completed mailpieces.
- the mailpieces next pass through the sheet thickness measurement system 12 of the invention, as discussed in more detail below.
- the illustrated inserter system 10 includes an outsort module 31 , downstream of the sheet thickness measurement system 12 , for optionally diverting mailpieces, such as defective mailpieces, for example, from the production stream. Finally, the completed mailpieces are deposited on a conveyor 32 .
- Other systems utilizing more or fewer components and/or different arrangements of components may also be used.
- the sheet thickness measurement system 12 of the present invention may allow a user to measure an actual sheet thickness value by removing the error introduced by the runout of a reference surface.
- the actual thickness value may be used in some embodiments to verify that the mailpieces created by an inserter machine contain the intended contents by comparing that value with an expected thickness value based on a number of sheets and/or inserts.
- FIG. 2 An embodiment of the sheet thickness measurement system 12 of the invention is shown in FIG. 2 .
- the system in the illustrated embodiment comprises a transport deck 34 for slidably supporting sheets 35 that are conveyed on a transport path P, which is indicated with an arrow.
- the sheets 35 are conveyed along the deck 34 using transport elements 36 .
- the transport elements 36 convey the sheets 35 at a selected transport speed.
- the transport elements 36 comprise a plurality of driven rollers.
- nip rollers may be arranged to engage the driven rollers to provide positive control over the sheets being conveyed.
- the transport elements 36 may comprise one or more belts, O-rings, or chains, for example. Other arrangements may also be used.
- the illustrated system 12 further comprises a substantially cylindrical reference surface 38 disposed in the transport path P.
- the reference surface 38 which protrudes slightly from an opening 40 in the deck 34 , is arranged to contact the sheets 35 being conveyed on the transport path P.
- the reference surface 38 comprises a roller having a diameter of approximately 1.25 inches and a width of approximately 10 inches in order to accommodate sheets of varying sizes.
- the reference surface 38 may comprise hardened steel due to its dimensional stability. Other sizes and materials may also be used.
- the reference surface 38 is rotated approximately at the transport speed by a first actuator 42 provided with a first positional encoder 43 to track the position of the reference surface 38 .
- the first actuator 42 comprises a servo motor and the first positional encoder 43 comprises a rotary encoder. Other arrangements may also be used.
- the system shown in FIG. 2 further comprises a probe 44 that is extendable to engage the reference surface 38 and the sheet 35 , and retractable to withdraw from the reference surface 38 and the sheet 35 , as described below.
- the probe 44 is driven by a second actuator 46 provided with a second positional encoder 47 to track a position of the probe 44 .
- the second actuator 46 comprises a servo motor and the second positional encoder 47 comprises a linear encoder. Other arrangements may also be used.
- the probe 44 comprises a support element 48 operatively connected to the second actuator and a rotatably mounted probe tip 50 disposed on the support element 48 .
- the probe tip 50 comprises a roller mounted on a clevis arrangement. Other rotating arrangements may also be used.
- the probe tip 50 which comprises hardened steel in some embodiments, is substantially aligned with the transport path P and is configured to contact the reference surface 38 and the sheet 35 in rolling engagement. Other materials may also be used.
- the reference surface 38 and the second actuator 46 are disposed on a substantially rigid frame assembly 52 , which minimizes relative motion between the reference surface 38 and the second actuator 46 .
- the second actuator 46 is selectively displaceable axially with respect to the reference surface 38 , i.e., laterally of the transport path P. The displacement may allow the probe 44 to be positioned optimally for sheets of various widths.
- the rotation of the reference surface 38 and engagement of the probe 44 are controlled by a controller 54 operatively connected to a processing device 56 , as shown in FIG. 3 .
- a method of measuring a thickness of a sheet being conveyed on the transport path P comprises rotating the substantially cylindrical reference surface 38 disposed in the transport path P and engaging the probe 44 with the reference surface 38 to determine a runout value for each of a set of positions along a circumference of the reference surface 38 .
- the probe 44 is shown engaged with the reference surface 38 in FIG. 4 .
- the runout value for each of the set of positions is stored in a database on the processing device 56 , essentially forming a reference table.
- the measurement of the runout values may be carried out at designated intervals.
- the runout values may be measured prior to each production run of mailpieces. Other intervals may also be used.
- Determining the runout value essentially involves establishing a baseline measurement of the runout of the reference surface 38 .
- the number of positions for which runout is measured is determined by the number of unique encoder counts of the first positional encoder 43 for one rotation of the reference surface 38 .
- the reference surface 38 is divided into 1600 unique segments, which provides 0.225 degrees per segment (determined by 360 degrees/1600 counts).
- determining the runout value for each of the set of positions along the circumference of the reference surface 38 is carried out with the reference surface 38 being driven at the transport speed. In this way, any dynamic effects influencing the rotation of the reference surface 38 will be taken into account. In other words, the runout values measured during the baseline measurement will be the same as the runout values during the normal operation of the system conveying a sheet at the transport speed.
