US7827561B2 - System and method for public consumption of communication events between arbitrary processes - Google Patents

System and method for public consumption of communication events between arbitrary processes Download PDF

Info

Publication number
US7827561B2
US7827561B2 US10/809,249 US80924904A US7827561B2 US 7827561 B2 US7827561 B2 US 7827561B2 US 80924904 A US80924904 A US 80924904A US 7827561 B2 US7827561 B2 US 7827561B2
Authority
US
United States
Prior art keywords
user
notification
sender
context
registered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US10/809,249
Other versions
US20040194116A1 (en
Inventor
Timothy P. McKee
Michael P. Arcuri
Chaitanya D. Sareen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Microsoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/402,075 external-priority patent/US7890960B2/en
Application filed by Microsoft Corp filed Critical Microsoft Corp
Priority to US10/809,249 priority Critical patent/US7827561B2/en
Priority to US10/837,512 priority patent/US20050021540A1/en
Assigned to MICROSOFT CORPORATION reassignment MICROSOFT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARCURI, MICHAEL P., MCKEE, TIMOTHY P., SAREEN, CHAITANYA D.
Publication of US20040194116A1 publication Critical patent/US20040194116A1/en
Application granted granted Critical
Publication of US7827561B2 publication Critical patent/US7827561B2/en
Assigned to MICROSOFT TECHNOLOGY LICENSING, LLC reassignment MICROSOFT TECHNOLOGY LICENSING, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICROSOFT CORPORATION
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/42136Administration or customisation of services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/54Interprogram communication
    • G06F9/542Event management; Broadcasting; Multicasting; Notifications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/107Computer-aided management of electronic mailing [e-mailing]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/109Time management, e.g. calendars, reminders, meetings or time accounting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/02User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail using automatic reactions or user delegation, e.g. automatic replies or chatbot-generated messages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • H04L51/21Monitoring or handling of messages
    • H04L51/224Monitoring or handling of messages providing notification on incoming messages, e.g. pushed notifications of received messages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2203/00Aspects of automatic or semi-automatic exchanges
    • H04M2203/20Aspects of automatic or semi-automatic exchanges related to features of supplementary services
    • H04M2203/2072Schedules, e.g. personal calendars
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/42Systems providing special services or facilities to subscribers
    • H04M3/50Centralised arrangements for answering calls; Centralised arrangements for recording messages for absent or busy subscribers ; Centralised arrangements for recording messages
    • H04M3/53Centralised arrangements for recording incoming messages, i.e. mailbox systems
    • H04M3/537Arrangements for indicating the presence of a recorded message, whereby the presence information might include a preview or summary of the message

