GOVERNMENT RIGHTS
This invention was made with United States Government support under Contract number HQ0006-01-C-0001. The United States Government has certain rights in this invention.
TECHNICAL FIELD
The present invention generally relates to structural testing, and more particularly relates to high frequency testing of a structure via surface impact.
BACKGROUND
It is often desirable to test a component or structure to a known shock transient or known shock response spectrum (SRS). The SRS is a method which depicts the transient acceleration (in G's) of the test structure as a function of frequency.
Known methods of performing shock testing with high frequency, very short duration are unsatisfactory in a number of respects. For example, one method involves dropping a large steel ball onto a test structure from a known height. This method can create the desired high frequency response, but often greatly over-tests the low frequency response. It is also limited by the drop height and the terminal velocity of the ball. Conversely, if the low frequency is tested within the desired limits, the high frequency tends to be under-tested.
Another method involves using a gas-filled chamber to project an impacting projectile. This method is undesirable because it is difficult to carefully control the impact force, and therefore the repeatability of the test is insufficient.
A third method involves the use of an explosive charge, or pyrotechnic testing. This method is extremely hard to control and requires specialized test personnel and laboratories. Furthermore, Pyrotechnic testing typically results in over-testing of the component or structure.
Accordingly, it is desirable to provide simple and repeatable methods for performing high frequency shock testing various structures. Other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.
BRIEF SUMMARY
In accordance with one embodiment of the present invention, an impact testing system for determining the shock response of a test structure includes: a mass (e.g., a spherical steel ball); a potential energy storage system (e.g., a spring-loaded mechanism) configured to store mechanical energy and, upon actuation, release the stored mechanical energy in the form of kinetic energy; and a hold-and-release mechanism (such as a permanent magnet) configured to releasably couple the mass to the potential energy storage system and impart linear momentum to the mass in connection with the kinetic energy such that the mass impinges upon the test structure. The shock response can then be determined and displayed to a user.
An exemplary method for impact testing a test structure includes positioning a potential energy storage system adjacent to a surface of the test structure; coupling at least one sensor to a surface of the test structure; coupling a mass to the potential energy storage system; activating the potential energy storage system to store a predetermined amount of mechanical energy; actuating the potential energy storage system to release the stored mechanical energy in the form of kinetic energy and impart linear momentum to the mass such that the mass decouples from the potential energy storage system and impinges upon the test structure; measuring the shock response of the test structure via the at least one sensor; and displaying a visual representation of the test results, e.g., a shock response spectrum.
A high-frequency impact device in accordance with another embodiment includes: a plunger assembly coupled to and coaxial with a linear spring; a winch assembly configured to adjustably retract the plunger assembly and compress the linear spring; a latch mechanism coupled between the winch assembly and plunger assembly and configured to selectably release the plunger from the winch assembly; and a magnetic hold-and-release mechanism coupled to one end of the plunger assembly and configured to releasably hold a metallic sphere.
BRIEF DESCRIPTION OF THE DRAWINGS
A more complete understanding of the present invention may be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures.
FIG. 1 is a side view of an impact tester in accordance with one embodiment;
FIG. 2 is a close-up of various components illustrated in FIG. 1;
FIG. 3 is a close-up of various plunger assembly components illustrated in FIG. 1; and
FIG. 4 is a close-up of exemplary winch and latch assemblies as shown in FIG. 1.
DETAILED DESCRIPTION
The following discussion generally relates to improved methods and apparatus for impact testing of structures, such as spacecraft or missile structures, using a relatively small projectile that impinges on the structure's surface in a controllable and repeatable manner. In that regard, the following detailed description is merely illustrative in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description. For the purposes of conciseness, conventional techniques and principles related to mechanical testing, dynamics, data acquisition, and the like need not, and are not, described in detail herein.
Referring now to
FIG. 1, a high frequency impact testing system (HFIT, or simply “impact testing system”)
100 is configured to determine the shock response of a
test structure 150, and generally includes a mass (or “ball”)
110, a hold-and-
release mechanism 120, and a potential energy storage system or
assembly 130. Without loss of generality,
mass 110 will be referred to herein as a spherical ball; however, the present invention is not so limited.
Potential
energy storage system 130 is configured to store mechanical energy and, upon actuation, release the stored mechanical energy in the form of kinetic energy, thereby imparting linear momentum to
ball 110 such that it impinges upon a
surface 152 of
test structure 150.
Assembly 130 may have any number of springs, torsion members, and the like capable of storing and releasing the desired amount of potential energy. In an illustrated embodiment, a linear spring is used in conjunction with winch and latch assemblies, as described in further detail below.
Hold-and-
release mechanism 120 is configured to releasably
couple ball 110 to potential
energy storage system 130. That is,
mechanism 120 is capable of holding
ball 110 in place prior to the testing event, but releases
ball 110 after the potential energy is released in the form of kinetic energy such that
ball 110 becomes a projectile aimed at
test structure 150 in the direction of a
translation axis 112. As described in further detail below, in one
embodiment mechanism 120 includes one or more permanent magnets of sufficient strength to hold a metallic (e.g., steel)
ball 110 in place.
