US8023412B2 - Systems and methods for modeling a mobile ad hoc wireless network - Google Patents
Systems and methods for modeling a mobile ad hoc wireless network Download PDFInfo
- Publication number
- US8023412B2 US8023412B2 US12/496,863 US49686309A US8023412B2 US 8023412 B2 US8023412 B2 US 8023412B2 US 49686309 A US49686309 A US 49686309A US 8023412 B2 US8023412 B2 US 8023412B2
- Authority
- US
- United States
- Prior art keywords
- bottlenecks
- grid elements
- network
- network grid
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 230000005540 biological transmission Effects 0.000 claims abstract description 96
- 238000004891 communication Methods 0.000 claims abstract description 13
- 238000005192 partition Methods 0.000 description 12
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 238000011160 research Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/66—Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
Definitions
- the present application relates to systems and methods for modeling a mobile ad hoc wireless network.
- a mobile ad hoc network includes a collection of mobile nodes that construct a communication network by forwarding data between currently reachable nodes rather than using a fixed infrastructure.
- MANETs provide a mechanism to try new services with a smaller investment in infrastructure than wired networks.
- QoS Quality of Service
- An exemplary method includes dividing the geographic area into a network grid including a plurality of network grid elements, locating obstacles, if any, to communication between transmission nodes located in at least two different grid elements from the plurality of network grid elements, locating bottlenecks within the plurality of network grid elements, locating network grid elements from the plurality of network grid elements where wireless transmission is unconstricted, determining a transmission flow rate across the bottlenecks, and comparing the transmission flow rate across the bottlenecks to determine if any of the bottlenecks are not real bottlenecks.
- locating bottlenecks includes determining the minimum distances between two obstacles having a line of sight between them, storing the minimum distances in numerical order, and designating, in numerical order, the minimum distances as bottlenecks, wherein each subsequent minimum distance does not intersect any bottleneck already designated.
- locating bottlenecks further includes removing any bottlenecks that create areas only surrounded by bottlenecks, removing duplicate bottlenecks between the same two obstacles, and removing bottlenecks that create small areas with respect to the size of the bottlenecks.
- a method for modeling further includes removing the bottlenecks that are not real bottlenecks from the model.
- determining the transmission flow rate across the bottlenecks is performed by a transmission flow control algorithm.
- the transmission flow control algorithm is a max-min fair bottleneck flow control algorithm.
- comparing the transmission flow rate across the bottlenecks to determine if any of the bottlenecks are not real bottlenecks includes ordering the transmission flow rate information for the bottlenecks based predetermined criteria, and determining which bottlenecks have corresponding transmission flow rates that fall below a predetermined threshold.
- comparing the transmission flow rate across the bottlenecks to determine if any of the bottlenecks are not real bottlenecks further includes determining whether the removal of any bottlenecks would result in network grid elements where wireless transmission is unconstricted to enclose network grid elements where wireless transmission is constricted.
- locating network grid elements from the plurality of network grid elements where wireless transmission is unconstricted includes locating network grid elements surrounded by at least one obstacles and at least one bottlenecks.
- transmission nodes located within the transmission areas are modeled as super-nodes.
- the bottlenecks are modeled as links between the transmission areas.
- control of admission to the network is controlled locally at each of the super-nodes by nodes designated as group leaders.
- the group leaders are selected based on their proximity to a predetermined location in the super-node.
- the group leaders are unselected when their distance from a predetermined location in the super-node exceeds a predetermined distance.
- An exemplary system includes a processor, a wireless connection device operatively coupled to the processor, and a memory operatively coupled to the processor, the memory storing program instructions that when executed by the processor, cause the processor to utilize the wireless connection device to divide the geographic area into a network grid including a plurality of network grid elements, locate obstacles, if any, to communication between transmission nodes located in at least two different grid elements from the plurality of network grid elements, locate bottlenecks, within the plurality of network grid elements, locate network grid elements from the plurality of network grid elements where wireless transmission is unconstricted, determine a transmission flow rate across the bottlenecks, and compare the transmission flow rate across the bottlenecks to determine if any of the bottlenecks are not real bottlenecks.
- An exemplary method includes dividing the geographic area into a network grid including a plurality of network grid elements, locating obstacles, if any, to communication between transmission nodes located in at least two different grid elements from the plurality of network grid elements, locating bottlenecks, within the plurality of network grid elements, locating network grid elements from the plurality of network grid elements where wireless transmission is unconstricted, and applying a probabilistic geographic routing algorithm to find a grid-by-grid path for the information packets to travel across.
