New! View global litigation for patent families

US7953726B2 - Generated predicates from materialized result - Google Patents

Generated predicates from materialized result Download PDF

Info

Publication number
US7953726B2
US7953726B2 US12185103 US18510308A US7953726B2 US 7953726 B2 US7953726 B2 US 7953726B2 US 12185103 US12185103 US 12185103 US 18510308 A US18510308 A US 18510308A US 7953726 B2 US7953726 B2 US 7953726B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
join
table
predicates
predicate
result
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12185103
Other versions
US20080288469A1 (en )
Inventor
Terence Patrick Purcell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor ; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor ; File system structures therefor in structured data stores
    • G06F17/30386Retrieval requests
    • G06F17/30424Query processing
    • G06F17/30442Query optimisation
    • G06F17/30448Query rewriting and transformation
    • G06F17/30457Query rewriting and transformation to use cached/materialised query results
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor ; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor ; File system structures therefor in structured data stores
    • G06F17/30386Retrieval requests
    • G06F17/30424Query processing
    • G06F17/30442Query optimisation
    • G06F17/30448Query rewriting and transformation
    • G06F17/30463Plan optimisation
    • G06F17/30466Join order optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99931Database or file accessing
    • Y10S707/99932Access augmentation or optimizing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99931Database or file accessing
    • Y10S707/99933Query processing, i.e. searching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S707/00Data processing: database and file management or data structures
    • Y10S707/99941Database schema or data structure
    • Y10S707/99943Generating database or data structure, e.g. via user interface

Abstract

Processing a multiple table query includes: determining if any tables in the query require materialization; for each table in the query that requires materialization, deriving at least one join predicate on a join column; determining if any tables earlier in a join sequence for the query has same join predicates; and applying the at least one derived join predicate to an earlier table in the join sequence, if there is at least one table earlier in the join sequence that has the same join predicate. This significantly reduces the number of rows that are joined before arriving at the final result.

Description

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority under 35 USC 120 as a continuation application to U.S. application Ser. No. 11/014,155, entitled “GENERATED PREDICATES FROM MATERIALIZED RESULT” filed on Dec. 15, 2004, the contents of which are hereby incorporated in its entirety.

FIELD OF THE INVENTION

The present invention relates to multiple table queries, and more particularly to the filtering of the result of multiple table queries.

BACKGROUND OF THE INVENTION

Queries involving the joining of multiple tables in a database system are known in the art. For example, if a query includes a WHERE clause predicate and filtering occurs at more than one table, more rows than necessary may be joined between two or more tables before the filter is applied. The WHERE clause specifies an intermediate result table that includes those rows of a table for which the search condition is true. This is inefficient.

For example, assume a 10 table join. If each table has predicates that perform some level of filtering, then the first table may return 100,000 rows (after filtering is applied to this table), the second table filters out 20%, the third a further 20%, etc. If each table (after the first) provide 20% filtering, then the final result is approximately 13,000 rows for a 10 table join. Therefore, approximately 87,000 unnecessary rows are joined between tables 2 and 3, 67,000 between tables 3 and 4, etc.

Accordingly, there exists a need for an improved method for processing multiple table queries. The improved method should derive predicates based on a join relationship between tables and apply these derived predicates to tables earlier in the join sequence. The present invention addresses such a need.

SUMMARY OF THE INVENTION

A computer readable medium for processing a multiple table query includes: determining if any tables in the query require materialization; for each table in the query that requires materialization, deriving at least one join predicate on a join column; determining if any tables earlier in a join sequence for the query has same join predicates; and applying the at least one derived join predicate to an earlier table in the join sequence, if there is at least one table earlier in the join sequence that has the same join predicate. This significantly reduces the number of rows that are joined before arriving at the final result.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a flowchart illustrating an embodiment of a method for processing a multiple table query in accordance with the present invention.

FIG. 2 illustrates a first example of the method for processing a multiple table query in accordance with the present invention.

FIG. 3 illustrates a second example of the method for processing a multiple table query in accordance with the present invention.

DETAILED DESCRIPTION

The present invention provides an improved method for processing multiple table queries. The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.

To more particularly describe the features of the present invention, please refer to FIGS. 1 through 3 in conjunction with the discussion below.