- the probe 44 is withdrawn from the reference surface 38 , as shown in FIG. 5 , to accommodate an approaching sheet 35 .
- the full range of motion of the probe 44 between the extended and withdrawn positions is approximately 0.5 inches. Probe assemblies having other ranges may also be used.
- the method further comprises conveying the sheet 35 on the transport path P so that the sheet contacts the reference surface 38 at one position of the set, and engaging the probe 44 with the sheet 35 at the one position to determine a measured sheet thickness value.
- the probe 44 is shown engaged with the sheet 35 in FIG. 6 .
- the measured sheet thickness value is stored in the database on the processing device 56 .
- the sheet thickness measurement system 12 is configured to measure sheets having a thickness of approximately 4 mils (0.004 inches), which roughly corresponds to the thickness of a sheet of paper. Systems having other measurement ranges may also be used.
- the adjustment function may be carried out in the processing device.
- the method comprises determining a runout value for each of the set of positions along the circumference of the reference surface 38 , as discussed above, then conveying the sheet 35 on the transport path P so that the sheet 35 contacts the reference surface 38 at a plurality of positions of the set.
- the method of this embodiment further comprises engaging the probe 44 with the sheet 35 at the plurality of positions to determine a measured sheet thickness value for each of the positions, and adjusting each measured sheet thickness value based on the runout value for each of the positions to obtain an actual sheet thickness value for each of the positions.
- the measured sheet thickness value for each of the positions is stored in the database on the processing device 56 .
- the adjustment function may be carried out in the processing device 56 .
- the plurality of positions for which a measured sheet thickness value is obtained are located in a designated area on the sheet, referred to as a “landing zone.”
- the number of positions for which measurements are obtained is based on the speed of the sheet, the size of the landing zone, and the sampling rate of the servo associated with the probe.
- the sheet is conveyed at 100 inches per second, the measurement landing zone is 0.5 inches long, and the sampling rate of the servo is 2 kHz. In that example, 10 measurements may be acquired in the landing zone. Other arrangements may also be used, including different conveying speeds, different sized landing zones, and servos having different sampling rates.
- the method comprises determining a runout value for each of the set of positions along the circumference of the reference surface 38 , as discussed above, then storing the runout value for each of the set of positions in a database on the processing device 56 .
- This embodiment further comprises re-engaging the probe 44 with the reference surface 38 to determine an updated runout value for each of the set of positions along the circumference of the reference surface 38 , and storing the updated runout value for each of the set of positions along the circumference of the reference surface 38 in the database.
- the embodiment further comprises comparing each runout value with a corresponding updated runout value to determine a difference for each position, and carrying out an action when the differences for selected positions exceed a predetermined level. Carrying out an action may involve the controller 54 generating a warning signal or shutting down the device, for example.
- the measurement and comparison of the runout values may provide information regarding the performance of the sheet thickness measurement system 12 and, in particular, regarding the system's ability to measure sheet thickness within the required tolerances.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Controlling Sheets Or Webs (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- A Measuring Device Byusing Mechanical Method (AREA)
Abstract
Description
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/636,965 US8038150B2 (en) | 2009-09-03 | 2009-12-14 | Sheet thickness measurement |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US23953909P | 2009-09-03 | 2009-09-03 | |
US12/636,965 US8038150B2 (en) | 2009-09-03 | 2009-12-14 | Sheet thickness measurement |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110049799A1 US20110049799A1 (en) | 2011-03-03 |
US8038150B2 true US8038150B2 (en) | 2011-10-18 |
Family
ID=43623668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/636,965 Active 2029-12-29 US8038150B2 (en) | 2009-09-03 | 2009-12-14 | Sheet thickness measurement |
Country Status (1)
Country | Link |
---|---|
US (1) | US8038150B2 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020060421A1 (en) * | 2000-10-05 | 2002-05-23 | Yutaka Kako | Sheet handling machine |
US6405152B1 (en) * | 1998-05-18 | 2002-06-11 | Prim Hall Enterprises, Inc. | Precision calipering system |
US6865818B2 (en) | 2003-03-04 | 2005-03-15 | Southern Illinois Machinery Co., Inc. | Caliper for measuring the thickness of collated printed products |
