US8029317B2 - Power plug system for submersible pump system - Google Patents

Power plug system for submersible pump system Download PDF

Info

Publication number
US8029317B2
US8029317B2 US12/961,710 US96171010A US8029317B2 US 8029317 B2 US8029317 B2 US 8029317B2 US 96171010 A US96171010 A US 96171010A US 8029317 B2 US8029317 B2 US 8029317B2
Authority
US
United States
Prior art keywords
plug
sleeve
conductive
cable
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US12/961,710
Other versions
US20110176941A1 (en
Inventor
Thomas Albers
Axel-Helmut Tank-Langenau
Stefan Wittenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flowserve Management Co
Original Assignee
Flowserve Management Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flowserve Management Co filed Critical Flowserve Management Co
Priority to US12/961,710 priority Critical patent/US8029317B2/en
Publication of US20110176941A1 publication Critical patent/US20110176941A1/en
Application granted granted Critical
Publication of US8029317B2 publication Critical patent/US8029317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/533Bases, cases made for use in extreme conditions, e.g. high temperature, radiation, vibration, corrosive environment, pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/023Arrangements for connecting cables or wirelines to downhole devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/028Electrical or electro-magnetic connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/15Pins, blades or sockets having separate spring member for producing or increasing contact pressure
    • H01R13/17Pins, blades or sockets having separate spring member for producing or increasing contact pressure with spring member on the pin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/5202Sealing means between parts of housing or between housing part and a wall, e.g. sealing rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/523Dustproof, splashproof, drip-proof, waterproof, or flameproof cases for use under water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/621Bolt, set screw or screw clamp
    • H01R13/6215Bolt, set screw or screw clamp using one or more bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/62Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
    • H01R13/639Additional means for holding or locking coupling parts together, after engagement, e.g. separate keylock, retainer strap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R24/00Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure
    • H01R24/20Coupling parts carrying sockets, clips or analogous contacts and secured only to wire or cable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/5205Sealing means between cable and housing, e.g. grommet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2105/00Three poles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R31/00Coupling parts supported only by co-operation with counterpart
    • H01R31/06Intermediate parts for linking two coupling parts, e.g. adapter