FIG. 1 is a flowchart illustrating an embodiment of a method for processing a multiple table query in accordance with the present invention. First, for each table, it is determined whether materialization is required, via step 101. For any tables that are materialization candidates, via step 102, the tables are accessed, and join predicates are derived on the join columns, via step 103. Next, if there are tables earlier in the join sequence with the same join predicates, via step 104, then the derived predicates are applied to an earlier table in the join sequence, via step 105.

In this embodiment, the derived predicate is either of the type IN or BETWEEN, depending on the number of values in the result and the expected filtering. The IN predicate compares a value with a collection of values. The BETWEEN predicate compares a value with a range of values. The predicates are derived on the join predicates based upon the result after filtering to be applied to tables earlier in the join sequence. These predicates are derived on the join columns as they can only be applied to other tables where the predicates can be transitively closed through the join predicates. These predicates are then available as index matching, screening, or page range screening.

Derived predicates should be available as regular indexable (matching or screening) predicates similar to any other transitively closed predicate. This can provide a significant performance improvement if these filtering predicates can limit the data access on an earlier table in the I/Os, in addition to the reduction in rows that are joined from application of filtering earlier in the join process.

In this embodiment, an IN and/or a BETWEEN predicate are derived during runtime. Since the estimated size of the materialized result cannot be relied upon before the bind or prepare process because the actual number of rows in the materialized result cannot be guaranteed until runtime, the choice to generate a BETWEEN or IN predicates is a runtime decision. If the number of elements in the materialized result is small then generally an IN list that includes all element would be more suitable. If the number of element is large, then the low and high values should be selected from the materialized result to build the BETWEEN predicate.

For example, if the materialized result contained 2 values, 3 and 999, then it would be more beneficial to generate COL IN (3, 999) rather than BETWEEN 3 AND 999. If the materialized result contains a larger number of values, such as 100, then the BETWEEN will generally become more efficient.

If the materialized result is a single value, then COL IN (3) OR COL BETWEEN 3 AND 3 are equivalent. A result of zero rows would trigger a termination of the query if it was guaranteed that the final result would be zero. This would be the case if access to the materialized result was joined by an inner join, where the column that is not common to all the tables being joined is dropped from the resultant table.

Optionally, a materialized result set can utilize one of the existing indexing technologies, such as sparse index on workfiles or in-memory index, to create an indexable result set where an index did not previously exist on the base table to support the join predicates. This makes it attractive to materialize tables where materialization was not previously mandatory, but by doing so provides a smaller result set to join to with a sparse index or as an in-memory index.

Although it is desirable to apply the derived predicates to the earliest possible table in the join sequence, other factors may limit this: if many tables provide strong filtering, then only one can be first in the table join sequence; sort avoidance may be the preference if a sort can be avoided by a certain join sequence; join predicates or indexing may dictate a join sequence that makes best use of join predicates but not filtering; and outer joins dictate the table join sequence.

FIG. 2 illustrates a first example of the method for processing a multiple table query in accordance with the present invention. In this example, there are three tables to be joined, T1, T2, and T3. With a join sequence of T1-T2-T3, filtering is applied to T1 and T3. T3 is determined to require materialization due to the GROUP BY clause, via steps 101-102. A GROUP BY clause specifies an intermediate result table that contains a grouping of rows of the result of the previous clause of the subselect. Here, T3 is accessed first, via step 103, with the result stored in a workfile in preparation for the join of T1 and T2. Thus, the join becomes T1-T2-WF (workfile from T3 materialization).

Assume that T1.C1=? qualifies 5,000 rows, and the result of T3 (after C1=? and GROUP BY) is 1,000 rows ranging from 555-3,200 (with maximum range of 1-9,999). Thus the join of T1 to T2 would be 5,000 rows. The T1/T2 composite of 5,000 rows would then be joined with T3, with only 500 rows intersecting with T3 result of 1000 rows.

Using the method in accordance with the present invention, in the process of materializing and sorting the result of T3, the high and low key of C2 is determined to be 555 to 3220. At runtime, the predicate T2.C2 BETWEEN 555 AND 3220 can be derived, via step 103, after the materialization of T3, and then applied to T2, via steps 104-105. The 5,000 T1 rows will be joined to T2, but a subset of T2 rows will qualify after the application of the BETWEEN predicate. Assuming T2 and T3 form a parent/child relationship, 500 rows will quality on T2 after the derived predicate is applied. If this predicate is an index matching predicate, then 4500 less index and data rows will be accessed from T2. Regardless of when the predicate is applied to T2, 4500 less row swill be joined to T3.