- the probabilistic geographic routing algorithm operates in a geographic routing phase where packets of information are routed through anchor points, where the anchor points are located at the bottlenecks. In some embodiments, the probabilistic geographic routing algorithm operates in a probabilistic routing phase where packets of information are routed between anchor points, where the anchor points may be any network grid element located along a bottleneck. In some embodiments, the probabilistic geographic routing algorithm operates in a probabilistic routing phase where packets of information are routed through anchor points, where the anchor points may be any network grid element located between bottlenecks. In some embodiments, the probabilistic geographic routing algorithm operates to allow for four directional forwarding of packets of information. In some embodiments, the probabilistic geographic routing algorithm operates to allow for eight directional forwarding of packets of information.
- FIG. 1 illustrates a grid numbering scheme in accordance with an embodiment of the disclosed subject matter.
- FIG. 2( a ) is a schematic of a geographical area including building and open area and overlayed with a grid in accordance with an embodiment of the disclosed subject matter.
- FIG. 2( b ) is a schematic of a geographical area including building and open area and overlayed with a grid after application of an obstacle approximation in accordance with an embodiment of the disclosed subject matter.
- FIG. 3 illustrates a chart of a method in accordance with an embodiment of the disclosed subject matter.
- FIGS. 4( a )-( c ) are a schematic of a network after application of a partition rule in accordance with an embodiment of the disclosed subject matter.
- FIG. 5 is a schematic of a network after application of a partition rule in accordance with an embodiment of the disclosed subject matter.
- FIG. 6 is a schematic of a network showing a path transmissions could follow in accordance with an embodiment of the disclosed subject matter.
- FIGS. 7( a )-( b ) illustrate paths transmissions could follow in accordance with an embodiment of the disclosed subject matter.
- FIG. 8 is a schematic of a system in accordance with an embodiment of the disclosed subject matter.
- the disclosed subject matter provides techniques for creating a macro model of mobile ad hoc networks that combines individual nodes into super-nodes, and performs flow control on the super-nodes.
- the model partitions the area of the network into transmission areas, where nodes can be located and can communicate, and obstacles, that inhibit communications or are areas where there are no nodes.
- the spaces between nearby obstacles are bottlenecks that inhibit the flow of data in the network.
- the model can control congestion and hence provide Quality of Service (QoS) guarantees.
- QoS Quality of Service
- FIG. 1 shows the geographic area of an exemplary network is partitioned into virtual grids of the same size, identified by their unique (x,y) coordinates.
- the model assumes that every mobile node in the network knows its geographic location through GPS devices or other techniques, for example, an iterative triangulation technique using information from neighboring nodes. However, it is understood that not every mobile node is required to know its geographic location for the model to function properly. Based on the location information, each node can calculate which grid element it currently belongs to.
- the grid structure does not require a highly accurate positioning system because even when nodes near the edge of a grid element make a mistake about which grid elements they are in, the model still works.
- the obstacles can be permanent, such as buildings or lakes, or temporary, as when no wireless nodes can forward traffic at the present time.
- the model approximates obstacles on a grid structure by composing obstacles from the edges of grid elements that cannot communicate with nodes in an adjacent grid element. For example, if grid element ( 1 , 1 ) cannot communicate with grid element ( 1 , 2 ), then the model considers there to be an obstacle along the line separating grid elements ( 1 , 1 ) and ( 1 , 2 ). This approximation is easier to store and process than the actual obstacle structure, and is more stable as nodes at the edge of an obstacle may move.
- the situation may occur were an obstacle is only partially located in grid element.
- the model can use the simple rule, stated above, that if a node in an adjacent grid element cannot communicate with a node in partially occupied grid element, then the obstacle is presumed to exist along the line separating the grid elements.
- an alternative rule where if more than a certain percentage of a grid, say for example 50%, is occupied by an obstacle then it can be considered wholly occupied.
- the partially occupied grid element can be broken down into smaller grid elements, for a more exact mapping of the obstacles.
- Yet another solution would be to change the shape of the adjacent grid element to be rectangular, i.e., extending the grid element to more closely trace the actual outline of the obstacle.
- highly accurate mapping of the obstacle is not needed and, therefore, the more basic rule stated above can suffice.
- FIG. 2( a ) shows the application of the virtual grid onto the main portion of the Columbia University Morningside campus, between Amsterdam Avenue and Broadway.