Definitions

  • the embodiment of the present invention relates to notifications and related communication events in computing systems, and more particularly, a system and method for public consumption of communication events between arbitrary processes.
  • a notification may be in the form of a signal from a program that indicates to a user that a specified event has occurred.
  • a notification may contain various elements of text, sound, and graphics. Other properties may also be included with the notification, such as priority, the person who sent the notification (for channels such as e-mail or instant messaging), and when the notification expires.
  • Notifications may also include some elements of code such that the user can interact with the notification and launch arbitrary code (e.g., clicking on buttons or text within the notification that can cause new programs to launch or actions to be taken on programs that are currently running).
  • An operating system may create notifications to let a user know about network connectivity and updates.
  • An instant messaging program that uses “contact lists” may draw notifications on the screen to let the user know what is happening with the contact list or when a contact initiates an instant message conversation.
  • Other programs may provide similar notifications that draw in similar areas of the display.
  • One issue with these types of notifications is that they are not generally aware of the other notifications, thus sometimes leading to notifications being drawn on top of other notifications.
  • Another issue with existing notification systems is that they may cause notifications to be delivered inappropriately, or at inappropriate times. For example, for a user providing a full screen presentation, it may be inappropriate to have other programs draw notifications on the screen during the presentation.
  • An example of a program that might draw such inappropriate notifications is an instant messaging program that runs in the background of the operating system and draws such notifications when contacts in the contact list sign on or initiate an instant message. This type of “interruption” during a presentation may be undesirable to a user.
  • the embodiment of the present invention is related to providing a system and method that overcome the foregoing and other disadvantages. More specifically, the embodiment of the present invention is related to a system and method for public consumption of communication events between arbitrary processes.
  • a system and method for public consumption of communication events between arbitrary processes is provided.
  • mechanisms are provided for allowing processes to obtain information regarding when notification events are occurring, and specifically targeting communication-type notification events, and allowing the processes to act on these events on the user's behalf.
  • This functionality is provided in a notification system in which various processes provide input to the system as to how busy the user is and whether or not it is an appropriate time to interrupt the user with some secondary information (e.g., a notification), such as a communication from another person or some news generated by a Web service.
  • incoming notifications may be evaluated against rules that the user establishes such that the notifications that are delivered can be explicitly the ones most significant to the user, even during times when the system might otherwise be set in a mode where the user is indicated as being busy or otherwise unavailable to interruption.
  • a process is able to respond to the sender of a notification with information regarding the status of a user.
  • a sender of a notification may be provided with information such as that the user is busy giving a presentation at the present time but that the calendar indicates that the user will be free at a later specified time.
  • a number of processes may be utilized as part of the system and method for public consumption of communication events.
  • Each of the processes may comprise a program that is responsible for specified functions.
  • the first process may be a program that is running a full screen, which signifies to the notification system that the user is not available to interruption. For example, the user may be giving a presentation or may be otherwise fully occupied such that it is inappropriate to attempt to interrupt the user at this time.
  • a second process may then attempt to send a notification to the user from another person. This could be any kind of communication program (e.g., e-mail, instant messaging, a telephone program, etc.).
  • a third process may be one that has registered to be informed when “communication” events occur.
  • This third process is a program that has some domain knowledge of the user's activities outside of the data that the notification system has.
  • the third process may be a calendaring program that may have knowledge of what activities the user is currently engaged in (e.g., that the user is scheduled to be giving a presentation during selected times of the day).
  • a copy of the notification that was sent from the second process may be provided to the third process (e.g., calendaring program) along with a statement as to whether or not the notification was delivered.
  • the third process e.g., calendaring program
  • the third process may then evaluate certain factors such as the identity of the person from which the notification originated, how important that person is to the current user (e.g., using selected heuristics), and may respond to the person who originated the notification with a customized “busy announcement” (e.g., the user you are trying to contact is doing a presentation right now, but if you try and contact him at time x, you will likely be successful, as his calendar is free then).
  • a customized “busy announcement” e.g., the user you are trying to contact is doing a presentation right now, but if you try and contact him at time x, you will likely be successful, as his calendar is free then.
  • FIG. 1 is a block diagram of a general purpose computer system suitable for implementing the embodiment of the present invention
  • FIG. 2 is a flow diagram illustrative of a general routine for processing a notification in accordance with the embodiment of the present invention
  • FIG. 3 is a flow diagram illustrative of a routine for an operating system or arbitrary program declaring user contexts
  • FIG. 4 is a flow diagram illustrative of a routine for evaluating user contexts as true or false at the time a notification API is called;
  • FIG. 5 is a flow diagram illustrative of a routine for adjusting user contexts and creating new user rules
  • FIG. 6 is a flow diagram illustrative of a routine for processing a notification in accordance with user contexts and user rules
  • FIG. 7 is a flow diagram illustrative of a routine for implementing user rules based on a notification's content and the user contexts;
  • FIG. 8 is a flow diagram illustrative of a routine for deferring the delivery of a notification
  • FIG. 9 is a flow diagram illustrative of a routine for determining how a notification will be drawn in accordance with various restrictive settings
  • FIG. 10 is a flow diagram illustrative of a routine for determining a volume level for a notification in accordance with various restrictive settings
  • FIG. 11 is a flow diagram illustrative of a general routine for processing a test notification in accordance with the embodiment of the present invention.
  • FIG. 12 is a flow diagram illustrative of a routine for processing a test notification and returning indications of true or false;
  • FIG. 13 is a flow diagram illustrative of a routine for processing a test notification and returning indications with full details
  • FIG. 14 is a flow diagram illustrative of a routine for utilizing user rules to process a test notification based on the test notification's content and the current user contexts;
  • FIGS. 15A and 15B are diagrams illustrative of pseudo code for a notification API
  • FIG. 16 is a diagram illustrative of pseudo code for a context setting API
  • FIG. 17 is a block diagram illustrating a notification processing system which receives inputs from context setters and notification senders;
  • FIG. 18 is a flow diagram illustrative of a general routine for calling a notification API
  • FIG. 19 is a flow diagram illustrative of a general routine for calling a context setting API
  • FIGS. 20A-20L are block diagrams illustrating various implementations of a programming interface that may be utilized in a notification system
  • FIG. 21 is a diagram illustrating the setting of a user context and user rules
  • FIG. 22 is a diagram illustrating the initiation of a notification event
  • FIG. 23 is a diagram illustrating the drawing of a notification in response to a notification event
  • FIG. 24 is a diagram illustrating an arbitrary process registering for communication events
  • FIG. 25 is a diagram illustrating an arbitrary process receiving a communication event and in response thereto sending a customized announcement
  • FIG. 26 is a flow diagram illustrative of a general routine for a process registering for communication events
  • FIG. 27 is a flow diagram illustrative of a general routine for a process receiving a communication event and responding in accordance with an evaluation routine
  • FIG. 28 is a flow diagram illustrative of a routine for a process to evaluate a communication event and send a customized announcement.
  • the notifications provided by the system can be considered to be more valuable because they are delivered when the user is more receptive to them, and in addition the use of common rules helps the user to eliminate undesired notifications.
  • the system may also enable public consumption of communication events between arbitrary processes.
  • FIG. 1 and the following discussion are intended to provide a brief, general description of a suitable computing environment in which the embodiment of the present invention may be implemented.
  • the invention will be described in the general context of computer-executable instructions, such as program modules, being executed by a personal computer.
  • program modules include routines, programs, characters, components, data structures, etc., that perform particular tasks or implement particular abstract data types.
  • the invention may be practiced with other computer system configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like.
  • the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules may be located in both local and remote memory storage devices.
  • an exemplary system for implementing the invention includes a general purpose computing device in the form of a conventional personal computer 20 , including a processing unit 21 , system memory 22 , and a system bus 23 that couples various system components including the system memory 22 to the processing unit 21 .
  • the system bus 23 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures.
  • the system memory includes read-only memory (ROM) 24 and random access memory (RAM) 25 .
  • ROM read-only memory
  • RAM random access memory
  • a basic input/output system (BIOS) 26 containing the basic routines that helps to transfer information between elements within the personal computer 20 , such as during start-up, is stored in ROM 24 .
  • the personal computer 20 further includes a hard disk drive 27 for reading from or writing to a hard disk 39 , a magnetic disk drive 28 for reading from or writing to a removable magnetic disk 29 , and an optical disk drive 30 for reading from or writing to a removable optical disk 31 , such as a CD-ROM or other optical media.
  • the hard disk drive 27 , magnetic disk drive 28 , and optical disk drive 30 are connected to the system bus 23 by a hard disk drive interface 32 , a magnetic disk drive interface 33 , and an optical drive interface 34 , respectively.
  • the drives and their associated computer-readable media provide non-volatile storage of computer-readable instructions, data structures, program modules, and other data for the personal computer 20 .
  • exemplary environment described herein employs a hard disk 39 , a removable magnetic disk 29 , and a removable optical disk 31 , it should be appreciated by those skilled in the art that other types of computer-readable media which can store data that is accessible by a computer, such as magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges, random access memories (RAMs), read-only memories (ROMs), and the like, may also be used in the exemplary operating environment.
  • RAMs random access memories
  • ROMs read-only memories
  • a number of program modules may be stored on the hard disk 39 , magnetic disk 29 , optical disk 31 , ROM 24 or RAM 25 , including an operating system 35 , one or more application programs 36 , other program modules 37 and program data 38 .
  • a user may enter commands and information into the personal computer 20 through input devices such as a keyboard 40 and pointing device 42 .
  • Other input devices may include a microphone, joystick, game pad, satellite dish, scanner, or the like.
  • serial port interface 46 that is coupled to the system bus 23 , but may also be connected by other interfaces, such as a parallel port, game port or a universal serial bus (USB).
  • a display in the form of a monitor 47 is also connected to the system bus 23 via an interface, such as a video card or adapter 48 .
  • One or more speakers 57 may also be connected to the system bus 23 via an interface, such as an audio adapter 56 .
  • personal computers typically include other peripheral output devices (not shown), such as printers.
  • the personal computer 20 may operate in a networked environment using logical connections to one or more personal computers, such as a remote computer 49 .
  • the remote computer 49 may be another personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the personal computer 20 .
  • the logical connections depicted in FIG. 1 include a local area network (LAN) 51 and a wide area network (WAN) 52 .
  • the local area network 51 and wide area network 52 may be wired, wireless, or a combination thereof.
  • Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets, and the Internet.
  • the personal computer 20 When used in a LAN networking environment, the personal computer 20 is connected to the local area network 51 through a network interface or adapter 53 . When used in a WAN networking environment, the personal computer 20 typically includes a modem 54 or other means for establishing communications over the wide area network 52 , such as the Internet.
  • the modem 54 which may be internal or external, is connected to the system bus 23 via the serial port interface 46 .
  • program modules depicted relative to the personal computer 20 or portions thereof may be stored in the remote memory storage device. It will be appreciated that the network connections shown are exemplary, and other means of establishing a communications link between the computers may be used.
  • a user context system may consist of three elements that are compared for a decision as to how to process a notification.
  • the first element is the user's context (as may be provided by the operating system and arbitrary programs that have extended it).
  • the second element is the user's rules and preferences.
  • the third element is the notification itself (which contains elements such as data and properties that may match the user's rules).
  • the system operates by the operating system and other programs declaring a user's contexts, after which the system brokers the user's context and rules. Notifications are raised by other programs calling into the system. The user's context, rules, and elements of the notification are compared and then a determination is made as to what should be done with the notification.
  • Examples of various options for what may be done with the notification include denying (if the notification is not allowed to draw or make noise, and the notification is to never be seen by the user), deferring (the notification is held until the user's context changes or the user's rules dictate that it is subsequently appropriate to deliver), delivering (the notification is allowed to be delivered in accordance with the user's context and rules), and routing (the user's rules indicate that the notification should be handed off to another system, regardless of whether the notification is also allowed to be delivered in the present system).
  • the user may be in a state deemed “unavailable” in which case the notification is either not delivered or held until the user becomes “available”. For instance, if the user is running a full screen application, that user may be deemed unavailable. Or, the user may be “available” but in such a state that the notification needs to be modified to be appropriate for the user. For instance, if the user is listening to music or in a meeting, the user may have indicated that the notifications should be delivered to the user's screen but that the sound they make should be either quieter or not made at all.
  • the user context determines in part whether notifications are shown on the user's screen. When a notification is shown, it may be shown based on certain gradients within the user context. In other words, there are different levels of invasiveness of the form of the drawn notification that may be specified. For example, a normal notification is free to pop out into the client area and briefly obscure a window. If the user is in a slightly restrictive context, the notification may be free to show, but only in a less invasive manner, such as it might not be allowed to draw on top of another window. As another example, in one embodiment where the user is running a maximized application, the default setting may be that this means that context is slightly restricted, and that the user has clearly made a statement that they want this application to get the entire client area. In this setting, a notification may still be allowed to draw, but may be made to only appear within the sidebar. In other words, this type of reduced invasiveness in the notification drawing form lessens the impact of the notification, and overall lessens the cognitive load.
  • FIG. 2 is a flow diagram illustrative of a routine 200 for processing a notification.
  • the operating system or an arbitrary program calls a notification application programming interface (API).
  • API application programming interface
  • the elements of the notification are evaluated with respect to user contexts as set by the operating system and arbitrary programs, and as further approved or modified by the user, and with respect to user rules as set by the user.
  • a notification is delivered, deferred, denied, routed, or otherwise handled in accordance with the user contexts and user rules.
  • a user context consists of a condition that may be either true or false, and an instruction for determining how a notification should be handled when the condition is true.
  • the condition of a user context can be thought of as a state that the system assumes makes the user in some way unavailable for notification delivery or that causes the way that the notification is delivered to be different from how it was sent by the program that initiated it.
  • a user context can be thought of as a statement that “while condition X is true, then this is what should be done with incoming notifications.”
  • An example would be “when my music player is playing music for me, incoming notifications should show on the screen but not play sound.”
  • Another example would be “while any application is running in full screen mode, incoming notifications should be deferred until later.”
  • a user may also define special rules for handling incoming notifications, and thus may provide for special exceptions to the instructions of the user contexts.
  • a user rule might state “when I receive a new e-mail from ‘John Doe,’ and with ‘urgent’ in the text, and marked ‘high priority,’ deliver the e-mail regardless of other user contexts.”
  • this user rule provides an exception to a user context which would otherwise indicate that it is inappropriate to deliver a notification for an incoming e-mail at this time.
  • these may include things like text, sound, graphics, and other properties such as priority, the person who sent the notification (for channels such as e-mail or instant messaging), when the notification expires, and some elements of code such that the user can interact with the notification and launch arbitrary code (e.g., clicking on buttons or text within the notification can cause new programs to launch or actions to be taken [such as deleting e-mail] on programs that are currently running).
  • FIG. 3 is a flow diagram illustrative of a routine 220 for an operating system or arbitrary program declaring user contexts.
  • the operating system or program declares the default contexts and their impact on the user's busy state.
  • programs register with the system and provide user contexts including the impact they have on the notifications (e.g., if drawing on the screen is appropriate and whether or not sound is appropriate or at what relative volume sound should be played).
  • a music player program may declare a default context that states “when the music player is playing music for the user, incoming notifications should show on the screen but not play sound.”
  • the operating system might declare a context which states “while any application is running in full screen mode, incoming notifications should be deferred until a later time.”
  • the operating system or program sets the declared context as true or false. For example, with regard to the music player declaring the context of “when the music player is playing music, incoming notifications should show on the screen but not play sound,” the music player program also sets this declared context as currently being true or false. In other words, the music player program indicates whether it is true or false that the music player is currently playing music. As will be described in more detail below, in one embodiment, the determination of whether a context is true or false may also be evaluated at the time the notification API is called, or at the time the user rules and exceptions are re-evaluated.
  • the system may also check to see if the calling program has not terminated unexpectedly or forgotten to reset the context, and the system will modify its settings appropriately due to this data.
  • One specific implementation of this feature would be the system tracking the process handle of the calling program (it will be appreciated that other means may also be used for checking on the calling program), such that if the process terminates without first resetting the context value to its default ‘false’ value, the system will reset the context value as soon as it detects that the initial process does not exist any more (in one embodiment, the process handle state is set to signal when the process terminates, and that state change is picked up by the system which watches the process handle).
  • the context may automatically be reset to false.
  • the context may automatically be set to false rather than leaving the user stuck in a state where notifications would not be received.
  • the contexts can generally be resolved to be either true or false.
  • the context information is added to the user contexts that are stored in the system. This process is repeated by additional programs declaring contexts. In addition, as noted above, the state of whether already declared contexts are true or false will change over time as the user opens and closes different programs and undertakes different tasks.
  • registering a context is a declarative process.
  • the user by registering the user contexts, the user can be presented with a list of the contexts so that the user can choose to not accept certain contexts or to change what they mean if the user disagrees with the context parameters.
  • a context may consist of a condition that may be true or false, and an instruction for what to do with notifications when the condition is true.
  • a user context may comprise specific programming elements, such as: a human readable string (for the end user to know what is meant); a unique identifier (such as a globally unique identifier, aka GUID) so that the program can tell the operating system when this context is true or not; and the instruction which may comprise a statement of what this context means in terms of notifications drawing on screen (as may include invasiveness level, sound, and volume).
  • a context may also be dynamic, as will be described in more detail below.
  • FIG. 4 is a flow diagram illustrative of a routine 230 for a context to be evaluated as true or false at the time the notification API is called.
  • a determination is made whether the user contexts are to be evaluated at the time when the notification API is called. If the user contexts are to be evaluated, then the routine proceeds to block 234 . If the user contexts are not to be evaluated at the time when the notification API is called, then the routine ends. At block 234 , the user contexts are evaluated as true or false.
  • a context may be proactively set or it may be a function that is evaluated at a relevant time.
  • a program may actively note that a user is listening to music.
  • the program may have registered its callback such that the program is queried by the system at the time the notification is evaluated whether the context is true.
  • this second process can be particularly important is when a user context is combined with a user rule to form a dynamic context.
  • a specific example of a user context combined with a user rule would be when a user has set a rule that states “people who I'm meeting with right now can always send me notifications irrespective of my busy state.”
  • the user context of “when the user is in a meeting,” must further be evaluated in terms of who the user is in the meeting with.
  • the program that handles the meetings may register this as a dynamic context, and when a notification is evaluated, the person who sent the notification is evaluated against this context (which otherwise could not be declared as true or false proactively, since the people attending the meeting may change over time).
  • this particular example requires evaluation of a user's context in light of a user rule that depends on other people's contexts.
  • FIG. 5 is a flow diagram illustrative of a routine 240 by which a user may adjust contexts and create new rules.
  • a determination is made whether the user wishes to adjust the contexts. If the user does not wish to adjust the contexts, then the routine proceeds to a decision block 246 , as will be described in more detail below. If the user does wish to adjust the context, then the routine proceeds to a block 244 , where the user makes modifications to the contexts.
  • the contexts that have been provided may be exposed to a user in a manner which allows the user to either turn the contexts off (e.g., the user doesn't agree with the program's assessment of the context), or to change the context in terms of the impact on delivery of a notification.
  • user contexts can include things like “while any application is running in full screen mode”; “when I'm playing music or video”; “when my meeting manager shows me in a meeting”; or “when my out of office assistant is turned on.” For each of these, the user could be allowed to make selections that specify an instruction that when the given condition is true, the incoming notifications should follow selected procedures.
  • the instructions can specify things like whether or how the notification will draw on the screen, and the sound or volume that the notification will make.
  • the volume the user can specify a percentage of desired volume under the given condition.
  • the options for drawing the notification on the screen the user can be provided with options such as not drawing the notification at all, or drawing the notification only on a specified external display, or drawing the notification on the present screen.
  • different levels of invasiveness can be specified. For example, if a user is running a maximized application, such that the context is slightly restricted, the invasiveness setting might be such that notifications can still draw, but might appear only within a sidebar.
  • user rules dictate how notifications that contain specified elements should be handled. For example, a rule may dictate that notifications from a specified person should always be delivered immediately, and this rule can be applied to all notifications, irrespective of which program initiated the notification as long as it is from the specified person.
  • other user rules may be directed to things like “MSN auto's traffic alerts for Bremerton, Wash.” and “important e-mails from John Doe.”
  • the rule could dictate that any e-mails that arrive from John Doe, and with “urgent” in the text, and marked “high priority,” should follow specified handling conditions.
  • the handling conditions could specify that the notification should be delivered immediately and that the user should be required to acknowledge it.
  • requiring a user to acknowledge a notification means that there is a slightly raised elevation in the form of the notification's invasiveness, in that the notification will stay on-screen until the user specifically dismisses it.
  • the requiring of a user's acknowledgement is only settable via a user rule.
  • the rules could also specify a custom sound to be played for the notification, at a specified volume, so as to provide an alert to the user that a special notification has arrived.
  • Different settings may also be selected for how the notification should be handled during “normal” and “busy” conditions for the user, as may be determined by the user's context.
  • the handling instructions may also include things like routing options for the notification, such as “deliver notifications from John Doe to my pager.” In one embodiment, when the context is evaluated, the most restrictive currently true context is the one that is applied.
  • the user rules may also be directed to controlling the delivery of notifications from specific notification services.
  • an operating system that provides notifications in accordance with a notification service may provide the user with a way to modify how the notifications are delivered.
  • the specified notification service may provide “traffic alerts for Seattle”, and the user may edit the delivery to be such that when such notifications are received the system should “show the notification and play sound.”
  • the user contexts and user rules are set by the operating system, programs, and the user.
  • the system appropriately brokers and serializes the delivery of the notifications in accordance with the user's preferences.
  • the user contexts and user rules may be exposed to the user such that the user can modify or adjust the various contexts and rules, or create new rules. This provides the user with a centralized way to manage preferences for how notifications are handled. It will be appreciated that this allows a user to effectively manage the many competing elements in a computing system that may want to send notifications to the user.
  • FIG. 6 is a flow diagram illustrative of a routine 300 for processing a notification in accordance with user contexts and user rules.
  • the operating system or an arbitrary program calls the notifications API.
  • a decision block 304 a determination is made whether the notification should be logged to the notification history. If the notification is to be logged, then the routine proceeds to a block 306 , where the notification is logged to the history. If the notification is not to be logged, then the routine proceeds to a decision block 310 .
  • user rules always outweigh the current user contexts.
  • user rules can be based on any element of the notification. For example, a rule that is based on an evaluation of the person who initiated the notification, can be applied to all notifications, irrespective of which program initiated the notification as long as it is from the person on which the rule is based (e.g., “John Doe” can always reach me).
  • notifications may draw on the screen even during contexts that would otherwise cause it not to draw (e.g., “people who are in a meeting with me can always send me notifications”, even though the user context generally states that the user is not to receive notifications during a meeting).
  • FIG. 7 is a flow diagram illustrative of a routine 350 for processing a notification in accordance with specified user rules.
  • the routine is continued from a point A from FIG. 6 , as described above.
  • a decision block 352 a determination is made whether the notification should be routed. If the notification is not to be routed, then the routine continues to a decision block 362 , as will be described in more detail below. If the notification is to be routed, then the routine proceeds to a block 354 , where the notification is routed as specified. When a notification is routed, it indicates that the notification contains elements that match the user's rules that require the notification to be handed off to another system.
  • a notification with the word “urgent” in it might always be forwarded to the user's pager, whereas other notifications might only be routed based on a combination of the user's rules and context.
  • routing instructions include: “Forward this notification to an e-mail address”; “forward this notification to another PC”; “forward this notification to a pager”; “forward this notification to a cell phone”; or “forward this notification to an e-mail server.”
  • the notification may also be delivered and draw on the screen.
  • the device to which the notification is forwarded may have this same context system implemented, and on that device there may be additional or different knowledge of the user's context, and the context system on that device may choose to do different actions with the notification.
  • deferring a notification indicates that the notification will be allowed to be delivered, but that the user's current context or rules are such that it is deemed inappropriate to deliver the notification at this time.
  • the notification will be delivered to the user's screen and allowed to draw and/or make its sound, as dictated by the user rules and user context.
  • FIG. 8 is a flow diagram illustrative of a routine 380 for deferring the delivery of a notification.
  • the routine is continued from a point B from either FIGS. 6 or 7 , as described above.
  • the notification is held.
  • the system monitors for changes to the declared contexts as being true or false, or for a user rule dictating that it is now appropriate to deliver the notification.
  • a decision block 386 a determination is made whether a user context has changed, or a user rule dictates that it is now appropriate to deliver the notification.
  • the routine returns to block 382 , where the notification continues to be held. If the user context has changed or if a user rule dictates that it may now be appropriate to deliver the notification, then the routine proceeds to a point C which is continued in FIG. 6 . Point C in FIG. 6 returns to the decision block 304 , where the process for evaluating the notification starts over.
  • FIG. 9 is a flow diagram illustrative of a routine 400 for determining the drawing of a notification in accordance with various restrictions. It will be appreciated that this routine may be implemented as part of the processing of notifications, such as at block 322 of FIG. 6 or block 372 of FIG. 7 .
  • this routine may be implemented as part of the processing of notifications, such as at block 322 of FIG. 6 or block 372 of FIG. 7 .
  • an evaluation is made of all of the contexts that are currently true, and the most restrictive settings for the notification are applied in accordance with the user's current state.
  • a determination is made whether the notification should not be drawn at all. If the notification is not to be drawn at all, then the routine proceeds to a block 404 , where the notification is set to not be drawn on any display. If the notification is to be drawn, then the routine proceeds to a decision block 406 .
  • FIG. 10 is a flow diagram illustrative of a routine 420 for determining the volume that will be played for the sound of a notification, in accordance with various restrictions. As was described above with respect to FIG. 9 , it will be appreciated that this routine may be implemented as part of the processing of notifications, such as at block 322 of FIG. 6 or block 372 of FIG. 7 .
  • this routine may be implemented as part of the processing of notifications, such as at block 322 of FIG. 6 or block 372 of FIG. 7 .
  • an evaluation is made of all the contexts that are currently true, and the most restrictive settings are applied to the notification in accordance with the user's current state.
  • a determination is made whether the notification should be muted. If the notification is to be muted, then the routine proceeds to a block 424 , where no volume is provided for the notification. If the notification is not to be muted, then the routine proceeds to a decision block 426 .
  • the user context system controls the delivery of notifications from various sources such that the notifications stop conflicting with one another because the system appropriately brokers and serializes their on-screen rendering.
  • the notifications that are processed by the user context system can be considered to be more valuable because they are delivered when the user is more receptive to them, and in addition the use of common rules helps the user to eliminate undesired notifications.
  • the system brokers and serializes the delivery of notifications from multiple sources.
  • a shared notion of user context is provided for determining the appropriate handling for each of the notifications.
  • the notifications that are delivered by the system may be considered to be more valuable in that they are delivered when the user is more receptive to them.
  • These aspects also provide for common rules which help the user to eliminate undesirable notifications.
  • a user context comprises a condition that may be true or false, and an instruction that is to be followed if the condition is true.
  • a condition might be “when a user is listening to music,” for which the instruction might be “deliver notifications on the screen but with no sound.”
  • the condition for the user context can be thought of as a state that the system assumes makes the user in some way unavailable for notification delivery or that causes the way that the notification should be delivered to be different from how it was sent by the program that initiated it.
  • the user may be in a state deemed “unavailable” in which case the notification is either not delivered or held until the user becomes “available.” For instance, if the user is running a full screen application, where the application is using or being displayed on the full area of a display screen, that user may be deemed unavailable. Or, the user may be “available” but in such a state that the notification needs to be modified to be appropriate for the user.
  • programs register with the system and declare the context they provide and the impact it has on notifications (as per if drawing on the screen is appropriate and the level of invasiveness that is appropriate for drawing on the screen and whether or not sound is appropriate or at what relative volume sound should be played at) and then tells the system whether the context is true or false.
  • the context may also be evaluated as true or false at the time that a notification is to be delivered.
  • the system may also track the process of the calling program, and if the process is no longer present, the context may be reset to false. By tracking the process, certain undesirable situations can be avoided, such as an application declaring a user as being busy, and then crashing, and then leaving the user stuck in a state in which they have been declared as not being available for receiving notifications.
  • invasiveness There may be different levels of invasiveness specified for the drawing of notifications.
  • there may be gradients for the drawing of notifications such that there may be different levels of invasiveness in the form of the drawn notification.
  • a normal notification may be free to be drawn in the client area and briefly obscure a window. If the user is in a slightly restrictive context, the notification may be free to show, but only in a less invasive manner, such as it might not be allowed to draw on top of another window.
  • the setting may be that the user context is slightly restricted, in that the user has clearly made a statement that they want their current application to get the entire client area. In this circumstance, notifications may still be allowed to draw, but they may be made to only appear within the sidebar. This type of reduced invasiveness in the notification drawing form lessens the impact of the notifications, and lessens the cognitive load.
  • the contexts that have been provided are exposed to the user and can either be turned off (e.g., the user doesn't agree with the program's assessment of the context) or changed in terms of the impact on delivery.
  • the user may define rules that dictate how notifications that contain specified elements should be delivered. For example, a user rule might dictate that any notifications received from “John Doe” and with “urgent” in the subject line, should be delivered immediately. In one embodiment, such user rules are given precedence over the user contexts.
  • the user rules are made available to the user for modification in accordance with the user's preferences.
  • FIGS. 11-14 are directed to the evaluation of test notifications.
  • the test notifications can be utilized by any program to obtain information about the current state of a user context.
  • the user context information can be obtained by any program, regardless of whether the program intends to use the service already built in the system, or whether the program is to extend it by rolling its own interpretation of what the notification should look like or the way it should be delivered.
  • future programs with more advanced notifications that are not designed to be limited by the rendering provided to them by the system will still be able to utilize test notifications to obtain information about the user's current context.
  • Such more advanced notifications are likely to occur as the richness of notifications continues to grow and change, and new user interfaces for notifications continue to develop.
  • a future user interface may provide rich full screen animations that draw only when the user is not “busy.” For instance, placing a CD into the CD-ROM drive might present an animation of a CD on the screen, while the CD-ROM spins up (due to technical constraints, there is a period of time from when the CD is first inserted until the CD may be read even though it is known to be in the drive—and during this time period an animation could be used to show the user that the system is aware of the CD, but just can't read from it yet).
  • the animation program will be able to know about the user's current context and can choose to not show on-screen if the user is not receptive to notifications right now.
  • a future instant messaging program may develop a new user interface for notifications that could not be done with the current notification engine. The development of such new user interfaces is desirable. Test notifications could continue to be utilized by the instant messaging program to determine whether it should show/not show its more advanced notifications in accordance with user's current context.
  • the test notifications can also be utilized to prevent unwanted notifications from being generated.
  • This aspect can be applied to any programs that attempt to send notifications to the system. In other words, by enabling a program to have a richer view of the user's context, unwanted notifications can be prevented from being generated by the programs, thus proactively ending the generation of these types of notifications until the user is in a receptive state.
  • the following examples provide further illustrations of this aspect.
  • an instant messaging program may provide a list of contacts.
  • the test notifications are able to tap into the context system on a per-contact basis (e.g., “if Tom were to send you an instant message right now, would it show?” and “if Chris were to send you an instant message right now, would that show?”).
  • the instant messaging program can begin broadcasting definite busy or free states to individual contacts. This technique could be used to preemptively stop unwanted notifications from being generated, rather than simply suppressing them once they are received.
  • a mail program could make use of this to provide an automated reply to the sender (either to all senders based on rules that the user has provided, such as “my direct reports” or “my manager”).
  • the automated reply could indicate “I am busy right now, but will respond when I have a chance.”
  • the communications of the system as a whole can be improved by exposing the user's context to arbitrary programs.
  • an application is able to construct a test notification and receive back specifically whether or not an actual notification would draw on the screen at the present time.
  • this allows programs to continue to use the user context system even after new user interfaces for notifications are developed.
  • all programs that utilize the system can be considered to be richer and more intelligent based on having increased access to information about the user's behavior and preferences.
  • FIG. 11 is a flow diagram illustrative of a general routine 500 for processing a test notification.
  • the routine is similar to the routine of FIG. 2 for processing an actual notification.
  • the notification test API is called.
  • the elements of the test notification are evaluated with respect to the user contexts as set by the operating system and arbitrary programs and as further approved or modified by the user, and with respect to any user rules as set by the user.
  • an indication is provided regarding how the test notification would be handled. The indication is then returned to the calling application.
  • the notification test API is called when the operating system or an arbitrary program decides that it needs to understand how busy the user currently is.
  • One example of when this might occur would be when there is a decision point for whether or not to draw a notification on the screen.
  • Another example would be to use this data to inform an action that the program wants to take on the user's behalf.
  • the calling program constructs a notification that is as close to what it would send if it were using the notification methods of the user context system for sending an actual notification, and then uses an optional method to test (which returns the result and also guarantees that this particular notification will not be shown on-screen).
  • an instant messaging program wanting to broadcast an appropriate free or busy state to each contact based on the current user's context.
  • the instant messaging program would create a test notification for each contact, and based on the return value broadcast a different free or busy state on a per-contact basis.
  • Another example would be a program wanting to show an animation based on a user context (e.g., the CD-ROM animation example described above).
  • the code that wants to show the animation would construct a notification (in this case, the contents simply being a simple notification with an image or animation sequence as this is just a test as to whether or not the given notification would draw), and then uses the test method, and then the return results could be used as a guide for whether or not the animation should currently be played.
  • the calling code will generally at least raise the most-generic notification possible as a test notification. If there is richer data available (such as the contact from the contact list), then including this information makes the test notification more accurate as the user may have custom user rules on a per person basis that may affect the returned results.
  • One implementation that may be utilized for the notification test API is a polling implementation.
  • the instant messaging program would periodically re-poll the notification test API to determine how to change the broadcast data.
  • Another implementation that can be utilized for the notification test API is a subscription callback implementation.
  • the instant messaging program would “subscribe” to context changes. Then, rather than periodically re-polling, as the user context changes in ways that change what the instant messaging program would be able to broadcast, the context engine can call back to the instant messaging program with appropriate updates. In some scenarios, this is advantageous, in that there is no lag between the context changes and what is broadcast (whereas with the polling implementation, there will tend to be moments when the broadcast state does not match the current user context).
  • the polling implementation may be more appropriate (as these are responses to one-time events, e.g., a CD being inserted into a CD-ROM).
  • FIG. 12 is a flow diagram illustrative of a routine 520 for processing a test notification and returning an indication of true or false for whether or not the test notification would draw at the present time.
  • the notification test API is called.
  • a decision block 530 a determination is made whether the test notification matches any user rules. If the test notification does not match any user rules, then the routine proceeds to a decision block 550 , as will be described in more detail below. If the test notification does match any user rules, then the routine proceeds to a decision block 540 .
  • FIG. 13 is a flow diagram illustrative of a routine 600 for processing a notification and returning detailed indications.
  • the routine 520 of FIG. 12 only provides a return value with an indication of true or false, with regard to whether or not the notification would draw at the present time.
  • the routine 600 of FIG. 13 returns richer return values (e.g., the notification would not draw right now, but it would draw as soon as the user's context changes, or it would route to another device, etc.). This provides for richer logic in the calling code. This allows for advanced functionality in programs that are able to utilize such richer return values.
  • this data may be passed as part of a callback.
  • the calling application can set up a “subscription” to a notification such that when a user's context subsequently changes (as would affect the delivery of notifications from the calling application) then the calling application is notified. This requires no polling, and in some cases is thus better for the robustness and performance of the system.
  • the notification test API is called or a subscription is registered (as related to the polling versus subscription embodiments described above).
  • the test notification is evaluated according to the user rules (based on the test notification content plus the user contexts), and the routine continues to a point D that is continued in FIG. 14 , as will be described in more detail below.
  • FIG. 14 is a flow diagram illustrative of a routine 650 for evaluating a test notification in accordance with user rules. The routine continues from a point D from FIG. 13 . As illustrated in FIG. 14 , at a decision block 652 , a determination is made whether the test notification should be routed. If the test notification is to be routed, then the routine proceeds to a block 654 where an indication of route is provided, and the routine proceeds to a decision block 662 . If the test notification would not be routed, the routine also proceeds to decision block 662 .
  • FIGS. 11-14 illustrate a system and method utilizing test notifications which enable programs to obtain indications as to the availability of a user.
  • a program By enabling a program to have a richer view of a user's context, the generation of unwanted notifications can be prevented at the source, thus allowing notifications to only be generated when a user is in a receptive state.
  • a program is able to utilize the test notifications to determine a user's context, even if the program generally utilizes a different user interface for its own notifications.
  • These aspects allow for greater flexibility in the potential uses of the user context system. These aspects also enable new richer scenarios for other programs, such that the system as a whole can become richer and more intelligent based on the user's behavior and preferences.
  • FIGS. 15A and 15B are diagrams illustrative of pseudo code 1500 A and 1500 B for a notifications API.
  • the pseudo code 1500 A includes portions 1510 - 1550 .
  • the portion 1510 relates to an object for sending a balloon notification to the user. This class can be derived if there is a need to add custom properties to the object so as to have more context when a NotificationClickedEvent arrives.
  • the portion 1520 relates to the icon for sending the notification.
  • minimum and maximum sizes are specified (e.g., in one example a minimum size is 16 ⁇ 16 and a maximum size is 80 ⁇ 80).
  • the portion 1530 relates to the title text for the notification.
  • the portion 1540 relates to the main BodyText for the notification.
  • the portion 1550 relates to a property that should be set as True if the user is to be able to click inside the notification to trigger some event.
  • the continuation of the pseudo code 1500 B includes portions 1560 - 1590 .
  • the portion 1560 relates to a method that is to be called after the setting of all the relevant notification properties when the notification is ready to be sent so that it will be shown to the user. This method returns immediately.
  • the portion 1570 relates to updating a notification that has already been sent. After some properties are changed, the update may be called to have the changes reflected.
  • the portion 1580 relates to a call for determining whether a particular notification would actually draw on the screen the present time.
  • the portion 1590 relates to a call for recalling a notification that was already sent, but that has since become obsolete.
  • FIG. 16 is a diagram illustrative of pseudo code 1600 for a context setting API.
  • the pseudo code 1600 includes portions 1610 - 1630 .
  • the portion 1610 notes that this class helps manage context changes.
  • the custom contexts are defined in an application manifest. This class allows a context to be set as True, or reset to False.
  • An example of context is the FullScreen context (which in one embodiment is managed by the operating system) which is True when any application is full screen.
  • the default value for any context is always False.
  • the portion 1620 relates to constructing a context object for a particular context, as identified by its GUID.
  • the portion 1630 relates to changing the value of a context. In one embodiment, all of the contexts for an application will be reset to False when the application terminates or dies.
  • FIG. 17 is a block diagram of a notification system 1700 .
  • the notification system 1700 includes a notification processing system 1710 , context setters 1720 A- 1720 n and notification senders 1730 A- 1730 n .
  • the context setters 1720 A- 1720 n communicate with the notification processing system 1710 such that a context setting API is called by which context setters declare default contexts and their impact on the user's busy state, and also set already declared contexts as true or false, which are then added to the user contexts.
  • the notification senders 1730 A- 1730 n communicate with the notification processing system 1710 such that the notification API is called, and the elements of the notifications are evaluated with respect to the user contexts as set by the context setters 1720 A- 1720 n and as further approved or modified by the user and with respect to the user rules as set by the user. Then, in accordance with the evaluation, the notifications are delivered, deferred, denied, routed or otherwise handled.
  • FIG. 18 is a flow diagram illustrative of a general routine 1800 by which a context setting API is called.
  • a context setter calls the context setting API regarding the setting of the context.
  • the notification processing system receives the call and the context is set.
  • the context setters declare their default contexts and their impact on the user's busy state.
  • the context setters set an already declared context as true or false, which are then added to the user contexts.
  • FIG. 19 is a flow diagram illustrative of a general routine 1900 by which a notification API is called.
  • a notification sender calls the notifications API regarding sending a notification to a user.
  • the notification processing system receives the call and processes the notification.
  • the notification API is called, the elements of the notification are evaluated with respect to the user contexts as set by the context setters and as further approved or modified by the user and with respect to the user rules as set by the user. Then, in accordance with evaluation, the notification is delivered, deferred, denied, routed or otherwise handled.
  • the notification system utilizes various programming interfaces.
  • a programming interface (or more simply, interface) such as that used in the notification system may be viewed as any mechanism, process, protocol for enabling one or more segment(s) of code to communicate with or access the functionality provided by one or more other segment(s) of code.
  • a programming interface may be viewed as one or more mechanism(s), method(s), function call(s), module(s), object(s), etc. of a component of a system capable of communicative coupling to one or more mechanism(s), method(s), function call(s), module(s), etc. of other component(s).
  • segment of code in the preceding sentence is intended to include one or more instructions or lines of code, and includes, e.g., code modules, objects, subroutines, functions, and so on, regardless of the terminology applied or whether the code segments are separately compiled, or whether the code segments are provided as source, intermediate, or object code, whether the code segments are utilized in a runtime system or process, or whether they are located on the same or different machines or distributed across multiple machines, or whether the functionality represented by the segments of code are implemented wholly in software, wholly in hardware, or a combination of hardware and software.
  • FIG. 20A illustrates an interface Interface 1 as a conduit through which first and second code segments communicate.
  • FIG. 20B illustrates an interface as comprising interface objects I 1 and I 2 (which may or may not be part of the first and second code segments), which enable first and second code segments of a system to communicate via medium M.
  • interface objects I 1 and I 2 are separate interfaces of the same system and one may also consider that objects I 1 and I 2 plus medium M comprise the interface.
  • API application programming interface
  • COM component object model
  • aspects of such a programming interface may include the method whereby the first code segment transmits information (where “information” is used in its broadest sense and includes data, commands, requests, etc.) to the second code segment; the method whereby the second code segment receives the information; and the structure, sequence, syntax, organization, schema, timing and content of the information.
  • the underlying transport medium itself may be unimportant to the operation of the interface, whether the medium be wired or wireless, or a combination of both, as long as the information is transported in the manner defined by the interface.
  • information may not be passed in one or both directions in the conventional sense, as the information transfer may be either via another mechanism (e.g. information placed in a buffer, file, etc.
  • FIGS. 20C and 20D illustrate a factoring implementation.
  • a communication from one code segment to another may be accomplished indirectly by breaking the communication into multiple discrete communications. This is depicted schematically in FIGS. 20C and 20D .
  • some interfaces can be described in terms of divisible sets of functionality.
  • the interface functionality of FIGS. 20A and 20B may be factored to achieve the same result, just as one may mathematically provide 24, or 2 times 2 time 3 times 2.
  • the function provided by interface Interface 1 may be subdivided to convert the communications of the interface into multiple interfaces Interface 1 A, Interface 1 B, Interface 1 C, etc. while achieving the same result.
  • FIG. 20C the function provided by interface Interface 1 may be subdivided to convert the communications of the interface into multiple interfaces Interface 1 A, Interface 1 B, Interface 1 C, etc. while achieving the same result.
  • FIG. 20C the function provided by interface Interface 1 may be subdivided to convert the communications of the interface into multiple interfaces Interface 1 A, Interface 1 B, Interface 1
  • interface I 1 may be subdivided into multiple interfaces I 1 a , I 1 b , I 1 c , etc. while achieving the same result.
  • interface I 2 of the second code segment which receives information from the first code segment may be factored into multiple interfaces I 2 a , I 2 b , I 2 c , etc.
  • the number of interfaces included with the 1st code segment need not match the number of interfaces included with the 2nd code segment.
  • FIGS. 20C and 20D the functional spirit of interfaces Interface 1 and I 1 remain the same as with FIGS. 20A and 20B , respectively.
  • the factoring of interfaces may also follow associative, commutative, and other mathematical properties such that the factoring may be difficult to recognize. For instance, ordering of operations may be unimportant, and consequently, a function carried out by an interface may be carried out well in advance of reaching the interface, by another piece of code or interface, or performed by a separate component of the system. Moreover, one of ordinary skill in the programming arts can appreciate that there are a variety of ways of making different function calls that achieve the same result.
  • FIGS. 20E and 20F illustrate a redefinition implementation.
  • a redefinition implementation in some cases, it may be possible to ignore, add or redefine certain aspects (e.g., parameters) of a programming interface while still accomplishing the intended result. This is illustrated in FIGS. 20E and 20F .
  • interface Interface 1 of FIG. 20A includes a function call Square(input, precision, output), a call that includes three parameters, input, precision and output, and which is issued from the 1st Code Segment to the 2nd Code Segment. If the middle parameter precision is of no concern in a given scenario, as shown in FIG. 20E , it could just as well be ignored or even replaced with a meaningless (in this situation) parameter.
  • the functionality of square can be achieved, so long as output is returned after input is squared by the second code segment.
  • Precision may very well be a meaningful parameter to some downstream or other portion of the computing system; however, once it is recognized that precision is not necessary for the narrow purpose of calculating the square, it may be replaced or ignored. For example, instead of passing a valid precision value, a meaningless value such as a birth date could be passed without adversely affecting the result.
  • interface I 1 is replaced by interface I 1 ′, redefined to ignore or add parameters to the interface.
  • Interface I 2 may similarly be redefined as interface I 2 ′, redefined to ignore unnecessary parameters, or parameters that may be processed elsewhere.
  • a programming interface may include aspects, such as parameters, that are not needed for some purpose, and so they may be ignored or redefined, or processed elsewhere for other purposes.
  • FIGS. 20G and 20H illustrate an inline coding implementation.
  • the functionality of FIGS. 20A and 20B may be converted to the functionality of FIGS. 20G and 20H , respectively.
  • the previous 1st and 2nd Code Segments of FIG. 20A are merged into a module containing both of them.
  • the code segments may still be communicating with each other but the interface may be adapted to a form which is more suitable to the single module.
  • interface I 2 from FIG. 20B may be written inline into interface I 1 to form interface I 1 ′′.
  • interface I 2 is divided into 12 a and 12 b , and interface portion I 2 a has been coded in-line with interface I 1 to form interface I 1 ′′.
  • the interface I 1 from FIG. 20B performs a function call square (input, output), which is received by interface I 2 , which after processing the value passed with input (to square it) by the second code segment, passes back the squared result with output.
  • the processing performed by the second code segment (squaring input) can be performed by the first code segment without a call to the interface.
  • FIGS. 20I and 20J illustrate a divorce implementation.
  • a communication from one code segment to another may be accomplished indirectly by breaking the communication into multiple discrete communications. This is depicted schematically in FIGS. 20I and 20J .
  • one or more piece(s) of middleware (Divorce Interface(s), since they divorce functionality and/or interface functions from the original interface) are provided to convert the communications on the first interface, Interface 1 , to conform them to a different interface, in this case interfaces Interface 2 A, Interface 2 B and Interface 2 C.
  • a third code segment can be introduced with divorce interface DI 1 to receive the communications from interface I 1 and with divorce interface D I 2 to transmit the interface functionality to, for example, interfaces I 2 a and I 2 b , redesigned to work with D I 2 , but to provide the same functional result.
  • D I 1 and D I 2 may work together to translate the functionality of interfaces I 1 and I 2 of FIG. 20B to a new operating system, while providing the same or similar functional result.
  • FIGS. 20K and 20L illustrate a rewriting implementation.
  • yet another possible variant is to dynamically rewrite the code to replace the interface functionality with something else but which achieves the same overall result.
  • a code segment presented in an intermediate language e.g., Microsoft IL, Java ByteCode, etc.
  • JIT Just-in-Time
  • an execution environment such as that provided by the .Net framework, the Java runtime environment, or other similar runtime type environments.
  • the JIT compiler may be written so as to dynamically convert the communications from the 1st Code Segment to the 2nd Code Segment, i.e., to conform them to a different interface as may be required by the 2nd Code Segment (either the original or a different 2nd Code Segment).
  • FIGS. 20K and 20L This is depicted in FIGS. 20K and 20L .
  • this approach is similar to the divorce configuration described above. It might be done, e.g., where an installed base of applications are designed to communicate with an operating system in accordance with an Interface 1 protocol, but then the operating system is changed to use a different interface.
  • the JIT Compiler could be used to conform the communications on the fly from the installed-base applications to the new interface of the operating system.
  • this approach of dynamically rewriting the interface(s) may be applied to dynamically factor, or otherwise alter the interface(s) as well.
  • FIGS. 21-28 are directed to a system and method for public consumption of communication events between arbitrary processes.
  • the notification user context system focuses on when it is appropriate or not appropriate to interrupt a user with a notification based on the user's context.
  • notification mechanisms may be provided for a process to gain insight into when such notification events are occurring, specifically targeting communication-type events, and allowing the processes to act on these events on the user's behalf.
  • the user may instead set a simple white list or other means of identifying people important to the user, and the mechanisms may then provide these people with insights into when the user will be more available for communication.
  • one process that might register to be informed when communication events occur could be a calendaring-type program.
  • the calendaring-type program may have domain knowledge of the user's activities outside of the data that the notification system has (e.g., that the user is scheduled to be giving a presentation during selected times of the day).
  • the calendaring program may be provided with a copy of the notification and the fact that it was not delivered, and can evaluate whether or not the sender of the notification is important enough to receive a customized announcement.
  • the notification system is able to act to effectively broker a user's communications, and thus acts as a type of automated assistant for the user.
  • FIG. 21 is a diagram of a system 2100 A illustrating the setting of a user context and user rules.
  • an arbitrary process 2110 communicates across process boundaries 2120 and 2140 in order to set a user context 2150 . More specifically, the arbitrary process 2110 utilizes a set user context API 2130 in order to set the user context 2150 .
  • the user context 2150 and a set of user rules 2160 are provided to an evaluation component 2170 , as will be described in more detail below.
  • FIG. 22 is a diagram of a system 2100 B illustrating the initiation of a notification event.
  • an arbitrary process 2210 utilizes a notifications API 2230 to create a notifications event 2250 .
  • the arbitrary process 2210 may be sending the user a notification from another person.
  • the arbitrary process 2210 may be any kind of communication program, such as e-mail, instant messaging, a telephone program, etc.
  • the evaluation component 2170 evaluates the notification event 2250 in accordance with the user context 2150 and the user rules 2160 . In one example, the evaluation component 2170 may determine that the user is busy, in which case the notification may fail. In another example, the user may not be busy, in which case the notification may be drawn, as will be described in more detail below with reference to FIG. 23 .
  • FIG. 23 is a diagram of a system 2100 C illustrating the drawing of a notification.
  • the evaluation component 2170 considers the user context 2150 , the user rules 2160 and the notification event 2250 , and determines that it is appropriate to draw a notification 2330 . If the user then clicks on the notification, the notification message will be posted for the user.
  • the arbitrary process 2110 may be running in full screen.
  • the user context 2150 would thus indicate to the notification system that the user is currently not available to interruption. For example, the user may be giving a presentation or may be otherwise fully occupied such that drawing anything on the screen would currently be inappropriate. Alternatively, if the user is available, then the user context 2150 will so indicate.
  • FIG. 24 is a diagram of a system 2100 D illustrating a process that is registering for communication events.
  • an arbitrary process 2410 communicates with the evaluation component 2170 so as to register for communication events.
  • the arbitrary process 2410 may be a program that has some domain knowledge of the user's activities outside of the data that the notification system has.
  • the arbitrary process 2410 might be a type of calendaring program that could have knowledge of what activities the user is currently engaged in (e.g., that the user is scheduled to be giving a presentation during selected times of the day).
  • the process 2410 may thus be able to include information in any reply that it sends that may indicate what the user is currently doing, when the user will be free, and any appropriate alternate contacts that the person who initiated the communication may follow up with.
  • the busy reply may indicate that the user is more likely to be available at a time x when his calendar is free, or that certain alternate contacts may be appropriate to follow up with.
  • FIG. 25 is a diagram of a system 2100 E illustrating a process receiving a communication event and providing a customized announcement in response thereto.
  • the evaluation component 2170 has determined that the user is busy and that the notification therefore fails.
  • the evaluation component 2170 then provides this information, along with a copy of the notification, to the arbitrary process 2410 .
  • the arbitrary process 2410 sends an OOF message 2510 based on the user's calendar. More specifically, the arbitrary process 2410 has evaluated the sender of the notification (using whatever heuristics have been selected) and determined that the sender is important enough to the user to receive a customized announcement.
  • the customized busy announcement could state “the user you are trying to contact is giving a presentation right now, but if you try and contact him at time x, you will likely be successful as his calendar is free then.”
  • FIG. 26 is a diagram illustrative of a general routine 2600 for a process registering for communication events.
  • the process component sends a message so as to register for communication events.
  • the process is registered to receive information when communication events occur. As described above, this corresponds in FIG. 24 to the arbitrary process 2410 registering for communication events with the evaluation component 2170 .
  • FIG. 27 is a flow diagram illustrative of a routine 2700 for a process receiving a notification event and acting in accordance with an evaluation routine.
  • the user rules are set by the user.
  • a first process registers a user context.
  • the first process may be a program that is running in full screen, which signifies to the notification system that the user is not available to interruption.
  • the user may be giving a presentation or may otherwise be fully occupied such that drawing on the screen would not currently be appropriate.
  • a second process registers for receiving communication events.
  • the second process in one embodiment may be a program that has some domain knowledge of the user's activities outside of the data that the notification system has.
  • the second process may be a calendaring program and may have knowledge of what activities the user is currently engaged in.
  • a third process creates a notification event.
  • the third process may be any type of communication program, such as e-mail, instant messaging, telephone program, etc.
  • the third process may utilize a notifications API for attempting to send the notification to the user, such that a notification event is created.
  • the second process e.g., the calendaring program
  • FIG. 28 is a flow diagram illustrative of a routine 2800 for a process (e.g., a calendaring program) receiving a notification event and acting in response thereto.
  • the process receives information regarding the identity of the sender of the notification and whether or not the notification was delivered.
  • the sender is evaluated using selected heuristics (e.g., which may indicate how important the sender is to the user).
  • a determination is made as to whether the sender satisfies the heuristic requirements (e.g., is important enough to the user) to receive a customized announcement. If the sender does not meet the requirements, then the routine ends. If the sender does meet the requirements, a customized announcement is sent (e.g., “the user you are trying to contact is giving a presentation right now, but if you try and contact him at time x, you will likely be successful as his calendar is free then”).
  • a customized announcement is sent (e.g., “the user you are trying to contact is giving a presentation
  • the elements of the system may be configured to address certain privacy concerns.
  • the system described above may be configured so as to properly broker the permissions for sending customized automated busy replies such that personal information is not revealed inappropriately.
  • the system brokers the permissions for a process to register to receive such busy replies, such that the system may not know what the arbitrary process is going to do, but the system can broker what processes can be registered and can help guide the user to understanding the implications of allowing a process to be registered.
  • this new type of agent process can act on the user's behalf. For example, the process may choose to send the communication back to the communication initiator itself, or it may choose to manipulate a public object model of the process by which the communication was sent.
  • a system-brokered “important people” group may be created and only communications from these people will receive the customized busy reply.
  • the process that had registered for receiving communications events may in fact only be provided with the communication event if the sender is determined to be in the group of “important people.” This would further allow the system to help broker appropriate responses on behalf of the user and to more appropriately act to help maintain the user's preferences and privacy.
  • the group of “important people” be a public and system-brokered group, this helps the system in terms of overall transparency and dimensionism, which in turn makes the system more effective and easier to use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

A system and method for public consumption of communication events between arbitrary processes. In one embodiment, mechanisms are provided by which the system can effectively act to broker a user's communications and thus act as a type of automated assistant. The invention is provided in a notification user context system which determines when it is appropriate or not appropriate to interrupt a user with a notification based on the user's context (i.e., availability to interruption). The system provides for processes to be informed when these notification events are occurring, thus allowing the processes to act on these types of events on the user's behalf. In one example embodiment, a calendaring program may be a type of process that is registered to be informed when communication events occur. When the calendaring program is informed that a notification from another program (e.g., e-mail, instant messaging, etc.) has been refused due to the user being busy, the calendaring program may evaluate the sender, and if appropriate respond with a customized busy announcement that indicates a time when the user may next be available.