Definitions

  • Embodiments of the present invention relate generally to power plug systems and, more particularly, to submersible pump systems comprising power plug systems.
  • Submersible pumps are driven by submersible motors and generally are operable in a variety of applications in which typically both the pump and the motor are completely submersed in a well liquid.
  • the motor for the submersible pump generally is placed in the well below the pump section.
  • a power plug system having a power cable and plug ends is needed.
  • Conventional power plug systems generally are not applicable to deep well environments where high temperatures and high pressures typically are present.
  • connection between interconnecting plug ends of a power plug system and their connection to a motor must be robust, secure, and substantially leak-poof.
  • the connection between plug ends also should be configured for easy handling on site, particularly during the installation of the submersible pump system in the well.
  • a connection between a power cable and a plug end (generally via an end splice) should be sufficiently tight so as not to be compromised in ambient conditions in a well and/or inside the motor.
  • conventional power plug systems are not configured to maintain a secure, leak-proof electrical connection under deep well conditions.
  • plug ends of conventional power plug systems are sealed only with an axial sealing that is provided with a connection of corresponding plug ends.
  • axial sealing alone generally is insufficient to prevent fluid leakage between connected plug ends.
  • the materials from which conventional power plug systems generally are configured and the configurations of the plug ends generally are not suitable for operation in deep well environments where high temperatures and high pressures can degrade and promote failure of the plug systems.
  • embodiments of the present invention provide power plug systems suitable for use with deep well submersible pump systems, particularly those operable in high temperature and high pressure environments.
  • the embodiments provide an easy handling power plug system for connecting power cables in a substantially linear, strain-relieved manner.
  • the power plug system is operable in high temperature and high pressure environments and may be designed for a voltage of at least about 5,000 volts and a current of at least about 250 amperes.
  • the materials forming the power plug system generally are durable and resilient in high temperatures and high pressures of the motor cooling liquid inside of the submersible motor and of the well fluid in which the submersible pump system may be submersed.
  • the power plug system comprises a modular configuration and, as such, may form not only a plug-connection between two power cables (cable extension), but also a series of two or more interconnected corresponding plug systems that may span to connect a power source located above a ground surface proximal to the well head and a well-submersed motor of a DWS pump system.
  • a male plug end of a power plug system as described herein, may be connected to a female plug end of a well head plug or directly to a power source.
  • the female plug end of the power plug system, as described herein, opposite of the male plug end may be connected to a male plug end of a second power plug system.
  • This configuration may continue in series indefinitely until the female plug end of the last power plug system in the series may be connected to a male plug end of a submersible motor.
  • the plug ends of the power plug system may comprise a contact spring to enhance contact between male and female plug ends.
  • the power plug system may further comprise a seal or gasket to provide a radial sealing to connected plug ends in addition to the axial sealing typically provided with interconnection. Thereby, the seal or gasket further secures a connection between plug ends and provides a reliable seal between connected plug ends to avoid assembling errors and/or fluid leakage, particularly in high temperature and high pressure conditions.
  • a power plug system comprises an electrically conductive cable, a male plug end, a female plug end and a plurality of seals.
  • the male plug end comprises a housing and a conductive sleeve.
  • the housing is operable to receive an end portion of the cable and to conduct an electric current from the cable to the conductive sleeve.
  • the end portion of the cable is radially sealable within the housing via a cable seal of the plurality of seals.
  • the female plug end comprises a housing, a conductive pin, a contact spring, and a female plug sleeve.
  • the conductive sleeve of the male plug end is radially sealable within the housing of the female plug end via a plug end seal of the plurality of seals with insertion of the conductive sleeve into the housing of the female plug end.
  • the conductive pin is radially sealed within the female plug sleeve via a conductive pin seal of the plurality of seals and is positioned to insert into the conductive sleeve.
  • the contact spring is operable to enhance conduction between the conductive sleeve and the conductive pin.
  • a female plug sleeve seal of the plurality of seals is provided to an exterior surface of the female plug sleeve that is operable to radially seal the female plug sleeve within a complementary plug end with insertion of the female plug sleeve therein.
  • the conductive pin is operable to conductively connect to a conductive lead of the complementary plug end with insertion of the female plug sleeve therein.
  • the housing of the male plug end may comprise an external shell, a cable receiver and an insulative sleeve.
  • the cable receiver may be operable to receive the end portion of the cable and may be radially sealed within the external shell via a cable receiver seal of the plurality of seals.
  • the insulative sleeve may be operable to guide the end portion of the cable to the conductive sleeve and may be radially sealed within the cable receiver via an insulative sleeve seal of the plurality of seals.
  • the housing of the male plug end further may comprise a conductive receptacle positioned internally to the insulative sleeve and may be operable to conductively connect to a conductive lead of the cable.
  • the conductive receptacle may be conductively connected to the conductive sleeve.
  • the conductive sleeve may be positioned internally to the insulative sleeve and operable to conductively connect to the conductive pin of the female plug end.
  • the housing of the female plug end may comprise an external shell and a sleeve receptacle.
  • the female plug sleeve may be radially sealed within the external shell through an external shell seal of the plurality of seals.
  • a portion of the female plug sleeve may be exposed from the external shell of the housing of the female plug end for insertion into the complementary plug end.
  • the female plug sleeve seal may be provided to the exposed portion of the female plug sleeve and operable to radially seal the exposed portion within the complementary plug end.
  • the sleeve receptacle may be operable to guide the conductive sleeve of the male plug end over the conductive pin of the female plug end with insertion of the conductive sleeve into the sleeve receptacle.
  • the conductive pin may extend into both the sleeve receptacle and the female plug sleeve.
  • the contact spring may comprise a silver-coated metal spring.
  • the plurality of seals may respectively comprise at least one of an o-ring, a gasket, and an elastomeric washer. The plurality of seals may provide a radial sealing sufficient to substantially withstand a pressure of at least about 50 bar.
  • the cable may comprise a flat power cable radially sealed within the housing in a substantially linear, strain-relieved manner.
  • the plug system may be configured of one or more materials comprising a resiliency sufficient to substantially withstand degradation in temperatures of at least about 160° C.
  • a power plug system comprises a male plug end, a female plug end, and a plurality of seals.
  • the male plug end comprises a housing and a conductive sleeve.
  • the housing is operable to receive an end portion of an electrically conductive cable and to conduct an electric current from the cable to the conductive sleeve.
  • the female plug end comprises a housing, a conductive pin, a contact spring, and a female plug sleeve.
  • the conductive sleeve of the male plug end is radially sealable within the housing of the female plug end via a plug end seal of the plurality of seals with insertion of the conductive sleeve into the housing of the female plug end.
  • the conductive sleeve and the conductive pin are operable to conductively connect with insertion of the conductive sleeve into the housing of the female plug end.
  • the contact spring is operable to enhance conduction between the conductive sleeve and the conductive pin.
  • a female plug sleeve seal of the plurality of seals is provided to an exterior surface of the female plug sleeve that is operable to radially seal the female plug sleeve within a complementary plug end with insertion of the female plug sleeve therein.
  • the conductive pin is operable to conductively connect to a conductive lead of the complementary plug end with insertion of the female plug sleeve therein.
  • a submersible pump system comprises a submersible pump, a submersible motor and a power plug system.
  • the plug system is operable to conduct an electric current to the submersible motor for operation of the submersible pump.
  • the plug system comprises an electrically conductive cable, a male plug end, a female plug end, and a plurality of seals.
  • the male plug end comprises a housing and a conductive sleeve.
  • the housing is operable to receive an end portion of the cable and to conduct the electric current from the cable to the conductive sleeve.
  • the female plug end comprises a housing, a conductive pin, a contact spring, and a female plug sleeve.
  • the conductive sleeve of the male plug end is radially sealable within the housing of the female plug end via a plug end seal of the plurality of seals with insertion of the conductive sleeve into the housing of the female plug end.
  • the conductive sleeve and the conductive pin are operable to conductively connect with insertion of the conductive sleeve into the housing of the female plug end.
  • the contact spring is operable to enhance conduction between the conductive sleeve and the conductive pin.
  • a female plug sleeve seal of the plurality of seals is provided to an exterior surface of the female plug sleeve that is operable to radially seal the female plug sleeve within a complementary plug end of the submersible motor with insertion of the female plug sleeve therein.
  • the conductive pin is operable to conductively connect to a conductive lead of the complementary plug end with insertion of the female plug sleeve therein.
  • FIG. 1 is an illustration of a cross-sectional view of a submersible pump system according to one embodiment of the present invention
  • FIG. 2 is an illustration of a view of a power plug system according to another embodiment of the present invention.
  • FIG. 3 is an illustration of a view of an interconnected male plug end and female plug end of a power plug system according to another embodiment of the present invention
  • FIG. 4 is an illustration of a cross-sectional view of a male plug end and a female plug end of a power plug system according to another embodiment of the present invention
  • FIG. 5 is an illustration of a cross-sectional view of a power plug system according to another embodiment of the present invention.
  • FIG. 6 is an illustration of a magnified view of the embodiment of the power plug system illustrated in FIG. 5 .
  • embodiments of the present invention relate generally to a submersible pump system 10 that generally comprises a submersible pump 12 , a submersible motor 14 , a drive shaft 16 and a power plug system 18 .
  • the submersible pump 12 may be any conventional or yet to be developed submersible pump operable to perform for the purposes described herein.
  • the submersible pump 12 generally is any pump operable when submersed in a liquid 7 , such as in a well 8 , and operable to propel at least a portion of the liquid into which the pump 12 is submersed upwards to a higher surface.
  • the pump 12 may form a deep-well submersible (DWS) pumping system (also referred to as electric submersible pump (ESP)); such pumps are especially useful in extracting valuable resources such as oil, gas and water from deep well geological formations.
  • DWS pump unit can be used to retrieve geothermal resources, such as hot water, from significant subterranean depths.
  • the generally centrifugal pump 12 and motor 14 are axially aligned with one another and oriented vertically in the well. More particularly, the motor 14 is situated at the lower end of the system 10 , and drives one or more pumps 12 arranged in stages mounted above.
  • the submersible motor 14 also may be any conventional or yet to be developed submersible motor operable to perform for the purposes described herein.
  • the submersible motor 14 generally is any motor operable when submersed in a liquid and operable to drive the submersible pump 14 in propelling the liquid to the higher surface. More particularly, the submersible motor 14 comprises at least one stator that drives rotation of at least one rotor.
  • the drive shaft 16 which also may be any conventional or yet to be developed drive shaft operable to perform for the purposes described herein, connects the submersible motor 14 and the submersible pump 12 . Rotation of the rotor by the stator in the submersible motor 14 rotates the drive shaft 16 , which drives the submersible pump 12 and the resultant propulsion of the liquid.
  • the power plug system 18 provides connectivity for the electric power necessary for operation of the submersible motor 14 .