FIG. 3 illustrates a second example of the method for processing a multiple table query in accordance with the present invention. This example includes star join queries, which can have filtering come from many dimension and/or snowflake tables. Star join queries are known in the art. Here, the filtering comes from dimension tables DP, D5 and D6, and also snowflake tables D1/X2/Z1 and D3/X1. Not all filtering can be applied before the fact table, F, because of index availability and also to minimize the Cartesian product size.

Assume, based upon index availability, the table join sequence is D5-D6-F-SF1 (D1/X2/Z1)-SF2 (D3/X1)-DP, where SF1 and SF2 are materialized snowflakes. While materializing and sorting these snowflakes, the key ranges on the join predicates can be generated or derived, via steps 101-103 and applied against the fact table, via steps 104-105. The derived predicates are on the join predicates between the materialized results and the earliest related table accessed in the join sequence.

With join predicates of F.KEY_D1=D1.KEY_D1 and F.KEY_D3=D3.KEY_D3, and the runtime outcome of materializing the snowflake tables, the following predicates can be derived to be applied against the fact table: AND F.KEY_D1 BETWEEN 87 AND 531; and AND F.KEY_D3 IN (103, 179, 216, 246, 262, 499). The result is a reduction in the rows that qualify from the fact table, and therefore fewer rows are joined after the fact table. This can provide a significant enhancement since data warehouse queries may access many millions of rows against a fact table, and therefore any filtering can reduce this number.

An improved method for processing a multiple table query has been disclosed. The method accesses and evaluates the filtering of any tables in a query that require or can benefit from materialization. Predicates based on the join predicates after filtering are then derived. While materializing and sorting, the derived predicates are applied to tables earlier in the join sequence. This significantly reduces the number of rows that are joined before arriving at the final result.

Although the present invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present invention. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.

Claims (5)

1. A computer readable medium encoded with a computer program for processing a multiple table query, the computer program comprising computer executable instructions for:
determining if any tables in the multiple table query require materialization; for each table in the multiple table query that requires materialization, deriving a join predicate on a join column of the table;
for each table having a derived join predicate, determining if any other tables earlier in a join sequence for the multiple table query has a same join predicate;
responsive to a table earlier in the join sequence having the same join predicate, applying the derived join predicate to the earlier table in the join sequence to reduce an amount of rows that need to be joined between the tables in the multiple table query during processing of the join sequence; and
storing a result of applying the derived join predicate.
2. The computer readable medium of claim 1, wherein each derived predicate is available as an indexable predicate.
3. The computer readable medium of claim 2, wherein each derived predicate comprises a predicate that compares a value with a collection of values.
4. The computer readable medium of claim 2, wherein each derived predicate comprises a predicate that compares a value with a range of values.
5. The computer readable medium of claim 1, wherein factors for determining whether a table earlier in the join sequence for the multiple table query has a same join predicate comprises one or more of the group consisting of: a number of tables in the join sequence with strong filtering, join predicates or indexing dictates a join sequence that makes best use of join predicates but no filtering, and an out join in the join sequence.
US12185103 2004-12-15 2008-08-03 Generated predicates from materialized result Active 2026-04-01 US7953726B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11014155 US7536379B2 (en) 2004-12-15 2004-12-15 Performing a multiple table join operating based on generated predicates from materialized results
US12185103 US7953726B2 (en) 2004-12-15 2008-08-03 Generated predicates from materialized result

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12185103 US7953726B2 (en) 2004-12-15 2008-08-03 Generated predicates from materialized result

Publications (2)

Publication Number Publication Date
US20080288469A1 true US20080288469A1 (en) 2008-11-20
US7953726B2 true US7953726B2 (en) 2011-05-31

Family

ID=36585278

Family Applications (2)

Application Number Title Priority Date Filing Date
US11014155 Expired - Fee Related US7536379B2 (en) 2004-12-15 2004-12-15 Performing a multiple table join operating based on generated predicates from materialized results
US12185103 Active 2026-04-01 US7953726B2 (en) 2004-12-15 2008-08-03 Generated predicates from materialized result