- the solid black objects, such as 210 are the buildings and are permanent obstacles.
- the large open areas in FIG. 2( a ), such as 220 represent the transmission areas, where communication between adjacent nodes will be unconstrained by permanent obstacles, such as 210 .
- temporary obstacles as when no wireless nodes can forward traffic at the present time in an adjacent grid, may appear in the transmission areas.
- FIG. 2( a ) also shows areas where bottlenecks are likely to appear, such as 230 .
- the gap between the obstacles determines the maximum flow between regions on each side of the gap.
- the gaps are identified as bottlenecks that constrain the flows in the network.
- the capacity of the bottlenecks depends on the number of simultaneous transmissions that can occur in the gap. In the model, it is assumed the flow capacity is proportional to the physical length of the gap.
- FIG. 2( a ) shows the application of the obstacle approximation rule outlined above onto the main portion of the Columbia University Morningside campus.
- the network can be partitioned into transmission areas surrounded by obstacles and the most constraining bottlenecks utilizing a partition rule, discussed in detail below. All nodes in each transmission area can be modeled as a single super-node and the bottlenecks connecting the transmission areas can be modeled as links connecting the super-nodes. In other words, areas that share a bottleneck have an undirected link joining the super-nodes. The link is undirected because it is the total flow across the bottleneck, rather than the flows in each direction, that is constrained. The capacity of the link is the capacity of the bottleneck.
- the method produces a macro model of a wireless network as a collection of super-nodes and links that resembles a wired network. Conventional flow control algorithms that are designed for wired networks can thus be applied directly to the macro model of the wireless networks.
- the minimum distances between any obstacles O i and O j , as seen on FIGS. 4( a )-( c ), that have a line of sight between them are determined 312 and stored 313 in ascending order. There can be multiple minimum distances between a pair of obstacles with the same value; all of them are stored 313 and duplicates can be removed later, as detailed below.
- the shortest distance on the list of minimum distances between obstacles is entered 314 into the model as a bottleneck.
- the next shortest minimum distance between obstacles is queried 316 to determine if it intersects any bottlenecks already in the model.
- next shortest minimum distance is entered 318 into the model as a bottleneck. Once a bottleneck is entered into the model, it is removed 320 from the list. If the answer to the query 316 is yes, then 318 is skipped and that minimum distance is removed 320 from the list. The list is queried 322 to determine if any minimum distances remain on it the list. If the answer to the query 322 is yes, then the process begins again at 314 until all minimum distances between obstacles have been either entered 318 into the model and/or removed 320 from the list.
- FIG. 4( a ) shows the network partition after applying the above partition rules to the Columbia University campus.
- the dashed lines are the bottlenecks identified by utilizing the above partition rules.
- the objects O i through O j are obstacles, identified by a approximation rule, as discussed above. Note that O 0 , the perimeter of this section of the campus is considered to be a single obstacle.
- the set of bottlenecks produced utilizing the above rule can be reduced using a variety of geometric rules. Since transmission areas can be defined as areas surrounded by obstacles and bottlenecks, bottlenecks that create areas only surrounded by other bottlenecks, such as dashed lines ( 1 ) and ( 2 ) in FIG. 4( a ), can be removed 324 . In such a case, the longest of the bottlenecks forming an area only surrounded by other bottlenecks can be removed 324 . Next, duplicate bottlenecks between the same obstacle pair can be removed 326 . A rule applied for selecting among the duplicate is to attempt to equalize the size of the transmission areas because the network is most stable when the smallest areas are as large as possible.
- Bottlenecks that create small transmission areas with respect to the size of the bottleneck can be removed 327 .
- the bottlenecks forming transmission areas 410 and 412 on FIG. 4( a ), would be appropriately removed on the basis of this rule.
- FIG. 4( b ) shows the network partition after application of the above portion of the partition rule.
- the false bottlenecks are located by applying a flow control algorithm to the network, and measuring the transmission flow rate across the existing bottlenecks.
- An exemplary algorithm can be a minimum distance routing and max-min fair bottleneck flow control. All of the nodes in a transmission region can be modeled as a single super node located at the center of the transmission area, and the bottlenecks can be modeled as links between the super nodes. Thus, the model can resemble a wired network and we can apply wired techniques can be applied to this model.
- the location information e.g., the center of each transmission area and the center of each bottleneck, can be used to find the minimum distance between each pair of super-nodes and can be further used as the routing path.