  • the motor 14 is an induction motor (for example, a squirrel-cage motor) that includes a rotor and stator that operate by induction motor and related electromagnetic principles well-known to those skilled in the art. Electric current is provided to the motor 14 from a power line or related source through a cable made from copper or a related electrically-conductive material.
  • DWS pumping systems are relatively inaccessible (often completely submerged at distances between about 400 and 700 meters beneath the earth's surface), they must be able to run for extended periods without requiring maintenance. Such extended operating times are especially hard on the electrical connectors, where high temperature, pressure and often vibratory environments may adversely impact a secure connection between an external power source (such as line power) and motor 14 used to power the pump 12 .
  • the embodiments of the present invention also relate generally to the power plug systems 18 , which may include seals to radially set positional relationships of various components of the plug system 18 , but also establish a connection between male and female plug ends of the plug system 18 .
  • An axial sealing of a connection between male and female plug ends generally is provided with compressing the plug ends against each other to provide an electrical connection.
  • Axial sealing generally is insufficient to substantially prevent fluid leakage between connected plug ends, particularly in high pressure environments where fluid may seep or otherwise advance at the point of connection between the two plug ends and between various respective components thereof, thereby interfering with conduction and operation of the plug system 18 .
  • plug system 18 This radial sealing and connection between the male and female plug ends supplements the axial sealing, thereby substantially preventing fluid leakage into the plug system 18 .
  • the radial sealing can withstand a pressure of about 50 bar.
  • radial sealing lengthens the operating life of the plug system 18 and expands the environmental realms in which the plug system 18 may function with a desirable reliability and durability.
  • the plug system 18 may be used not only in both non-submersed and submersed environments, but also under one or both of high temperature (e.g., at least about 160° C.) and high pressure (e.g., at least about 50 bar) environmental conditions.
  • the plug system 18 comprises an electrically conductive cable 20 , a male plug end 22 and a female plug end 24 .
  • the present inventors also contemplate embodiments in which the cable 20 is not included as a component of the plug system 18 .
  • the plug system 18 also comprises numerous seals that provide radial sealing to at least one of components of the male plug end 22 , female plug end 24 and an interconnection between them.
  • the seals may comprise at least one of o-rings, gaskets, elastomeric washers, or other related sealing devices.
  • the seals are generally made from one or more materials durable in high temperature and/or high pressure environments.
  • the seals may possess a resiliency sufficient to substantially withstand degradation in temperatures of at least about 160° C. and pressures of at least about 50 bar.
  • the electrically conductive cable 20 may be any conventional submersible electrically conductive cable known in the art.
  • the cable 20 generally is any cable comprising a conductive lead 28 enclosed in an insulative coating 30 or housing.
  • the cable comprises a flat power cable.
  • the cable 20 may be operable to conduct an electric current from a power source, generally above a ground surface, to the submersible motor 14 positioned beneath the ground surface in a well.
  • the male plug end 22 comprises a housing 32 and a conductive sleeve 34 .
  • the housing 32 is operable to receive an end portion 36 of the cable 20 and to conduct the electric current provided by the cable 20 to the conductive sleeve 34 .
  • the housing 32 of the male plug end 22 generally comprises an external shell 38 , a cable receiver 40 , an insulative sleeve 42 and a cable receptacle 44 .
  • the cable receiver 40 is positioned at an end of the male plug end 22 opposite of the conductive sleeve 34 .
  • the cable receiver 40 generally is positioned partially internal to the external shell 38 and may be radially sealed therein via cable receiver seal 43 of the plurality of seals to substantially prevent fluid leakage between the external shell 38 and the cable receiver 40 .
  • the cable receiver 40 generally is operable to receive the end portion 36 of the cable 20 and guide it toward the conductive sleeve 34 .
  • the end portion 36 of the cable 20 may be radially sealed within the housing 32 , in particular, the cable receiver 40 , via cable seal 45 .
  • the end portion 36 of the cable 20 may be radially sealed within the housing 32 in a substantially linear, strain-relieved manner to reduce fatigue of the cable 20 and to enhance the operating life of the cable 20 and thus, the plug system 18 .
  • the insulative sleeve 42 of the male plug end housing 32 generally is positioned inside of the external shell 38 and partially inserts into the cable receiver 40 .
  • An insulative sleeve seal 47 of the plurality of seals may be provided at, or near, an area of insertion of the insulative sleeve 42 into the cable receiver 40 to prevent fluid leakage therebetween. As such, the insulative sleeve 42 may be radially sealed within the cable receiver 40 via the insulative sleeve seal 47 .
  • the conductive receptacle 44 is positioned internally to the insulative sleeve 42 and is operable to electrically connect to the conductive lead 28 of the cable 20 . More particularly, the insulative sleeve 42 guides the end portion 36 of the cable 20 from the cable receiver 40 to the cable receptacle 44 . The conductive receptacle 44 receives and connects to the conductive lead 28 exposed from the insulative coating 30 of the cable 20 and is also conductively connected to the conductive sleeve 34 so that the conductive receptacle 44 conducts the electric current from the conductive lead 28 of the cable 20 to the conductive sleeve 34 .
  • the conductive sleeve 34 is positioned internally to the insulative sleeve 42 and the external shell 38 .
  • the portion 39 of the external shell 38 covering the conductive sleeve 34 is configured to insert into the female plug end 24 so that the conductive sleeve 34 may insert therein and conductively connect to the female plug end 24 .
  • the female plug end 24 comprises a housing 46 , a conductive pin 48 , a contact spring 50 and a female plug sleeve 52 .
  • the housing 46 comprises an external shell 54 and a sleeve receptacle 56 .
  • the female plug sleeve 52 is positioned internally to the external shell 54 of the housing 46 and may be radially sealed within the external shell 54 with an external shell seal 53 of the numerous seals to substantially prevent fluid leakage therebetween.
  • the conductive pin 48 is positioned internally to the female plug sleeve 52 and may be radially sealed within the female plug sleeve 52 via conductive pin seal 55 of the plurality of seals.
  • the sleeve receptacle 56 of the housing 46 of the female plug end 24 generally is defined by the external shell 54 , the conductive pin 48 , and the female plug sleeve 52 .
  • the sleeve receptacle 56 generally comprises a configuration complementary to those of the conductive sleeve 34 and the portion 39 of the external shell 38 covering it.
  • the conductive sleeve 34 is radially sealable within the sleeve receptacle 56 via plug end seal 57 of the plurality of seals with insertion of the conductive sleeve 34 into the sleeve receptacle 56 such that the male and female plug ends 22 , 24 are interconnected.
  • the plug end seal 57 provides a radial sealing and substantially prevents fluid leakage between the male plug end 22 and the female plug end 24 when interconnected.
  • the portion 39 of the external shell 38 insertable into the sleeve receptacle 56 comprises a plug end seal 57 provided to an exterior surface thereof.
  • the external shell 38 is radially sealable within the sleeve receptacle 56 via the plug end seal 57 .
  • the sleeve receptacle 56 is operable to guide the conductive sleeve 34 of the male plug end 22 over the conductive pin 48 of the female plug end 24 with insertion of the conductive sleeve 34 into the sleeve receptacle 56 .
  • the conductive pin 48 is positioned such that it extends into both the sleeve receptacle 56 and the female plug sleeve 52 .
  • the conductive sleeve 34 With insertion into the sleeve receptacle 56 , the conductive sleeve 34 is operable to conductively connect to the conductive pin 48 so that the electric current is conducted from the male plug end 22 to the female plug end 24 .
  • the contact spring 50 of the female plug end 24 is operable to enhance conduction between the conductive sleeve 34 and the conductive pin 48 when conductively connected.
  • the contact spring 50 is provided to an exterior surface of the conductive pin 48 .
  • At least a portion of the contact spring 50 generally is elevated relative to the exterior surface of the conductive pin 48 so as to engage an interior surface of the conductive sleeve 34 with insertion of the conductive sleeve 34 into the sleeve receptacle 56 and over the conductive pin 48 .
  • the contact spring 50 may be provided to the interior surface of the conductive sleeve 34 and elevated relative thereto so as to engage the exterior surface of the conductive pin 48 with insertion of the conductive sleeve 34 into the sleeve receptacle 56 and over the conductive pin 48 .
  • the contact spring 50 generally is made up of one or more highly conductive materials to enhance electrical connectivity.
  • the contact spring 50 comprises a silver-coated metal spring.
  • the female plug sleeve 52 is positioned internally to the external shell 54 of the housing 46 of the female plug end 24 , a portion 58 of the female plug sleeve 52 is exposed from the external shell 54 .
  • This exposed portion 58 of the female plug sleeve 52 is configured to insert into a plug end 60 complementary thereto.
  • This complementary plug end 60 may be any conventional or yet to be developed plug end that is operable to perform as described herein.
  • the exposed portion 58 of the female plug sleeve 52 may comprise a female plug sleeve seal 59 of the plurality of seals.
  • the female plug sleeve seal 59 generally is provided to an exterior surface of the female plug sleeve 52 .
  • the female plug sleeve 52 may be radially sealed within the complementary plug end 60 via the female plug sleeve seal 59 .
  • the conductive pin 48 is operable to conductively connect to a conductive lead 62 of the complementary plug end 60 with insertion of the female plug sleeve 52 therein. Thereby, electric current from the cable 20 may be conducted through interconnected male and female plug ends 22 , 24 to the complementary plug end 60 .
  • the complementary plug end 60 generally is integrated, conductively connected component of a submersible motor 14 of a submersible pump system 10 .
  • a cable 20 of a plug system 18 of the pump system 10 may conduct an electric current from a power source, generally located above a ground surface, to interconnected male and female plug ends 22 , 24 of the plug system 18 , generally located beneath the ground surface, through the complementary plug end 60 , and to the submersible motor 14 to power operation thereof.
  • At least one of the male and female plug ends 22 , 24 may be securable to the housing 64 of the complementary plug end 60 to releasably secure a connection of the female plug end 24 to the complementary plug end 60 .
  • one or more screws 66 may pass through apertures in the housing 46 of the female plug end 24 and thread into complementary apertures in the housing 64 of the complementary plug end 60 .
  • the male and female plug ends 22 , 24 may be configured to secure to the other of the male and female plug end 22 , 24 with insertion of the male plug end 22 of the first into the female plug end 24 of the second.
  • the male and female plug ends 22 , 24 may respectively comprise one or more apertures 68 , 70 that substantially align with insertion of the male plug end 22 into the female plug end 24 .
  • the plug system 18 may comprise a pin 72 insertable into the aligned apertures 68 , 70 so as to secure the connection between the male and female plug ends 22 , 24 .
  • the female 24 and male 22 plug parts can also be fixed by screws at the left and right side of the plug system 18 .
  • the pin 72 may be withdrawn from the aligned apertures 68 , 70 to permit a disconnection of the plug ends 22 , 24 when desired.
  • the components forming the plug system 18 may be made from materials durable in environments having at least one of high temperature and high pressure (such as at least about 160° C. and or pressures of at least about 50 bar).
  • high temperature and high pressure such as at least about 160° C. and or pressures of at least about 50 bar.
  • at least the external shells 38 , 54 of the male plug end 22 and the female plug end 24 may be configured at least partially of high grade stainless steel.
  • FIGS. 2 through 6 are respectively operable to conduct one or more electric currents between three cables 20 of the plug system 18 and three conductive leads 62 of the complementary plug end 60
  • the present inventors contemplate that embodiments of the plug system 18 may be operable to conduct electric current between any number of cables 20 and any number of conductive leads 62 , whether greater or lesser than that illustrated in the drawings.
  • the number of cables 20 and conductive leads 62 provided may determined by or associated with the amount of electric current required or desired to power a motor to which the plug system 18 is conductively connected.
  • references herein of a component of an embodiment being “configured” in a particular way or to embody a particular property, or function in a particular manner are structural recitations as opposed to recitations of intended use. More specifically, the references herein to the manner in which a component is “configured” denotes an existing physical condition of the component and, as such, is to be taken as a definite recitation of the structural characteristics of the component.