At least one
sensor 170 is coupled to
test structure 150 to measure its response to impinging
ball 110. Sensor
170 (e.g., a standard acceleration sensor) is suitably coupled to processor
180 (e.g., a general purpose computer, controller, or the like), which has an associated
display 182.
Processor 180, via any combination of hardware and software, is configured to determine the shock response of the test structure via signals from
sensor 170 and then provide the results to display
182 for inspection by a user. In one embodiment,
display 182 includes a shock response spectrum (SRS) associated with the test event.
The mass and size of
ball 110 may be selected in accordance with the desired frequency range of the particular testing regimen and the nature of
test structure 150, as is known in the art. In one embodiment, for example,
ball 110 is a substantially spherical steel ball having a diameter ranging from approximately 1.0 to 1.25 inches. Generally, a hardened steel ball is desirable in order to transfer the maximum high frequency content; however, a lower hardness steel, or other magnetic material—e.g., iron—may be employed to customize the frequency content of the impact.
In the illustrated embodiment, potential
energy storage system 130 generally includes a spring-loaded
plunger assembly 138 that is loaded via a
winch assembly 132 and is actuated using a
latch assembly 134.
Ball 110 is held in place by hold-and-
release mechanism 120, and when
plunger assembly 138 is released (via latch assembly
134),
plunger assembly 138 translates along
axis 112 until it reaches the extent of its travel, at which
time ball 110 is released as a projectile toward its target (i.e.,
surface 152 of structure
150). Note that while the illustrations show a generally horizontal orientation for
impact tester 100, in practice the assembly can be oriented and positioned in any desired manner. Various other conventional structural components may be used to keep
tester 100 in place, but for the purposes of clarity are not illustrated in the drawings.
FIG. 2 depicts a close-up of various components shown in
FIG. 1. More particularly,
spring 206 fits around a plunger rod (or “rod”)
212, both of which are coaxially positioned within a tube (e.g., a rectilinear cross-section tube)
204 such that, when
rod 212 is retracted (moved to the left in the figure),
spring 206 compresses, storing energy. A
plunger end sub-assembly 202 is located at one end of
spring 206. When
rod 212 is released, a stop attached to
rod 212 contacts end cap 208 at the end of its travel, causing
ball 110 to be released. The velocity of
ball 110 at release can be adjusted by adjusting the compression distance of
spring 206 and/or by selecting a different spring constant (e.g., size, material) for
spring 206. In one embodiment, for example, a spring force of 9.0 lbs/inch is desirable. In alternate embodiments,
multiple springs 206 may be used. In the interest of safety, a lockout pin may be placed in a corresponding pair of holes on opposite sides of tube
204 (e.g.,
hole 139 in
FIG. 1).
Referring now to
FIG. 3 together with
FIG. 1,
plunger end sub-assembly 202 coupled to
rod 212 generally includes one or
more metal washers 306, one or
more rubber washers 308, one or
more magnets 310,
plunger 312, guide (e.g., a Teflon guide)
314, and
cap screw 316.
Plunger end sub-assembly 202 has three primary functions. First, it provides a low-friction guide for projecting
ball 110 inside
tube 204. Second, it releasably holds
ball 110 in place via
magnets 310. Third, it captures one end of
spring 206. In one embodiment, guide
314 consists of a Teflon material and has eight minimal tube contact points along the inner surface of
tube 204, such that it provides a clearance to allow air to pass through during actuation.
Plunger 312 is preferably steel or another metallic material that can transmit the magnetic field from
magnets 310 to
ball 110.
Magnets 310 are captured between
plunger 312 and
washer 306, and are sandwiched between
rubber washers 308. The
rubber washers 308 serve as a cushion to prevent shock damage during actuation. The magnetic force is preferably sufficient to hold the ball in place prior to actuation without significantly reducing the escape velocity of the ball. An internal hex feature on the head of
cap screw 316 provides a cup for receiving
ball 110.
Rod 212, which may, for example, comprise a suitable aluminum alloy, is coupled to
jam nut 304 of
clevis 302.
Clevis 302 allows the plunger assembly to be attached to the winch assembly.
Referring to
FIG. 4 and
FIG. 1,
winch assembly 132 includes a
conventional winch 402 and handle
404, as is known in the art. A belt
406 (e.g., a nylon belt) is coupled between
winch 402 and latch
assembly 134. A support structure
420 is provided for stabilizing the components.
Winch 402 and handle
404 provide the mechanical leverage to spring
load plunger assembly 138. During operation,
belt 406 is lengthened, allowing
latch 410 to connect with
clevis 302.
Winch 402 is then ratcheted to compress
spring 206 to the desired position. A slotted
rectangular retaining clip 408 is secured over
clevis 302 and
latch 410.
Clip 408 keeps
plunger rod 212 from deflecting during release of
latch 410 from
clevis 302.
A
pull cord 412 or other actuation component is coupled to end
114 of
latch 410. When
pull cord 412 is actuated, latch
410 pivots with respect to clip
408, thereby releasing clevis
302 from detent or notch
411 in
latch 410. Rod
212 (and consequently ball
110) then travels quickly under the force of
spring 206 until the end of its travel, at which
time ball 110 is released toward its target.
While at least one example embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the example embodiment or embodiments described herein are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient and edifying road map for implementing the described embodiment or embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope of the invention and the legal equivalents thereof.