Description

CROSS-REFERENCES TO RELATED APPLICATIONS
This application is a continuation-in-part of U.S. patent application Ser. No. 10/692,324, filed Oct. 23, 2003, which is continuation-in-part of U.S. patent application Ser. No. 10/402,075, filed Mar. 26, 2003, each of which is hereby incorporated by reference in its entirety, and priority from the filing dates of which is hereby claimed under 35 U.S.C. § 120.
FIELD OF THE INVENTION
The embodiment of the present invention relates to notifications and related communication events in computing systems, and more particularly, a system and method for public consumption of communication events between arbitrary processes.
BACKGROUND OF THE INVENTION
In computer systems, a notification may be in the form of a signal from a program that indicates to a user that a specified event has occurred. Such a notification may contain various elements of text, sound, and graphics. Other properties may also be included with the notification, such as priority, the person who sent the notification (for channels such as e-mail or instant messaging), and when the notification expires. Notifications may also include some elements of code such that the user can interact with the notification and launch arbitrary code (e.g., clicking on buttons or text within the notification that can cause new programs to launch or actions to be taken on programs that are currently running).
An operating system may create notifications to let a user know about network connectivity and updates. An instant messaging program that uses “contact lists” may draw notifications on the screen to let the user know what is happening with the contact list or when a contact initiates an instant message conversation. Other programs may provide similar notifications that draw in similar areas of the display. One issue with these types of notifications is that they are not generally aware of the other notifications, thus sometimes leading to notifications being drawn on top of other notifications.
Another issue with existing notification systems is that they may cause notifications to be delivered inappropriately, or at inappropriate times. For example, for a user providing a full screen presentation, it may be inappropriate to have other programs draw notifications on the screen during the presentation. An example of a program that might draw such inappropriate notifications is an instant messaging program that runs in the background of the operating system and draws such notifications when contacts in the contact list sign on or initiate an instant message. This type of “interruption” during a presentation may be undesirable to a user.
Furthermore, when a notification is sent at an inappropriate time, the sender of a notification is often unaware that the timing was inappropriate. In known systems, the senders of notifications are typically not provided with adequate feedback regarding the timing of the sending of the notifications. In addition, no other programs or processes are typically provided with any information about the notifications.
The embodiment of the present invention is related to providing a system and method that overcome the foregoing and other disadvantages. More specifically, the embodiment of the present invention is related to a system and method for public consumption of communication events between arbitrary processes.
SUMMARY OF THE INVENTION
A system and method for public consumption of communication events between arbitrary processes is provided. In accordance with one aspect of the invention, mechanisms are provided for allowing processes to obtain information regarding when notification events are occurring, and specifically targeting communication-type notification events, and allowing the processes to act on these events on the user's behalf. This functionality is provided in a notification system in which various processes provide input to the system as to how busy the user is and whether or not it is an appropriate time to interrupt the user with some secondary information (e.g., a notification), such as a communication from another person or some news generated by a Web service. In such a notification system, incoming notifications may be evaluated against rules that the user establishes such that the notifications that are delivered can be explicitly the ones most significant to the user, even during times when the system might otherwise be set in a mode where the user is indicated as being busy or otherwise unavailable to interruption.
In accordance with another aspect of the invention, a process is able to respond to the sender of a notification with information regarding the status of a user. In one example, where the process is a calendaring program, a sender of a notification may be provided with information such as that the user is busy giving a presentation at the present time but that the calendar indicates that the user will be free at a later specified time.
In accordance with another aspect of the invention, a number of processes may be utilized as part of the system and method for public consumption of communication events. Each of the processes may comprise a program that is responsible for specified functions. In the following example, three processes are described. The first process may be a program that is running a full screen, which signifies to the notification system that the user is not available to interruption. For example, the user may be giving a presentation or may be otherwise fully occupied such that it is inappropriate to attempt to interrupt the user at this time. A second process may then attempt to send a notification to the user from another person. This could be any kind of communication program (e.g., e-mail, instant messaging, a telephone program, etc.). In this circumstance, the notification system may evaluate the user's current context as “busy,” and the incoming notification would be evaluated against the user rules which may determine that the current notification should not be shown on the screen at the present time. A third process may be one that has registered to be informed when “communication” events occur. This third process is a program that has some domain knowledge of the user's activities outside of the data that the notification system has. For example, the third process may be a calendaring program that may have knowledge of what activities the user is currently engaged in (e.g., that the user is scheduled to be giving a presentation during selected times of the day). In this scenario, a copy of the notification that was sent from the second process (e.g., instant messaging) may be provided to the third process (e.g., calendaring program) along with a statement as to whether or not the notification was delivered. The third process (e.g., calendaring program) may then evaluate certain factors such as the identity of the person from which the notification originated, how important that person is to the current user (e.g., using selected heuristics), and may respond to the person who originated the notification with a customized “busy announcement” (e.g., the user you are trying to contact is doing a presentation right now, but if you try and contact him at time x, you will likely be successful, as his calendar is free then). It will be appreciated that in this scenario, the system and method of the embodiment of the present invention effectively act as a type of automated assistant for the user, and provide a mechanism by which the system may effectively act to broker a user's communications and thus provide a more effective communication system.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
FIG. 1 is a block diagram of a general purpose computer system suitable for implementing the embodiment of the present invention;
FIG. 2 is a flow diagram illustrative of a general routine for processing a notification in accordance with the embodiment of the present invention;
FIG. 3 is a flow diagram illustrative of a routine for an operating system or arbitrary program declaring user contexts;
FIG. 4 is a flow diagram illustrative of a routine for evaluating user contexts as true or false at the time a notification API is called;
FIG. 5 is a flow diagram illustrative of a routine for adjusting user contexts and creating new user rules;
FIG. 6 is a flow diagram illustrative of a routine for processing a notification in accordance with user contexts and user rules;
FIG. 7 is a flow diagram illustrative of a routine for implementing user rules based on a notification's content and the user contexts;
FIG. 8 is a flow diagram illustrative of a routine for deferring the delivery of a notification;
FIG. 9 is a flow diagram illustrative of a routine for determining how a notification will be drawn in accordance with various restrictive settings;
FIG. 10 is a flow diagram illustrative of a routine for determining a volume level for a notification in accordance with various restrictive settings;
FIG. 11 is a flow diagram illustrative of a general routine for processing a test notification in accordance with the embodiment of the present invention;
FIG. 12 is a flow diagram illustrative of a routine for processing a test notification and returning indications of true or false;
FIG. 13 is a flow diagram illustrative of a routine for processing a test notification and returning indications with full details;
FIG. 14 is a flow diagram illustrative of a routine for utilizing user rules to process a test notification based on the test notification's content and the current user contexts;
FIGS. 15A and 15B are diagrams illustrative of pseudo code for a notification API;
FIG. 16 is a diagram illustrative of pseudo code for a context setting API;
FIG. 17 is a block diagram illustrating a notification processing system which receives inputs from context setters and notification senders;
FIG. 18 is a flow diagram illustrative of a general routine for calling a notification API;
FIG. 19 is a flow diagram illustrative of a general routine for calling a context setting API;
FIGS. 20A-20L are block diagrams illustrating various implementations of a programming interface that may be utilized in a notification system;
FIG. 21 is a diagram illustrating the setting of a user context and user rules;
FIG. 22 is a diagram illustrating the initiation of a notification event;
FIG. 23 is a diagram illustrating the drawing of a notification in response to a notification event;
FIG. 24 is a diagram illustrating an arbitrary process registering for communication events;
FIG. 25 is a diagram illustrating an arbitrary process receiving a communication event and in response thereto sending a customized announcement;
FIG. 26 is a flow diagram illustrative of a general routine for a process registering for communication events;
FIG. 27 is a flow diagram illustrative of a general routine for a process receiving a communication event and responding in accordance with an evaluation routine; and
FIG. 28 is a flow diagram illustrative of a routine for a process to evaluate a communication event and send a customized announcement.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
In known systems, there have typically been numerous competing elements which want to send notifications to a user, each of which designs its own way to send such notifications. None of the competing elements have generally been aware of the other notifications and thus have tended to draw on top of each other and each other's applications, which can lead to conflicts when each chooses to render an indication of their respective notifications at the same time. Additionally, there has been no shared notion of user context, leading to some notifications being delivered inappropriately, or at inappropriate times. These issues may be addressed by building notifications as a rich part of the operating system, such that the user interfaces for notifications provided by the system become similar and thus stop conflicting with one another because the system appropriately brokers and serializes their on-screen rendering. In addition, the notifications provided by the system can be considered to be more valuable because they are delivered when the user is more receptive to them, and in addition the use of common rules helps the user to eliminate undesired notifications. Furthermore, in accordance with the embodiment of the present invention, the system may also enable public consumption of communication events between arbitrary processes.
FIG. 1 and the following discussion are intended to provide a brief, general description of a suitable computing environment in which the embodiment of the present invention may be implemented. Although not required, the invention will be described in the general context of computer-executable instructions, such as program modules, being executed by a personal computer. Generally, program modules include routines, programs, characters, components, data structures, etc., that perform particular tasks or implement particular abstract data types. As those skilled in the art will appreciate, the invention may be practiced with other computer system configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, and the like. The invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.
With reference to FIG. 1, an exemplary system for implementing the invention includes a general purpose computing device in the form of a conventional personal computer 20, including a processing unit 21, system memory 22, and a system bus 23 that couples various system components including the system memory 22 to the processing unit 21. The system bus 23 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. The system memory includes read-only memory (ROM) 24 and random access memory (RAM) 25. A basic input/output system (BIOS) 26, containing the basic routines that helps to transfer information between elements within the personal computer 20, such as during start-up, is stored in ROM 24. The personal computer 20 further includes a hard disk drive 27 for reading from or writing to a hard disk 39, a magnetic disk drive 28 for reading from or writing to a removable magnetic disk 29, and an optical disk drive 30 for reading from or writing to a removable optical disk 31, such as a CD-ROM or other optical media. The hard disk drive 27, magnetic disk drive 28, and optical disk drive 30 are connected to the system bus 23 by a hard disk drive interface 32, a magnetic disk drive interface 33, and an optical drive interface 34, respectively. The drives and their associated computer-readable media provide non-volatile storage of computer-readable instructions, data structures, program modules, and other data for the personal computer 20. Although the exemplary environment described herein employs a hard disk 39, a removable magnetic disk 29, and a removable optical disk 31, it should be appreciated by those skilled in the art that other types of computer-readable media which can store data that is accessible by a computer, such as magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges, random access memories (RAMs), read-only memories (ROMs), and the like, may also be used in the exemplary operating environment.
A number of program modules may be stored on the hard disk 39, magnetic disk 29, optical disk 31, ROM 24 or RAM 25, including an operating system 35, one or more application programs 36, other program modules 37 and program data 38. A user may enter commands and information into the personal computer 20 through input devices such as a keyboard 40 and pointing device 42. Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit 21 through a serial port interface 46 that is coupled to the system bus 23, but may also be connected by other interfaces, such as a parallel port, game port or a universal serial bus (USB). A display in the form of a monitor 47 is also connected to the system bus 23 via an interface, such as a video card or adapter 48. One or more speakers 57 may also be connected to the system bus 23 via an interface, such as an audio adapter 56. In addition to the display and speakers, personal computers typically include other peripheral output devices (not shown), such as printers.
The personal computer 20 may operate in a networked environment using logical connections to one or more personal computers, such as a remote computer 49. The remote computer 49 may be another personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the personal computer 20. The logical connections depicted in FIG. 1 include a local area network (LAN) 51 and a wide area network (WAN) 52. The local area network 51 and wide area network 52 may be wired, wireless, or a combination thereof. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets, and the Internet.
When used in a LAN networking environment, the personal computer 20 is connected to the local area network 51 through a network interface or adapter 53. When used in a WAN networking environment, the personal computer 20 typically includes a modem 54 or other means for establishing communications over the wide area network 52, such as the Internet. The modem 54, which may be internal or external, is connected to the system bus 23 via the serial port interface 46. In a networked environment, program modules depicted relative to the personal computer 20 or portions thereof may be stored in the remote memory storage device. It will be appreciated that the network connections shown are exemplary, and other means of establishing a communications link between the computers may be used.
As will be described in more detail below with respect to FIGS. 2-10, in one embodiment a user context system may consist of three elements that are compared for a decision as to how to process a notification. The first element is the user's context (as may be provided by the operating system and arbitrary programs that have extended it). The second element is the user's rules and preferences. The third element is the notification itself (which contains elements such as data and properties that may match the user's rules).
As will be described in more detail below, the system operates by the operating system and other programs declaring a user's contexts, after which the system brokers the user's context and rules. Notifications are raised by other programs calling into the system. The user's context, rules, and elements of the notification are compared and then a determination is made as to what should be done with the notification. Examples of various options for what may be done with the notification include denying (if the notification is not allowed to draw or make noise, and the notification is to never be seen by the user), deferring (the notification is held until the user's context changes or the user's rules dictate that it is subsequently appropriate to deliver), delivering (the notification is allowed to be delivered in accordance with the user's context and rules), and routing (the user's rules indicate that the notification should be handed off to another system, regardless of whether the notification is also allowed to be delivered in the present system).
Various routines for delivering a notification are described in more detail below. In general, the user may be in a state deemed “unavailable” in which case the notification is either not delivered or held until the user becomes “available”. For instance, if the user is running a full screen application, that user may be deemed unavailable. Or, the user may be “available” but in such a state that the notification needs to be modified to be appropriate for the user. For instance, if the user is listening to music or in a meeting, the user may have indicated that the notifications should be delivered to the user's screen but that the sound they make should be either quieter or not made at all.
As noted above, the user context determines in part whether notifications are shown on the user's screen. When a notification is shown, it may be shown based on certain gradients within the user context. In other words, there are different levels of invasiveness of the form of the drawn notification that may be specified. For example, a normal notification is free to pop out into the client area and briefly obscure a window. If the user is in a slightly restrictive context, the notification may be free to show, but only in a less invasive manner, such as it might not be allowed to draw on top of another window. As another example, in one embodiment where the user is running a maximized application, the default setting may be that this means that context is slightly restricted, and that the user has clearly made a statement that they want this application to get the entire client area. In this setting, a notification may still be allowed to draw, but may be made to only appear within the sidebar. In other words, this type of reduced invasiveness in the notification drawing form lessens the impact of the notification, and overall lessens the cognitive load.
FIG. 2 is a flow diagram illustrative of a routine 200 for processing a notification. At a block 202, the operating system or an arbitrary program calls a notification application programming interface (API). At a block 204, the elements of the notification are evaluated with respect to user contexts as set by the operating system and arbitrary programs, and as further approved or modified by the user, and with respect to user rules as set by the user. At a block 206, a notification is delivered, deferred, denied, routed, or otherwise handled in accordance with the user contexts and user rules.
The user contexts and user rules will be described in more detail below. In one embodiment, a user context consists of a condition that may be either true or false, and an instruction for determining how a notification should be handled when the condition is true. In general, the condition of a user context can be thought of as a state that the system assumes makes the user in some way unavailable for notification delivery or that causes the way that the notification is delivered to be different from how it was sent by the program that initiated it. In other words, in one embodiment a user context can be thought of as a statement that “while condition X is true, then this is what should be done with incoming notifications.” An example would be “when my music player is playing music for me, incoming notifications should show on the screen but not play sound.” Another example would be “while any application is running in full screen mode, incoming notifications should be deferred until later.”
With respect to such user contexts, in one embodiment a user may also define special rules for handling incoming notifications, and thus may provide for special exceptions to the instructions of the user contexts. As an example, a user rule might state “when I receive a new e-mail from ‘John Doe,’ and with ‘urgent’ in the text, and marked ‘high priority,’ deliver the e-mail regardless of other user contexts.” In other words, in this example this user rule provides an exception to a user context which would otherwise indicate that it is inappropriate to deliver a notification for an incoming e-mail at this time. With regard to the elements of the notification that the user rules are evaluated with respect to, these may include things like text, sound, graphics, and other properties such as priority, the person who sent the notification (for channels such as e-mail or instant messaging), when the notification expires, and some elements of code such that the user can interact with the notification and launch arbitrary code (e.g., clicking on buttons or text within the notification can cause new programs to launch or actions to be taken [such as deleting e-mail] on programs that are currently running).
FIG. 3 is a flow diagram illustrative of a routine 220 for an operating system or arbitrary program declaring user contexts. At a block 222, the operating system or program declares the default contexts and their impact on the user's busy state. In other words, programs register with the system and provide user contexts including the impact they have on the notifications (e.g., if drawing on the screen is appropriate and whether or not sound is appropriate or at what relative volume sound should be played). As an example, a music player program may declare a default context that states “when the music player is playing music for the user, incoming notifications should show on the screen but not play sound.” As another example, the operating system might declare a context which states “while any application is running in full screen mode, incoming notifications should be deferred until a later time.”
Returning to FIG. 3, at a block 224, the operating system or program sets the declared context as true or false. For example, with regard to the music player declaring the context of “when the music player is playing music, incoming notifications should show on the screen but not play sound,” the music player program also sets this declared context as currently being true or false. In other words, the music player program indicates whether it is true or false that the music player is currently playing music. As will be described in more detail below, in one embodiment, the determination of whether a context is true or false may also be evaluated at the time the notification API is called, or at the time the user rules and exceptions are re-evaluated. As an additional feature, the system may also check to see if the calling program has not terminated unexpectedly or forgotten to reset the context, and the system will modify its settings appropriately due to this data. One specific implementation of this feature would be the system tracking the process handle of the calling program (it will be appreciated that other means may also be used for checking on the calling program), such that if the process terminates without first resetting the context value to its default ‘false’ value, the system will reset the context value as soon as it detects that the initial process does not exist any more (in one embodiment, the process handle state is set to signal when the process terminates, and that state change is picked up by the system which watches the process handle). This ensures that if processes terminate unexpectedly or forget to reset the context, then the delivery of further notifications will not be unduly affected. For example, if in the above example the music player program has been closed and the process is no longer present, then the context may automatically be reset to false. As another example, if a program originally declares a user as being busy, but then the program crashes, such that the process is no longer present, the context may automatically be set to false rather than leaving the user stuck in a state where notifications would not be received. In any event, whether or not a context is actively set or is evaluated as a function, in one embodiment the contexts can generally be resolved to be either true or false.
Returning to FIG. 3, at a block 226, the context information is added to the user contexts that are stored in the system. This process is repeated by additional programs declaring contexts. In addition, as noted above, the state of whether already declared contexts are true or false will change over time as the user opens and closes different programs and undertakes different tasks.
As noted above, in one embodiment registering a context is a declarative process. As will be described in more detail below, in accordance with one aspect of the invention, by registering the user contexts, the user can be presented with a list of the contexts so that the user can choose to not accept certain contexts or to change what they mean if the user disagrees with the context parameters. As noted above, in one embodiment, a context may consist of a condition that may be true or false, and an instruction for what to do with notifications when the condition is true. In this regard, a user context may comprise specific programming elements, such as: a human readable string (for the end user to know what is meant); a unique identifier (such as a globally unique identifier, aka GUID) so that the program can tell the operating system when this context is true or not; and the instruction which may comprise a statement of what this context means in terms of notifications drawing on screen (as may include invasiveness level, sound, and volume). A context may also be dynamic, as will be described in more detail below.
FIG. 4 is a flow diagram illustrative of a routine 230 for a context to be evaluated as true or false at the time the notification API is called. At a decision block 232, a determination is made whether the user contexts are to be evaluated at the time when the notification API is called. If the user contexts are to be evaluated, then the routine proceeds to block 234. If the user contexts are not to be evaluated at the time when the notification API is called, then the routine ends. At block 234, the user contexts are evaluated as true or false.
As illustrated by FIGS. 3 and 4 and as noted above, a context may be proactively set or it may be a function that is evaluated at a relevant time. As an example, a program may actively note that a user is listening to music. As another example, when a notification is evaluated, the program may have registered its callback such that the program is queried by the system at the time the notification is evaluated whether the context is true. One example of a case where this second process can be particularly important is when a user context is combined with a user rule to form a dynamic context. (User rules will be described in more detail below.) A specific example of a user context combined with a user rule would be when a user has set a rule that states “people who I'm meeting with right now can always send me notifications irrespective of my busy state.” In this case, the user context of “when the user is in a meeting,” must further be evaluated in terms of who the user is in the meeting with. In this example, the program that handles the meetings may register this as a dynamic context, and when a notification is evaluated, the person who sent the notification is evaluated against this context (which otherwise could not be declared as true or false proactively, since the people attending the meeting may change over time). In other words, this particular example requires evaluation of a user's context in light of a user rule that depends on other people's contexts.
FIG. 5 is a flow diagram illustrative of a routine 240 by which a user may adjust contexts and create new rules. At a block 242, a determination is made whether the user wishes to adjust the contexts. If the user does not wish to adjust the contexts, then the routine proceeds to a decision block 246, as will be described in more detail below. If the user does wish to adjust the context, then the routine proceeds to a block 244, where the user makes modifications to the contexts.
In one embodiment, the contexts that have been provided may be exposed to a user in a manner which allows the user to either turn the contexts off (e.g., the user doesn't agree with the program's assessment of the context), or to change the context in terms of the impact on delivery of a notification. As more specific examples, user contexts can include things like “while any application is running in full screen mode”; “when I'm playing music or video”; “when my meeting manager shows me in a meeting”; or “when my out of office assistant is turned on.” For each of these, the user could be allowed to make selections that specify an instruction that when the given condition is true, the incoming notifications should follow selected procedures. The instructions can specify things like whether or how the notification will draw on the screen, and the sound or volume that the notification will make. For the volume, the user can specify a percentage of desired volume under the given condition. For the options for drawing the notification on the screen, the user can be provided with options such as not drawing the notification at all, or drawing the notification only on a specified external display, or drawing the notification on the present screen. For the drawing of a notification, different levels of invasiveness can be specified. For example, if a user is running a maximized application, such that the context is slightly restricted, the invasiveness setting might be such that notifications can still draw, but might appear only within a sidebar.
Returning to FIG. 5, at decision block 246, a determination is made whether the user wishes to create new user rules. If the user does not wish to create new user rules, then the routine proceeds to a decision block 250, as will be described in more detail below. If the user does wish to create new user rules, then the routine proceeds to a block 248, where new rules are created. In general, user rules dictate how notifications that contain specified elements should be handled. For example, a rule may dictate that notifications from a specified person should always be delivered immediately, and this rule can be applied to all notifications, irrespective of which program initiated the notification as long as it is from the specified person. As more specific examples, other user rules may be directed to things like “MSN auto's traffic alerts for Bremerton, Wash.” and “important e-mails from John Doe.” As an example of a user rule for an important e-mail from John Doe, the rule could dictate that any e-mails that arrive from John Doe, and with “urgent” in the text, and marked “high priority,” should follow specified handling conditions. The handling conditions could specify that the notification should be delivered immediately and that the user should be required to acknowledge it. In general, requiring a user to acknowledge a notification means that there is a slightly raised elevation in the form of the notification's invasiveness, in that the notification will stay on-screen until the user specifically dismisses it. In one embodiment, the requiring of a user's acknowledgement is only settable via a user rule. As another example, the rules could also specify a custom sound to be played for the notification, at a specified volume, so as to provide an alert to the user that a special notification has arrived. Different settings may also be selected for how the notification should be handled during “normal” and “busy” conditions for the user, as may be determined by the user's context. The handling instructions may also include things like routing options for the notification, such as “deliver notifications from John Doe to my pager.” In one embodiment, when the context is evaluated, the most restrictive currently true context is the one that is applied. When user rules are evaluated, it means that a particular notification has matched the rule that the user has created, in which case the most invasive setting is applied from the user rules which have matched the notification. In other words, in the user rules, a user has specified something to be of importance, and this procedure is intended to follow the user's preferences. If there is a conflict between two rules, the most invasive is applied.
In one embodiment, the user rules may also be directed to controlling the delivery of notifications from specific notification services. For example, an operating system that provides notifications in accordance with a notification service may provide the user with a way to modify how the notifications are delivered. For example, the specified notification service may provide “traffic alerts for Seattle”, and the user may edit the delivery to be such that when such notifications are received the system should “show the notification and play sound.”
Returning to FIG. 5, at decision block 250, a determination is made whether the user wishes to adjust any of the already existing user rules. If the user does not wish to adjust any of the rules, then the routine ends. If the user does wish to adjust the user rules, then the routine proceeds to a block 252, where the user makes modifications to the rules.
As described above with respect to FIGS. 3-5, the user contexts and user rules are set by the operating system, programs, and the user. The system appropriately brokers and serializes the delivery of the notifications in accordance with the user's preferences. The user contexts and user rules may be exposed to the user such that the user can modify or adjust the various contexts and rules, or create new rules. This provides the user with a centralized way to manage preferences for how notifications are handled. It will be appreciated that this allows a user to effectively manage the many competing elements in a computing system that may want to send notifications to the user.
FIG. 6 is a flow diagram illustrative of a routine 300 for processing a notification in accordance with user contexts and user rules. At a block 302, the operating system or an arbitrary program calls the notifications API. At a decision block 304, a determination is made whether the notification should be logged to the notification history. If the notification is to be logged, then the routine proceeds to a block 306, where the notification is logged to the history. If the notification is not to be logged, then the routine proceeds to a decision block 310.
At decision block 310, a determination is made whether the notification matches any user rules. If the notification matches any user rules, then the routine proceeds to a block 312, where the user rules are followed (based on the notification content plus the user contexts), and the routine continues to a point A that is continued in FIG. 7. If at decision block 310 the notification does not match any user rules, then the routine continues to a decision block 320.
In one embodiment, user rules always outweigh the current user contexts. As noted above, user rules can be based on any element of the notification. For example, a rule that is based on an evaluation of the person who initiated the notification, can be applied to all notifications, irrespective of which program initiated the notification as long as it is from the person on which the rule is based (e.g., “John Doe” can always reach me). In addition, notifications may draw on the screen even during contexts that would otherwise cause it not to draw (e.g., “people who are in a meeting with me can always send me notifications”, even though the user context generally states that the user is not to receive notifications during a meeting).
Returning to FIG. 6, at decision block 320, a determination is made whether the notification can draw at the present time (based on the user context only). If the notification can draw at the present time, then the routine continues to a block 322, where the notification is drawn, and appropriate sound and volume are provided. If it is not appropriate to draw the notification at the present time, then the routine proceeds to a decision block 330.
At the decision block 330, a determination is made whether the notification has expired. If the notification has expired, then the routine proceeds to a block 332, where the notification is destroyed. If the notification has not expired, then the routine proceeds to a block 334, where the notification is deferred, and the routine continues to a point B that is continued in FIG. 7.
FIG. 7 is a flow diagram illustrative of a routine 350 for processing a notification in accordance with specified user rules. The routine is continued from a point A from FIG. 6, as described above. As illustrated in FIG. 7, at a decision block 352, a determination is made whether the notification should be routed. If the notification is not to be routed, then the routine continues to a decision block 362, as will be described in more detail below. If the notification is to be routed, then the routine proceeds to a block 354, where the notification is routed as specified. When a notification is routed, it indicates that the notification contains elements that match the user's rules that require the notification to be handed off to another system. This may happen if the user is busy, or it may happen on every notification that matches the criteria specified in the user's rules, whether or not the user is unavailable. As an example, a notification with the word “urgent” in it might always be forwarded to the user's pager, whereas other notifications might only be routed based on a combination of the user's rules and context.
Some examples of routing instructions include: “Forward this notification to an e-mail address”; “forward this notification to another PC”; “forward this notification to a pager”; “forward this notification to a cell phone”; or “forward this notification to an e-mail server.” As will be described in more detail below, if the notification is routed, it may also be delivered and draw on the screen. In addition, the device to which the notification is forwarded may have this same context system implemented, and on that device there may be additional or different knowledge of the user's context, and the context system on that device may choose to do different actions with the notification.
Returning to FIG. 7, at decision block 362, a determination is made whether to deny the notification. If the notification is not to be denied, then the routine continues to a decision block 366, as will be described in more detail below. If the notification is to be denied, then the routine proceeds to a block 364 where the notification is destroyed and not seen by the user. In other words, a notification that is denied is not allowed to draw or make noise. For example, this may occur based on a user rule that states that a certain notification should be denied, or as described above with reference to block 332 of FIG. 6, when a notification has expired.
Returning to FIG. 7, at decision block 366, a determination is made whether the notification should be deferred. If the notification is not to be deferred, then the routine proceeds to a decision block 370, as will be described in more detail below. If the notification is to be deferred, then the routine proceeds to a block 368, where the notification is held until a user context changes, and the routine continues to a point B that is continued in FIG. 8. In general, deferring a notification indicates that the notification will be allowed to be delivered, but that the user's current context or rules are such that it is deemed inappropriate to deliver the notification at this time. As will be described in more detail below with reference to FIG. 8, once the user's context changes or alternatively when the user's rules indicate that it is subsequently appropriate, the notification will be delivered to the user's screen and allowed to draw and/or make its sound, as dictated by the user rules and user context.
Returning to FIG. 7, at decision block 370, a determination is made whether the notification should be delivered. If the notification is not to be delivered, then the routine ends. If the notification is to be delivered, then the routine proceeds to a block 372, where the notification is drawn in accordance with the appropriate level of invasiveness, and the appropriate sound and volume are provided. In other words, the notification is allowed to be delivered, though it is delivered in accordance with the user's context and rules (e.g., a notification may be allowed to be drawn but required to be silent).
FIG. 8 is a flow diagram illustrative of a routine 380 for deferring the delivery of a notification. The routine is continued from a point B from either FIGS. 6 or 7, as described above. As illustrated in FIG. 8, at a block 382, the notification is held. At a block 384, the system monitors for changes to the declared contexts as being true or false, or for a user rule dictating that it is now appropriate to deliver the notification. At a decision block 386, a determination is made whether a user context has changed, or a user rule dictates that it is now appropriate to deliver the notification. If a user context has not changed and if no user rule otherwise dictates, then the routine returns to block 382, where the notification continues to be held. If the user context has changed or if a user rule dictates that it may now be appropriate to deliver the notification, then the routine proceeds to a point C which is continued in FIG. 6. Point C in FIG. 6 returns to the decision block 304, where the process for evaluating the notification starts over.
FIG. 9 is a flow diagram illustrative of a routine 400 for determining the drawing of a notification in accordance with various restrictions. It will be appreciated that this routine may be implemented as part of the processing of notifications, such as at block 322 of FIG. 6 or block 372 of FIG. 7. In general, when a notification enters the system, an evaluation is made of all of the contexts that are currently true, and the most restrictive settings for the notification are applied in accordance with the user's current state. As illustrated in FIG. 9, at a decision block 402, a determination is made whether the notification should not be drawn at all. If the notification is not to be drawn at all, then the routine proceeds to a block 404, where the notification is set to not be drawn on any display. If the notification is to be drawn, then the routine proceeds to a decision block 406.
At decision block 406, a determination is made whether the notification should be drawn but only externally. If the notification is only to be drawn externally, then the routine proceeds to a block 408, where the notification is drawn but only on external hardware displays. If the notification is not to be drawn on external hardware displays, then the routine proceeds to a decision block 410.
At decision block 410, a determination is made whether the notification should be drawn on the present display. If the notification is to be drawn on the present display, then the routine proceeds to a block 412, where the notification is drawn in accordance with the appropriate level of invasiveness on the present display. If the notification is not to be drawn on the present display, then the routine ends.
FIG. 10 is a flow diagram illustrative of a routine 420 for determining the volume that will be played for the sound of a notification, in accordance with various restrictions. As was described above with respect to FIG. 9, it will be appreciated that this routine may be implemented as part of the processing of notifications, such as at block 322 of FIG. 6 or block 372 of FIG. 7. When the notification enters the system, an evaluation is made of all the contexts that are currently true, and the most restrictive settings are applied to the notification in accordance with the user's current state. As illustrated in FIG. 10, at decision block 422, a determination is made whether the notification should be muted. If the notification is to be muted, then the routine proceeds to a block 424, where no volume is provided for the notification. If the notification is not to be muted, then the routine proceeds to a decision block 426.
At decision block 426, a determination is made whether the notification should be provided with some percentage but less than full volume. If some percentage volume is to be provided, then the routine proceeds to a block 428, where the notification is played at the specified percentage volume. If a specified percentage volume is not to be provided, then the routine proceeds to a decision block 430.
At decision block 430, a determination is made whether full volume should be provided for the notification. If full volume is to be provided, then the routine proceeds to a block 432, where the notification is played at the full volume level. If full volume is not to be provided, the routine ends. In one embodiment, in addition to providing for different volume levels for the notification, different sounds may also be selected for the notification in accordance with the user context and rules.
It will be appreciated that the user context system as described above with respect to FIGS. 1-10 controls the delivery of notifications from various sources such that the notifications stop conflicting with one another because the system appropriately brokers and serializes their on-screen rendering. In addition, the notifications that are processed by the user context system can be considered to be more valuable because they are delivered when the user is more receptive to them, and in addition the use of common rules helps the user to eliminate undesired notifications.
As described above, the system brokers and serializes the delivery of notifications from multiple sources. In addition, a shared notion of user context is provided for determining the appropriate handling for each of the notifications. In accordance with these aspects, the notifications that are delivered by the system may be considered to be more valuable in that they are delivered when the user is more receptive to them. These aspects also provide for common rules which help the user to eliminate undesirable notifications.