Abstract

A power plug system for use with a submersible pump. One embodiment comprises a male plug end, a female plug end, and a plurality of seals. The male plug end comprises a housing and a conductive sleeve. The housing receives an electrically conductive cable and conducts an electric current from the cable to the conductive sleeve. The female plug end comprises a housing, a conductive pin, and a female plug sleeve. The conductive sleeve is radially sealable within the female plug end through a plug end seal of the plurality of seals. The conductive sleeve and the conductive pin are conductively connectable. The female plug sleeve is radially sealable within a complementary plug end through a female plug sleeve seal of the plurality of seals. The conductive pin conductively connects to a conductive lead of the complementary plug end with insertion of the female plug sleeve therein.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation of U.S. patent application Ser. No. 12/689,675, filed Jan. 19, 2010 (now allowed).
BACKGROUND
Embodiments of the present invention relate generally to power plug systems and, more particularly, to submersible pump systems comprising power plug systems.
Submersible pumps are driven by submersible motors and generally are operable in a variety of applications in which typically both the pump and the motor are completely submersed in a well liquid. The motor for the submersible pump generally is placed in the well below the pump section. To connect the motor to a power source located on the ground surface above the well, a power plug system having a power cable and plug ends is needed. Conventional power plug systems, however, generally are not applicable to deep well environments where high temperatures and high pressures typically are present.
More particularly, for deep well applications, the connection between interconnecting plug ends of a power plug system and their connection to a motor must be robust, secure, and substantially leak-poof. The connection between plug ends also should be configured for easy handling on site, particularly during the installation of the submersible pump system in the well. Further, a connection between a power cable and a plug end (generally via an end splice) should be sufficiently tight so as not to be compromised in ambient conditions in a well and/or inside the motor.
Generally, conventional power plug systems are not configured to maintain a secure, leak-proof electrical connection under deep well conditions. For example, typically, plug ends of conventional power plug systems are sealed only with an axial sealing that is provided with a connection of corresponding plug ends. Under deep well conditions, however, axial sealing alone generally is insufficient to prevent fluid leakage between connected plug ends. Further, the materials from which conventional power plug systems generally are configured and the configurations of the plug ends generally are not suitable for operation in deep well environments where high temperatures and high pressures can degrade and promote failure of the plug systems.
In addition, conventional power plug systems generally are not easy to assemble and generally do not have a modular configuration so that the plug systems and ends may interconnect in a series. As such, based on the foregoing, there exists a need for a power plug system suitable for operation in deep well and that is easy to assemble and has a modular configuration.
SUMMARY
It is against the above background that embodiments of the present invention provide power plug systems suitable for use with deep well submersible pump systems, particularly those operable in high temperature and high pressure environments. The embodiments provide an easy handling power plug system for connecting power cables in a substantially linear, strain-relieved manner. The power plug system is operable in high temperature and high pressure environments and may be designed for a voltage of at least about 5,000 volts and a current of at least about 250 amperes. The materials forming the power plug system generally are durable and resilient in high temperatures and high pressures of the motor cooling liquid inside of the submersible motor and of the well fluid in which the submersible pump system may be submersed.
Further, the power plug system comprises a modular configuration and, as such, may form not only a plug-connection between two power cables (cable extension), but also a series of two or more interconnected corresponding plug systems that may span to connect a power source located above a ground surface proximal to the well head and a well-submersed motor of a DWS pump system. For example, a male plug end of a power plug system, as described herein, may be connected to a female plug end of a well head plug or directly to a power source. The female plug end of the power plug system, as described herein, opposite of the male plug end may be connected to a male plug end of a second power plug system. This configuration may continue in series indefinitely until the female plug end of the last power plug system in the series may be connected to a male plug end of a submersible motor.
In addition, the plug ends of the power plug system may comprise a contact spring to enhance contact between male and female plug ends. Also, the power plug system may further comprise a seal or gasket to provide a radial sealing to connected plug ends in addition to the axial sealing typically provided with interconnection. Thereby, the seal or gasket further secures a connection between plug ends and provides a reliable seal between connected plug ends to avoid assembling errors and/or fluid leakage, particularly in high temperature and high pressure conditions.
In accordance with one embodiment, a power plug system comprises an electrically conductive cable, a male plug end, a female plug end and a plurality of seals. The male plug end comprises a housing and a conductive sleeve. The housing is operable to receive an end portion of the cable and to conduct an electric current from the cable to the conductive sleeve. The end portion of the cable is radially sealable within the housing via a cable seal of the plurality of seals. The female plug end comprises a housing, a conductive pin, a contact spring, and a female plug sleeve. The conductive sleeve of the male plug end is radially sealable within the housing of the female plug end via a plug end seal of the plurality of seals with insertion of the conductive sleeve into the housing of the female plug end. The conductive pin is radially sealed within the female plug sleeve via a conductive pin seal of the plurality of seals and is positioned to insert into the conductive sleeve. The contact spring is operable to enhance conduction between the conductive sleeve and the conductive pin. A female plug sleeve seal of the plurality of seals is provided to an exterior surface of the female plug sleeve that is operable to radially seal the female plug sleeve within a complementary plug end with insertion of the female plug sleeve therein. The conductive pin is operable to conductively connect to a conductive lead of the complementary plug end with insertion of the female plug sleeve therein.
Optionally, the housing of the male plug end may comprise an external shell, a cable receiver and an insulative sleeve. The cable receiver may be operable to receive the end portion of the cable and may be radially sealed within the external shell via a cable receiver seal of the plurality of seals. The insulative sleeve may be operable to guide the end portion of the cable to the conductive sleeve and may be radially sealed within the cable receiver via an insulative sleeve seal of the plurality of seals. The housing of the male plug end further may comprise a conductive receptacle positioned internally to the insulative sleeve and may be operable to conductively connect to a conductive lead of the cable. The conductive receptacle may be conductively connected to the conductive sleeve. The conductive sleeve may be positioned internally to the insulative sleeve and operable to conductively connect to the conductive pin of the female plug end.
Further, the housing of the female plug end may comprise an external shell and a sleeve receptacle. The female plug sleeve may be radially sealed within the external shell through an external shell seal of the plurality of seals. A portion of the female plug sleeve may be exposed from the external shell of the housing of the female plug end for insertion into the complementary plug end. The female plug sleeve seal may be provided to the exposed portion of the female plug sleeve and operable to radially seal the exposed portion within the complementary plug end. The sleeve receptacle may be operable to guide the conductive sleeve of the male plug end over the conductive pin of the female plug end with insertion of the conductive sleeve into the sleeve receptacle. The conductive pin may extend into both the sleeve receptacle and the female plug sleeve.
Further, optionally, the contact spring may comprise a silver-coated metal spring. Also, the plurality of seals may respectively comprise at least one of an o-ring, a gasket, and an elastomeric washer. The plurality of seals may provide a radial sealing sufficient to substantially withstand a pressure of at least about 50 bar. The cable may comprise a flat power cable radially sealed within the housing in a substantially linear, strain-relieved manner. The plug system may be configured of one or more materials comprising a resiliency sufficient to substantially withstand degradation in temperatures of at least about 160° C.
In accordance with another embodiment, a power plug system comprises a male plug end, a female plug end, and a plurality of seals. The male plug end comprises a housing and a conductive sleeve. The housing is operable to receive an end portion of an electrically conductive cable and to conduct an electric current from the cable to the conductive sleeve. The female plug end comprises a housing, a conductive pin, a contact spring, and a female plug sleeve. The conductive sleeve of the male plug end is radially sealable within the housing of the female plug end via a plug end seal of the plurality of seals with insertion of the conductive sleeve into the housing of the female plug end. The conductive sleeve and the conductive pin are operable to conductively connect with insertion of the conductive sleeve into the housing of the female plug end. The contact spring is operable to enhance conduction between the conductive sleeve and the conductive pin. A female plug sleeve seal of the plurality of seals is provided to an exterior surface of the female plug sleeve that is operable to radially seal the female plug sleeve within a complementary plug end with insertion of the female plug sleeve therein. The conductive pin is operable to conductively connect to a conductive lead of the complementary plug end with insertion of the female plug sleeve therein.