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11014155 Expired - Fee Related US7536379B2 (en) 2004-12-15 2004-12-15 Performing a multiple table join operating based on generated predicates from materialized results

Country Status (1)

Country Link
US (2) US7536379B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140012882A1 (en) * 2012-07-04 2014-01-09 Software Ag Method of processing relational queries in a database system and corresponding database system
US8856103B2 (en) 2012-06-29 2014-10-07 International Business Machines Corporation Predicate pushdown with late materialization in database query processing
US9569495B2 (en) 2014-08-21 2017-02-14 International Business Machines Corporation Feedback mechanism providing row-level filtering earlier in a plan
US9652498B2 (en) 2014-04-23 2017-05-16 International Business Machines Corporation Processing queries using hybrid access paths

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7536379B2 (en) * 2004-12-15 2009-05-19 International Business Machines Corporation Performing a multiple table join operating based on generated predicates from materialized results
US9158818B2 (en) * 2007-04-05 2015-10-13 Oracle International Corporation Facilitating identification of star schemas in database environments
US20080319964A1 (en) * 2007-06-22 2008-12-25 Michael Coury Systems, articles and methods of preference filtering for database queries
US20100088309A1 (en) * 2008-10-05 2010-04-08 Microsoft Corporation Efficient large-scale joining for querying of column based data encoded structures
US8620899B2 (en) * 2010-02-09 2013-12-31 International Business Machines Corporation Generating materialized query table candidates
US9396246B2 (en) * 2013-11-08 2016-07-19 International Business Machines Corporation Reporting and summarizing metrics in sparse relationships on an OLTP database

Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5542073A (en) 1993-01-07 1996-07-30 International Business Machines Corporation Computer program product for choosing largest selectivities among eligible predicates of join equivalence classes for query optimization
US5903893A (en) 1997-09-15 1999-05-11 International Business Machines Corporation Method and apparatus for optimizing a merge-join operation across heterogeneous databases
US5930785A (en) 1995-03-31 1999-07-27 International Business Machines Corporation Method for detecting and optimizing queries with encoding/decoding tables
US5937195A (en) 1996-11-27 1999-08-10 Hewlett-Packard Co Global control flow treatment of predicated code
US5960428A (en) 1997-08-28 1999-09-28 International Business Machines Corporation Star/join query optimization
US5987453A (en) 1997-04-07 1999-11-16 Informix Software, Inc. Method and apparatus for performing a join query in a database system
US6026390A (en) 1996-05-29 2000-02-15 At&T Corp Cost-based maintenance of materialized views
US6125360A (en) * 1998-07-02 2000-09-26 Oracle Corporation Incremental maintenance of materialized views containing one-to-N lossless joins
US6138111A (en) 1997-05-02 2000-10-24 Informix Software, Inc. Cardinality-based join ordering
US6199063B1 (en) 1998-03-27 2001-03-06 Red Brick Systems, Inc. System and method for rewriting relational database queries
US6334128B1 (en) 1998-12-28 2001-12-25 Oracle Corporation Method and apparatus for efficiently refreshing sets of summary tables and materialized views in a database management system
US6339769B1 (en) 1998-09-14 2002-01-15 International Business Machines Corporation Query optimization by transparently altering properties of relational tables using materialized views
US6341281B1 (en) * 1998-04-14 2002-01-22 Sybase, Inc. Database system with methods for optimizing performance of correlated subqueries by reusing invariant results of operator tree
US6345272B1 (en) 1999-07-27 2002-02-05 Oracle Corporation Rewriting queries to access materialized views that group along an ordered dimension
US6356889B1 (en) 1998-09-30 2002-03-12 International Business Machines Corporation Method for determining optimal database materializations using a query optimizer
US6356890B1 (en) * 2000-04-20 2002-03-12 Microsoft Corporation Merging materialized view pairs for database workload materialized view selection
US6377943B1 (en) 1999-01-20 2002-04-23 Oracle Corp. Initial ordering of tables for database queries
US6385603B1 (en) * 1999-06-14 2002-05-07 International Business Machines Corporation Joined table expression optimization by query transformation
US6397204B1 (en) 1999-06-25 2002-05-28 International Business Machines Corporation Method, system, and program for determining the join ordering of tables in a join query
US20020078015A1 (en) 2000-11-22 2002-06-20 Sybase, Inc. Database system with methodogy providing faster n-ary nested loop joins
US6439783B1 (en) 1994-07-19 2002-08-27 Oracle Corporation Range-based query optimizer
US20020188600A1 (en) 2001-03-15 2002-12-12 International Business Machines Corporation Outerjoin and antijoin reordering using extended eligibility lists
US6496819B1 (en) 1998-12-28 2002-12-17 Oracle Corporation Rewriting a query in terms of a summary based on functional dependencies and join backs, and based on join derivability
US6510422B1 (en) 2000-09-27 2003-01-21 Microsoft Corporation Cost based materialized view selection for query optimization
US6513029B1 (en) 2000-04-20 2003-01-28 Microsoft Corporation Interesting table-subset selection for database workload materialized view selection
US20030055814A1 (en) 2001-06-29 2003-03-20 International Business Machines Corporation Method, system, and program for optimizing the processing of queries involving set operators
US20030093415A1 (en) 2001-11-15 2003-05-15 Microsoft Corporation System and method for optimizing queries using materialized views and fast view matching
US6567802B1 (en) 2000-09-06 2003-05-20 The Trustees Of The University Of Pennsylvania Systematic approach to query optimization
US6571233B2 (en) 2000-12-06 2003-05-27 International Business Machines Corporation Optimization of SQL queries using filtering predicates
US20030101335A1 (en) 2001-11-26 2003-05-29 Microsoft Corporation Method for binary-level branch reversal on computer architectures supporting predicated execution
US20030167258A1 (en) 2002-03-01 2003-09-04 Fred Koo Redundant join elimination and sub-query elimination using subsumption
US20030187864A1 (en) 2002-04-02 2003-10-02 Mcgoveran David O. Accessing and updating views and relations in a relational database
US20030195881A1 (en) 2002-04-16 2003-10-16 International Business Machines Corporation Optimizing database query performance by deriving query predicates
US20030212701A1 (en) 2002-05-10 2003-11-13 International Business Machines Corporation Method, system, and program for selecting a join order for tables subject to a join operation
US6732096B1 (en) * 2001-07-30 2004-05-04 Ncr Corporation Optimizing an aggregate join query
US20040122804A1 (en) 2002-12-19 2004-06-24 Guogen Zhang Materialized view signature and efficient identification of materialized view candidates for queries
US20040128287A1 (en) 2002-12-20 2004-07-01 International Business Machines Corporation Self tuning database retrieval optimization using regression functions
US20040220911A1 (en) 2003-04-30 2004-11-04 Zuzarte Calisto P. Method and system for aggregation subquery join elimination
US20040220923A1 (en) 2002-06-29 2004-11-04 Sybase, Inc. System and methodology for cost-based subquery optimization using a left-deep tree join enumeration algorithm
US20050071331A1 (en) 2003-09-30 2005-03-31 Dengfeng Gao Estimating the compilation time of a query optimizer
US20050114307A1 (en) 2003-11-25 2005-05-26 Ruiping Li Efficient heuristic approach in selection of materialized views when there are multiple matchings to an SQL query
US20050187917A1 (en) 2003-09-06 2005-08-25 Oracle International Corporation Method for index tuning of a SQL statement, and index merging for a multi-statement SQL workload, using a cost-based relational query optimizer
US20050198013A1 (en) 2004-03-08 2005-09-08 Microsoft Corporation Structured indexes on results of function applications over data
US7191169B1 (en) 2002-05-21 2007-03-13 Oracle International Corporation System and method for selection of materialized views
US7240078B2 (en) 2003-11-25 2007-07-03 International Business Machines Corporation Method, system, and program for query optimization with algebraic rules
US7315852B2 (en) 2003-10-31 2008-01-01 International Business Machines Corporation XPath containment for index and materialized view matching
US7536379B2 (en) * 2004-12-15 2009-05-19 International Business Machines Corporation Performing a multiple table join operating based on generated predicates from materialized results