User contexts are declared by the operating system and arbitrary programs. In one embodiment, a user context comprises a condition that may be true or false, and an instruction that is to be followed if the condition is true. For example, a condition might be “when a user is listening to music,” for which the instruction might be “deliver notifications on the screen but with no sound.” In general, the condition for the user context can be thought of as a state that the system assumes makes the user in some way unavailable for notification delivery or that causes the way that the notification should be delivered to be different from how it was sent by the program that initiated it. The user may be in a state deemed “unavailable” in which case the notification is either not delivered or held until the user becomes “available.” For instance, if the user is running a full screen application, where the application is using or being displayed on the full area of a display screen, that user may be deemed unavailable. Or, the user may be “available” but in such a state that the notification needs to be modified to be appropriate for the user.
In addition to the operating system declaring contexts, programs register with the system and declare the context they provide and the impact it has on notifications (as per if drawing on the screen is appropriate and the level of invasiveness that is appropriate for drawing on the screen and whether or not sound is appropriate or at what relative volume sound should be played at) and then tells the system whether the context is true or false. In one embodiment, the context may also be evaluated as true or false at the time that a notification is to be delivered. In one embodiment, the system may also track the process of the calling program, and if the process is no longer present, the context may be reset to false. By tracking the process, certain undesirable situations can be avoided, such as an application declaring a user as being busy, and then crashing, and then leaving the user stuck in a state in which they have been declared as not being available for receiving notifications.
There may be different levels of invasiveness specified for the drawing of notifications. In other words, based on the user context, there may be gradients for the drawing of notifications, such that there may be different levels of invasiveness in the form of the drawn notification. For example, a normal notification may be free to be drawn in the client area and briefly obscure a window. If the user is in a slightly restrictive context, the notification may be free to show, but only in a less invasive manner, such as it might not be allowed to draw on top of another window. As another example, if a user is running a maximized application, the setting may be that the user context is slightly restricted, in that the user has clearly made a statement that they want their current application to get the entire client area. In this circumstance, notifications may still be allowed to draw, but they may be made to only appear within the sidebar. This type of reduced invasiveness in the notification drawing form lessens the impact of the notifications, and lessens the cognitive load.
The contexts that have been provided are exposed to the user and can either be turned off (e.g., the user doesn't agree with the program's assessment of the context) or changed in terms of the impact on delivery. The user may define rules that dictate how notifications that contain specified elements should be delivered. For example, a user rule might dictate that any notifications received from “John Doe” and with “urgent” in the subject line, should be delivered immediately. In one embodiment, such user rules are given precedence over the user contexts. The user rules are made available to the user for modification in accordance with the user's preferences.
FIGS. 11-14 are directed to the evaluation of test notifications. As will be described in more detail below, the test notifications can be utilized by any program to obtain information about the current state of a user context. One advantage of this aspect is that the user context information can be obtained by any program, regardless of whether the program intends to use the service already built in the system, or whether the program is to extend it by rolling its own interpretation of what the notification should look like or the way it should be delivered. In other words, future programs with more advanced notifications that are not designed to be limited by the rendering provided to them by the system will still be able to utilize test notifications to obtain information about the user's current context. Such more advanced notifications are likely to occur as the richness of notifications continues to grow and change, and new user interfaces for notifications continue to develop.
As an example, a future user interface may provide rich full screen animations that draw only when the user is not “busy.” For instance, placing a CD into the CD-ROM drive might present an animation of a CD on the screen, while the CD-ROM spins up (due to technical constraints, there is a period of time from when the CD is first inserted until the CD may be read even though it is known to be in the drive—and during this time period an animation could be used to show the user that the system is aware of the CD, but just can't read from it yet). By using the test notifications of the embodiment of the present invention, the animation program will be able to know about the user's current context and can choose to not show on-screen if the user is not receptive to notifications right now.
As another example, a future instant messaging program may develop a new user interface for notifications that could not be done with the current notification engine. The development of such new user interfaces is desirable. Test notifications could continue to be utilized by the instant messaging program to determine whether it should show/not show its more advanced notifications in accordance with user's current context.
The test notifications can also be utilized to prevent unwanted notifications from being generated. This aspect can be applied to any programs that attempt to send notifications to the system. In other words, by enabling a program to have a richer view of the user's context, unwanted notifications can be prevented from being generated by the programs, thus proactively ending the generation of these types of notifications until the user is in a receptive state. The following examples provide further illustrations of this aspect.
As one example, an instant messaging program may provide a list of contacts. The test notifications are able to tap into the context system on a per-contact basis (e.g., “if Tom were to send you an instant message right now, would it show?” and “if Chris were to send you an instant message right now, would that show?”). On the basis of this information, the instant messaging program can begin broadcasting definite busy or free states to individual contacts. This technique could be used to preemptively stop unwanted notifications from being generated, rather than simply suppressing them once they are received.
As another example, if a user is busy, a mail program could make use of this to provide an automated reply to the sender (either to all senders based on rules that the user has provided, such as “my direct reports” or “my manager”). The automated reply could indicate “I am busy right now, but will respond when I have a chance.” In general, the communications of the system as a whole can be improved by exposing the user's context to arbitrary programs.
As described above, an application is able to construct a test notification and receive back specifically whether or not an actual notification would draw on the screen at the present time. As noted above, this allows programs to continue to use the user context system even after new user interfaces for notifications are developed. In addition, by enabling these new richer scenarios for other programs, all programs that utilize the system can be considered to be richer and more intelligent based on having increased access to information about the user's behavior and preferences.
FIG. 11 is a flow diagram illustrative of a general routine 500 for processing a test notification. The routine is similar to the routine of FIG. 2 for processing an actual notification. As illustrated in FIG. 11, at a block 502, the notification test API is called. At a block 504, the elements of the test notification are evaluated with respect to the user contexts as set by the operating system and arbitrary programs and as further approved or modified by the user, and with respect to any user rules as set by the user. At a block 506, in accordance with the evaluation of the test notification, an indication is provided regarding how the test notification would be handled. The indication is then returned to the calling application.
In one embodiment, the notification test API is called when the operating system or an arbitrary program decides that it needs to understand how busy the user currently is. One example of when this might occur would be when there is a decision point for whether or not to draw a notification on the screen. Another example would be to use this data to inform an action that the program wants to take on the user's behalf.
When the notification test API is called, the calling program constructs a notification that is as close to what it would send if it were using the notification methods of the user context system for sending an actual notification, and then uses an optional method to test (which returns the result and also guarantees that this particular notification will not be shown on-screen). One example of this process would be an instant messaging program wanting to broadcast an appropriate free or busy state to each contact based on the current user's context. The instant messaging program would create a test notification for each contact, and based on the return value broadcast a different free or busy state on a per-contact basis. Another example would be a program wanting to show an animation based on a user context (e.g., the CD-ROM animation example described above). The code that wants to show the animation would construct a notification (in this case, the contents simply being a simple notification with an image or animation sequence as this is just a test as to whether or not the given notification would draw), and then uses the test method, and then the return results could be used as a guide for whether or not the animation should currently be played. In one embodiment, the calling code will generally at least raise the most-generic notification possible as a test notification. If there is richer data available (such as the contact from the contact list), then including this information makes the test notification more accurate as the user may have custom user rules on a per person basis that may affect the returned results.
One implementation that may be utilized for the notification test API is a polling implementation. In the instant messaging program example described above, for the polling implementation the instant messaging program would periodically re-poll the notification test API to determine how to change the broadcast data. Another implementation that can be utilized for the notification test API is a subscription callback implementation. In this implementation, the instant messaging program would “subscribe” to context changes. Then, rather than periodically re-polling, as the user context changes in ways that change what the instant messaging program would be able to broadcast, the context engine can call back to the instant messaging program with appropriate updates. In some scenarios, this is advantageous, in that there is no lag between the context changes and what is broadcast (whereas with the polling implementation, there will tend to be moments when the broadcast state does not match the current user context). For other scenarios, the polling implementation may be more appropriate (as these are responses to one-time events, e.g., a CD being inserted into a CD-ROM).
FIG. 12 is a flow diagram illustrative of a routine 520 for processing a test notification and returning an indication of true or false for whether or not the test notification would draw at the present time. At a block 522, the notification test API is called. At a decision block 530, a determination is made whether the test notification matches any user rules. If the test notification does not match any user rules, then the routine proceeds to a decision block 550, as will be described in more detail below. If the test notification does match any user rules, then the routine proceeds to a decision block 540.
At decision block 540, a determination is made whether the user rules indicate that the test notification would draw at the present time. If the test notification would draw at the present time, then the routine proceeds to a block 542, where an indication of true is provided. If the test notification would not draw at the present time, then the routine proceeds to a block 544, where an indication of false is provided.
At decision block 550, a determination is made whether the test notification would be able to draw at the present time (in relation to the user context only). If the test notification would be able to draw at the present time, then the routine proceeds to a block 552, where an indication of true is provided. If the notification would not be able to draw at the present time, then the routine proceeds to a block 554, where an indication of false is provided. From blocks 542, 544, 552 and 554, the routine returns to the calling application with the designated indication.
FIG. 13 is a flow diagram illustrative of a routine 600 for processing a notification and returning detailed indications. As noted above, the routine 520 of FIG. 12 only provides a return value with an indication of true or false, with regard to whether or not the notification would draw at the present time. As will be described in more detail below, the routine 600 of FIG. 13 returns richer return values (e.g., the notification would not draw right now, but it would draw as soon as the user's context changes, or it would route to another device, etc.). This provides for richer logic in the calling code. This allows for advanced functionality in programs that are able to utilize such richer return values.
It should also be noted while the return values are being described as part of a function call, in another embodiment this data may be passed as part of a callback. In other words, the calling application can set up a “subscription” to a notification such that when a user's context subsequently changes (as would affect the delivery of notifications from the calling application) then the calling application is notified. This requires no polling, and in some cases is thus better for the robustness and performance of the system.
As illustrated in FIG. 13, at a block 602 the notification test API is called or a subscription is registered (as related to the polling versus subscription embodiments described above). At a decision block 610, a determination is made whether the test notification matches any user rules. If the test notification does not match any user rules, then the routine proceeds to a decision block 620, as will be described in more detail below. If the test notification does match any user rules, then the routine proceeds to a block 612. At block 612, the test notification is evaluated according to the user rules (based on the test notification content plus the user contexts), and the routine continues to a point D that is continued in FIG. 14, as will be described in more detail below.
At decision block 620, a determination is made whether the test notification would be able to draw at the present time (based on user context only). If the test notification would not be able to draw at the present time, then the routine proceeds to a decision block 630, as will be described in more detail below. If the test notification would be able to draw at the present time, then the routine proceeds to a block 622. At block 622, the routine determines what sound level would be appropriate according to the user context. At a block 624, an indication is provided that the notification would draw, and also including the percentage sound level that would be appropriate for the notification.
At decision block 630, the determination is made whether the test notification would be held for later delivery (based on the test notification content plus the user rules). If the test notification would be held for later, then the routine proceeds to a block 632 where an indication is provided of defer. If the test notification would not be held for later delivery, then the routine proceeds to a block 634, where an indication is provided of deny. From blocks 624, 632 and 634, the routine returns to the calling application with the specified indication(s).
FIG. 14 is a flow diagram illustrative of a routine 650 for evaluating a test notification in accordance with user rules. The routine continues from a point D from FIG. 13. As illustrated in FIG. 14, at a decision block 652, a determination is made whether the test notification should be routed. If the test notification is to be routed, then the routine proceeds to a block 654 where an indication of route is provided, and the routine proceeds to a decision block 662. If the test notification would not be routed, the routine also proceeds to decision block 662.
At decision block 662, a determination is made whether the test notification would be denied. If the test notification would be denied, then the routine proceeds to a block 664, where an indication of deny is provided. If the test notification would not be denied, then the routine proceeds to a decision block 666.
At decision block 666, a determination is made whether the test notification would be deferred. If the test notification would be deferred, then the routine proceeds to a block 668, where an indication is provided of defer. If the test notification would not be deferred, then the routine proceeds to a decision block 670.
At decision block 670, a determination is made whether the test notification would be delivered. If the test notification would be delivered, then the routine proceeds to a block 672, where an indication of deliver is provided. In one embodiment, the delivery indication may also include a specified invasiveness indication as well as a sound and volume indication. If the test notification would not be delivered, then the routine returns to the calling application. From blocks 664, 668, and 672, the routine returns to the calling application with the specified indications.
It will be appreciated that FIGS. 11-14 illustrate a system and method utilizing test notifications which enable programs to obtain indications as to the availability of a user. By enabling a program to have a richer view of a user's context, the generation of unwanted notifications can be prevented at the source, thus allowing notifications to only be generated when a user is in a receptive state. In addition, a program is able to utilize the test notifications to determine a user's context, even if the program generally utilizes a different user interface for its own notifications. These aspects allow for greater flexibility in the potential uses of the user context system. These aspects also enable new richer scenarios for other programs, such that the system as a whole can become richer and more intelligent based on the user's behavior and preferences.
FIGS. 15A and 15B are diagrams illustrative of pseudo code 1500A and 1500B for a notifications API. As shown in FIG. 15A, the pseudo code 1500A includes portions 1510-1550. The portion 1510 relates to an object for sending a balloon notification to the user. This class can be derived if there is a need to add custom properties to the object so as to have more context when a NotificationClickedEvent arrives.
The portion 1520 relates to the icon for sending the notification. In one embodiment, minimum and maximum sizes are specified (e.g., in one example a minimum size is 16×16 and a maximum size is 80×80). The portion 1530 relates to the title text for the notification. The portion 1540 relates to the main BodyText for the notification. The portion 1550 relates to a property that should be set as True if the user is to be able to click inside the notification to trigger some event.
As shown in FIG. 15B, the continuation of the pseudo code 1500B includes portions 1560-1590. The portion 1560 relates to a method that is to be called after the setting of all the relevant notification properties when the notification is ready to be sent so that it will be shown to the user. This method returns immediately. The portion 1570 relates to updating a notification that has already been sent. After some properties are changed, the update may be called to have the changes reflected. The portion 1580 relates to a call for determining whether a particular notification would actually draw on the screen the present time. The portion 1590 relates to a call for recalling a notification that was already sent, but that has since become obsolete.
FIG. 16 is a diagram illustrative of pseudo code 1600 for a context setting API. The pseudo code 1600 includes portions 1610-1630. The portion 1610 notes that this class helps manage context changes. In one embodiment, the custom contexts are defined in an application manifest. This class allows a context to be set as True, or reset to False. An example of context is the FullScreen context (which in one embodiment is managed by the operating system) which is True when any application is full screen. In one embodiment, the default value for any context is always False. The portion 1620 relates to constructing a context object for a particular context, as identified by its GUID. The portion 1630 relates to changing the value of a context. In one embodiment, all of the contexts for an application will be reset to False when the application terminates or dies.
FIG. 17 is a block diagram of a notification system 1700. The notification system 1700 includes a notification processing system 1710, context setters 1720A-1720 n and notification senders 1730A-1730 n. As described above, the context setters 1720A-1720 n communicate with the notification processing system 1710 such that a context setting API is called by which context setters declare default contexts and their impact on the user's busy state, and also set already declared contexts as true or false, which are then added to the user contexts. As also described above, the notification senders 1730A-1730 n communicate with the notification processing system 1710 such that the notification API is called, and the elements of the notifications are evaluated with respect to the user contexts as set by the context setters 1720A-1720 n and as further approved or modified by the user and with respect to the user rules as set by the user. Then, in accordance with the evaluation, the notifications are delivered, deferred, denied, routed or otherwise handled.
FIG. 18 is a flow diagram illustrative of a general routine 1800 by which a context setting API is called. At a block 1810, a context setter calls the context setting API regarding the setting of the context. At a block 1820, the notification processing system receives the call and the context is set. As described above, the context setters declare their default contexts and their impact on the user's busy state. The context setters set an already declared context as true or false, which are then added to the user contexts.
FIG. 19 is a flow diagram illustrative of a general routine 1900 by which a notification API is called. At a block 1910, a notification sender calls the notifications API regarding sending a notification to a user. At a block 1920, the notification processing system receives the call and processes the notification. As described above, once the notification API is called, the elements of the notification are evaluated with respect to the user contexts as set by the context setters and as further approved or modified by the user and with respect to the user rules as set by the user. Then, in accordance with evaluation, the notification is delivered, deferred, denied, routed or otherwise handled.
The notification system utilizes various programming interfaces. As will be described in more detail below with respect to FIGS. 20A-20L, a programming interface (or more simply, interface) such as that used in the notification system may be viewed as any mechanism, process, protocol for enabling one or more segment(s) of code to communicate with or access the functionality provided by one or more other segment(s) of code. Alternatively, a programming interface may be viewed as one or more mechanism(s), method(s), function call(s), module(s), object(s), etc. of a component of a system capable of communicative coupling to one or more mechanism(s), method(s), function call(s), module(s), etc. of other component(s). The term “segment of code” in the preceding sentence is intended to include one or more instructions or lines of code, and includes, e.g., code modules, objects, subroutines, functions, and so on, regardless of the terminology applied or whether the code segments are separately compiled, or whether the code segments are provided as source, intermediate, or object code, whether the code segments are utilized in a runtime system or process, or whether they are located on the same or different machines or distributed across multiple machines, or whether the functionality represented by the segments of code are implemented wholly in software, wholly in hardware, or a combination of hardware and software.
Notionally, a programming interface may be viewed generically, as shown in FIG. 20A or FIG. 20B. FIG. 20A illustrates an interface Interface 1 as a conduit through which first and second code segments communicate. FIG. 20B illustrates an interface as comprising interface objects I1 and I2 (which may or may not be part of the first and second code segments), which enable first and second code segments of a system to communicate via medium M. In the view of FIG. 20B, one may consider interface objects I1 and I2 as separate interfaces of the same system and one may also consider that objects I1 and I2 plus medium M comprise the interface. Although FIGS. 20A and 20B show bi-directional flow and interfaces on each side of the flow, certain implementations may only have information flow in one direction (or no information flow as described below) or may only have an interface object on one side. By way of example, and not limitation, terms such as application programming interface (API), entry point, method, function, subroutine, remote procedure call, and component object model (COM) interface, are encompassed within the definition of programming interface.
Aspects of such a programming interface may include the method whereby the first code segment transmits information (where “information” is used in its broadest sense and includes data, commands, requests, etc.) to the second code segment; the method whereby the second code segment receives the information; and the structure, sequence, syntax, organization, schema, timing and content of the information. In this regard, the underlying transport medium itself may be unimportant to the operation of the interface, whether the medium be wired or wireless, or a combination of both, as long as the information is transported in the manner defined by the interface. In certain situations, information may not be passed in one or both directions in the conventional sense, as the information transfer may be either via another mechanism (e.g. information placed in a buffer, file, etc. separate from information flow between the code segments) or non-existent, as when one code segment simply accesses functionality performed by a second code segment. Any or all of these aspects may be important in a given situation, e.g., depending on whether the code segments are part of a system in a loosely coupled or tightly coupled configuration, and so this list should be considered illustrative and non-limiting.
This notion of a programming interface is known to those skilled in the art and is clear from the foregoing description. There are, however, other ways to implement a programming interface, and, unless expressly excluded, these too are intended to be encompassed by the claims set forth at the end of this specification. Such other ways may appear to be more sophisticated or complex than the simplistic view of FIGS. 20A and 20B, but they nonetheless perform a similar function to accomplish the same overall result. We will now briefly describe some illustrative alternative implementations of a programming interface.
FIGS. 20C and 20D illustrate a factoring implementation. In accordance with a factoring implementation, a communication from one code segment to another may be accomplished indirectly by breaking the communication into multiple discrete communications. This is depicted schematically in FIGS. 20C and 20D. As shown, some interfaces can be described in terms of divisible sets of functionality. Thus, the interface functionality of FIGS. 20A and 20B may be factored to achieve the same result, just as one may mathematically provide 24, or 2 times 2 time 3 times 2. Accordingly, as illustrated in FIG. 20C, the function provided by interface Interface 1 may be subdivided to convert the communications of the interface into multiple interfaces Interface 1A, Interface 1B, Interface 1C, etc. while achieving the same result. As illustrated in FIG. 20D, the function provided by interface I1 may be subdivided into multiple interfaces I1 a, I1 b, I1 c, etc. while achieving the same result. Similarly, interface I2 of the second code segment which receives information from the first code segment may be factored into multiple interfaces I2 a, I2 b, I2 c, etc. When factoring, the number of interfaces included with the 1st code segment need not match the number of interfaces included with the 2nd code segment. In either of the cases of FIGS. 20C and 20D, the functional spirit of interfaces Interface 1 and I1 remain the same as with FIGS. 20A and 20B, respectively. The factoring of interfaces may also follow associative, commutative, and other mathematical properties such that the factoring may be difficult to recognize. For instance, ordering of operations may be unimportant, and consequently, a function carried out by an interface may be carried out well in advance of reaching the interface, by another piece of code or interface, or performed by a separate component of the system. Moreover, one of ordinary skill in the programming arts can appreciate that there are a variety of ways of making different function calls that achieve the same result.
FIGS. 20E and 20F illustrate a redefinition implementation. In accordance with a redefinition implementation, in some cases, it may be possible to ignore, add or redefine certain aspects (e.g., parameters) of a programming interface while still accomplishing the intended result. This is illustrated in FIGS. 20E and 20F. For example, assume interface Interface 1 of FIG. 20A includes a function call Square(input, precision, output), a call that includes three parameters, input, precision and output, and which is issued from the 1st Code Segment to the 2nd Code Segment. If the middle parameter precision is of no concern in a given scenario, as shown in FIG. 20E, it could just as well be ignored or even replaced with a meaningless (in this situation) parameter. One may also add an additional parameter of no concern. In either event, the functionality of square can be achieved, so long as output is returned after input is squared by the second code segment. Precision may very well be a meaningful parameter to some downstream or other portion of the computing system; however, once it is recognized that precision is not necessary for the narrow purpose of calculating the square, it may be replaced or ignored. For example, instead of passing a valid precision value, a meaningless value such as a birth date could be passed without adversely affecting the result. Similarly, as shown in FIG. 20F, interface I1 is replaced by interface I1′, redefined to ignore or add parameters to the interface. Interface I2 may similarly be redefined as interface I2′, redefined to ignore unnecessary parameters, or parameters that may be processed elsewhere. The point here is that in some cases a programming interface may include aspects, such as parameters, that are not needed for some purpose, and so they may be ignored or redefined, or processed elsewhere for other purposes.
FIGS. 20G and 20H illustrate an inline coding implementation. In accordance with an inline coding implementation, it may also be feasible to merge some or all of the functionality of two separate code modules such that the “interface” between them changes form. For example, the functionality of FIGS. 20A and 20B may be converted to the functionality of FIGS. 20G and 20H, respectively. In FIG. 20G, the previous 1st and 2nd Code Segments of FIG. 20A are merged into a module containing both of them. In this case, the code segments may still be communicating with each other but the interface may be adapted to a form which is more suitable to the single module. Thus, for example, formal Call and Return statements may no longer be necessary, but similar processing or response(s) pursuant to interface Interface 1 may still be in effect. Similarly, shown in FIG. 20H, part (or all) of interface I2 from FIG. 20B may be written inline into interface I1 to form interface I1″. As illustrated, interface I2 is divided into 12 a and 12 b, and interface portion I2 a has been coded in-line with interface I1 to form interface I1″. For a concrete example, consider that the interface I1 from FIG. 20B performs a function call square (input, output), which is received by interface I2, which after processing the value passed with input (to square it) by the second code segment, passes back the squared result with output. In such a case, the processing performed by the second code segment (squaring input) can be performed by the first code segment without a call to the interface.
FIGS. 20I and 20J illustrate a divorce implementation. In accordance with a divorce implementation, a communication from one code segment to another may be accomplished indirectly by breaking the communication into multiple discrete communications. This is depicted schematically in FIGS. 20I and 20J. As shown in FIG. 20I, one or more piece(s) of middleware (Divorce Interface(s), since they divorce functionality and/or interface functions from the original interface) are provided to convert the communications on the first interface, Interface 1, to conform them to a different interface, in this case interfaces Interface 2A, Interface 2B and Interface 2C. This might be done, e.g., where there is an installed base of applications designed to communicate with, say, an operating system in accordance with an Interface 1 protocol, but then the operating system is changed to use a different interface, in this case interfaces Interface 2A, Interface 2B and Interface 2C. The point is that the original interface used by the 2nd Code Segment is changed such that it is no longer compatible with the interface used by the 1st Code Segment, and so an intermediary is used to make the old and new interfaces compatible. Similarly, as shown in FIG. 20J, a third code segment can be introduced with divorce interface DI1 to receive the communications from interface I1 and with divorce interface D I2 to transmit the interface functionality to, for example, interfaces I2 a and I2 b, redesigned to work with D I2, but to provide the same functional result. Similarly, D I 1 and D I2 may work together to translate the functionality of interfaces I1 and I2 of FIG. 20B to a new operating system, while providing the same or similar functional result.
FIGS. 20K and 20L illustrate a rewriting implementation. In accordance with a rewriting implementation, yet another possible variant is to dynamically rewrite the code to replace the interface functionality with something else but which achieves the same overall result. For example, there may be a system in which a code segment presented in an intermediate language (e.g., Microsoft IL, Java ByteCode, etc.) is provided to a Just-in-Time (JIT) compiler or interpreter in an execution environment (such as that provided by the .Net framework, the Java runtime environment, or other similar runtime type environments). The JIT compiler may be written so as to dynamically convert the communications from the 1st Code Segment to the 2nd Code Segment, i.e., to conform them to a different interface as may be required by the 2nd Code Segment (either the original or a different 2nd Code Segment). This is depicted in FIGS. 20K and 20L. As can be seen in FIG. 20K, this approach is similar to the divorce configuration described above. It might be done, e.g., where an installed base of applications are designed to communicate with an operating system in accordance with an Interface 1 protocol, but then the operating system is changed to use a different interface. The JIT Compiler could be used to conform the communications on the fly from the installed-base applications to the new interface of the operating system. As depicted in FIG. 20L, this approach of dynamically rewriting the interface(s) may be applied to dynamically factor, or otherwise alter the interface(s) as well.
It is also noted that the above-described scenarios for achieving the same or similar result as an interface via alternative embodiments may also be combined in various ways, serially and/or in parallel, or with other intervening code. Thus, the alternative embodiments presented above are not mutually exclusive and may be mixed, matched and combined to produce the same or equivalent scenarios to the generic scenarios presented in FIGS. 20A and 20B. It is also noted that, as with most programming constructs, there are other similar ways of achieving the same or similar functionality of an interface which may not be described herein, but nonetheless are represented by the spirit and scope of the invention, i.e., it is noted that it is at least partly the functionality represented by, and the advantageous results enabled by, an interface that underlie the value of an interface.
FIGS. 21-28 are directed to a system and method for public consumption of communication events between arbitrary processes. As discussed above, the notification user context system focuses on when it is appropriate or not appropriate to interrupt a user with a notification based on the user's context. As will be discussed in more detail below, notification mechanisms may be provided for a process to gain insight into when such notification events are occurring, specifically targeting communication-type events, and allowing the processes to act on these events on the user's behalf. By utilizing these mechanisms, rather than requiring a user to personally respond in real time to incoming notifications, the user may instead set a simple white list or other means of identifying people important to the user, and the mechanisms may then provide these people with insights into when the user will be more available for communication. For example, one process that might register to be informed when communication events occur could be a calendaring-type program. The calendaring-type program may have domain knowledge of the user's activities outside of the data that the notification system has (e.g., that the user is scheduled to be giving a presentation during selected times of the day). When a notification comes in and is denied because the user is currently busy, the calendaring program may be provided with a copy of the notification and the fact that it was not delivered, and can evaluate whether or not the sender of the notification is important enough to receive a customized announcement. If the sender of the notification is important enough, a customized announcement might be sent such as “the user you are trying to contact is giving a presentation right now, but if you contact him at time x, you will likely be successful as his calendar is free then.” In this scenario, it will be appreciated that the notification system is able to act to effectively broker a user's communications, and thus acts as a type of automated assistant for the user.
FIG. 21 is a diagram of a system 2100A illustrating the setting of a user context and user rules. As shown in FIG. 21, an arbitrary process 2110 communicates across process boundaries 2120 and 2140 in order to set a user context 2150. More specifically, the arbitrary process 2110 utilizes a set user context API 2130 in order to set the user context 2150. The user context 2150 and a set of user rules 2160 are provided to an evaluation component 2170, as will be described in more detail below.
FIG. 22 is a diagram of a system 2100B illustrating the initiation of a notification event. As shown in FIG. 22, an arbitrary process 2210 utilizes a notifications API 2230 to create a notifications event 2250. For example, the arbitrary process 2210 may be sending the user a notification from another person. The arbitrary process 2210 may be any kind of communication program, such as e-mail, instant messaging, a telephone program, etc. As will be described in more detail below, the evaluation component 2170 evaluates the notification event 2250 in accordance with the user context 2150 and the user rules 2160. In one example, the evaluation component 2170 may determine that the user is busy, in which case the notification may fail. In another example, the user may not be busy, in which case the notification may be drawn, as will be described in more detail below with reference to FIG. 23.
FIG. 23 is a diagram of a system 2100C illustrating the drawing of a notification. As shown in FIG. 23, the evaluation component 2170 considers the user context 2150, the user rules 2160 and the notification event 2250, and determines that it is appropriate to draw a notification 2330. If the user then clicks on the notification, the notification message will be posted for the user.
As an example of a scenario in which a notification would not be drawn (e.g., the user is busy such that a notification fails), in one circumstance the arbitrary process 2110 may be running in full screen. The user context 2150 would thus indicate to the notification system that the user is currently not available to interruption. For example, the user may be giving a presentation or may be otherwise fully occupied such that drawing anything on the screen would currently be inappropriate. Alternatively, if the user is available, then the user context 2150 will so indicate.
FIG. 24 is a diagram of a system 2100D illustrating a process that is registering for communication events. As shown in FIG. 24, an arbitrary process 2410 communicates with the evaluation component 2170 so as to register for communication events. In one example, the arbitrary process 2410 may be a program that has some domain knowledge of the user's activities outside of the data that the notification system has. For example, the arbitrary process 2410 might be a type of calendaring program that could have knowledge of what activities the user is currently engaged in (e.g., that the user is scheduled to be giving a presentation during selected times of the day). As will be described in more detail below, the process 2410 may thus be able to include information in any reply that it sends that may indicate what the user is currently doing, when the user will be free, and any appropriate alternate contacts that the person who initiated the communication may follow up with. For example, the busy reply may indicate that the user is more likely to be available at a time x when his calendar is free, or that certain alternate contacts may be appropriate to follow up with.
FIG. 25 is a diagram of a system 2100E illustrating a process receiving a communication event and providing a customized announcement in response thereto. As shown in FIG. 25, the evaluation component 2170 has determined that the user is busy and that the notification therefore fails. The evaluation component 2170 then provides this information, along with a copy of the notification, to the arbitrary process 2410. In response to this information, the arbitrary process 2410 sends an OOF message 2510 based on the user's calendar. More specifically, the arbitrary process 2410 has evaluated the sender of the notification (using whatever heuristics have been selected) and determined that the sender is important enough to the user to receive a customized announcement. For example, the customized busy announcement could state “the user you are trying to contact is giving a presentation right now, but if you try and contact him at time x, you will likely be successful as his calendar is free then.”
FIG. 26 is a diagram illustrative of a general routine 2600 for a process registering for communication events. At a block 2610, the process component sends a message so as to register for communication events. At a block 2620, the process is registered to receive information when communication events occur. As described above, this corresponds in FIG. 24 to the arbitrary process 2410 registering for communication events with the evaluation component 2170.
FIG. 27 is a flow diagram illustrative of a routine 2700 for a process receiving a notification event and acting in accordance with an evaluation routine. At a block 2710, the user rules are set by the user. At a block 2720, a first process registers a user context. For example, the first process may be a program that is running in full screen, which signifies to the notification system that the user is not available to interruption. In such a scenario, the user may be giving a presentation or may otherwise be fully occupied such that drawing on the screen would not currently be appropriate.
At a block 2730, a second process registers for receiving communication events. The second process in one embodiment may be a program that has some domain knowledge of the user's activities outside of the data that the notification system has. For example, the second process may be a calendaring program and may have knowledge of what activities the user is currently engaged in.
At a block 2740, a third process creates a notification event. For example, the third process may be any type of communication program, such as e-mail, instant messaging, telephone program, etc. The third process may utilize a notifications API for attempting to send the notification to the user, such that a notification event is created. At a block 2750, the second process (e.g., the calendaring program) receives the notification event and acts in accordance with an evaluation routine, as will be described in more detail below with reference to FIG. 28.
FIG. 28 is a flow diagram illustrative of a routine 2800 for a process (e.g., a calendaring program) receiving a notification event and acting in response thereto. At a block 2810, the process receives information regarding the identity of the sender of the notification and whether or not the notification was delivered. At a block 2820, the sender is evaluated using selected heuristics (e.g., which may indicate how important the sender is to the user). At a decision block 2830, a determination is made as to whether the sender satisfies the heuristic requirements (e.g., is important enough to the user) to receive a customized announcement. If the sender does not meet the requirements, then the routine ends. If the sender does meet the requirements, a customized announcement is sent (e.g., “the user you are trying to contact is giving a presentation right now, but if you try and contact him at time x, you will likely be successful as his calendar is free then”).
It will be appreciated that the elements of the system may be configured to address certain privacy concerns. For example, the system described above may be configured so as to properly broker the permissions for sending customized automated busy replies such that personal information is not revealed inappropriately. In one embodiment, the system brokers the permissions for a process to register to receive such busy replies, such that the system may not know what the arbitrary process is going to do, but the system can broker what processes can be registered and can help guide the user to understanding the implications of allowing a process to be registered. In addition, there are various possible implementations for how this new type of agent process can act on the user's behalf. For example, the process may choose to send the communication back to the communication initiator itself, or it may choose to manipulate a public object model of the process by which the communication was sent. In addition, there are various possible implementations as to the list of individuals for whom such an agent should send a busy reply. One implementation would be to send it to all individuals who initiated communication during busy times, although this may not be optimal in some embodiments. In one embodiment, a system-brokered “important people” group may be created and only communications from these people will receive the customized busy reply. In this embodiment, the process that had registered for receiving communications events may in fact only be provided with the communication event if the sender is determined to be in the group of “important people.” This would further allow the system to help broker appropriate responses on behalf of the user and to more appropriately act to help maintain the user's preferences and privacy. By having the group of “important people” be a public and system-brokered group, this helps the system in terms of overall transparency and dimensionism, which in turn makes the system more effective and easier to use.
While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.