In accordance with yet another embodiment, a submersible pump system comprises a submersible pump, a submersible motor and a power plug system. The plug system is operable to conduct an electric current to the submersible motor for operation of the submersible pump. The plug system comprises an electrically conductive cable, a male plug end, a female plug end, and a plurality of seals. The male plug end comprises a housing and a conductive sleeve. The housing is operable to receive an end portion of the cable and to conduct the electric current from the cable to the conductive sleeve. The female plug end comprises a housing, a conductive pin, a contact spring, and a female plug sleeve. The conductive sleeve of the male plug end is radially sealable within the housing of the female plug end via a plug end seal of the plurality of seals with insertion of the conductive sleeve into the housing of the female plug end. The conductive sleeve and the conductive pin are operable to conductively connect with insertion of the conductive sleeve into the housing of the female plug end. The contact spring is operable to enhance conduction between the conductive sleeve and the conductive pin. A female plug sleeve seal of the plurality of seals is provided to an exterior surface of the female plug sleeve that is operable to radially seal the female plug sleeve within a complementary plug end of the submersible motor with insertion of the female plug sleeve therein. The conductive pin is operable to conductively connect to a conductive lead of the complementary plug end with insertion of the female plug sleeve therein.
BRIEF DESCRIPTION OF THE DRAWINGS
The following detailed description of specific embodiments can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
FIG. 1 is an illustration of a cross-sectional view of a submersible pump system according to one embodiment of the present invention;
FIG. 2 is an illustration of a view of a power plug system according to another embodiment of the present invention;
FIG. 3 is an illustration of a view of an interconnected male plug end and female plug end of a power plug system according to another embodiment of the present invention;
FIG. 4 is an illustration of a cross-sectional view of a male plug end and a female plug end of a power plug system according to another embodiment of the present invention;
FIG. 5 is an illustration of a cross-sectional view of a power plug system according to another embodiment of the present invention; and
FIG. 6 is an illustration of a magnified view of the embodiment of the power plug system illustrated in FIG. 5.
The embodiments set forth in the drawings are illustrative in nature and are not intended to be limiting of the embodiments defined by the claims. Moreover, individual aspects of the drawings and the embodiments will be more fully apparent and understood in view of the detailed description that follows.
DETAILED DESCRIPTION
Referring initially to FIG. 1, embodiments of the present invention relate generally to a submersible pump system 10 that generally comprises a submersible pump 12, a submersible motor 14, a drive shaft 16 and a power plug system 18. The submersible pump 12 may be any conventional or yet to be developed submersible pump operable to perform for the purposes described herein. The submersible pump 12 generally is any pump operable when submersed in a liquid 7, such as in a well 8, and operable to propel at least a portion of the liquid into which the pump 12 is submersed upwards to a higher surface. In one particular form, the pump 12 may form a deep-well submersible (DWS) pumping system (also referred to as electric submersible pump (ESP)); such pumps are especially useful in extracting valuable resources such as oil, gas and water from deep well geological formations. In one particular operation, a DWS pump unit can be used to retrieve geothermal resources, such as hot water, from significant subterranean depths. In the configuration depicted in FIG. 1, the generally centrifugal pump 12 and motor 14 are axially aligned with one another and oriented vertically in the well. More particularly, the motor 14 is situated at the lower end of the system 10, and drives one or more pumps 12 arranged in stages mounted above.
The submersible motor 14 also may be any conventional or yet to be developed submersible motor operable to perform for the purposes described herein. The submersible motor 14 generally is any motor operable when submersed in a liquid and operable to drive the submersible pump 14 in propelling the liquid to the higher surface. More particularly, the submersible motor 14 comprises at least one stator that drives rotation of at least one rotor. The drive shaft 16, which also may be any conventional or yet to be developed drive shaft operable to perform for the purposes described herein, connects the submersible motor 14 and the submersible pump 12. Rotation of the rotor by the stator in the submersible motor 14 rotates the drive shaft 16, which drives the submersible pump 12 and the resultant propulsion of the liquid. The power plug system 18 provides connectivity for the electric power necessary for operation of the submersible motor 14. In one form, the motor 14 is an induction motor (for example, a squirrel-cage motor) that includes a rotor and stator that operate by induction motor and related electromagnetic principles well-known to those skilled in the art. Electric current is provided to the motor 14 from a power line or related source through a cable made from copper or a related electrically-conductive material.
Because DWS pumping systems are relatively inaccessible (often completely submerged at distances between about 400 and 700 meters beneath the earth's surface), they must be able to run for extended periods without requiring maintenance. Such extended operating times are especially hard on the electrical connectors, where high temperature, pressure and often vibratory environments may adversely impact a secure connection between an external power source (such as line power) and motor 14 used to power the pump 12. The embodiments of the present invention also relate generally to the power plug systems 18, which may include seals to radially set positional relationships of various components of the plug system 18, but also establish a connection between male and female plug ends of the plug system 18. An axial sealing of a connection between male and female plug ends generally is provided with compressing the plug ends against each other to provide an electrical connection. Axial sealing, however, generally is insufficient to substantially prevent fluid leakage between connected plug ends, particularly in high pressure environments where fluid may seep or otherwise advance at the point of connection between the two plug ends and between various respective components thereof, thereby interfering with conduction and operation of the plug system 18.
This radial sealing and connection between the male and female plug ends supplements the axial sealing, thereby substantially preventing fluid leakage into the plug system 18. Thus, in turn enables plug system 18 to substantially withstand significant pressures typically present in deep well environments. For example, in one embodiment, the radial sealing can withstand a pressure of about 50 bar. In addition, radial sealing lengthens the operating life of the plug system 18 and expands the environmental realms in which the plug system 18 may function with a desirable reliability and durability. For example, the plug system 18 may be used not only in both non-submersed and submersed environments, but also under one or both of high temperature (e.g., at least about 160° C.) and high pressure (e.g., at least about 50 bar) environmental conditions.
As shown in FIGS. 2 through 6, the plug system 18 comprises an electrically conductive cable 20, a male plug end 22 and a female plug end 24. The present inventors also contemplate embodiments in which the cable 20 is not included as a component of the plug system 18. As mentioned above, the plug system 18 also comprises numerous seals that provide radial sealing to at least one of components of the male plug end 22, female plug end 24 and an interconnection between them. The seals may comprise at least one of o-rings, gaskets, elastomeric washers, or other related sealing devices. In addition, the seals are generally made from one or more materials durable in high temperature and/or high pressure environments. For example, the seals may possess a resiliency sufficient to substantially withstand degradation in temperatures of at least about 160° C. and pressures of at least about 50 bar.
The electrically conductive cable 20 may be any conventional submersible electrically conductive cable known in the art. The cable 20 generally is any cable comprising a conductive lead 28 enclosed in an insulative coating 30 or housing. For example, in one embodiment, the cable comprises a flat power cable. The cable 20 may be operable to conduct an electric current from a power source, generally above a ground surface, to the submersible motor 14 positioned beneath the ground surface in a well.
The male plug end 22 comprises a housing 32 and a conductive sleeve 34. The housing 32 is operable to receive an end portion 36 of the cable 20 and to conduct the electric current provided by the cable 20 to the conductive sleeve 34. More particularly, the housing 32 of the male plug end 22 generally comprises an external shell 38, a cable receiver 40, an insulative sleeve 42 and a cable receptacle 44. The cable receiver 40 is positioned at an end of the male plug end 22 opposite of the conductive sleeve 34. Further, the cable receiver 40 generally is positioned partially internal to the external shell 38 and may be radially sealed therein via cable receiver seal 43 of the plurality of seals to substantially prevent fluid leakage between the external shell 38 and the cable receiver 40. The cable receiver 40 generally is operable to receive the end portion 36 of the cable 20 and guide it toward the conductive sleeve 34. The end portion 36 of the cable 20 may be radially sealed within the housing 32, in particular, the cable receiver 40, via cable seal 45. The end portion 36 of the cable 20, particularly when the cable 20 comprises a flat power cable, may be radially sealed within the housing 32 in a substantially linear, strain-relieved manner to reduce fatigue of the cable 20 and to enhance the operating life of the cable 20 and thus, the plug system 18.