- the max-min fair control policy can be implemented taking all flows that have the same network allocation and increasing all flows until the first bottleneck becomes saturated. When the flows over the first bottleneck are saturated their network allocations can be fixed. The flows that are not fixed can be increased until a second bottleneck becomes saturated. The flows over that bottleneck can then be fix. This procedure can be continued until all bottlenecks are saturated.
- the utilization, ⁇ , for a bottleneck can be defined as
- ⁇ i f i C i , ( 1 )
- f i the flow rate passing bottleneck i
- C i the capacity of bottleneck i (it can be assumed the bottleneck capacity is proportional to the physical length of the bottleneck).
- the model can measure the transmission flow rate across the existing bottlenecks using a shortest path flow control algorithm, e.g., a max-min fair bottleneck flow control algorithm.
- a shortest path flow control algorithm e.g., a max-min fair bottleneck flow control algorithm.
- another flow control algorithm can be used, such as an optimum routing and flow control algorithm or any other appropriate alternative.
- the choice of flow control algorithm can be made on a case-by-case basis with reference to the kind of application, e.g., Voice over IP, that is going to be used across the network.
- the flow control algorithms used in wired networks do not require that all of the links are bottleneck links.
- the flow control algorithm used to measure the transmission flow rate across the existing bottlenecks for the purpose of identifying and removing false bottlenecks should be consistant with the flow control algorithm used for the global routing of transmissions over the network, described in detail below.
- the local routing of transmissions over the network can operate on using a different flow control algorithm.
- FIG. 4( c ) shows the network partition after application of the above portion of the partition rule.
- FIG. 5 shows the model of the network that resembles a wired network.
- the numbers in the circle indicate the size of the super-nodes, in terms of number of grid elements.
- N i represents the super-node corresponding to the transmission area A i on FIGS. 4( a )-( c ).
- C i,j (x) represents the bottleneck link between super-node i and j, with a capacity of x measured as a function of the number of grid elements, corresponding to the bottlenecks B i on FIGS. 4( a )-( c ).
- the macro model can be implemented to control the mobile wireless network by using global and local flow control procedures.
- a central node is utilized to gather information on the transmission flow rates, then assign to each super-node a transmission flow capacity with reference to each other super-node.
- super-node N i will be assigned a transmission flow capacity for any source node contained therein to utilize in reaching any destination node contained in super-node N j .
- This capacity can be determined by the number of bottleneck links that a transmission flow must cross to reach its destination.
- a transmission flow's admission to the network is control locally at each super-node.
- a group leader in the super-node assigns flows allocated by the global flow control algorithm to specific source-destination pairs.
- the group leaders control the probability of dropped connections when nodes move between areas by assigning only a fraction of the allocated transmission flow capacity.
- the group leader can be selected based on its proximity to the center of the super-node and replaced when it leaves a radius that is well within the area. Utilizing such a rule makes it is less likely that the group leader will leave the super-node. However, it is envisioned that proximity to any location inside the super-node could be used as criteria for selecting a group leader for that super-node.
- the global flow control procedure in the macro model only determines the super-nodes and the bottlenecks that a transmission flow must cross; it does not specify the complete path a packet traverses.
- the model can use a probabilistic geographic routing algorithm to select the complete grid-by-grid route between a source-destination pair of nodes.
- a probabilistic routing algorithm can be used to eliminate hot spots that occur either in a grid element within a super-node or in a grid element that is part of a bottleneck.
- the probabilistic geographic routing algorithm operates on two levels: a global level and a local level.
- the algorithm operates in the geographic routing phase, and can use the bottlenecks specified by the macro model as anchor points to calculate the route between nodes located in different super-nodes.
- hot spots can occur on a grid elements that are part of a bottleneck. The reason for this is the intersection of transmission flows on that grid element, such as when a shortest path flow control algorithm is utilized.
- Anchor points used by the geographic routing algorithm can be the bottlenecks themselves. When, for example, the geographic routing algorithm is of the shortest path variety the bottlenecks used as anchor points will be those bottlenecks that fall on the shortest path between the super-nodes containing the source and destination nodes of the transmission.
- FIG. 6 shows such an example, where anchor points 610 , 612 and 614 can be used by a geographic routing algorithm to route a transmission from super-node N 1 to N 7 .
- the algorithm operates in the probabilistic routing phase and can distribute the transmission flows within the super-nodes between the bottlenecks.