Claims (31)

1. A method for registering a process in a system where communication events occur that are related to notifications, the method comprising:
providing a user context including a user context state, the user context defining a communication event to be performed in response to a notification for at least one value of the user context state;
providing a rule that specifies at least one condition for modifying the defined communication event;
receiving a message to register a process for communication events;
registering the process in response to the received message, the registered process being a program that includes data regarding the user context state that is outside data maintained by other components of the system;
receiving an indication that the user context state has changed value; and
evaluating a sender, in response to the occurrence of the defined communication event or the modified defined communication event, to determine whether the registered process will send a customized message to the sender,
wherein the evaluation of the sender comprises determining whether the sender has been placed on a list of persons entitled to receive the customized message.
2. The method of claim 1, wherein one type of communication event occurs when a notification from a sender is not delivered to a user due to a user's context.
3. The method of claim 2, wherein in response to receiving a communication event, the registered process provides a customized message to the sender of the notification that includes data about the user.
4. The method of claim 3, wherein the registered process is a calendaring program and the data about the user indicates a time when the user may next be available.
5. The method of claim 3, wherein the data about the user includes at least one alternative contact for the user.
6. A method for registering a process in a user context system, the user context system including a user context state and a rule, wherein a communication event to be performed in response to a notification is defined for at least one value of the user context state, and the rule includes at least one condition for modifying the defined communication event, the method comprising:
sending a message for registering a process, the registered process being a program that has data regarding the user context state that is outside data maintained by other components of the user context system;
evaluating a sender, in response the occurrence of the defined communication event or the modified defined communication event, to determine whether the registered process will send a customized message to the sender, wherein the evaluation of the sender comprises determining whether the sender has been placed on a list of persons entitled to receive the customized message, and
providing the registered process with information regarding the communication event.
7. The method of claim 6, wherein the defined communication event is related to a notification that is sent from a sender to a user.
8. The method of claim 7, wherein the information regarding the defined communication event indicates that the notification did not reach the user.
9. The method of claim 8, wherein the information regarding the defined communication event includes a copy of the notification.
10. The method of claim 6, wherein the data provided to the registered process comprises data regarding the user's activities.
11. The method of claim 6, wherein the registered process provides a customized message to the sender of the notification that includes data regarding the user.
12. One or more computer-readable storage media having stored thereon computer-executable instructions including instructions for implementing a notification system comprising:
a user context process for setting a user context including a user context state and at least one user rule, the user context and the at least one user rule being made available to a user for modification in accordance with a preference of the user, wherein a communication event to be performed in response to a notification is defined for at least one value of the user context state, and the at least one rule includes at least one condition for modifying the communication event;
a receiving component which receives notifications from a sending component and under specified conditions delivers the notifications to the user; and
a registered process, the registered process being a program that has data regarding the user context state that is outside data maintained by other components of the notification system;
wherein when the sending component sends a notification to the receiving component, if the notification is not delivered to the user then a message is sent to the registered process regarding the non-delivery of the notification and wherein a sender who is associated with the sending component is evaluated to determine whether the registered process will send a customized message to the sender, the evaluation of the sender comprising determination of whether the sender has been placed on a list of persons entitled to receive the customized message.
13. The media of claim 12, wherein the specified conditions under which a notification will not be delivered to a user are determined according to a user context.
14. The media of claim 12, wherein in response to receiving a message regarding the non-delivery of a notification the registered process provides a customized message to the sending component that includes data about the user.
15. The media of claim 14, wherein the registered process is a calendaring program and the data about the user indicates a time when the user may next be available.
16. The media of claim 14, wherein the data about the user indicates at least one alternative contact for the user.
17. One or more computer-readable storage media having stored thereon computer-executable instructions including instructions for implementing a user context system, comprising:
a first process for setting a user context including a user context state and at least one user rule, the user context and the at least one user rule being made available to a user for modification in accordance with at least one preference of the user, wherein a communication event to be performed in response to a notification is defined for at least one value of the user context state , and the at least one rule includes at least one condition for modifying the communication event;
a second process for generating a notification; and
a third process that is registered;
wherein the registered third process receives an event message in response to the notification not being delivered to the user, and wherein a sender of the notification who is associated with the second process is evaluated to determine whether the registered third process will send a customized message to the sender when the notification does not reach the user, the evaluation of the sender comprising a determination of whether the sender has been placed on a list of persons entitled to receive the customized message.
18. The media of claim 17, wherein the second process is a communication program.
19. The media of claim 18, wherein the communication program comprises one of an email or instant messaging program.
20. The media of claim 17, wherein the registered third process is a program that has data regarding the user that is outside data that is maintained by other components of the user context system.
21. The media of claim 20, wherein the registered third process is a calendaring program that has data regarding the user's scheduled activities.
22. The media of claim 20, wherein the registered third process provides a customized message to the sender of the notification which includes information regarding the user.
23. The media of claim 22, wherein the customized message indicates a time when the user may next be available.
24. The media of claim 17, wherein the user context that is set by the first process indicates when the user is not available to interruption.
25. The media of claim 24, wherein when the registered third process receives an event message indicating that a notification was not delivered to the user, the registered third process sends a customized message indicating when the user may next be available.
26. The media of claim 17, wherein the evaluation of the sender comprises a determination of whether or not the sender has been placed in a category that the user has selected.
27. One or more computer-storage media storing computer-useable instructions that, when executed by a computing device, perform a method for providing information regarding communication events, at least one communication event occurring when a notification is not delivered to a user, comprising:
providing a user context including a user context state, the user context defining a communication event to be performed in response to a notification for at least one value of the user context state;
providing a rule that specifies at least one condition for modifying the defined communication event;
receiving a message to register a process for communication events;
registering the process in response to the received message, the registered process being a program that includes data regarding the user context state that is outside data maintained by other components of the system;
receiving an indication that the user context state has changed value; and
evaluating a sender, in response to the occurrence of the defined communication event or the modified defined communication event, to determine whether the registered process will send a customized message to the sender,
wherein the evaluation of the sender comprises determining whether the sender has been placed on a list of persons entitled to receive the customized message.
28. The computer storage media storing computer-useable instructions that, when executed by a computing device, perform a method according to claim 27, further comprising computer-usable instructions for enabling the evaluation of a notification in accordance with the user context in order to determine whether the notification will be delivered to the user.
29. The computer storage media storing computer-useable instructions that, when executed by a computing device, perform a method according to claim 28, wherein if the notification is not delivered to the user, then a communication event occurs which is delivered to the registered process.
30. The computer storage media storing computer-useable instructions that, when executed by a computing device, perform a method according to claim 27, wherein if a customized message is sent, the customized message is made to include data about the user.
31. The computer storage media storing computer-useable instructions that, when executed by a computing device, perform a method according to claim 30, wherein the data about the user indicates a time when the user may next be available.
US10/809,249 2003-03-26 2004-03-25 System and method for public consumption of communication events between arbitrary processes Active 2027-02-04 US7827561B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/809,249 US7827561B2 (en) 2003-03-26 2004-03-25 System and method for public consumption of communication events between arbitrary processes
US10/837,512 US20050021540A1 (en) 2003-03-26 2004-04-30 System and method for a rules based engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/402,075 US7890960B2 (en) 2003-03-26 2003-03-26 Extensible user context system for delivery of notifications
US10/692,324 US7865904B2 (en) 2003-03-26 2003-10-23 Extensible user context system for delivery of notifications
US10/809,249 US7827561B2 (en) 2003-03-26 2004-03-25 System and method for public consumption of communication events between arbitrary processes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/692,324 Continuation-In-Part US7865904B2 (en) 2003-03-26 2003-10-23 Extensible user context system for delivery of notifications

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/837,512 Continuation-In-Part US20050021540A1 (en) 2003-03-26 2004-04-30 System and method for a rules based engine

Publications (2)

Publication Number Publication Date
US20040194116A1 US20040194116A1 (en) 2004-09-30
US7827561B2 true US7827561B2 (en) 2010-11-02

Family

ID=32993860

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/809,249 Active 2027-02-04 US7827561B2 (en) 2003-03-26 2004-03-25 System and method for public consumption of communication events between arbitrary processes

Country Status (1)

Country Link
US (1) US7827561B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080307061A1 (en) * 2004-07-23 2008-12-11 Michal Jacovi Message notification in instant messaging
US20090192970A1 (en) * 2008-01-30 2009-07-30 International Business Machines Corporation Content and context based handling of instant messages
US20100107179A1 (en) * 2008-10-29 2010-04-29 Dell Products L.P. Communication Event Management Methods, Media and Systems
US20110047479A1 (en) * 2009-08-21 2011-02-24 Avaya Inc. Unified greetings for social media
US20110257966A1 (en) * 2010-04-19 2011-10-20 Bohuslav Rychlik System and method of providing voice updates
US8600754B2 (en) 2010-04-19 2013-12-03 Qualcomm Incorporated System and method of providing voice updates from a navigation system that recognizes an active conversation

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636733B1 (en) 1997-09-19 2003-10-21 Thompson Trust Wireless messaging method
US6253061B1 (en) 1997-09-19 2001-06-26 Richard J. Helferich Systems and methods for delivering information to a transmitting and receiving device
US6826407B1 (en) 1999-03-29 2004-11-30 Richard J. Helferich System and method for integrating audio and visual messaging
US7003304B1 (en) 1997-09-19 2006-02-21 Thompson Investment Group, Llc Paging transceivers and methods for selectively retrieving messages
US6983138B1 (en) 1997-12-12 2006-01-03 Richard J. Helferich User interface for message access
US7434230B2 (en) * 2004-12-02 2008-10-07 International Business Machines Corporation Method and system for time bounding notification delivery in an event driven system
US20060133586A1 (en) * 2004-12-08 2006-06-22 Ntt Docomo, Inc. Information notification system and information notification method
US8751581B2 (en) * 2005-01-21 2014-06-10 International Business Machines Corporation Selectively blocking instant messages according to a do not instant message list
US20070168444A1 (en) * 2006-01-18 2007-07-19 Yen-Fu Chen Method for automatically initiating an instant messaging chat session based on a calendar entry
US8972494B2 (en) * 2006-01-19 2015-03-03 International Business Machines Corporation Scheduling calendar entries via an instant messaging interface
US7899033B2 (en) * 2006-08-24 2011-03-01 At&T Intellectual Property I, L.P. Method and system for conditionally invoking an IMS service
US8495660B1 (en) * 2008-03-28 2013-07-23 Symantec Corporation Methods and systems for handling instant messages and notifications based on the state of a computing device
US8903904B2 (en) * 2009-08-21 2014-12-02 Avaya Inc. Pushing identity information
US10592215B1 (en) 2017-08-17 2020-03-17 NanoVMs, Inc. Unikernel cross-compilation
US11989569B2 (en) * 2018-04-11 2024-05-21 NanoVMs, Inc. Unikernel provisioning
US10628177B1 (en) * 2018-04-11 2020-04-21 NanoVMs, Inc. Unikernel provisioning
US10599490B1 (en) * 2019-06-12 2020-03-24 Bank Of America Corporation Notification relay system for supervisory and subordinate user computing devices
US20210089860A1 (en) * 2019-09-24 2021-03-25 Sap Se Digital assistant with predictions, notifications, and recommendations