The insulative sleeve 42 of the male plug end housing 32 generally is positioned inside of the external shell 38 and partially inserts into the cable receiver 40. An insulative sleeve seal 47 of the plurality of seals may be provided at, or near, an area of insertion of the insulative sleeve 42 into the cable receiver 40 to prevent fluid leakage therebetween. As such, the insulative sleeve 42 may be radially sealed within the cable receiver 40 via the insulative sleeve seal 47.
The conductive receptacle 44 is positioned internally to the insulative sleeve 42 and is operable to electrically connect to the conductive lead 28 of the cable 20. More particularly, the insulative sleeve 42 guides the end portion 36 of the cable 20 from the cable receiver 40 to the cable receptacle 44. The conductive receptacle 44 receives and connects to the conductive lead 28 exposed from the insulative coating 30 of the cable 20 and is also conductively connected to the conductive sleeve 34 so that the conductive receptacle 44 conducts the electric current from the conductive lead 28 of the cable 20 to the conductive sleeve 34.
The conductive sleeve 34 is positioned internally to the insulative sleeve 42 and the external shell 38. The portion 39 of the external shell 38 covering the conductive sleeve 34 is configured to insert into the female plug end 24 so that the conductive sleeve 34 may insert therein and conductively connect to the female plug end 24. More particularly, the female plug end 24 comprises a housing 46, a conductive pin 48, a contact spring 50 and a female plug sleeve 52. The housing 46 comprises an external shell 54 and a sleeve receptacle 56. The female plug sleeve 52 is positioned internally to the external shell 54 of the housing 46 and may be radially sealed within the external shell 54 with an external shell seal 53 of the numerous seals to substantially prevent fluid leakage therebetween. Further, the conductive pin 48 is positioned internally to the female plug sleeve 52 and may be radially sealed within the female plug sleeve 52 via conductive pin seal 55 of the plurality of seals.
The sleeve receptacle 56 of the housing 46 of the female plug end 24 generally is defined by the external shell 54, the conductive pin 48, and the female plug sleeve 52. The sleeve receptacle 56 generally comprises a configuration complementary to those of the conductive sleeve 34 and the portion 39 of the external shell 38 covering it. The conductive sleeve 34 is radially sealable within the sleeve receptacle 56 via plug end seal 57 of the plurality of seals with insertion of the conductive sleeve 34 into the sleeve receptacle 56 such that the male and female plug ends 22, 24 are interconnected. Thus, the plug end seal 57 provides a radial sealing and substantially prevents fluid leakage between the male plug end 22 and the female plug end 24 when interconnected. For example, in one embodiment, shown in FIG. 4, the portion 39 of the external shell 38 insertable into the sleeve receptacle 56 comprises a plug end seal 57 provided to an exterior surface thereof. Thus, with insertion of the portion 39 of the external shell 38 into the sleeve receptacle 56, the external shell 38 is radially sealable within the sleeve receptacle 56 via the plug end seal 57.
Further, the sleeve receptacle 56 is operable to guide the conductive sleeve 34 of the male plug end 22 over the conductive pin 48 of the female plug end 24 with insertion of the conductive sleeve 34 into the sleeve receptacle 56. The conductive pin 48 is positioned such that it extends into both the sleeve receptacle 56 and the female plug sleeve 52. With insertion into the sleeve receptacle 56, the conductive sleeve 34 is operable to conductively connect to the conductive pin 48 so that the electric current is conducted from the male plug end 22 to the female plug end 24.
The contact spring 50 of the female plug end 24 is operable to enhance conduction between the conductive sleeve 34 and the conductive pin 48 when conductively connected. Generally, the contact spring 50 is provided to an exterior surface of the conductive pin 48. At least a portion of the contact spring 50 generally is elevated relative to the exterior surface of the conductive pin 48 so as to engage an interior surface of the conductive sleeve 34 with insertion of the conductive sleeve 34 into the sleeve receptacle 56 and over the conductive pin 48. The present inventors also contemplate, however, that the contact spring 50 may be provided to the interior surface of the conductive sleeve 34 and elevated relative thereto so as to engage the exterior surface of the conductive pin 48 with insertion of the conductive sleeve 34 into the sleeve receptacle 56 and over the conductive pin 48. The contact spring 50 generally is made up of one or more highly conductive materials to enhance electrical connectivity. For example, in one embodiment, the contact spring 50 comprises a silver-coated metal spring.
While, as mentioned above, the female plug sleeve 52 is positioned internally to the external shell 54 of the housing 46 of the female plug end 24, a portion 58 of the female plug sleeve 52 is exposed from the external shell 54. This exposed portion 58 of the female plug sleeve 52 is configured to insert into a plug end 60 complementary thereto. This complementary plug end 60 may be any conventional or yet to be developed plug end that is operable to perform as described herein. The exposed portion 58 of the female plug sleeve 52 may comprise a female plug sleeve seal 59 of the plurality of seals. The female plug sleeve seal 59 generally is provided to an exterior surface of the female plug sleeve 52. Thus, with insertion of the exposed portion 58 into the complementary plug end 60, the female plug sleeve 52 may be radially sealed within the complementary plug end 60 via the female plug sleeve seal 59. Further, as mentioned above, with the conductive pin 48 extending into the female plug sleeve 52, the conductive pin 48 is operable to conductively connect to a conductive lead 62 of the complementary plug end 60 with insertion of the female plug sleeve 52 therein. Thereby, electric current from the cable 20 may be conducted through interconnected male and female plug ends 22, 24 to the complementary plug end 60.
The complementary plug end 60 generally is integrated, conductively connected component of a submersible motor 14 of a submersible pump system 10. As such, a cable 20 of a plug system 18 of the pump system 10 may conduct an electric current from a power source, generally located above a ground surface, to interconnected male and female plug ends 22, 24 of the plug system 18, generally located beneath the ground surface, through the complementary plug end 60, and to the submersible motor 14 to power operation thereof.
Further, at least one of the male and female plug ends 22, 24 may be securable to the housing 64 of the complementary plug end 60 to releasably secure a connection of the female plug end 24 to the complementary plug end 60. For example, as shown in FIG. 2, one or more screws 66 may pass through apertures in the housing 46 of the female plug end 24 and thread into complementary apertures in the housing 64 of the complementary plug end 60.
In addition, at least one of the male and female plug ends 22, 24 may be configured to secure to the other of the male and female plug end 22, 24 with insertion of the male plug end 22 of the first into the female plug end 24 of the second. For example, as shown in FIGS. 2 through 4, the male and female plug ends 22, 24 may respectively comprise one or more apertures 68, 70 that substantially align with insertion of the male plug end 22 into the female plug end 24. The plug system 18 may comprise a pin 72 insertable into the aligned apertures 68, 70 so as to secure the connection between the male and female plug ends 22, 24. Optionally, the female 24 and male 22 plug parts can also be fixed by screws at the left and right side of the plug system 18. The pin 72 may be withdrawn from the aligned apertures 68, 70 to permit a disconnection of the plug ends 22, 24 when desired.
As discussed above, the components forming the plug system 18 may be made from materials durable in environments having at least one of high temperature and high pressure (such as at least about 160° C. and or pressures of at least about 50 bar). For example, at least the external shells 38, 54 of the male plug end 22 and the female plug end 24 may be configured at least partially of high grade stainless steel.
While the embodiments of the plug system 18 illustrated in FIGS. 2 through 6 are respectively operable to conduct one or more electric currents between three cables 20 of the plug system 18 and three conductive leads 62 of the complementary plug end 60, the present inventors contemplate that embodiments of the plug system 18 may be operable to conduct electric current between any number of cables 20 and any number of conductive leads 62, whether greater or lesser than that illustrated in the drawings. The number of cables 20 and conductive leads 62 provided may determined by or associated with the amount of electric current required or desired to power a motor to which the plug system 18 is conductively connected.
It is noted that recitations herein of a component of an embodiment being “configured” in a particular way or to embody a particular property, or function in a particular manner, are structural recitations as opposed to recitations of intended use. More specifically, the references herein to the manner in which a component is “configured” denotes an existing physical condition of the component and, as such, is to be taken as a definite recitation of the structural characteristics of the component.
It is noted that terms like “generally,” “commonly,” and “typically,” when utilized herein, are not utilized to limit the scope of the claimed embodiments or to imply that certain features are critical, essential, or even important to the structure or function of the claimed embodiments. Rather, these terms are merely intended to identify particular aspects of an embodiment or to emphasize alternative or additional features that may or may not be utilized in a particular embodiment.
For the purposes of describing and defining embodiments herein it is noted that the terms “substantially,” “significantly,” and “approximately” are utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The terms “substantially,” “significantly,” and “approximately” are also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
Having described embodiments of the present invention in detail, and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the embodiments defined in the appended claims. More particularly, although some aspects of embodiments of the present invention may be identified herein as preferred or particularly advantageous, it is contemplated that the embodiments of the present invention are not necessarily limited to these aspects.