US20070018383A1 (en) * | 2005-07-08 | 2007-01-25 | Ricoh Printing Systems, Ltd. | Double feed sensing device, double feed determining method and image forming apparatus |
US7182338B2 (en) * | 2002-11-14 | 2007-02-27 | Canon Kabushiki Kaisha | Apparatus for discriminating sheet material |
US7419156B2 (en) * | 2003-05-14 | 2008-09-02 | Kabushiki Kaisha Toshiba | Overlapped-sheet detection apparatus |
US20090212491A1 (en) * | 2008-02-26 | 2009-08-27 | Ricoh Company, Limited | Sheet conveying device and image forming apparatus |
US7588245B2 (en) * | 2005-11-03 | 2009-09-15 | Xerox Corporation | Friction retard sheet feeder |
US7866666B2 (en) * | 2007-07-31 | 2011-01-11 | Seiko Epson Corporation | Processing device, control method for a processing device, program, processing system and control method for a processing system |
-
2009
- 2009-12-14 US US12/636,965 patent/US8038150B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6405152B1 (en) * | 1998-05-18 | 2002-06-11 | Prim Hall Enterprises, Inc. | Precision calipering system |
US20020060421A1 (en) * | 2000-10-05 | 2002-05-23 | Yutaka Kako | Sheet handling machine |
US6796434B2 (en) | 2000-10-05 | 2004-09-28 | Hitachi, Ltd. | Sheet handling machine with thickness detection of multiple parts of sheet |
US7182338B2 (en) * | 2002-11-14 | 2007-02-27 | Canon Kabushiki Kaisha | Apparatus for discriminating sheet material |
US7866483B2 (en) * | 2002-11-14 | 2011-01-11 | Canon Kabushiki Kaisha | Apparatus for discriminating sheet material |
US6865818B2 (en) | 2003-03-04 | 2005-03-15 | Southern Illinois Machinery Co., Inc. | Caliper for measuring the thickness of collated printed products |
US7419156B2 (en) * | 2003-05-14 | 2008-09-02 | Kabushiki Kaisha Toshiba | Overlapped-sheet detection apparatus |
US20070018383A1 (en) * | 2005-07-08 | 2007-01-25 | Ricoh Printing Systems, Ltd. | Double feed sensing device, double feed determining method and image forming apparatus |
US7588245B2 (en) * | 2005-11-03 | 2009-09-15 | Xerox Corporation | Friction retard sheet feeder |
US7866666B2 (en) * | 2007-07-31 | 2011-01-11 | Seiko Epson Corporation | Processing device, control method for a processing device, program, processing system and control method for a processing system |
US20090212491A1 (en) * | 2008-02-26 | 2009-08-27 | Ricoh Company, Limited | Sheet conveying device and image forming apparatus |
Also Published As
Publication number | Publication date |
---|---|
US20110049799A1 (en) | 2011-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2009288644B2 (en) | Conveying apparatus for envelopes and related methods | |
US20030083778A1 (en) | System and method for adjusting sheet input to an inserter system | |
US7717418B2 (en) | Envelope conveying and positioning apparatus and related methods | |
SG175058A1 (en) | Accumulating apparatus for discrete paper or film objects and related methods | |
US7971865B2 (en) | Inserting apparatus for discrete objects into envelopes and related methods | |
EP1431049B1 (en) | Method and system for high velocity document processing system using lower velocity print technology | |
US8038150B2 (en) | Sheet thickness measurement | |
US9573709B2 (en) | Inter-machine buffer for mailpiece fabrication system | |
EP2238060B1 (en) | Transport for singulating items | |
CA2292061C (en) | Hi-speed pneumatic sheet feeder | |
US20100250186A1 (en) | System for measuring thickness of mailpieces | |
JP4112997B2 (en) | Magnetic detector | |
US8215629B2 (en) | System and method for producing and arranging sheet material for use in a mailpiece inserter | |
CA2740840C (en) | Transporting apparatus for web products and related methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PITNEY BOWES INC., CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COMSTOCK, GARY W.;LEITZ, GERALD F.;MOST, EGBERT E.;AND OTHERS;SIGNING DATES FROM 20091211 TO 20091218;REEL/FRAME:023760/0911 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:DMT SOLUTIONS GLOBAL CORPORATION;REEL/FRAME:046467/0901 Effective date: 20180702 |
|
AS | Assignment |
Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, NEW YORK Free format text: TERM LOAN SECURITY AGREEMENT;ASSIGNOR:DMT SOLUTIONS GLOBAL CORPORATION;REEL/FRAME:046473/0586 Effective date: 20180702 |
|
AS | Assignment |
Owner name: DMT SOLUTIONS GLOBAL CORPORATION, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PITNEY BOWES INC.;REEL/FRAME:046597/0120 Effective date: 20180627 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNORS:BCC SOFTWARE, LLC;DMT SOLUTIONS GLOBAL CORPORATION;REEL/FRAME:064784/0295 Effective date: 20230830 Owner name: DMT SOLUTIONS GLOBAL CORPORATION, CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:064785/0374 Effective date: 20230830 Owner name: DMT SOLUTIONS GLOBAL CORPORATION, CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:064785/0325 Effective date: 20230830 |
|
AS | Assignment |
Owner name: SILVER POINT FINANCE, LLC, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNORS:BCC SOFTWARE, LLC;DMT SOLUTIONS GLOBAL CORPORATION;REEL/FRAME:064819/0445 Effective date: 20230830 |