Citations (303)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241671A (en) 1989-10-26 1993-08-31 Encyclopaedia Britannica, Inc. Multimedia search system using a plurality of entry path means which indicate interrelatedness of information
US5333315A (en) 1991-06-27 1994-07-26 Digital Equipment Corporation System of device independent file directories using a tag between the directories and file descriptors that migrate with the files
US5388196A (en) 1990-09-07 1995-02-07 Xerox Corporation Hierarchical shared books with database
US5428784A (en) * 1993-03-05 1995-06-27 International Business Machines Corporation Method and apparatus for linking electronic mail and an electronic calendar to provide a dynamic response to an electronic mail message
US5461710A (en) 1992-03-20 1995-10-24 International Business Machines Corporation Method for providing a readily distinguishable template and means of duplication thereof in a computer system graphical user interface
US5493692A (en) 1993-12-03 1996-02-20 Xerox Corporation Selective delivery of electronic messages in a multiple computer system based on context and environment of a user
US5499364A (en) 1993-10-14 1996-03-12 Digital Equipment Corporation System and method for optimizing message flows between agents in distributed computations
US5504852A (en) 1991-09-09 1996-04-02 Apple Computer, Inc. Method for creating a collection of aliases representing computer system files
US5513306A (en) 1990-08-09 1996-04-30 Apple Computer, Inc. Temporal event viewing and editing system
US5559948A (en) 1992-12-23 1996-09-24 International Business Machines Corporation Apparatus and method for manipulating an object in a computer system graphical user interface
US5598524A (en) 1993-03-03 1997-01-28 Apple Computer, Inc. Method and apparatus for improved manipulation of data between an application program and the files system on a computer-controlled display system
US5630042A (en) 1992-08-27 1997-05-13 Sun Microsystems, Inc. Method and apparatus for providing collection browsers
US5680563A (en) 1994-07-25 1997-10-21 Object Technology Licensing Corporation Object-oriented operating system enhancement for filtering items in a window
US5696486A (en) 1995-03-29 1997-12-09 Cabletron Systems, Inc. Method and apparatus for policy-based alarm notification in a distributed network management environment
US5757925A (en) 1996-07-23 1998-05-26 Faybishenko; Yaroslav Secure platform independent cross-platform remote execution computer system and method
US5790121A (en) 1996-09-06 1998-08-04 Sklar; Peter Clustering user interface
US5802516A (en) 1993-11-03 1998-09-01 Apple Computer, Inc. Method of controlling an electronic book for a computer system
US5828882A (en) * 1996-03-15 1998-10-27 Novell, Inc. Event notification facility
US5831606A (en) 1994-12-13 1998-11-03 Microsoft Corporation Shell extensions for an operating system
US5835094A (en) 1996-12-31 1998-11-10 Compaq Computer Corporation Three-dimensional computer environment
US5838317A (en) 1995-06-30 1998-11-17 Microsoft Corporation Method and apparatus for arranging displayed graphical representations on a computer interface
US5867163A (en) 1995-12-01 1999-02-02 Silicon Graphics, Inc. Graphical user interface for defining and invoking user-customized tool shelf execution sequence
US5875446A (en) 1997-02-24 1999-02-23 International Business Machines Corporation System and method for hierarchically grouping and ranking a set of objects in a query context based on one or more relationships
US5878410A (en) 1996-09-13 1999-03-02 Microsoft Corporation File system sort order indexes
GB2329492A (en) 1997-09-21 1999-03-24 Microsoft Corp Standard user interface enables filtering of a data set from an arbitrary data provider
US5899995A (en) 1997-06-30 1999-05-04 Intel Corporation Method and apparatus for automatically organizing information
US5923328A (en) 1996-08-07 1999-07-13 Microsoft Corporation Method and system for displaying a hierarchical sub-tree by selection of a user interface element in a sub-tree bar control
US5929854A (en) 1995-11-30 1999-07-27 Ross; Michael M. Dialog box method and system for arranging document windows
US5933139A (en) 1997-01-31 1999-08-03 Microsoft Corporation Method and apparatus for creating help functions
US5935210A (en) 1996-11-27 1999-08-10 Microsoft Corporation Mapping the structure of a collection of computer resources
US5987506A (en) 1996-11-22 1999-11-16 Mangosoft Corporation Remote access and geographically distributed computers in a globally addressable storage environment
US5987454A (en) 1997-06-09 1999-11-16 Hobbs; Allen Method and apparatus for selectively augmenting retrieved text, numbers, maps, charts, still pictures and/or graphics, moving pictures and/or graphics and audio information from a network resource
US6003040A (en) 1998-01-23 1999-12-14 Mital; Vijay Apparatus and method for storing, navigating among and adding links between data items in computer databases
US6014137A (en) 1996-02-27 2000-01-11 Multimedia Adventures Electronic kiosk authoring system
US6021262A (en) 1996-07-12 2000-02-01 Microsoft Corporation System and method for detection of, notification of, and automated repair of problem conditions in a messaging system
US6023708A (en) 1997-05-29 2000-02-08 Visto Corporation System and method for using a global translator to synchronize workspace elements across a network
US6025843A (en) 1996-09-06 2000-02-15 Peter Sklar Clustering user interface
US6037944A (en) 1996-11-07 2000-03-14 Natrificial Llc Method and apparatus for displaying a thought network from a thought's perspective
US6061695A (en) 1996-12-06 2000-05-09 Microsoft Corporation Operating system shell having a windowing graphical user interface with a desktop displayed as a hypertext multimedia document
US6061692A (en) 1997-11-04 2000-05-09 Microsoft Corporation System and method for administering a meta database as an integral component of an information server
US6078924A (en) 1998-01-30 2000-06-20 Aeneid Corporation Method and apparatus for performing data collection, interpretation and analysis, in an information platform
US6097389A (en) 1997-10-24 2000-08-01 Pictra, Inc. Methods and apparatuses for presenting a collection of digital media in a media container
US6144968A (en) 1997-03-04 2000-11-07 Zellweger; Paul Method and apparatus for menu access to information objects indexed by hierarchically-coded keywords
US6147601A (en) 1999-01-09 2000-11-14 Heat - Timer Corp. Electronic message delivery system utilizable in the monitoring of remote equipment and method of same
US6175859B1 (en) * 1998-10-28 2001-01-16 Avaya Technology Corp. Sender-defined time for reporting on the status of a sent message or of the message's recipient
US6181342B1 (en) 1998-07-06 2001-01-30 International Business Machines Corp. Computer file directory system displaying visual summaries of visual data in desktop computer documents for quickly identifying document content
US6185603B1 (en) 1997-03-13 2001-02-06 At&T Corp. Method and system for delivery of e-mail and alerting messages
WO2001009755A2 (en) 1999-07-30 2001-02-08 Microsoft Corporation Architecture for managing alerts
US6202061B1 (en) 1997-10-24 2001-03-13 Pictra, Inc. Methods and apparatuses for creating a collection of media
US6237011B1 (en) 1997-10-08 2001-05-22 Caere Corporation Computer-based document management system
US6240421B1 (en) 1998-09-08 2001-05-29 Edwin J. Stolarz System, software and apparatus for organizing, storing and retrieving information from a computer database
US6243724B1 (en) 1992-04-30 2001-06-05 Apple Computer, Inc. Method and apparatus for organizing information in a computer system
US6246411B1 (en) 1997-04-28 2001-06-12 Adobe Systems Incorporated Drag operation gesture controller
US6256031B1 (en) 1998-06-26 2001-07-03 Microsoft Corporation Integration of physical and virtual namespace
US6275829B1 (en) 1997-11-25 2001-08-14 Microsoft Corporation Representing a graphic image on a web page with a thumbnail-sized image
US6308173B1 (en) 1994-12-13 2001-10-23 Microsoft Corporation Methods and arrangements for controlling resource access in a networked computing environment
US20010034771A1 (en) 2000-01-14 2001-10-25 Sun Microsystems, Inc. Network portal system and methods
US6317142B1 (en) 1997-04-04 2001-11-13 Avid Technology, Inc. Taxonomy of objects and a system of non-modal property inspectors
US6324551B1 (en) 1998-08-31 2001-11-27 Xerox Corporation Self-contained document management based on document properties
US20010047368A1 (en) 2000-01-31 2001-11-29 Oshinsky David Alan Logical view and access to data managed by a modular data and storage management system
US20010049675A1 (en) 2000-06-05 2001-12-06 Benjamin Mandler File system with access and retrieval of XML documents
US20010053996A1 (en) 2000-01-06 2001-12-20 Atkinson Paul D. System and method for distributing and controlling the output of media in public spaces
US20010056508A1 (en) 2000-05-12 2001-12-27 Kenneth Arneson Event notification system and method
US20010056434A1 (en) 2000-04-27 2001-12-27 Smartdisk Corporation Systems, methods and computer program products for managing multimedia content
US6339767B1 (en) 1997-06-02 2002-01-15 Aurigin Systems, Inc. Using hyperbolic trees to visualize data generated by patent-centric and group-oriented data processing
US6341280B1 (en) 1998-10-30 2002-01-22 Netscape Communications Corporation Inline tree filters
US20020019935A1 (en) 1997-09-16 2002-02-14 Brian Andrew Encrypting file system and method
US20020033844A1 (en) 1998-10-01 2002-03-21 Levy Kenneth L. Content sensitive connected content
US6363400B1 (en) 1999-02-22 2002-03-26 Starbase Corp. Name space extension for an operating system
US6363377B1 (en) 1998-07-30 2002-03-26 Sarnoff Corporation Search data processor
US20020046232A1 (en) 2000-09-15 2002-04-18 Adams Colin John Organizing content on a distributed file-sharing network
US20020046299A1 (en) 2000-02-09 2002-04-18 Internet2Anywhere, Ltd. Method and system for location independent and platform independent network signaling and action initiating
US20020049717A1 (en) 2000-05-10 2002-04-25 Routtenberg Michael D. Digital content distribution system and method
US20020052885A1 (en) 2000-05-02 2002-05-02 Levy Kenneth L. Using embedded data with file sharing
US20020054167A1 (en) 1996-11-07 2002-05-09 Hugh Harlan M. Method and apparatus for filtering and displaying a thought network from a thought's perspective
US20020059199A1 (en) 1997-05-22 2002-05-16 Harvey Richard Hans System and method of operating a database
US20020062310A1 (en) 2000-09-18 2002-05-23 Smart Peer Llc Peer-to-peer commerce system
US6401097B1 (en) 1998-01-23 2002-06-04 Mccotter Thomas M. System and method for integrated document management and related transmission and access
US20020075330A1 (en) 2000-12-20 2002-06-20 Eastman Kodak Company Comprehensive, multi-dimensional graphical user interface using picture metadata for navigating and retrieving pictures in a picture database
US20020075310A1 (en) 2000-12-20 2002-06-20 Prabhu Prasad V. Graphical user interface adapted to allow scene content annotation of groups of pictures in a picture database to promote efficient database browsing
US20020075312A1 (en) 2000-04-21 2002-06-20 Louis Amadio Displaying graphical information and user selected properties on a computer interface
US6411311B1 (en) 1999-02-09 2002-06-25 International Business Machines Corporation User interface for transferring items between displayed windows
US20020087969A1 (en) 2000-12-28 2002-07-04 International Business Machines Corporation Interactive TV audience estimation and program rating in real-time using multi level tracking methods, systems and program products
US20020087704A1 (en) * 2000-11-30 2002-07-04 Pascal Chesnais Systems and methods for routing messages to communications devices over a communications network
US20020087649A1 (en) 2000-03-16 2002-07-04 Horvitz Eric J. Bounded-deferral policies for reducing the disruptiveness of notifications
US20020087740A1 (en) 2000-11-06 2002-07-04 Rick Castanho System and method for service specific notification
US20020091697A1 (en) 1998-12-07 2002-07-11 Erwin Steve Huang Virtual desktop in a computer network
US20020091679A1 (en) 2001-01-09 2002-07-11 Wright James E. System for searching collections of linked objects
US20020091739A1 (en) 2001-01-09 2002-07-11 Ferlitsch Andrew Rodney Systems and methods for manipulating electronic information using a three-dimensional iconic representation
US20020089540A1 (en) 2001-01-08 2002-07-11 Freddie Geier Media editing and creating interface
US20020095416A1 (en) 2001-01-12 2002-07-18 Keith Schwols Integration of a database into file management software for protecting, tracking, and retrieving data
US20020097278A1 (en) 2001-01-25 2002-07-25 Benjamin Mandler Use of special directories for encoding semantic information in a file system
US20020104069A1 (en) 2000-07-07 2002-08-01 Gouge Christopher S. System and method for configuring software components
US20020103998A1 (en) 2001-01-31 2002-08-01 Debruine Timothy S. Facilitating file access from firewall-proteced nodes in a peer-to-peer network
US6430575B1 (en) 1999-09-10 2002-08-06 Xerox Corporation Collaborative document management system with customizable filing structures that are mutually intelligible
US20020107973A1 (en) 2000-11-13 2002-08-08 Lennon Alison Joan Metadata processes for multimedia database access
US20020111942A1 (en) 1998-11-16 2002-08-15 Punch Networks Corporation Method and system for providing remote access to the facilities of a server computer
US6437807B1 (en) 1994-01-27 2002-08-20 3M Innovative Properties Company Topography of software notes
US20020113821A1 (en) 2001-02-20 2002-08-22 Petr Hrebejk Graphical user interface for determining display element attribute values
US20020120757A1 (en) 2001-02-09 2002-08-29 Sutherland Stephen B. Controlled access system for online communities
US20020120505A1 (en) 2000-08-30 2002-08-29 Ezula, Inc. Dynamic document context mark-up technique implemented over a computer network
US6448985B1 (en) 1999-08-05 2002-09-10 International Business Machines Corporation Directory tree user interface having scrollable subsections
US20020129033A1 (en) 2001-02-26 2002-09-12 Hoxie Stephen W. Browser for an accident and incident registry
US6453319B1 (en) 1998-04-15 2002-09-17 Inktomi Corporation Maintaining counters for high performance object cache
US6453311B1 (en) 1994-05-06 2002-09-17 Apple Computer, Inc. System and method for performing context checks
US20020138582A1 (en) 2000-09-05 2002-09-26 Mala Chandra Methods and apparatus providing electronic messages that are linked and aggregated
US20020138744A1 (en) 2001-03-21 2002-09-26 Schleicher Jorg Gregor Method and system for providing a secure peer-to peer file delivery network
US20020138552A1 (en) 2001-03-21 2002-09-26 Debruine Timothy S. Method and system for optimizing private network file transfers in a public peer-to-peer network
US6466932B1 (en) 1998-08-14 2002-10-15 Microsoft Corporation System and method for implementing group policy
US6466238B1 (en) 1998-06-30 2002-10-15 Microsoft Corporation Computer operating system that defines default document folder for application programs
US20020152267A1 (en) 2000-12-22 2002-10-17 Lennon Alison J. Method for facilitating access to multimedia content
US20020152262A1 (en) 2001-04-17 2002-10-17 Jed Arkin Method and system for preventing the infringement of intellectual property rights
US20020156895A1 (en) 2001-04-20 2002-10-24 Brown Michael T. System and method for sharing contact information
US20020161800A1 (en) 2001-04-30 2002-10-31 Eld Kevin David Document management system and method using content grouping system
US20020163572A1 (en) 2000-11-10 2002-11-07 Center Julian L. Methods of establishing a communications link using perceptual sensing of a user's presence
US6480835B1 (en) 1998-12-31 2002-11-12 Intel Corporation Method and system for searching on integrated metadata
US20020169678A1 (en) 2001-03-15 2002-11-14 David Chao Framework for processing sales transaction data
US20020184357A1 (en) 2001-01-22 2002-12-05 Traversat Bernard A. Rendezvous for locating peer-to-peer resources
US6493755B1 (en) 1999-01-15 2002-12-10 Compaq Information Technologies Group, L.P. Automatic notification rule definition for a network management system
US20020188605A1 (en) 2001-03-26 2002-12-12 Atul Adya Serverless distributed file system
US20020188735A1 (en) 2001-06-06 2002-12-12 Needham Bradford H. Partially replicated, locally searched peer to peer file sharing system
US20020199061A1 (en) 2001-06-01 2002-12-26 Viair, Inc. System and method for progressive and hierarchical caching
US20020196276A1 (en) 2001-04-09 2002-12-26 Corl Mark T. Targeted remote GUI for metadata generator
US6505233B1 (en) 1999-08-30 2003-01-07 Zaplet, Inc. Method for communicating information among a group of participants
US20030009484A1 (en) 2001-07-06 2003-01-09 Fujitsu Limited File management system and program therefor
US20030014491A1 (en) * 2001-06-28 2003-01-16 Horvitz Eric J. Methods for and applications of learning and inferring the periods of time until people are available or unavailable for different forms of communication, collaboration, and information access
US20030014415A1 (en) 2000-02-23 2003-01-16 Yuval Weiss Systems and methods for generating and providing previews of electronic files such as web files
US20030018657A1 (en) 2001-07-18 2003-01-23 Imation Corp. Backup of data on a network
US20030018712A1 (en) 2001-07-06 2003-01-23 Intel Corporation Method and apparatus for peer-to-peer services
US6513038B1 (en) 1998-10-02 2003-01-28 Nippon Telegraph & Telephone Corporation Scheme for accessing data management directory
US20030028610A1 (en) 2001-08-03 2003-02-06 Pearson Christopher Joel Peer-to-peer file sharing system and method using user datagram protocol
US6526399B1 (en) 1999-06-15 2003-02-25 Microsoft Corporation Method and system for grouping and displaying a database
US20030041178A1 (en) 2001-03-26 2003-02-27 Lev Brouk System and method for routing messages between applications
US20030046260A1 (en) 2001-08-30 2003-03-06 Mahadev Satyanarayanan Method and system for asynchronous transmission, backup, distribution of data and file sharing
US6535229B1 (en) 1999-06-29 2003-03-18 International Business Machines Corporation Graphical user interface for selection of options within mutually exclusive subsets
US6535230B1 (en) 1995-08-07 2003-03-18 Apple Computer, Inc. Graphical user interface providing consistent behavior for the dragging and dropping of content objects
US6539399B1 (en) 1999-04-29 2003-03-25 Amada Company, Limited Stand alone data management system for facilitating sheet metal part production
US20030058277A1 (en) * 1999-08-31 2003-03-27 Bowman-Amuah Michel K. A view configurer in a presentation services patterns enviroment
US20030069980A1 (en) 2001-08-14 2003-04-10 Andre Picca Message broker
US20030069893A1 (en) 2000-03-29 2003-04-10 Kabushiki Kaisha Toshiba Scheme for multimedia data retrieval using event names and time/location information
US6549916B1 (en) 1999-08-05 2003-04-15 Oracle Corporation Event notification system tied to a file system
US6549217B1 (en) 2000-03-23 2003-04-15 Koninklijke Philips Electronics N.V. System and method for computer system management using bookmarks
US20030074356A1 (en) 2001-10-16 2003-04-17 Microsoft Corporation Scoped access control metadata element
US20030078918A1 (en) 2001-10-23 2003-04-24 Souvignier Todd J. Method, apparatus and system for file sharing between computers
US6563514B1 (en) 2000-04-13 2003-05-13 Extensio Software, Inc. System and method for providing contextual and dynamic information retrieval
US20030093321A1 (en) 2001-07-31 2003-05-15 Brian Bodmer Integrated shopping cart for sale of third party products and services via the internet
US20030093580A1 (en) 2001-11-09 2003-05-15 Koninklijke Philips Electronics N.V. Method and system for information alerts
US20030093531A1 (en) 2001-11-10 2003-05-15 Toshiba Tec Kabushiki Kaisha Document service appliance
US20030101200A1 (en) 2001-11-28 2003-05-29 Noritaka Koyama Distributed file sharing system and a file access control method of efficiently searching for access rights
US6573906B1 (en) 1999-04-26 2003-06-03 International Business Machines Corporation Method and system for delivering integrated user assistance information and traditional help from the same source
US6573907B1 (en) 1997-07-03 2003-06-03 Obvious Technology Network distribution and management of interactive video and multi-media containers
CN1421800A (en) 2001-11-30 2003-06-04 英业达股份有限公司 Electronic file previewing system and method
US20030105745A1 (en) 2001-12-05 2003-06-05 Davidson Jason A. Text-file based relational database
US20030110188A1 (en) 1996-11-27 2003-06-12 1 Vision Software, Inc. Virtual directory file navigation system
US20030115218A1 (en) 2001-12-19 2003-06-19 Bobbitt Jared E. Virtual file system
US20030115488A1 (en) * 2001-12-12 2003-06-19 Yoshiyuki Kunito Data transmission system, apparatus and method for processing information, apparatus and method for relaying data, storage medium, and program
US6583799B1 (en) 1999-11-24 2003-06-24 Shutterfly, Inc. Image uploading
US20030117403A1 (en) 2001-12-24 2003-06-26 Tae Joon Park System and method for operation optimization in hardware graphics accelerator for real-time rendering
US20030120928A1 (en) 2001-12-21 2003-06-26 Miles Cato Methods for rights enabled peer-to-peer networking
US20030120952A1 (en) 2001-12-26 2003-06-26 Tarbotton Lee Codel Lawson Malware scanning to create clean storage locations
US20030122873A1 (en) 2001-12-28 2003-07-03 International Business Machines Corporation System and method for visualizing and navigating content in a graphical user interface
US20030126212A1 (en) 2001-12-28 2003-07-03 Morris Robert Paul Specifying, assigning, and maintaining user defined metadata in a network-based photosharing system
US20030126136A1 (en) 2001-06-22 2003-07-03 Nosa Omoigui System and method for knowledge retrieval, management, delivery and presentation
US6590585B1 (en) 1999-04-23 2003-07-08 Sony Corporation Apparatus, method, and medium for displaying a moving picture in alternative display picture formats
US20030135495A1 (en) 2001-06-21 2003-07-17 Isc, Inc. Database indexing method and apparatus
US20030135659A1 (en) 2002-01-16 2003-07-17 Xerox Corporation Message-based system having embedded information management capabilities
US20030135517A1 (en) 2002-01-17 2003-07-17 International Business Machines Corporation Method, system, and program for defining asset classes in a digital library
US20030140115A1 (en) 2002-01-18 2003-07-24 Vinod Mehra System and method for using virtual directories to service URL requests in application servers
US6606105B1 (en) 1999-12-22 2003-08-12 Adobe Systems Incorporated Layer enhancements in digital illustration system
US20030154185A1 (en) 2002-01-10 2003-08-14 Akira Suzuki File creation and display method, file creation method, file display method, file structure and program
US20030158855A1 (en) 2002-02-20 2003-08-21 Farnham Shelly D. Computer system architecture for automatic context associations
US20030177422A1 (en) 2000-03-10 2003-09-18 Tararoukhine Ilia Valerievich Data transfer and management system
US6628309B1 (en) 1999-02-05 2003-09-30 International Business Machines Corporation Workspace drag and drop
US20030184587A1 (en) 2002-03-14 2003-10-02 Bas Ording Dynamically changing appearances for user interface elements during drag-and-drop operations
US6636238B1 (en) 1999-04-20 2003-10-21 International Business Machines Corporation System and method for linking an audio stream with accompanying text material
US6636250B1 (en) 2000-04-12 2003-10-21 Emc Corp Methods and apparatus for presenting information to a user of a computer system
US20030212710A1 (en) 2002-03-27 2003-11-13 Michael J. Guy System for tracking activity and delivery of advertising over a file network
US20030210281A1 (en) 2002-05-07 2003-11-13 Troy Ellis Magnifying a thumbnail image of a document
US20030212680A1 (en) 2002-05-09 2003-11-13 International Business Machines Corporation Method, system, and computer product for providing a distribution list
US20030225796A1 (en) 2002-05-31 2003-12-04 Hitachi, Ltd. Method and apparatus for peer-to-peer file sharing
US20030222915A1 (en) 2002-05-30 2003-12-04 International Business Machines Corporation Data processor controlled display system with drag and drop movement of displayed items from source to destination screen positions and interactive modification of dragged items during the movement
US20030227487A1 (en) 2002-06-01 2003-12-11 Hugh Harlan M. Method and apparatus for creating and accessing associative data structures under a shared model of categories, rules, triggers and data relationship permissions
US20030229722A1 (en) * 2002-06-11 2003-12-11 Siemens Information And Communication Networks, Inc. Methods and apparatus for processing an instant message
US20030233419A1 (en) 2002-01-08 2003-12-18 Joerg Beringer Enhanced email management system
US20040001106A1 (en) 2002-06-26 2004-01-01 John Deutscher System and process for creating an interactive presentation employing multi-media components
US20040003247A1 (en) 2002-03-11 2004-01-01 Fraser John D. Non-centralized secure communication services
US20040002993A1 (en) 2002-06-26 2004-01-01 Microsoft Corporation User feedback processing of metadata associated with digital media files
US20040008226A1 (en) 1999-11-24 2004-01-15 Eva Manolis Image uploading
US6684222B1 (en) 2000-11-09 2004-01-27 Accenture Llp Method and system for translating data associated with a relational database
US20040019584A1 (en) 2002-03-18 2004-01-29 Greening Daniel Rex Community directory
US20040019655A1 (en) 2002-07-23 2004-01-29 Hitachi, Ltd. Method for forming virtual network storage
US20040024784A1 (en) 2002-04-09 2004-02-05 Spall Walter Dale Information system for manipulating data related to the ordering and performance of services and communication of results
US20040024635A1 (en) * 2000-02-17 2004-02-05 Mcclure Neil L. Distributed network voting system
US20040030731A1 (en) 2002-04-03 2004-02-12 Liviu Iftode System and method for accessing files in a network
US20040044776A1 (en) 2002-03-22 2004-03-04 International Business Machines Corporation Peer to peer file sharing system using common protocols
US20040044696A1 (en) 2002-05-07 2004-03-04 Frost Richard N. Interactive processing of real estate transactions
US20040054674A1 (en) 2002-09-13 2004-03-18 Carpenter Keith A. Enabling a web application to access a protected file on a secured server
US20040056896A1 (en) 2002-09-25 2004-03-25 Stefan Doblmayr Customizable drag and drop for industrial software applications
US20040068524A1 (en) 2002-04-03 2004-04-08 Aboulhosn Amir L. Peer-to-peer file sharing
US20040070612A1 (en) 2002-09-30 2004-04-15 Microsoft Corporation System and method for making user interface elements known to an application and user
US20040078256A1 (en) * 2002-10-21 2004-04-22 Roch Glitho Method, system, and mobile agent for event scheduling
US20040083433A1 (en) 2002-06-24 2004-04-29 Kazutoshi Takeya Documents control apparatus that can share document attributes
US20040085581A1 (en) 1998-10-30 2004-05-06 Robert Tonkin Previewing an assembled document
US6735623B1 (en) 2000-02-09 2004-05-11 Mitch Prust Method and system for accessing a remote storage area
US20040093290A1 (en) * 2002-05-09 2004-05-13 International Business Machines Corporation Intelligent free-time search
US20040091175A1 (en) 2002-11-12 2004-05-13 Fadi Beyrouti Image processing
US6738770B2 (en) 2000-11-04 2004-05-18 Deep Sky Software, Inc. System and method for filtering and sorting data
US20040098742A1 (en) 2002-11-18 2004-05-20 Min Lun Hsieh Apparatus and method of producing preview files
US20040098370A1 (en) 2002-11-15 2004-05-20 Bigchampagne, Llc Systems and methods to monitor file storage and transfer on a peer-to-peer network
US20040098379A1 (en) 2002-11-19 2004-05-20 Dan Huang Multi-indexed relationship media organization system
US20040103280A1 (en) 2002-11-21 2004-05-27 Xerox Corporation. Method and system for securely Sharing files
US20040117358A1 (en) 2002-03-16 2004-06-17 Von Kaenel Tim A. Method, system, and program for an improved enterprise spatial system
US6754829B1 (en) 1999-12-14 2004-06-22 Intel Corporation Certificate-based authentication system for heterogeneous environments
US20040128181A1 (en) * 2002-12-31 2004-07-01 Zurko Mary Ellen Instance messaging auto-scheduling
US20040133572A1 (en) 2000-05-18 2004-07-08 I2 Technologies Us, Inc., A Delaware Corporation Parametric searching
US20040133588A1 (en) 2002-12-19 2004-07-08 Rick Kiessig Graphical user interface for system and method for managing content
US6762776B2 (en) 2000-11-10 2004-07-13 Microsoft Corporation Mouse input panel windows class list
US6763458B1 (en) 1999-09-27 2004-07-13 Captaris, Inc. System and method for installing and servicing an operating system in a computer or information appliance
US6762777B2 (en) 1998-12-31 2004-07-13 International Business Machines Corporation System and method for associating popup windows with selective regions of a document
US6768999B2 (en) 1996-06-28 2004-07-27 Mirror Worlds Technologies, Inc. Enterprise, stream-based, information management system
US20040148434A1 (en) 2003-01-24 2004-07-29 Hitachi, Ltd. Method and apparatus for peer-to peer access
US20040153451A1 (en) 2002-11-15 2004-08-05 John Phillips Methods and systems for sharing data
US20040153968A1 (en) 2002-10-24 2004-08-05 Jennie Ching Method and system for user customizable asset metadata generation in a web-based asset management system
US20040161080A1 (en) * 2003-02-14 2004-08-19 Digate Charles J. Rules based real-time communication system
US6784900B1 (en) 1999-07-15 2004-08-31 Hotbar.Com, Inc. Method for the dynamic improvement of internet browser appearance and connectivity
US20040177116A1 (en) 2003-03-05 2004-09-09 Mcconn Christopher E. Digital image sharing enabled chat application
US20040177148A1 (en) 1999-08-10 2004-09-09 Mark Tsimelzon Method and apparatus for selecting and viewing portions of web pages
US20040177319A1 (en) 2002-07-16 2004-09-09 Horn Bruce L. Computer system for automatic organization, indexing and viewing of information from multiple sources
US6795094B1 (en) 1997-04-22 2004-09-21 Canon Kabushiki Kaisha Method and apparatus for processing an image, and storage
US20040183824A1 (en) 2003-03-21 2004-09-23 Benson Rodger William Interface for presenting data representations in a screen-area inset
US20040192266A1 (en) * 2002-03-01 2004-09-30 Fujitsu Limited Schedule management method, program for causing a computer to carry out the process in such method, and personal digital assistant
US20040193673A1 (en) 2003-03-27 2004-09-30 Mohammed Samji System and method for sharing items in a computer system
US20040189704A1 (en) 2003-03-31 2004-09-30 Patrick Walsh Graphical user interface for navigating and displaying relationships among media data and metadata
US20040193600A1 (en) 2003-03-27 2004-09-30 Microsoft Corporation System and method for filtering and organizing items based on common elements
US20040193621A1 (en) 2003-03-27 2004-09-30 Microsoft Corporation System and method utilizing virtual folders
US20040193672A1 (en) 2003-03-27 2004-09-30 Microsoft Corporation System and method for virtual folder sharing including utilization of static and dynamic lists
US20040193594A1 (en) 2003-03-27 2004-09-30 Microsoft Corporation File system for displaying items of different types and from different physical locations
US6801919B2 (en) 2001-07-27 2004-10-05 Hewlett-Packard Development Company, L.P. Object oriented database interface encapsulation that allows for chronologically overlapping transactions in a multi-threaded environment
US20040199507A1 (en) 2003-04-04 2004-10-07 Roger Tawa Indexing media files in a distributed, multi-user system for managing and editing digital media
US6803926B1 (en) 1998-09-18 2004-10-12 Microsoft Corporation System and method for dynamically adjusting data values and enforcing valid combinations of the data in response to remote user input
US20040205625A1 (en) 1997-01-10 2004-10-14 Mustansir Banatwala Computer method and apparatus for previewing files outside of an application program
US20040205633A1 (en) 2002-01-11 2004-10-14 International Business Machines Corporation Previewing file or document content
US20040205168A1 (en) 2003-02-10 2004-10-14 Oren Asher Peer-to-peer service designer
US20040205698A1 (en) 2000-12-29 2004-10-14 Schliesmann Barry Edward System and method for event driven programming
US20040215600A1 (en) 2000-06-05 2004-10-28 International Business Machines Corporation File system with access and retrieval of XML documents
US20040220899A1 (en) 1999-01-06 2004-11-04 Barney Rock D. Providing file management of backup data stored on one or more removable storage media
US20040223057A1 (en) 2003-01-06 2004-11-11 Olympus Corporation Image pickup system, camera, external apparatus, image pickup program, recording medium, and image pickup method
US20040225650A1 (en) 2000-03-06 2004-11-11 Avaya Technology Corp. Personal virtual assistant
US20040230599A1 (en) 2003-05-16 2004-11-18 Microsoft Corporation File system shell
US20040230572A1 (en) 2001-06-22 2004-11-18 Nosa Omoigui System and method for semantic knowledge retrieval, management, capture, sharing, discovery, delivery and presentation
US20040230917A1 (en) 2003-02-28 2004-11-18 Bales Christopher E. Systems and methods for navigating a graphical hierarchy
US6823344B1 (en) 1998-12-03 2004-11-23 International Business Machines Corporation File manager system providing faster and more efficient interactive user access to files in computer displays
US20040249902A1 (en) 1999-10-20 2004-12-09 Vali Tadayon Method and apparatus for providing a web-based active virtual file system
WO2004107151A1 (en) 2003-05-16 2004-12-09 Microsoft Corporation File system shell
US20050004928A1 (en) 2002-09-30 2005-01-06 Terry Hamer Managing changes in a relationship management system
US20050015405A1 (en) 2003-07-18 2005-01-20 Microsoft Corporation Multi-valued properties
US6847959B1 (en) 2000-01-05 2005-01-25 Apple Computer, Inc. Universal interface for retrieval of information in a computer system
US6853391B2 (en) 1997-08-15 2005-02-08 International Business Machines Corporation Multi-node user interface component and method thereof for use in performing a common operation on linked records
US20050050470A1 (en) 2001-02-27 2005-03-03 Microsoft Corporation Interactive tooltip
US6865568B2 (en) 2001-07-16 2005-03-08 Microsoft Corporation Method, apparatus, and computer-readable medium for searching and navigating a document database
US20050055306A1 (en) 1998-09-22 2005-03-10 Science Applications International Corporation User-defined dynamic collaborative environments
US6871348B1 (en) 1999-09-15 2005-03-22 Intel Corporation Method and apparatus for integrating the user interfaces of multiple applications into one application
US6876900B2 (en) 2001-12-11 2005-04-05 Toyota Jidosha Kabushiki Kaisha Unit designing apparatus and method
US6876996B2 (en) 2001-11-14 2005-04-05 Sun Microsystems, Inc. Method and apparatus for using a shared library mechanism to facilitate sharing of metadata
US6880132B2 (en) 2000-09-07 2005-04-12 Sony Corporation Method and apparatus for arranging and displaying files or folders in a three-dimensional body
US20050080807A1 (en) 2003-10-12 2005-04-14 Microsoft Corporation Extensible creation and editing of integrated collections
US6883009B2 (en) 2001-07-14 2005-04-19 Mtek Vision Co., Ltd. Image data management method and system using network
US20050097477A1 (en) 1998-09-14 2005-05-05 Microsoft Corporation Computer-implemented image acquisition system
US20050114672A1 (en) 2003-11-20 2005-05-26 Encryptx Corporation Data rights management of digital information in a portable software permission wrapper
US20050120242A1 (en) 2000-05-28 2005-06-02 Yaron Mayer System and method for comprehensive general electric protection for computers against malicious programs that may steal information and/or cause damages
US20050131903A1 (en) 2000-02-18 2005-06-16 Margolus Norman H. Data repository and method for promoting network storage of data
US20050138108A1 (en) * 2003-12-17 2005-06-23 International Business Machines Corporation Ability to scope awareness to your current task
US20050149481A1 (en) 1999-12-02 2005-07-07 Lambertus Hesselink Managed peer-to-peer applications, systems and methods for distributed data access and storage
US6922709B2 (en) 2002-02-19 2005-07-26 International Business Machines Corporation Method for maintaining consistent dual copies of vital product data in a dual accessor library of portable data storage media
US20050166159A1 (en) 2003-02-13 2005-07-28 Lumapix Method and system for distributing multiple dragged objects
US20050171947A1 (en) 1999-10-01 2005-08-04 Netspinner Solutions As Method and system for publication and revision or hierarchically organized sets of static intranet and internet web pages
US6938207B1 (en) 2000-07-19 2005-08-30 International Business Machines Corporation Method and system for indicating document traversal direction in a hyper linked navigation system
US20050192966A1 (en) 2004-03-01 2005-09-01 Hilbert David M. Remote file management
US20050192953A1 (en) 2000-07-05 2005-09-01 Kendyl A. Romah And Data Ace Inc Graphical user interface for building boolean queries and viewing search results
US6944647B2 (en) 2001-06-29 2005-09-13 International Business Machines Corporation Methods and apparatus for bookmarking and annotating data in a log file
US6947959B1 (en) 1992-10-01 2005-09-20 Quark, Inc. Digital media asset management system and process
US20050246664A1 (en) 2000-12-14 2005-11-03 Microsoft Corporation Selection paradigm for displayed user interface
US20050243993A1 (en) 2002-09-18 2005-11-03 Sbc Properties, L.P. Multi-modal address book
US20050246643A1 (en) 2003-03-24 2005-11-03 Microsoft Corporation System and method for shell browser
US20050246331A1 (en) 2003-03-27 2005-11-03 Microsoft Corporation System and method for filtering and organizing items based on common elements
US20050257169A1 (en) 2004-05-11 2005-11-17 Tu Edgar A Control of background media when foreground graphical user interface is invoked
US6980993B2 (en) * 2001-03-14 2005-12-27 Microsoft Corporation Schemas for a notification platform and related information services
US6988128B1 (en) 2000-09-27 2006-01-17 International Business Machines Corporation Calendar events and calendar-driven application technique
US20060020586A1 (en) 2000-03-03 2006-01-26 Michel Prompt System and method for providing access to databases via directories and other hierarchical structures and interfaces
US20060036568A1 (en) 2003-03-24 2006-02-16 Microsoft Corporation File system shell
US7010755B2 (en) 2002-04-05 2006-03-07 Microsoft Corporation Virtual desktop manager
US20060080308A1 (en) 1998-01-23 2006-04-13 Emc Corporation Content addressable information encapsulation, representation and transfer
US7034691B1 (en) * 2002-01-25 2006-04-25 Solvetech Corporation Adaptive communication methods and systems for facilitating the gathering, distribution and delivery of information related to medical care
US7051291B2 (en) 2000-04-21 2006-05-23 Sony Corporation System for managing data objects
US20060129627A1 (en) 1996-11-22 2006-06-15 Mangosoft Corp. Internet-based shared file service with native PC client access and semantics and distributed version control
US7068291B1 (en) 2002-04-11 2006-06-27 Bellsouth Intellectual Property Corp. Video display screen segmentation
US20060173873A1 (en) 2000-03-03 2006-08-03 Michel Prompt System and method for providing access to databases via directories and other hierarchical structures and interfaces
US20060200832A1 (en) 2002-01-28 2006-09-07 Witness Systems, Inc., A Delaware Corporation Method and system for presenting events associated with recorded data exchanged between a server and a user
US20060218122A1 (en) 2002-05-13 2006-09-28 Quasm Corporation Search and presentation engine
US7139811B2 (en) 2001-08-01 2006-11-21 Actona Technologies Ltd. Double-proxy remote data access system
US7203948B2 (en) 2001-09-29 2007-04-10 Siebel Systems, Inc. Method, apparatus, and system for implementing caching of view custom options in a framework to support web-based applications
US7272660B1 (en) * 2002-09-06 2007-09-18 Oracle International Corporation Architecture for general purpose near real-time business intelligence system and methods therefor
US7363594B1 (en) 2002-08-19 2008-04-22 Sprint Communications Company L.P. Workflow event editor