Claims (17)

1. A power plug system configured to electrically couple a submersible pump to a source of power, said system comprising:
a first plug end defining a male plug and comprising a housing defining an external shell, a cable receiver cooperative with said housing, an insulative sleeve, a conductive receptacle and a conductive sleeve disposed within said first plug end housing;
a second plug end defining a male plug and comprising a housing and a conductive pin disposed within said second plug end housing; and
a plurality of seals cooperative with said first and second plug ends such that upon electrical connection established between said first and second plug ends and a cable configured to convey electric current from said source of power, radial sealing is formed between said cable and a corresponding one of said first and second plug ends, while additional sealing is formed between each of said housings and respective ones of said conductive sleeve and said conductive pin such that said system operates to substantially prohibit fluid leakage into said system once placed into a submerged environment.
2. The system of claim 1, wherein said cable receiver is operable to receive the end portion of said cable and is radially sealed within said external shell through a cable receiver seal.
3. The system of claim 1, wherein said insulative sleeve is operable to guide an end portion of said cable to said conductive sleeve and is radially sealed within said cable receiver through an insulative sleeve seal.
4. The system of claim 1, wherein said conductive receptacle positioned internally to said insulative sleeve is operable to establish electrical connectivity between said cable and said first plug end housing.
5. The system of claim 1, wherein said second plug end comprises an external shell and a sleeve receptacle.
6. The system of claim 5, wherein said second plug end is radially sealable within said external shell through an external shell seal.
7. The system of claim 5, wherein said conductive sleeve is radially sealable within said sleeve receptacle via a plug end seal that forms between each of said housings.
8. The system of claim 5, wherein said second plug end further comprises a contact spring coupled to said conductive pin.
9. The system of claim 8, wherein said contact spring comprises a silver-coated metal spring.
10. The system of claim 5, wherein said conductive pin is radially sealable within said second plug end via a conductive pin seal and positioned to insert into said conductive sleeve.
11. The system of claim 1, wherein an exposed portion of said second plug end includes a series of seals formed along a length thereof.
12. The system of claim 1, wherein said conductive sleeve and said conductive pin are operable to conductively connect with one another upon coupling of said first and second plug ends.
13. The system of claim 1, wherein said plurality of seals respectively comprise at least one of an o-ring, a gasket and an elastomeric washer.
14. The system of claim 1, wherein said conductive pin is operable to conductively connect to a conductive lead of at least one of another plug system and a motor of said submersible pump.
15. The system of claim 1, wherein said cable and a respective one of said first and second plug ends forms a strain-relieving connection therebetween.
16. The system of claim 1, wherein said radial sealing between said cable and a corresponding one of said first and second plugs is formed by a cable seal.
17. A submersible pump system comprising:
a submersible pump; and
a submersible motor configured to electrically connect said pump to a source of electric current, said motor comprising:
a rotor, a stator, a drive shaft rotatably responsive to cooperative movement produced between said rotor and stator from electric current delivered from said source, and a power plug configured to electrically couple said motor to said source, said power plug comprising:
a first plug end defining a male plug and comprising a housing defining an external shell, a cable receiver cooperative with said housing, an insulative sleeve, a conductive receptacle and a conductive sleeve disposed within said housing;
a second plug end defining a male plug and comprising a housing and a conductive pin disposed within said housing; and
a plurality of seals cooperative with said first and second plug ends such that upon electrical connection established between said first and second plug ends and a cable configured to convey electric current from said source of power, radial sealing is formed between said cable and a corresponding one of said first and second plug ends, while additional sealing is formed between each of said housings and respective ones of said conductive sleeve and said conductive pin such that said system operates to substantially prohibit fluid leakage into said system in a submerged environment.
US12/961,710 2010-01-19 2010-12-07 Power plug system for submersible pump system Active US8029317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/961,710 US8029317B2 (en) 2010-01-19 2010-12-07 Power plug system for submersible pump system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/689,675 US7854629B1 (en) 2010-01-19 2010-01-19 Power plug system for submersible pump system
US12/961,710 US8029317B2 (en) 2010-01-19 2010-12-07 Power plug system for submersible pump system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/689,675 Continuation US7854629B1 (en) 2010-01-19 2010-01-19 Power plug system for submersible pump system

Publications (2)

Publication Number Publication Date
US20110176941A1 US20110176941A1 (en) 2011-07-21
US8029317B2 true US8029317B2 (en) 2011-10-04

Family

ID=43333390

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/689,675 Active US7854629B1 (en) 2010-01-19 2010-01-19 Power plug system for submersible pump system
US12/961,710 Active US8029317B2 (en) 2010-01-19 2010-12-07 Power plug system for submersible pump system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/689,675 Active US7854629B1 (en) 2010-01-19 2010-01-19 Power plug system for submersible pump system

Country Status (2)

Country Link
US (2) US7854629B1 (en)
WO (1) WO2011090826A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100215523A1 (en) * 2009-02-26 2010-08-26 Bunji Homma Fuel supply device
US8888105B1 (en) 2013-05-29 2014-11-18 Stephen J. Andrews Mechanical seal system
USD852938S1 (en) 2018-05-07 2019-07-02 S. C. Johnson & Son, Inc. Dispenser
USD853548S1 (en) 2018-05-07 2019-07-09 S. C. Johnson & Son, Inc. Dispenser
USD872245S1 (en) 2018-02-28 2020-01-07 S. C. Johnson & Son, Inc. Dispenser
USD872847S1 (en) 2018-02-28 2020-01-14 S. C. Johnson & Son, Inc. Dispenser
US20200083636A1 (en) * 2017-02-06 2020-03-12 Halliburton Energy Services, Inc. Pothead retaining sleeve system, apparatus and method
USD878538S1 (en) 2018-02-28 2020-03-17 S. C. Johnson & Son, Inc. Dispenser
USD881365S1 (en) 2018-02-28 2020-04-14 S. C. Johnson & Son, Inc. Dispenser