Patent Citations (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5542073A (en) 1993-01-07 1996-07-30 International Business Machines Corporation Computer program product for choosing largest selectivities among eligible predicates of join equivalence classes for query optimization
US6439783B1 (en) 1994-07-19 2002-08-27 Oracle Corporation Range-based query optimizer
US5930785A (en) 1995-03-31 1999-07-27 International Business Machines Corporation Method for detecting and optimizing queries with encoding/decoding tables
US6026390A (en) 1996-05-29 2000-02-15 At&T Corp Cost-based maintenance of materialized views
US5937195A (en) 1996-11-27 1999-08-10 Hewlett-Packard Co Global control flow treatment of predicated code
US5987453A (en) 1997-04-07 1999-11-16 Informix Software, Inc. Method and apparatus for performing a join query in a database system
US6138111A (en) 1997-05-02 2000-10-24 Informix Software, Inc. Cardinality-based join ordering
US5960428A (en) 1997-08-28 1999-09-28 International Business Machines Corporation Star/join query optimization
US5903893A (en) 1997-09-15 1999-05-11 International Business Machines Corporation Method and apparatus for optimizing a merge-join operation across heterogeneous databases
US6199063B1 (en) 1998-03-27 2001-03-06 Red Brick Systems, Inc. System and method for rewriting relational database queries
US6629094B1 (en) 1998-03-27 2003-09-30 International Business Machines Corporation System and method for rewriting relational database queries
US6341281B1 (en) * 1998-04-14 2002-01-22 Sybase, Inc. Database system with methods for optimizing performance of correlated subqueries by reusing invariant results of operator tree
US6125360A (en) * 1998-07-02 2000-09-26 Oracle Corporation Incremental maintenance of materialized views containing one-to-N lossless joins
US6339769B1 (en) 1998-09-14 2002-01-15 International Business Machines Corporation Query optimization by transparently altering properties of relational tables using materialized views
US6356889B1 (en) 1998-09-30 2002-03-12 International Business Machines Corporation Method for determining optimal database materializations using a query optimizer
US6496819B1 (en) 1998-12-28 2002-12-17 Oracle Corporation Rewriting a query in terms of a summary based on functional dependencies and join backs, and based on join derivability
US6334128B1 (en) 1998-12-28 2001-12-25 Oracle Corporation Method and apparatus for efficiently refreshing sets of summary tables and materialized views in a database management system
US6377943B1 (en) 1999-01-20 2002-04-23 Oracle Corp. Initial ordering of tables for database queries
US6385603B1 (en) * 1999-06-14 2002-05-07 International Business Machines Corporation Joined table expression optimization by query transformation
US6397204B1 (en) 1999-06-25 2002-05-28 International Business Machines Corporation Method, system, and program for determining the join ordering of tables in a join query
US6345272B1 (en) 1999-07-27 2002-02-05 Oracle Corporation Rewriting queries to access materialized views that group along an ordered dimension
US6356890B1 (en) * 2000-04-20 2002-03-12 Microsoft Corporation Merging materialized view pairs for database workload materialized view selection
US6513029B1 (en) 2000-04-20 2003-01-28 Microsoft Corporation Interesting table-subset selection for database workload materialized view selection
US6567802B1 (en) 2000-09-06 2003-05-20 The Trustees Of The University Of Pennsylvania Systematic approach to query optimization
US6510422B1 (en) 2000-09-27 2003-01-21 Microsoft Corporation Cost based materialized view selection for query optimization
US20020078015A1 (en) 2000-11-22 2002-06-20 Sybase, Inc. Database system with methodogy providing faster n-ary nested loop joins
US6571233B2 (en) 2000-12-06 2003-05-27 International Business Machines Corporation Optimization of SQL queries using filtering predicates
US20020188600A1 (en) 2001-03-15 2002-12-12 International Business Machines Corporation Outerjoin and antijoin reordering using extended eligibility lists
US20030055814A1 (en) 2001-06-29 2003-03-20 International Business Machines Corporation Method, system, and program for optimizing the processing of queries involving set operators
US6732096B1 (en) * 2001-07-30 2004-05-04 Ncr Corporation Optimizing an aggregate join query
US20030093415A1 (en) 2001-11-15 2003-05-15 Microsoft Corporation System and method for optimizing queries using materialized views and fast view matching
US20050091208A1 (en) 2001-11-15 2005-04-28 Microsoft Corporation System and method for optimizing queries using materialized views and fast view matching
US20030101335A1 (en) 2001-11-26 2003-05-29 Microsoft Corporation Method for binary-level branch reversal on computer architectures supporting predicated execution
US20030167258A1 (en) 2002-03-01 2003-09-04 Fred Koo Redundant join elimination and sub-query elimination using subsumption
US20030187864A1 (en) 2002-04-02 2003-10-02 Mcgoveran David O. Accessing and updating views and relations in a relational database
US20030195881A1 (en) 2002-04-16 2003-10-16 International Business Machines Corporation Optimizing database query performance by deriving query predicates
US20030212701A1 (en) 2002-05-10 2003-11-13 International Business Machines Corporation Method, system, and program for selecting a join order for tables subject to a join operation
US7191169B1 (en) 2002-05-21 2007-03-13 Oracle International Corporation System and method for selection of materialized views
US20040220923A1 (en) 2002-06-29 2004-11-04 Sybase, Inc. System and methodology for cost-based subquery optimization using a left-deep tree join enumeration algorithm
US20040122804A1 (en) 2002-12-19 2004-06-24 Guogen Zhang Materialized view signature and efficient identification of materialized view candidates for queries
US7136850B2 (en) 2002-12-20 2006-11-14 International Business Machines Corporation Self tuning database retrieval optimization using regression functions
US20040128287A1 (en) 2002-12-20 2004-07-01 International Business Machines Corporation Self tuning database retrieval optimization using regression functions
US20040220911A1 (en) 2003-04-30 2004-11-04 Zuzarte Calisto P. Method and system for aggregation subquery join elimination
US20050187917A1 (en) 2003-09-06 2005-08-25 Oracle International Corporation Method for index tuning of a SQL statement, and index merging for a multi-statement SQL workload, using a cost-based relational query optimizer
US20050071331A1 (en) 2003-09-30 2005-03-31 Dengfeng Gao Estimating the compilation time of a query optimizer
US7315852B2 (en) 2003-10-31 2008-01-01 International Business Machines Corporation XPath containment for index and materialized view matching
US7240078B2 (en) 2003-11-25 2007-07-03 International Business Machines Corporation Method, system, and program for query optimization with algebraic rules
US20050114307A1 (en) 2003-11-25 2005-05-26 Ruiping Li Efficient heuristic approach in selection of materialized views when there are multiple matchings to an SQL query
US20050198013A1 (en) 2004-03-08 2005-09-08 Microsoft Corporation Structured indexes on results of function applications over data
US7536379B2 (en) * 2004-12-15 2009-05-19 International Business Machines Corporation Performing a multiple table join operating based on generated predicates from materialized results