Patent Citations (325)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241671C1 (en) 1989-10-26 2002-07-02 Encyclopaedia Britannica Educa Multimedia search system using a plurality of entry path means which indicate interrelatedness of information
US5241671A (en) 1989-10-26 1993-08-31 Encyclopaedia Britannica, Inc. Multimedia search system using a plurality of entry path means which indicate interrelatedness of information
US5513306A (en) 1990-08-09 1996-04-30 Apple Computer, Inc. Temporal event viewing and editing system
US5388196A (en) 1990-09-07 1995-02-07 Xerox Corporation Hierarchical shared books with database
US5333315A (en) 1991-06-27 1994-07-26 Digital Equipment Corporation System of device independent file directories using a tag between the directories and file descriptors that migrate with the files
US5504852A (en) 1991-09-09 1996-04-02 Apple Computer, Inc. Method for creating a collection of aliases representing computer system files
US5461710A (en) 1992-03-20 1995-10-24 International Business Machines Corporation Method for providing a readily distinguishable template and means of duplication thereof in a computer system graphical user interface
US6613101B2 (en) 1992-04-30 2003-09-02 Apple Computer, Inc. Method and apparatus for organizing information in a computer system
US6243724B1 (en) 1992-04-30 2001-06-05 Apple Computer, Inc. Method and apparatus for organizing information in a computer system
US5630042A (en) 1992-08-27 1997-05-13 Sun Microsystems, Inc. Method and apparatus for providing collection browsers
US6947959B1 (en) 1992-10-01 2005-09-20 Quark, Inc. Digital media asset management system and process
US5559948A (en) 1992-12-23 1996-09-24 International Business Machines Corporation Apparatus and method for manipulating an object in a computer system graphical user interface
US5598524A (en) 1993-03-03 1997-01-28 Apple Computer, Inc. Method and apparatus for improved manipulation of data between an application program and the files system on a computer-controlled display system
US5428784A (en) * 1993-03-05 1995-06-27 International Business Machines Corporation Method and apparatus for linking electronic mail and an electronic calendar to provide a dynamic response to an electronic mail message
US5499364A (en) 1993-10-14 1996-03-12 Digital Equipment Corporation System and method for optimizing message flows between agents in distributed computations
US5802516A (en) 1993-11-03 1998-09-01 Apple Computer, Inc. Method of controlling an electronic book for a computer system
US5493692A (en) 1993-12-03 1996-02-20 Xerox Corporation Selective delivery of electronic messages in a multiple computer system based on context and environment of a user
US6437807B1 (en) 1994-01-27 2002-08-20 3M Innovative Properties Company Topography of software notes
US6453311B1 (en) 1994-05-06 2002-09-17 Apple Computer, Inc. System and method for performing context checks
US20020194252A1 (en) 1994-05-06 2002-12-19 Apple Computer, Inc. System and method for performing context checks
US5680563A (en) 1994-07-25 1997-10-21 Object Technology Licensing Corporation Object-oriented operating system enhancement for filtering items in a window
US6008806A (en) 1994-12-13 1999-12-28 Microsoft Corporation Shell extensions for an operating system
US5838322A (en) 1994-12-13 1998-11-17 Microsoft Corporation Shell extensions for an operating system
US5831606A (en) 1994-12-13 1998-11-03 Microsoft Corporation Shell extensions for an operating system
US6308173B1 (en) 1994-12-13 2001-10-23 Microsoft Corporation Methods and arrangements for controlling resource access in a networked computing environment
US5696486A (en) 1995-03-29 1997-12-09 Cabletron Systems, Inc. Method and apparatus for policy-based alarm notification in a distributed network management environment
US5838317A (en) 1995-06-30 1998-11-17 Microsoft Corporation Method and apparatus for arranging displayed graphical representations on a computer interface
US6535230B1 (en) 1995-08-07 2003-03-18 Apple Computer, Inc. Graphical user interface providing consistent behavior for the dragging and dropping of content objects
US5929854A (en) 1995-11-30 1999-07-27 Ross; Michael M. Dialog box method and system for arranging document windows
US5867163A (en) 1995-12-01 1999-02-02 Silicon Graphics, Inc. Graphical user interface for defining and invoking user-customized tool shelf execution sequence
US6014137A (en) 1996-02-27 2000-01-11 Multimedia Adventures Electronic kiosk authoring system
US5828882A (en) * 1996-03-15 1998-10-27 Novell, Inc. Event notification facility
US6768999B2 (en) 1996-06-28 2004-07-27 Mirror Worlds Technologies, Inc. Enterprise, stream-based, information management system
US6021262A (en) 1996-07-12 2000-02-01 Microsoft Corporation System and method for detection of, notification of, and automated repair of problem conditions in a messaging system
US5757925A (en) 1996-07-23 1998-05-26 Faybishenko; Yaroslav Secure platform independent cross-platform remote execution computer system and method
US5923328A (en) 1996-08-07 1999-07-13 Microsoft Corporation Method and system for displaying a hierarchical sub-tree by selection of a user interface element in a sub-tree bar control
US5790121A (en) 1996-09-06 1998-08-04 Sklar; Peter Clustering user interface
US6025843A (en) 1996-09-06 2000-02-15 Peter Sklar Clustering user interface
US6243094B1 (en) 1996-09-06 2001-06-05 Peter Sklar Clustering user interface
US5878410A (en) 1996-09-13 1999-03-02 Microsoft Corporation File system sort order indexes
US6037944A (en) 1996-11-07 2000-03-14 Natrificial Llc Method and apparatus for displaying a thought network from a thought's perspective
US20020054167A1 (en) 1996-11-07 2002-05-09 Hugh Harlan M. Method and apparatus for filtering and displaying a thought network from a thought's perspective
US5987506A (en) 1996-11-22 1999-11-16 Mangosoft Corporation Remote access and geographically distributed computers in a globally addressable storage environment
US20060129627A1 (en) 1996-11-22 2006-06-15 Mangosoft Corp. Internet-based shared file service with native PC client access and semantics and distributed version control
US5935210A (en) 1996-11-27 1999-08-10 Microsoft Corporation Mapping the structure of a collection of computer resources
US20030110188A1 (en) 1996-11-27 2003-06-12 1 Vision Software, Inc. Virtual directory file navigation system
US6061695A (en) 1996-12-06 2000-05-09 Microsoft Corporation Operating system shell having a windowing graphical user interface with a desktop displayed as a hypertext multimedia document
US5835094A (en) 1996-12-31 1998-11-10 Compaq Computer Corporation Three-dimensional computer environment
US20040205625A1 (en) 1997-01-10 2004-10-14 Mustansir Banatwala Computer method and apparatus for previewing files outside of an application program
US5933139A (en) 1997-01-31 1999-08-03 Microsoft Corporation Method and apparatus for creating help functions
US5875446A (en) 1997-02-24 1999-02-23 International Business Machines Corporation System and method for hierarchically grouping and ranking a set of objects in a query context based on one or more relationships
US6144968A (en) 1997-03-04 2000-11-07 Zellweger; Paul Method and apparatus for menu access to information objects indexed by hierarchically-coded keywords
US6185603B1 (en) 1997-03-13 2001-02-06 At&T Corp. Method and system for delivery of e-mail and alerting messages
US6317142B1 (en) 1997-04-04 2001-11-13 Avid Technology, Inc. Taxonomy of objects and a system of non-modal property inspectors
US6795094B1 (en) 1997-04-22 2004-09-21 Canon Kabushiki Kaisha Method and apparatus for processing an image, and storage
US6246411B1 (en) 1997-04-28 2001-06-12 Adobe Systems Incorporated Drag operation gesture controller
US20020059199A1 (en) 1997-05-22 2002-05-16 Harvey Richard Hans System and method of operating a database
US6023708A (en) 1997-05-29 2000-02-08 Visto Corporation System and method for using a global translator to synchronize workspace elements across a network
US6339767B1 (en) 1997-06-02 2002-01-15 Aurigin Systems, Inc. Using hyperbolic trees to visualize data generated by patent-centric and group-oriented data processing
US5987454A (en) 1997-06-09 1999-11-16 Hobbs; Allen Method and apparatus for selectively augmenting retrieved text, numbers, maps, charts, still pictures and/or graphics, moving pictures and/or graphics and audio information from a network resource
US5899995A (en) 1997-06-30 1999-05-04 Intel Corporation Method and apparatus for automatically organizing information
US6573907B1 (en) 1997-07-03 2003-06-03 Obvious Technology Network distribution and management of interactive video and multi-media containers
US6853391B2 (en) 1997-08-15 2005-02-08 International Business Machines Corporation Multi-node user interface component and method thereof for use in performing a common operation on linked records
US20020019935A1 (en) 1997-09-16 2002-02-14 Brian Andrew Encrypting file system and method
GB2329492A (en) 1997-09-21 1999-03-24 Microsoft Corp Standard user interface enables filtering of a data set from an arbitrary data provider
US6237011B1 (en) 1997-10-08 2001-05-22 Caere Corporation Computer-based document management system
US6202061B1 (en) 1997-10-24 2001-03-13 Pictra, Inc. Methods and apparatuses for creating a collection of media
US6097389A (en) 1997-10-24 2000-08-01 Pictra, Inc. Methods and apparatuses for presenting a collection of digital media in a media container
US6061692A (en) 1997-11-04 2000-05-09 Microsoft Corporation System and method for administering a meta database as an integral component of an information server
US6275829B1 (en) 1997-11-25 2001-08-14 Microsoft Corporation Representing a graphic image on a web page with a thumbnail-sized image
US20060080308A1 (en) 1998-01-23 2006-04-13 Emc Corporation Content addressable information encapsulation, representation and transfer
US6401097B1 (en) 1998-01-23 2002-06-04 Mccotter Thomas M. System and method for integrated document management and related transmission and access
US6003040A (en) 1998-01-23 1999-12-14 Mital; Vijay Apparatus and method for storing, navigating among and adding links between data items in computer databases
US6078924A (en) 1998-01-30 2000-06-20 Aeneid Corporation Method and apparatus for performing data collection, interpretation and analysis, in an information platform
US6453319B1 (en) 1998-04-15 2002-09-17 Inktomi Corporation Maintaining counters for high performance object cache
US6256031B1 (en) 1998-06-26 2001-07-03 Microsoft Corporation Integration of physical and virtual namespace
US6466238B1 (en) 1998-06-30 2002-10-15 Microsoft Corporation Computer operating system that defines default document folder for application programs
US6181342B1 (en) 1998-07-06 2001-01-30 International Business Machines Corp. Computer file directory system displaying visual summaries of visual data in desktop computer documents for quickly identifying document content
US6363377B1 (en) 1998-07-30 2002-03-26 Sarnoff Corporation Search data processor
US6466932B1 (en) 1998-08-14 2002-10-15 Microsoft Corporation System and method for implementing group policy
US6950818B2 (en) 1998-08-14 2005-09-27 Microsoft Corporation System and method for implementing group policy
US6324551B1 (en) 1998-08-31 2001-11-27 Xerox Corporation Self-contained document management based on document properties
US6240421B1 (en) 1998-09-08 2001-05-29 Edwin J. Stolarz System, software and apparatus for organizing, storing and retrieving information from a computer database
US20050097477A1 (en) 1998-09-14 2005-05-05 Microsoft Corporation Computer-implemented image acquisition system
US6803926B1 (en) 1998-09-18 2004-10-12 Microsoft Corporation System and method for dynamically adjusting data values and enforcing valid combinations of the data in response to remote user input
US20050055306A1 (en) 1998-09-22 2005-03-10 Science Applications International Corporation User-defined dynamic collaborative environments
US20020033844A1 (en) 1998-10-01 2002-03-21 Levy Kenneth L. Content sensitive connected content
US6513038B1 (en) 1998-10-02 2003-01-28 Nippon Telegraph & Telephone Corporation Scheme for accessing data management directory
US6175859B1 (en) * 1998-10-28 2001-01-16 Avaya Technology Corp. Sender-defined time for reporting on the status of a sent message or of the message's recipient
US20040085581A1 (en) 1998-10-30 2004-05-06 Robert Tonkin Previewing an assembled document
US6341280B1 (en) 1998-10-30 2002-01-22 Netscape Communications Corporation Inline tree filters
US20020111942A1 (en) 1998-11-16 2002-08-15 Punch Networks Corporation Method and system for providing remote access to the facilities of a server computer
US6823344B1 (en) 1998-12-03 2004-11-23 International Business Machines Corporation File manager system providing faster and more efficient interactive user access to files in computer displays
US20020091697A1 (en) 1998-12-07 2002-07-11 Erwin Steve Huang Virtual desktop in a computer network
US6480835B1 (en) 1998-12-31 2002-11-12 Intel Corporation Method and system for searching on integrated metadata
US6762777B2 (en) 1998-12-31 2004-07-13 International Business Machines Corporation System and method for associating popup windows with selective regions of a document
US20040220899A1 (en) 1999-01-06 2004-11-04 Barney Rock D. Providing file management of backup data stored on one or more removable storage media
US6147601A (en) 1999-01-09 2000-11-14 Heat - Timer Corp. Electronic message delivery system utilizable in the monitoring of remote equipment and method of same
US20030084150A1 (en) 1999-01-15 2003-05-01 Hewlett-Packard Development Company, L.P. A Delaware Corporation Automatic notification rule definition for a network management system
US7552211B2 (en) 1999-01-15 2009-06-23 Hewlett-Packard Development Company, L.P. Automatic notification rule definition for a network management system
US6493755B1 (en) 1999-01-15 2002-12-10 Compaq Information Technologies Group, L.P. Automatic notification rule definition for a network management system
US6628309B1 (en) 1999-02-05 2003-09-30 International Business Machines Corporation Workspace drag and drop
US6411311B1 (en) 1999-02-09 2002-06-25 International Business Machines Corporation User interface for transferring items between displayed windows
US6363400B1 (en) 1999-02-22 2002-03-26 Starbase Corp. Name space extension for an operating system
US6636238B1 (en) 1999-04-20 2003-10-21 International Business Machines Corporation System and method for linking an audio stream with accompanying text material
US6590585B1 (en) 1999-04-23 2003-07-08 Sony Corporation Apparatus, method, and medium for displaying a moving picture in alternative display picture formats
US6573906B1 (en) 1999-04-26 2003-06-03 International Business Machines Corporation Method and system for delivering integrated user assistance information and traditional help from the same source
US6539399B1 (en) 1999-04-29 2003-03-25 Amada Company, Limited Stand alone data management system for facilitating sheet metal part production
US6526399B1 (en) 1999-06-15 2003-02-25 Microsoft Corporation Method and system for grouping and displaying a database
US6535229B1 (en) 1999-06-29 2003-03-18 International Business Machines Corporation Graphical user interface for selection of options within mutually exclusive subsets
US6784900B1 (en) 1999-07-15 2004-08-31 Hotbar.Com, Inc. Method for the dynamic improvement of internet browser appearance and connectivity
WO2001009755A2 (en) 1999-07-30 2001-02-08 Microsoft Corporation Architecture for managing alerts
US6448985B1 (en) 1999-08-05 2002-09-10 International Business Machines Corporation Directory tree user interface having scrollable subsections
US6549916B1 (en) 1999-08-05 2003-04-15 Oracle Corporation Event notification system tied to a file system
US20040177148A1 (en) 1999-08-10 2004-09-09 Mark Tsimelzon Method and apparatus for selecting and viewing portions of web pages
US6505233B1 (en) 1999-08-30 2003-01-07 Zaplet, Inc. Method for communicating information among a group of participants
US20030058277A1 (en) * 1999-08-31 2003-03-27 Bowman-Amuah Michel K. A view configurer in a presentation services patterns enviroment
US6430575B1 (en) 1999-09-10 2002-08-06 Xerox Corporation Collaborative document management system with customizable filing structures that are mutually intelligible
US6871348B1 (en) 1999-09-15 2005-03-22 Intel Corporation Method and apparatus for integrating the user interfaces of multiple applications into one application
US6763458B1 (en) 1999-09-27 2004-07-13 Captaris, Inc. System and method for installing and servicing an operating system in a computer or information appliance
US20050171947A1 (en) 1999-10-01 2005-08-04 Netspinner Solutions As Method and system for publication and revision or hierarchically organized sets of static intranet and internet web pages
US20040249902A1 (en) 1999-10-20 2004-12-09 Vali Tadayon Method and apparatus for providing a web-based active virtual file system
US20040008226A1 (en) 1999-11-24 2004-01-15 Eva Manolis Image uploading
US6583799B1 (en) 1999-11-24 2003-06-24 Shutterfly, Inc. Image uploading
US20050149481A1 (en) 1999-12-02 2005-07-07 Lambertus Hesselink Managed peer-to-peer applications, systems and methods for distributed data access and storage
US6754829B1 (en) 1999-12-14 2004-06-22 Intel Corporation Certificate-based authentication system for heterogeneous environments
US6606105B1 (en) 1999-12-22 2003-08-12 Adobe Systems Incorporated Layer enhancements in digital illustration system
US6847959B1 (en) 2000-01-05 2005-01-25 Apple Computer, Inc. Universal interface for retrieval of information in a computer system
US20010053996A1 (en) 2000-01-06 2001-12-20 Atkinson Paul D. System and method for distributing and controlling the output of media in public spaces
US20010034771A1 (en) 2000-01-14 2001-10-25 Sun Microsystems, Inc. Network portal system and methods
US20010047368A1 (en) 2000-01-31 2001-11-29 Oshinsky David Alan Logical view and access to data managed by a modular data and storage management system
US20040167942A1 (en) 2000-01-31 2004-08-26 Oshinsky David Alan Logical view and access to data managed by a modular data and storage management system
US20020046299A1 (en) 2000-02-09 2002-04-18 Internet2Anywhere, Ltd. Method and system for location independent and platform independent network signaling and action initiating
US6735623B1 (en) 2000-02-09 2004-05-11 Mitch Prust Method and system for accessing a remote storage area
US6952724B2 (en) 2000-02-09 2005-10-04 Mitch Prust Network-based remote data storage system having multiple access interfaces
US20040024635A1 (en) * 2000-02-17 2004-02-05 Mcclure Neil L. Distributed network voting system
US20050131903A1 (en) 2000-02-18 2005-06-16 Margolus Norman H. Data repository and method for promoting network storage of data
US20030014415A1 (en) 2000-02-23 2003-01-16 Yuval Weiss Systems and methods for generating and providing previews of electronic files such as web files
US20050010860A1 (en) 2000-02-23 2005-01-13 Yuval Weiss Systems and methods for generating and providing previews of electronic files such as Web files
US20060020586A1 (en) 2000-03-03 2006-01-26 Michel Prompt System and method for providing access to databases via directories and other hierarchical structures and interfaces
US20060173873A1 (en) 2000-03-03 2006-08-03 Michel Prompt System and method for providing access to databases via directories and other hierarchical structures and interfaces
US20040225650A1 (en) 2000-03-06 2004-11-11 Avaya Technology Corp. Personal virtual assistant
US20030177422A1 (en) 2000-03-10 2003-09-18 Tararoukhine Ilia Valerievich Data transfer and management system
US20020087649A1 (en) 2000-03-16 2002-07-04 Horvitz Eric J. Bounded-deferral policies for reducing the disruptiveness of notifications
US6549217B1 (en) 2000-03-23 2003-04-15 Koninklijke Philips Electronics N.V. System and method for computer system management using bookmarks
US20030069893A1 (en) 2000-03-29 2003-04-10 Kabushiki Kaisha Toshiba Scheme for multimedia data retrieval using event names and time/location information
US6636250B1 (en) 2000-04-12 2003-10-21 Emc Corp Methods and apparatus for presenting information to a user of a computer system
US6563514B1 (en) 2000-04-13 2003-05-13 Extensio Software, Inc. System and method for providing contextual and dynamic information retrieval
US20020075312A1 (en) 2000-04-21 2002-06-20 Louis Amadio Displaying graphical information and user selected properties on a computer interface
US7051291B2 (en) 2000-04-21 2006-05-23 Sony Corporation System for managing data objects
US20010056434A1 (en) 2000-04-27 2001-12-27 Smartdisk Corporation Systems, methods and computer program products for managing multimedia content
US20020052885A1 (en) 2000-05-02 2002-05-02 Levy Kenneth L. Using embedded data with file sharing
US20020049717A1 (en) 2000-05-10 2002-04-25 Routtenberg Michael D. Digital content distribution system and method
US20010056508A1 (en) 2000-05-12 2001-12-27 Kenneth Arneson Event notification system and method
US20040133572A1 (en) 2000-05-18 2004-07-08 I2 Technologies Us, Inc., A Delaware Corporation Parametric searching
US20050120242A1 (en) 2000-05-28 2005-06-02 Yaron Mayer System and method for comprehensive general electric protection for computers against malicious programs that may steal information and/or cause damages
US20010049675A1 (en) 2000-06-05 2001-12-06 Benjamin Mandler File system with access and retrieval of XML documents
US20040215600A1 (en) 2000-06-05 2004-10-28 International Business Machines Corporation File system with access and retrieval of XML documents
US6745206B2 (en) 2000-06-05 2004-06-01 International Business Machines Corporation File system with access and retrieval of XML documents
US20050192953A1 (en) 2000-07-05 2005-09-01 Kendyl A. Romah And Data Ace Inc Graphical user interface for building boolean queries and viewing search results
US20020104069A1 (en) 2000-07-07 2002-08-01 Gouge Christopher S. System and method for configuring software components
US6938207B1 (en) 2000-07-19 2005-08-30 International Business Machines Corporation Method and system for indicating document traversal direction in a hyper linked navigation system
US20020120505A1 (en) 2000-08-30 2002-08-29 Ezula, Inc. Dynamic document context mark-up technique implemented over a computer network
US20020138582A1 (en) 2000-09-05 2002-09-26 Mala Chandra Methods and apparatus providing electronic messages that are linked and aggregated
US6880132B2 (en) 2000-09-07 2005-04-12 Sony Corporation Method and apparatus for arranging and displaying files or folders in a three-dimensional body
US20020046232A1 (en) 2000-09-15 2002-04-18 Adams Colin John Organizing content on a distributed file-sharing network
US20020062310A1 (en) 2000-09-18 2002-05-23 Smart Peer Llc Peer-to-peer commerce system
US6988128B1 (en) 2000-09-27 2006-01-17 International Business Machines Corporation Calendar events and calendar-driven application technique
US6738770B2 (en) 2000-11-04 2004-05-18 Deep Sky Software, Inc. System and method for filtering and sorting data
US20020087740A1 (en) 2000-11-06 2002-07-04 Rick Castanho System and method for service specific notification
US6684222B1 (en) 2000-11-09 2004-01-27 Accenture Llp Method and system for translating data associated with a relational database
US20020163572A1 (en) 2000-11-10 2002-11-07 Center Julian L. Methods of establishing a communications link using perceptual sensing of a user's presence
US6762776B2 (en) 2000-11-10 2004-07-13 Microsoft Corporation Mouse input panel windows class list
US20020107973A1 (en) 2000-11-13 2002-08-08 Lennon Alison Joan Metadata processes for multimedia database access
US20020087704A1 (en) * 2000-11-30 2002-07-04 Pascal Chesnais Systems and methods for routing messages to communications devices over a communications network
US20050246664A1 (en) 2000-12-14 2005-11-03 Microsoft Corporation Selection paradigm for displayed user interface
US20020075330A1 (en) 2000-12-20 2002-06-20 Eastman Kodak Company Comprehensive, multi-dimensional graphical user interface using picture metadata for navigating and retrieving pictures in a picture database
US20020075310A1 (en) 2000-12-20 2002-06-20 Prabhu Prasad V. Graphical user interface adapted to allow scene content annotation of groups of pictures in a picture database to promote efficient database browsing
US20020152267A1 (en) 2000-12-22 2002-10-17 Lennon Alison J. Method for facilitating access to multimedia content
US20020087969A1 (en) 2000-12-28 2002-07-04 International Business Machines Corporation Interactive TV audience estimation and program rating in real-time using multi level tracking methods, systems and program products
US20040205698A1 (en) 2000-12-29 2004-10-14 Schliesmann Barry Edward System and method for event driven programming
US20020089540A1 (en) 2001-01-08 2002-07-11 Freddie Geier Media editing and creating interface
US20020091679A1 (en) 2001-01-09 2002-07-11 Wright James E. System for searching collections of linked objects
US20020091739A1 (en) 2001-01-09 2002-07-11 Ferlitsch Andrew Rodney Systems and methods for manipulating electronic information using a three-dimensional iconic representation
US20020095416A1 (en) 2001-01-12 2002-07-18 Keith Schwols Integration of a database into file management software for protecting, tracking, and retrieving data
US20020184357A1 (en) 2001-01-22 2002-12-05 Traversat Bernard A. Rendezvous for locating peer-to-peer resources
US20020097278A1 (en) 2001-01-25 2002-07-25 Benjamin Mandler Use of special directories for encoding semantic information in a file system
US20020103998A1 (en) 2001-01-31 2002-08-01 Debruine Timothy S. Facilitating file access from firewall-proteced nodes in a peer-to-peer network
US20020120757A1 (en) 2001-02-09 2002-08-29 Sutherland Stephen B. Controlled access system for online communities
US20020113821A1 (en) 2001-02-20 2002-08-22 Petr Hrebejk Graphical user interface for determining display element attribute values
US6906722B2 (en) 2001-02-20 2005-06-14 Sun Microsystems, Inc. Graphical user interface for determining display element attribute values
US20020129033A1 (en) 2001-02-26 2002-09-12 Hoxie Stephen W. Browser for an accident and incident registry
US20050050470A1 (en) 2001-02-27 2005-03-03 Microsoft Corporation Interactive tooltip
US6980993B2 (en) * 2001-03-14 2005-12-27 Microsoft Corporation Schemas for a notification platform and related information services
US20020169678A1 (en) 2001-03-15 2002-11-14 David Chao Framework for processing sales transaction data
US20020138552A1 (en) 2001-03-21 2002-09-26 Debruine Timothy S. Method and system for optimizing private network file transfers in a public peer-to-peer network
US20020138744A1 (en) 2001-03-21 2002-09-26 Schleicher Jorg Gregor Method and system for providing a secure peer-to peer file delivery network
US20020188605A1 (en) 2001-03-26 2002-12-12 Atul Adya Serverless distributed file system
US20030041178A1 (en) 2001-03-26 2003-02-27 Lev Brouk System and method for routing messages between applications
US20020196276A1 (en) 2001-04-09 2002-12-26 Corl Mark T. Targeted remote GUI for metadata generator
US20020152262A1 (en) 2001-04-17 2002-10-17 Jed Arkin Method and system for preventing the infringement of intellectual property rights
US20020156895A1 (en) 2001-04-20 2002-10-24 Brown Michael T. System and method for sharing contact information
US20020161800A1 (en) 2001-04-30 2002-10-31 Eld Kevin David Document management system and method using content grouping system
US20020199061A1 (en) 2001-06-01 2002-12-26 Viair, Inc. System and method for progressive and hierarchical caching
US20020188735A1 (en) 2001-06-06 2002-12-12 Needham Bradford H. Partially replicated, locally searched peer to peer file sharing system
US20030135495A1 (en) 2001-06-21 2003-07-17 Isc, Inc. Database indexing method and apparatus
US20040230572A1 (en) 2001-06-22 2004-11-18 Nosa Omoigui System and method for semantic knowledge retrieval, management, capture, sharing, discovery, delivery and presentation
US20030126136A1 (en) 2001-06-22 2003-07-03 Nosa Omoigui System and method for knowledge retrieval, management, delivery and presentation
US20030014491A1 (en) * 2001-06-28 2003-01-16 Horvitz Eric J. Methods for and applications of learning and inferring the periods of time until people are available or unavailable for different forms of communication, collaboration, and information access
US6944647B2 (en) 2001-06-29 2005-09-13 International Business Machines Corporation Methods and apparatus for bookmarking and annotating data in a log file
US20030009484A1 (en) 2001-07-06 2003-01-09 Fujitsu Limited File management system and program therefor
US20030018712A1 (en) 2001-07-06 2003-01-23 Intel Corporation Method and apparatus for peer-to-peer services
US6883009B2 (en) 2001-07-14 2005-04-19 Mtek Vision Co., Ltd. Image data management method and system using network
US6865568B2 (en) 2001-07-16 2005-03-08 Microsoft Corporation Method, apparatus, and computer-readable medium for searching and navigating a document database
US20030018657A1 (en) 2001-07-18 2003-01-23 Imation Corp. Backup of data on a network
US6801919B2 (en) 2001-07-27 2004-10-05 Hewlett-Packard Development Company, L.P. Object oriented database interface encapsulation that allows for chronologically overlapping transactions in a multi-threaded environment
US20030093321A1 (en) 2001-07-31 2003-05-15 Brian Bodmer Integrated shopping cart for sale of third party products and services via the internet
US7139811B2 (en) 2001-08-01 2006-11-21 Actona Technologies Ltd. Double-proxy remote data access system
US20030028610A1 (en) 2001-08-03 2003-02-06 Pearson Christopher Joel Peer-to-peer file sharing system and method using user datagram protocol
US20030069980A1 (en) 2001-08-14 2003-04-10 Andre Picca Message broker
US20030046260A1 (en) 2001-08-30 2003-03-06 Mahadev Satyanarayanan Method and system for asynchronous transmission, backup, distribution of data and file sharing
US6662198B2 (en) 2001-08-30 2003-12-09 Zoteca Inc. Method and system for asynchronous transmission, backup, distribution of data and file sharing
US7203948B2 (en) 2001-09-29 2007-04-10 Siebel Systems, Inc. Method, apparatus, and system for implementing caching of view custom options in a framework to support web-based applications
US20030074356A1 (en) 2001-10-16 2003-04-17 Microsoft Corporation Scoped access control metadata element
US20030078918A1 (en) 2001-10-23 2003-04-24 Souvignier Todd J. Method, apparatus and system for file sharing between computers
US20030093580A1 (en) 2001-11-09 2003-05-15 Koninklijke Philips Electronics N.V. Method and system for information alerts
US20030093531A1 (en) 2001-11-10 2003-05-15 Toshiba Tec Kabushiki Kaisha Document service appliance
US6876996B2 (en) 2001-11-14 2005-04-05 Sun Microsystems, Inc. Method and apparatus for using a shared library mechanism to facilitate sharing of metadata
US20030101200A1 (en) 2001-11-28 2003-05-29 Noritaka Koyama Distributed file sharing system and a file access control method of efficiently searching for access rights
CN1421800A (en) 2001-11-30 2003-06-04 英业达股份有限公司 Electronic file previewing system and method
US20030105745A1 (en) 2001-12-05 2003-06-05 Davidson Jason A. Text-file based relational database
US6876900B2 (en) 2001-12-11 2005-04-05 Toyota Jidosha Kabushiki Kaisha Unit designing apparatus and method
US20030115488A1 (en) * 2001-12-12 2003-06-19 Yoshiyuki Kunito Data transmission system, apparatus and method for processing information, apparatus and method for relaying data, storage medium, and program
US20030115218A1 (en) 2001-12-19 2003-06-19 Bobbitt Jared E. Virtual file system
US20030120928A1 (en) 2001-12-21 2003-06-26 Miles Cato Methods for rights enabled peer-to-peer networking
US20030117403A1 (en) 2001-12-24 2003-06-26 Tae Joon Park System and method for operation optimization in hardware graphics accelerator for real-time rendering
US20030120952A1 (en) 2001-12-26 2003-06-26 Tarbotton Lee Codel Lawson Malware scanning to create clean storage locations
US20030126212A1 (en) 2001-12-28 2003-07-03 Morris Robert Paul Specifying, assigning, and maintaining user defined metadata in a network-based photosharing system
US20030122873A1 (en) 2001-12-28 2003-07-03 International Business Machines Corporation System and method for visualizing and navigating content in a graphical user interface
US20030233419A1 (en) 2002-01-08 2003-12-18 Joerg Beringer Enhanced email management system
US20030154185A1 (en) 2002-01-10 2003-08-14 Akira Suzuki File creation and display method, file creation method, file display method, file structure and program
US20040205633A1 (en) 2002-01-11 2004-10-14 International Business Machines Corporation Previewing file or document content
US20030135659A1 (en) 2002-01-16 2003-07-17 Xerox Corporation Message-based system having embedded information management capabilities
US20030135517A1 (en) 2002-01-17 2003-07-17 International Business Machines Corporation Method, system, and program for defining asset classes in a digital library
US20030140115A1 (en) 2002-01-18 2003-07-24 Vinod Mehra System and method for using virtual directories to service URL requests in application servers
US7034691B1 (en) * 2002-01-25 2006-04-25 Solvetech Corporation Adaptive communication methods and systems for facilitating the gathering, distribution and delivery of information related to medical care
US20060200832A1 (en) 2002-01-28 2006-09-07 Witness Systems, Inc., A Delaware Corporation Method and system for presenting events associated with recorded data exchanged between a server and a user
US6922709B2 (en) 2002-02-19 2005-07-26 International Business Machines Corporation Method for maintaining consistent dual copies of vital product data in a dual accessor library of portable data storage media
US20030158855A1 (en) 2002-02-20 2003-08-21 Farnham Shelly D. Computer system architecture for automatic context associations
US20040192266A1 (en) * 2002-03-01 2004-09-30 Fujitsu Limited Schedule management method, program for causing a computer to carry out the process in such method, and personal digital assistant
US20040003247A1 (en) 2002-03-11 2004-01-01 Fraser John D. Non-centralized secure communication services
US20030184587A1 (en) 2002-03-14 2003-10-02 Bas Ording Dynamically changing appearances for user interface elements during drag-and-drop operations
US20040117358A1 (en) 2002-03-16 2004-06-17 Von Kaenel Tim A. Method, system, and program for an improved enterprise spatial system
US20040019584A1 (en) 2002-03-18 2004-01-29 Greening Daniel Rex Community directory
US20040044776A1 (en) 2002-03-22 2004-03-04 International Business Machines Corporation Peer to peer file sharing system using common protocols
US20030212710A1 (en) 2002-03-27 2003-11-13 Michael J. Guy System for tracking activity and delivery of advertising over a file network
US20050256909A1 (en) 2002-04-03 2005-11-17 Aboulhosn Amir L Peer-to-peer file sharing
US20040030731A1 (en) 2002-04-03 2004-02-12 Liviu Iftode System and method for accessing files in a network
US20040068524A1 (en) 2002-04-03 2004-04-08 Aboulhosn Amir L. Peer-to-peer file sharing
US7010755B2 (en) 2002-04-05 2006-03-07 Microsoft Corporation Virtual desktop manager
US20040024784A1 (en) 2002-04-09 2004-02-05 Spall Walter Dale Information system for manipulating data related to the ordering and performance of services and communication of results
US7068291B1 (en) 2002-04-11 2006-06-27 Bellsouth Intellectual Property Corp. Video display screen segmentation
US20030210281A1 (en) 2002-05-07 2003-11-13 Troy Ellis Magnifying a thumbnail image of a document
US20040044696A1 (en) 2002-05-07 2004-03-04 Frost Richard N. Interactive processing of real estate transactions
US20030212680A1 (en) 2002-05-09 2003-11-13 International Business Machines Corporation Method, system, and computer product for providing a distribution list
US6816863B2 (en) 2002-05-09 2004-11-09 International Business Machines Corporation Method, system, and computer product for providing a distribution list
US20040093290A1 (en) * 2002-05-09 2004-05-13 International Business Machines Corporation Intelligent free-time search
US20060218122A1 (en) 2002-05-13 2006-09-28 Quasm Corporation Search and presentation engine
US20030222915A1 (en) 2002-05-30 2003-12-04 International Business Machines Corporation Data processor controlled display system with drag and drop movement of displayed items from source to destination screen positions and interactive modification of dragged items during the movement
US20030225796A1 (en) 2002-05-31 2003-12-04 Hitachi, Ltd. Method and apparatus for peer-to-peer file sharing
US20030227487A1 (en) 2002-06-01 2003-12-11 Hugh Harlan M. Method and apparatus for creating and accessing associative data structures under a shared model of categories, rules, triggers and data relationship permissions
US20030229722A1 (en) * 2002-06-11 2003-12-11 Siemens Information And Communication Networks, Inc. Methods and apparatus for processing an instant message
US20040083433A1 (en) 2002-06-24 2004-04-29 Kazutoshi Takeya Documents control apparatus that can share document attributes
US20040001106A1 (en) 2002-06-26 2004-01-01 John Deutscher System and process for creating an interactive presentation employing multi-media components
US20040002993A1 (en) 2002-06-26 2004-01-01 Microsoft Corporation User feedback processing of metadata associated with digital media files
US20040177319A1 (en) 2002-07-16 2004-09-09 Horn Bruce L. Computer system for automatic organization, indexing and viewing of information from multiple sources
US20040019655A1 (en) 2002-07-23 2004-01-29 Hitachi, Ltd. Method for forming virtual network storage
US7363594B1 (en) 2002-08-19 2008-04-22 Sprint Communications Company L.P. Workflow event editor
US7272660B1 (en) * 2002-09-06 2007-09-18 Oracle International Corporation Architecture for general purpose near real-time business intelligence system and methods therefor
US20040054674A1 (en) 2002-09-13 2004-03-18 Carpenter Keith A. Enabling a web application to access a protected file on a secured server
US20050243993A1 (en) 2002-09-18 2005-11-03 Sbc Properties, L.P. Multi-modal address book
US20040056896A1 (en) 2002-09-25 2004-03-25 Stefan Doblmayr Customizable drag and drop for industrial software applications
US20040070612A1 (en) 2002-09-30 2004-04-15 Microsoft Corporation System and method for making user interface elements known to an application and user
US20050004928A1 (en) 2002-09-30 2005-01-06 Terry Hamer Managing changes in a relationship management system
US20040078256A1 (en) * 2002-10-21 2004-04-22 Roch Glitho Method, system, and mobile agent for event scheduling
US20040153968A1 (en) 2002-10-24 2004-08-05 Jennie Ching Method and system for user customizable asset metadata generation in a web-based asset management system
US20040091175A1 (en) 2002-11-12 2004-05-13 Fadi Beyrouti Image processing
US20040098370A1 (en) 2002-11-15 2004-05-20 Bigchampagne, Llc Systems and methods to monitor file storage and transfer on a peer-to-peer network
US20040153451A1 (en) 2002-11-15 2004-08-05 John Phillips Methods and systems for sharing data
US20040098742A1 (en) 2002-11-18 2004-05-20 Min Lun Hsieh Apparatus and method of producing preview files
US20040098379A1 (en) 2002-11-19 2004-05-20 Dan Huang Multi-indexed relationship media organization system
US20040103280A1 (en) 2002-11-21 2004-05-27 Xerox Corporation. Method and system for securely Sharing files
US20050027757A1 (en) 2002-12-19 2005-02-03 Rick Kiessig System and method for managing versions
US20040133588A1 (en) 2002-12-19 2004-07-08 Rick Kiessig Graphical user interface for system and method for managing content
US20040128181A1 (en) * 2002-12-31 2004-07-01 Zurko Mary Ellen Instance messaging auto-scheduling
US20040223057A1 (en) 2003-01-06 2004-11-11 Olympus Corporation Image pickup system, camera, external apparatus, image pickup program, recording medium, and image pickup method
US20040148434A1 (en) 2003-01-24 2004-07-29 Hitachi, Ltd. Method and apparatus for peer-to peer access
US20040205168A1 (en) 2003-02-10 2004-10-14 Oren Asher Peer-to-peer service designer
US20050166159A1 (en) 2003-02-13 2005-07-28 Lumapix Method and system for distributing multiple dragged objects
US20040161080A1 (en) * 2003-02-14 2004-08-19 Digate Charles J. Rules based real-time communication system
US20040230917A1 (en) 2003-02-28 2004-11-18 Bales Christopher E. Systems and methods for navigating a graphical hierarchy
US20040177116A1 (en) 2003-03-05 2004-09-09 Mcconn Christopher E. Digital image sharing enabled chat application
US20040183824A1 (en) 2003-03-21 2004-09-23 Benson Rodger William Interface for presenting data representations in a screen-area inset
US20060036568A1 (en) 2003-03-24 2006-02-16 Microsoft Corporation File system shell
US20050246643A1 (en) 2003-03-24 2005-11-03 Microsoft Corporation System and method for shell browser
US20040193672A1 (en) 2003-03-27 2004-09-30 Microsoft Corporation System and method for virtual folder sharing including utilization of static and dynamic lists
US20060200466A1 (en) 2003-03-27 2006-09-07 Microsoft Corporation System and Method for Filtering and Organizing Items Based on Common Elements
US20050283476A1 (en) 2003-03-27 2005-12-22 Microsoft Corporation System and method for filtering and organizing items based on common elements
US20040193673A1 (en) 2003-03-27 2004-09-30 Mohammed Samji System and method for sharing items in a computer system
US20050246331A1 (en) 2003-03-27 2005-11-03 Microsoft Corporation System and method for filtering and organizing items based on common elements
US20060004692A1 (en) 2003-03-27 2006-01-05 Microsoft Corporation System and method for filtering and organizing items based on common elements
US20040193600A1 (en) 2003-03-27 2004-09-30 Microsoft Corporation System and method for filtering and organizing items based on common elements
US20040193621A1 (en) 2003-03-27 2004-09-30 Microsoft Corporation System and method utilizing virtual folders
US20040189707A1 (en) 2003-03-27 2004-09-30 Microsoft Corporation System and method for filtering and organizing items based on common elements
US20040193594A1 (en) 2003-03-27 2004-09-30 Microsoft Corporation File system for displaying items of different types and from different physical locations
US20040189704A1 (en) 2003-03-31 2004-09-30 Patrick Walsh Graphical user interface for navigating and displaying relationships among media data and metadata
US20040199507A1 (en) 2003-04-04 2004-10-07 Roger Tawa Indexing media files in a distributed, multi-user system for managing and editing digital media
WO2004107151A1 (en) 2003-05-16 2004-12-09 Microsoft Corporation File system shell
US20040230599A1 (en) 2003-05-16 2004-11-18 Microsoft Corporation File system shell
US20050015405A1 (en) 2003-07-18 2005-01-20 Microsoft Corporation Multi-valued properties
US20050080807A1 (en) 2003-10-12 2005-04-14 Microsoft Corporation Extensible creation and editing of integrated collections
US20050114672A1 (en) 2003-11-20 2005-05-26 Encryptx Corporation Data rights management of digital information in a portable software permission wrapper
US20050138108A1 (en) * 2003-12-17 2005-06-23 International Business Machines Corporation Ability to scope awareness to your current task
US20050192966A1 (en) 2004-03-01 2005-09-01 Hilbert David M. Remote file management
US20050257169A1 (en) 2004-05-11 2005-11-17 Tu Edgar A Control of background media when foreground graphical user interface is invoked