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7854629B1 (en) * 2010-01-19 2010-12-21 Flowserve Management Company Power plug system for submersible pump system
US8664817B2 (en) * 2010-09-13 2014-03-04 Baker Hughes Incorporated Electrical submersible pump system having high temperature insulation materials and buffered lubricant
DE102012110233B4 (en) * 2012-10-26 2023-11-09 Dr. Ing. H.C. F. Porsche Ag Connection device for transmitting high-voltage electricity in the motor vehicle sector
US9431725B2 (en) 2013-12-13 2016-08-30 Asia Connection LLC Water bonding fixture
US9337567B2 (en) * 2014-03-31 2016-05-10 Lear Corporation Seal for an electric terminal
DE102014015148B4 (en) * 2014-10-13 2018-11-29 Sumitomo Wiring Systems, Ltd. Charging connector and method for mounting the same
CN204720532U (en) * 2015-06-18 2015-10-21 东莞鸿爱斯通信科技有限公司 Be applicable to the connector of cavity body filter
CN110024230B (en) * 2016-11-22 2021-07-09 株式会社荏原制作所 Underwater motor and waterproof connector
JP6580548B2 (en) * 2016-12-22 2019-09-25 矢崎総業株式会社 connector
CN106852070B (en) * 2016-12-25 2018-10-30 重庆市永川区华益机械铸造有限责任公司 Foundry furnace cooled socket
EP3454427B1 (en) * 2017-09-12 2021-02-24 Woertz Engineering AG Connection kit, installation kit and electric installation
US10280721B1 (en) 2018-07-27 2019-05-07 Upwing Energy, LLC Artificial lift
US10253606B1 (en) * 2018-07-27 2019-04-09 Upwing Energy, LLC Artificial lift
US10370947B1 (en) 2018-07-27 2019-08-06 Upwing Energy, LLC Artificial lift
US10787873B2 (en) 2018-07-27 2020-09-29 Upwing Energy, LLC Recirculation isolator for artificial lift and method of use
US11686161B2 (en) 2018-12-28 2023-06-27 Upwing Energy, Inc. System and method of transferring power within a wellbore
JP7005118B2 (en) * 2019-07-29 2022-01-21 矢崎総業株式会社 connector
CN216436204U (en) * 2021-11-03 2022-05-03 泰科电子(上海)有限公司 Connector, mating connector and connector assembly
CN114607594A (en) * 2022-03-11 2022-06-10 江苏华频电子科技有限公司 Deep-well pump base

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3294993A (en) 1964-06-18 1966-12-27 Red Jacket Mfg Company Submersible motor with electrical connector assembly
US3604964A (en) 1970-05-20 1971-09-14 Red Jacket Mfg Co Submersible motor connector assembly
US3736548A (en) 1971-07-28 1973-05-29 R Double Electrical coupler
US3795883A (en) 1973-01-02 1974-03-05 Mac Valves Inc Electrical disconnect means
US3952218A (en) 1974-10-29 1976-04-20 Weil-Mclain Co., Inc. Grounded electrical connector for submersible apparatus
CA1107828A (en) 1978-11-13 1981-08-25 Alden W. Shoenleben Submersible electric motor and electrical connector assembly
US4460295A (en) 1981-02-25 1984-07-17 Compagnie Francaise Des Petroles Submersible connector
US4859200A (en) 1988-12-05 1989-08-22 Baker Hughes Incorporated Downhole electrical connector for submersible pump
US4907980A (en) 1988-10-31 1990-03-13 Kintec, Inc. Pressure compensating connector assembly
US5221214A (en) 1992-05-29 1993-06-22 Baker Hughes Incorporated Electrical connector for submersible pump tandem motors
US5674098A (en) 1994-02-08 1997-10-07 Yazaki Corporation Connector apparatus
US6913494B2 (en) 2002-07-17 2005-07-05 Tyco Electronics Corporation Electrical connector apparatus, methods and articles of manufacture
US7540775B2 (en) * 2004-08-03 2009-06-02 Tyco Electronics Amp Gmbh Electrical plug and method of fitting the plug
US7854629B1 (en) * 2010-01-19 2010-12-21 Flowserve Management Company Power plug system for submersible pump system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980369A (en) * 1975-12-15 1976-09-14 International Telephone And Telegraph Corporation Submersible pump interconnection assembly
US5567170A (en) * 1994-12-07 1996-10-22 Camco International Inc. Plug-in pothead
JP3241994B2 (en) * 1995-07-03 2001-12-25 株式会社荏原製作所 Underwater motor and waterproof connector
US7473129B2 (en) * 2006-06-12 2009-01-06 Power Feed-Thru Systems & Connectors, Llc Apparatus and method for sealing an electrical connector

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3294993A (en) 1964-06-18 1966-12-27 Red Jacket Mfg Company Submersible motor with electrical connector assembly
US3604964A (en) 1970-05-20 1971-09-14 Red Jacket Mfg Co Submersible motor connector assembly
US3736548A (en) 1971-07-28 1973-05-29 R Double Electrical coupler
US3795883A (en) 1973-01-02 1974-03-05 Mac Valves Inc Electrical disconnect means
US3952218A (en) 1974-10-29 1976-04-20 Weil-Mclain Co., Inc. Grounded electrical connector for submersible apparatus
CA1107828A (en) 1978-11-13 1981-08-25 Alden W. Shoenleben Submersible electric motor and electrical connector assembly
US4460295A (en) 1981-02-25 1984-07-17 Compagnie Francaise Des Petroles Submersible connector
US4907980A (en) 1988-10-31 1990-03-13 Kintec, Inc. Pressure compensating connector assembly
US4859200A (en) 1988-12-05 1989-08-22 Baker Hughes Incorporated Downhole electrical connector for submersible pump
US5221214A (en) 1992-05-29 1993-06-22 Baker Hughes Incorporated Electrical connector for submersible pump tandem motors
US5674098A (en) 1994-02-08 1997-10-07 Yazaki Corporation Connector apparatus
US6913494B2 (en) 2002-07-17 2005-07-05 Tyco Electronics Corporation Electrical connector apparatus, methods and articles of manufacture
US7540775B2 (en) * 2004-08-03 2009-06-02 Tyco Electronics Amp Gmbh Electrical plug and method of fitting the plug
US7854629B1 (en) * 2010-01-19 2010-12-21 Flowserve Management Company Power plug system for submersible pump system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100215523A1 (en) * 2009-02-26 2010-08-26 Bunji Homma Fuel supply device
US8348698B2 (en) * 2009-02-26 2013-01-08 Mitsuba Corporation Fuel supply device
US8888105B1 (en) 2013-05-29 2014-11-18 Stephen J. Andrews Mechanical seal system
US20200083636A1 (en) * 2017-02-06 2020-03-12 Halliburton Energy Services, Inc. Pothead retaining sleeve system, apparatus and method
US10777935B2 (en) * 2017-02-06 2020-09-15 Halliburton Energy Services, Inc. Pothead retaining sleeve system, apparatus and method
USD872245S1 (en) 2018-02-28 2020-01-07 S. C. Johnson & Son, Inc. Dispenser
USD872847S1 (en) 2018-02-28 2020-01-14 S. C. Johnson & Son, Inc. Dispenser
USD878538S1 (en) 2018-02-28 2020-03-17 S. C. Johnson & Son, Inc. Dispenser
USD880670S1 (en) 2018-02-28 2020-04-07 S. C. Johnson & Son, Inc. Overcap
USD881365S1 (en) 2018-02-28 2020-04-14 S. C. Johnson & Son, Inc. Dispenser
USD852938S1 (en) 2018-05-07 2019-07-02 S. C. Johnson & Son, Inc. Dispenser
USD853548S1 (en) 2018-05-07 2019-07-09 S. C. Johnson & Son, Inc. Dispenser

Also Published As

Publication number Publication date
WO2011090826A1 (en) 2011-07-28
US7854629B1 (en) 2010-12-21
US20110176941A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
US8029317B2 (en) Power plug system for submersible pump system
US6409485B1 (en) System and method for sealing an electrical connection between a power cable and a submersible device
US9673558B2 (en) Systems and methods for maintaining pressure on an elastomeric seal
US9458705B2 (en) Multiple use termination system
CA2390528C (en) Pothead with pressure energized lip seals
CA2669241C (en) System and method for connecting a power cable with a submersible component
CA2343902C (en) Power cable system for use in high temperature wellbore applications
CA2963566C (en) Crushed seal arrangement for motor electrical connection of submersible well pump
US11773657B2 (en) Cable connectors for use downhole
GB2420919A (en) Electrical connector and socket assemblies
EP2811585A1 (en) Connector part and connector assembly
WO2017040919A1 (en) Universal motor adaptor for lead power cable connection systems
RU2572860C2 (en) System of terminal cable box for use in well
US20140360729A1 (en) Subsea or downhole electrical penetrator
US9915266B2 (en) Boot seal retainer systems and methods
EP3039296B1 (en) Interface for the transmission of electrical power to a motor-compressor
US20230332617A1 (en) Seam-Sealed Pothead to Motor Connection
WO2004032286A1 (en) Connector assembly

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12