- hot spots occur within super-nodes and are caused by transmission flows between different bottlenecks intersecting at a common grid element.
- the anchor points can be specified as particular grid elements that are located at the bottlenecks.
- the packet is not required to reach a specified node in the grid element. This makes the grid routing mechanism more resilient to the movement of individual nodes. Between bottlenecks, the packet can select the shortest grid path to travel. Since in the wireless network, nodes share a common transmission medium, routing within the super-node should minimize the number of transmissions inside a super-node by choosing the shortest grid path.
- Traffic from several bottlenecks may cross inside a super-node and also interfere with the local traffic within the super-node, creating a hot spot.
- probabilistic geographic routing reduces probability of a hot spot by spreading the traffic over a wide area.
- FIG. 8 is an exemplary embodiment of a system 800 , with a computing device 810 including at least a processor 812 operatively connected to a memory 814 , and operatively connected to a wireless connection device 816 , that can be running a wireless standard, e.g., the 802.11 standard.
- the computing device 810 may be a standard personal computer or a laptop, running suitable software to implement the techniques described herein.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
where fi is the flow rate passing bottleneck i, and Ci is the capacity of bottleneck i (it can be assumed the bottleneck capacity is proportional to the physical length of the bottleneck).
where O(Bi,j) is the number of grid elements in bottleneck Bi,j, for each flow crossing bottleneck Bi,j, the traffic across the bottleneck is uniform, and a greater throughput is obtained.
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/496,863 US8023412B2 (en) | 2007-03-27 | 2009-07-02 | Systems and methods for modeling a mobile ad hoc wireless network |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US90828807P | 2007-03-27 | 2007-03-27 | |
US93881207P | 2007-05-18 | 2007-05-18 | |
PCT/US2008/058474 WO2008119035A1 (en) | 2007-03-27 | 2008-03-27 | Systems and methods for modeling a mobile ad hoc wireless network |
US12/496,863 US8023412B2 (en) | 2007-03-27 | 2009-07-02 | Systems and methods for modeling a mobile ad hoc wireless network |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/058474 Continuation WO2008119035A1 (en) | 2007-03-27 | 2008-03-27 | Systems and methods for modeling a mobile ad hoc wireless network |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100002583A1 US20100002583A1 (en) | 2010-01-07 |
US8023412B2 true US8023412B2 (en) | 2011-09-20 |
Family
ID=39789049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/496,863 Expired - Fee Related US8023412B2 (en) | 2007-03-27 | 2009-07-02 | Systems and methods for modeling a mobile ad hoc wireless network |
Country Status (2)
Country | Link |
---|---|
US (1) | US8023412B2 (en) |
WO (1) | WO2008119035A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150006571A1 (en) * | 2013-06-28 | 2015-01-01 | LGS Innovations LLC | Method And Apparatus For Enabling Queries In An Information-Centric Network |
US11412383B2 (en) * | 2018-01-03 | 2022-08-09 | Helium Systems , Inc. | Systems and methods for providing and using a decentralized wireless network |
US11399284B1 (en) | 2018-09-28 | 2022-07-26 | Helium Systems, Inc. | Systems and methods for providing and using proof of coverage in a decentralized wireless network |
US10939405B1 (en) | 2019-04-08 | 2021-03-02 | Helium Systems, Inc. | Systems and methods for implementing permissionless network consensus using blockchain |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040166864A1 (en) * | 2001-03-28 | 2004-08-26 | Stephen Hill | Minimising signal interference within a wireless network |
US20050083850A1 (en) | 2003-10-18 | 2005-04-21 | Samsung Electronics Co., Ltd. | Method for adjusting a transmission rate to obtain the optimum transmission rate in a mobile ad hoc network environment |
US20060146704A1 (en) | 2004-12-17 | 2006-07-06 | Ozer Sebnem Z | System and method for controlling congestion in multihopping wireless networks |
US20070280174A1 (en) * | 2006-06-03 | 2007-12-06 | Ngan-Cheung Pun | Small Geographical Area Cell-based Dynamic Source Routing for Mobil Ad-hoc Networks |
US7782774B2 (en) * | 2001-03-02 | 2010-08-24 | Cisco Technology, Inc. | TCP optimized single rate policer |
-
2008