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
Cheng, J., et al., "An Efficient Hybrid Join Algorithm: A DB2 Protype, Data Engineering," 1991, Proceedings 7th International Conference, 1991, pp. 171-180.
Chiang, Lee, et al., Optimizing Large Join Queries Using a Graph-Based Approach, IEEE, Mar.-Apr. 2001, 298-315.
Dong H., et al., "Generic Algorithms for Large Join Query Optimization," pp. 1-8.
Ibaraki, et al., "On the Optimal Nesting Order for Computing N-Relational Joins," ACM Transactions on Databases Systems, vol. 9, No. 3, Sep. 1984, pp. 482-502.
Ioannidis, Y.E., et al., Randomized Algorithms for Optimizing Large Join Queries, SIDMOD Conference, 1990, pp. 312-321.
Krishnamurthy, et al., "Optimization of Nonrecursive Queries," Twelfth International Conference on Very Large Databases, Aug. 1996, pp. 128-137.
Lahiri, T., "Genetic Optimization Techniques for Large Join Queries," Proceedings of 3 Sup.Rd Annual Conference on Genetic Programming, 1998, pp. 535-542 (abstract).
Lahiri, Tirthankar, "Genetic Optimization Techniques for Large Join Queries", Proceedings of 3.sup.rd Annual Conference on Genetic Programming, 1998, pp. 535-542 (abstract).
Lee, et al., "Implicit Joins in the Structural Data Model," IEEE, 1991, pp. 357-364.
Lohman, G.M., et al., "Optimization of Nested Queries in a Distributed Relational Database," Proceedings of 10th VLDB, Aug. 1984, pp. 403-415.
Mumick, I.S., et al., "The Magic of Duplicates and Aggregates," in Proccedings, 16th International Conference on Very Large Data Bases, Brisbane, Aug. 1990.
Ono, K., et al., "Measuring the Complexity of Join Enumberation in Query Optimization," 16.Sup.th Intl. Conference on Very Large Data Bases, 1990, pp. 314-325 (abstract).
Rosenthal, A., et al., "An Architecture for Query Optimization," Proceedings. of ACJ-SIGMOD, 1982.
Seshadri, P., et al. "Complex Query Decorrelation," Proceedings of the International Conference on Data Engineering (ICDE), Louisiana, USA Feb. 1996.
Silberberg, David, "Role-Based Semantics for Conceptual-Level Queries," Proceedings of the 5th KRDB Workshop, Seattle, WA, May 31, 1998, 17-1-17-10.
Swami, A., et al., A Polynomial Time Algorithm for Optimizing Join Queries, ICDE, 1993, pp. 345-354.
Swami, Arun, "Optimization of Large Join Queries: Combining Heuristics and Combinatorial Techniques," ACM0-89791-3175/89/0005/0367, 1989, pp. 367-376.
Swami, Arun, Optimization of Large Join Queries, ACM 1988, pp. 8-17.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8856103B2 (en) 2012-06-29 2014-10-07 International Business Machines Corporation Predicate pushdown with late materialization in database query processing
US8862571B2 (en) 2012-06-29 2014-10-14 International Business Machines Corporation Predicate pushdown with late materialization in database query processing
US20140012882A1 (en) * 2012-07-04 2014-01-09 Software Ag Method of processing relational queries in a database system and corresponding database system
US9400815B2 (en) * 2012-07-04 2016-07-26 Sotfwar Ag Method of two pass processing for relational queries in a database system and corresponding database system
US9652498B2 (en) 2014-04-23 2017-05-16 International Business Machines Corporation Processing queries using hybrid access paths
US9652497B2 (en) 2014-04-23 2017-05-16 International Business Machines Corporation Processing queries using hybrid access paths
US9569495B2 (en) 2014-08-21 2017-02-14 International Business Machines Corporation Feedback mechanism providing row-level filtering earlier in a plan
US9582540B2 (en) 2014-08-21 2017-02-28 International Business Machines Corporation Feedback mechanism providing row-level filtering earlier in a plan

Also Published As

Publication number Publication date Type
US20060129535A1 (en) 2006-06-15 application
US7536379B2 (en) 2009-05-19 grant
US20080288469A1 (en) 2008-11-20 application

Similar Documents

Publication Publication Date Title
Valduriez Join indices
US5557791A (en) Outer join operations using responsibility regions assigned to inner tables in a relational database
US6748392B1 (en) System and method for segmented evaluation of database queries
Zaharioudakis et al. Answering complex SQL queries using automatic summary tables
US7246108B2 (en) Reusing optimized query blocks in query processing
US7080062B1 (en) Optimizing database queries using query execution plans derived from automatic summary table determining cost based queries
US6339777B1 (en) Method and system for handling foreign key update in an object-oriented database environment
Chang et al. A signature access method for the Starburst database system
US5924088A (en) Index selection for an index access path
US7171427B2 (en) Methods of navigating a cube that is implemented as a relational object
US20050198008A1 (en) Index exploitation for spatial data
US6192357B1 (en) Method and apparatus for optimizing query generation by selectively utilizing attributes or key values
US6990503B1 (en) Rescheduling transactions in a database system
US6253196B1 (en) Generalized model for the exploitation of database indexes
US6144957A (en) Method and apparatus for using incompatible types of indexes to process a single query
US8126870B2 (en) System and methodology for parallel query optimization using semantic-based partitioning
US20090228465A1 (en) Systems and Methods for Managing Queries
US5615361A (en) Exploitation of uniqueness properties using a 1-tuple condition for the optimization of SQL queries
US6947934B1 (en) Aggregate predicates and search in a database management system
US6529896B1 (en) Method of optimizing a query having an existi subquery and a not-exists subquery
US5974408A (en) Method and apparatus for executing a query that specifies a sort plus operation
US6513028B1 (en) Method, system, and program for searching a list of entries when search criteria is provided for less than all of the fields in an entry
US6792420B2 (en) Method, system, and program for optimizing the processing of queries involving set operators
US7127467B2 (en) Managing expressions in a database system
US20060167865A1 (en) Database System with Methodology for Generating Bushy Nested Loop Join Trees

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4