- 2008-03-27 WO PCT/US2008/058474 patent/WO2008119035A1/en active Application Filing
-
2009
- 2009-07-02 US US12/496,863 patent/US8023412B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7782774B2 (en) * | 2001-03-02 | 2010-08-24 | Cisco Technology, Inc. | TCP optimized single rate policer |
US20040166864A1 (en) * | 2001-03-28 | 2004-08-26 | Stephen Hill | Minimising signal interference within a wireless network |
US20050083850A1 (en) | 2003-10-18 | 2005-04-21 | Samsung Electronics Co., Ltd. | Method for adjusting a transmission rate to obtain the optimum transmission rate in a mobile ad hoc network environment |
US20060146704A1 (en) | 2004-12-17 | 2006-07-06 | Ozer Sebnem Z | System and method for controlling congestion in multihopping wireless networks |
US20070280174A1 (en) * | 2006-06-03 | 2007-12-06 | Ngan-Cheung Pun | Small Geographical Area Cell-based Dynamic Source Routing for Mobil Ad-hoc Networks |
Also Published As
Publication number | Publication date |
---|---|
WO2008119035A1 (en) | 2008-10-02 |
US20100002583A1 (en) | 2010-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Stojmenovic et al. | Depth first search and location based localized routing and QoS routing in wireless networks | |
Saleet et al. | Intersection-based geographical routing protocol for VANETs: A proposal and analysis | |
CN106559266B (en) | Ospf area division methods based on density clustering algorithm in a kind of powerline network | |
Jiang et al. | Exploiting trajectory-based coverage for geocast in vehicular networks | |
Tsai et al. | Axis-based virtual coordinate assignment protocol and delivery-guaranteed routing protocol in wireless sensor networks | |
Magsino et al. | An enhanced information sharing roadside unit allocation scheme for vehicular networks | |
Komatsu et al. | Automatic evacuation guiding scheme based on implicit interactions between evacuees and their mobile nodes | |
Deng et al. | An Ant Colony Optimization‐Based Routing Algorithm for Load Balancing in LEO Satellite Networks | |
Chandrashekar et al. | Providing full connectivity in large ad-hoc networks by dynamic placement of aerial platforms | |
Pasandideh et al. | Topology management for flying ad hoc networks based on particle swarm optimization and software-defined networking | |
Alsaqour et al. | Effect of network parameters on neighbor wireless link breaks in GPSR protocol and enhancement using mobility prediction model | |
Mukherjee et al. | Delay Tolerant Network assisted flying Ad-Hoc network scenario: modeling and analytical perspective | |
US8023412B2 (en) | Systems and methods for modeling a mobile ad hoc wireless network | |
CN113094857B (en) | Controller layout method of energy-saving software-defined vehicle network | |
Sakthivel et al. | The impact of mobility models on geographic routing in multi-hop wireless networks and extensions-a survey | |
Marfia et al. | Vanet: On mobility scenarios and urban infrastructure. a case study | |
Zhu et al. | Large scale active vehicular crowdsensing | |
Bacanli et al. | Unmanned aerial vehicles in opportunistic networks | |
Wang | Three-dimensional wireless sensor networks: geometric approaches for topology and routing design | |
Mehdi et al. | A geographic routing based on road traffic and multi-hop intersections in VANETs (GRBRT-MI) | |
Venetis et al. | Benchmarking mobile agent itinerary planning algorithms for data aggregation on WSNs | |
Kong et al. | Ant colony algorithm based routing protocol in software defined vehicular networks | |
Hauspie et al. | Localized probabilistic and dominating set based algorithm for efficient information dissemination in ad hoc networks | |
Senturk et al. | Mobile data collection in smart city applications: the impact of precedence-based route planning on data latency | |
Mazouzi et al. | ARDENT: A Proactive Agent-Based Routing Protocol for Internet of Vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAXEMCHUCK, NICHOLAS F.;ZHOU, CONGZHOU;REEL/FRAME:023235/0200 Effective date: 20090812 |
|
AS | Assignment |
Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:COLUMBIA UNIVERSITY NEW YORK MORNINGSIDE;REEL/FRAME:024827/0179 Effective date: 20100811 |
|
ZAAA | Notice of allowance and fees due |
Free format text: ORIGINAL CODE: NOA |
|
ZAAB | Notice of allowance mailed |
Free format text: ORIGINAL CODE: MN/=. |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: 7.5 YR SURCHARGE - LATE PMT W/IN 6 MO, SMALL ENTITY (ORIGINAL EVENT CODE: M2555); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20230920 |