Non-Patent Citations (69)

* Cited by examiner, † Cited by third party
Title
"About Managing Messages With Rules," Microsoft® Outlook® 2003 Help file.
"Trillian / Trillian Pro IM Clients" Product Description, © 1999-2004 Cerulean Studios, [retrieved Apr. 30, 2004].
"Trillian / Trillian Pro IM Clients" Product Description, © 1999-2004 Cerulean Studios, <http://www.ceruleanstudios.com> [retrieved Apr. 30, 2004].
Adobe, Inc., et al. "Adobe Photoshop 7.0," 2001; pp. 1-9.
Adobe, Inc., et al., "Adobe Photoshop CS Classroom in a Book," Dec. 1, 2003, pp. 1-29.
Australian Search Report for SG 200301764-7 dated Mar. 30, 2006.
Australian Written Opinion for SG 200301764-7 dated Mar. 30, 2006.
Bertino, E., et al, "UCS-Router: A Policy Engine for Enforcing Message Routing Rules in a Universal Communications System," Proceedings of the Third International Conference on Mobile Data Management, Jan. 8-11, 2002, Singapore.
Blair, C., and G.E. Monahan, "Optimal Sequential File Search: A Reduced-State Dynamic Programming Approach," European Journal of Operational Research 86(2):358-365,1995.
Bott, et al. Book titled "Special Edition Using Windows 98, Second Edition," Dec. 21, 1999, second edition, pp. 1-7.
Bott, et al., "Microsoft Windows XP Inside Out," Microsoft Press, 2001, Chapter 11, 39 pages.
Cohen, et al., "A Case for Associative Peer to Peer Overlays," - ACM SIGCOMM Computer Communications Review, vol. 33, No. 1, Jan. 2003, pp. 95-100.
Cöster, R., and M. Svensson, "Inverted File Search Algorithms for Collaborative Filtering," Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Tampere, Finland, Aug. 11-15, 2002.
Cöster, R., and M. Svensson, "Inverted File Search Algorithms for Collaborative Filtering," Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Tampere, Finland, Aug. 11-15, 2002.
D. Esposito, "More Windows 2000 UI Goodies: Extending Explorer Views by Customizing Hypertext Template Files," MSDN Magazine. <http://msdn.microsoft.com/msdnmag/issues/0600/w2kui2/default.aspx?print=true?, first date of publication unknown but no later than Jun. 2000, 15 pages.
D. Esposito, Visual C++ Windows Shell Programming , Dec. 1, 1998, Apress. ISBN 1861001843, pp. 463-469.
Dey, A.K, "Providing Architectural Support for Building Context-Aware Applications," doctoral thesis, Georgia Institute of Technology, Nov. 2000, p. 24.
Directory Opus 6.1 - Viewer SDK Plugin SDK 1.0, GP Software, 2001, , first date of publication unknown but, prior to Feb. 19, 2003, 30 pages.
Directory Opus 6.1 - Viewer SDK Plugin SDK 1.0, GP Software, 2001, <http://web.archive.org/web/20030219151121/www.gpsoft.com.au/Developer.html>, first date of publication unknown but, prior to Feb. 19, 2003, 30 pages.
Eklund, P., and R. Cole, "Structured Ontology and Information Retrieval for Email Search and Discovery," Proceedings of the Foundations of Intelligent Systems 13th International Symposium, Lyons, France, Jun. 27-29, 2002, pp. 75-84.
European Search Report for 03007909.9-2211 dated Jun. 30, 2006.
Feng, et al., "Schemata Transformation of Object-Oriented Conceptual Models to XML," Computer Systems Science & Engineering, vol. 18, No. 1, Jan. 2003.
Gifford, D.K., et al., "Semantic File Systems," Proceedings of the 13th ACM Symposium on Operating Systems Principles, Pacific Grove, Calif., Sep. 1991, pp. 16-25.
Heinlein, et al., Integration of message passing and shared memory in the Stanford FLASH multiprocessor, Architectural Support for Programming Languages and Operating Systems, pp. 38-50, Year of Publication:1994.
Ho, I.S.K., and H.C.B. Chan, "A Markov Decision-Based Meeting Scheduling Mechanism for Automatic Secretary System Using Internet and Smart-Agent Technologies (Assist)," Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Washington, D.C., Oct. 5-8, 2003, vol. 5, pp. 4552-4559.
International Search Report and Written Opinion of PCT/US04/25931 dated Apr. 3, 2007.
Joseph, M., "The UML for Data Modellers," Elektron, Apr. 2004, pp. 72-73.
Kuchinsky, et al., "FotoFile: A Consumer Multimedia Organization and Retrieval System," May 1999, ACM, pp. 496-503.
Langer, Maria, Mac OS X: Visual QuickStart Guide; Apr. 2001, Peachpit Press, Mac OS X Disc Organization (pp. 1-3), Views (pp. 1-11), Outlines (1-3).
Lee, J., "An End-User Perspective on File-Sharing Systems," Communications of the ACM 46(2):49-53, Feb. 2003.
Lee, J.-J., and J. Lee, "An Adaptable Dialog Interface Agent Using Meta-Rules," Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference, May 21-23, 2001, Key West Florida.
Louis, et al., Context learning can improve user interaction Information and Reuse and Integration, Proceedings of the 2004 IEEE International Conference on Nov. 8-10, 2004 pp. 115-120.
Lui, et al., "Interoperability of Peer-to-Peer File Sharing Protocols" -ACM SIGecom Exchanges, vol. 3, No. 3, Aug. 2002, pp. 25-33.
Manber, U., and S. Wu, "Glimpse: A Tool to Search Through Entire File Systems," Proceedings of USENIX Winter 1994 Conference, San Francisco, Calif., Jan. 17-21, 1994.
McFedries, Paul, "The Complete Idiot's Guide to Windows XP," Table of Contents, Oct. 3, 2001; Alpha Books, Chapter 8: A Tour of the My Pictures Folder - printed pp. 1-8, Chapter 11: Sights and Sounds: Music and Other Multimedia-printed pp. 1-3.
McFedries, Paul; "The Complete Idiot's Guide to Windows XP," Table of Contents, Oct. 3, 2001; Alpha Books, Ch. 6: Using My Computer to Fiddle w/h Files and Folder-printed p. 1-6, Finding a File in Mess p. 103.
Microsoft Press Pass, "Window XP is Here!," New York, Oct. 25, 2001.
Microsoft Windows XP Version 2002 (Screen Dumps, Figs 1-16).
Microsoft, "Microsoft Windows XP Professional Product Documentation," section: (1) To Change how you view items in a folder, (2) Viewing files and folders overview, (4) To Change or remove a program, copyright 2006, publication date.
Microsoft: "Microsoft Windows 2000 Professional Step by Step - Lesson 3 - Managing Files and Folders" , Jan. 5, 2000, 12 pages.
Microsoft: "Microsoft Windows 2000 Professional Step by Step - Lesson 3 - Managing Files and Folders" <http://www.microsoft.com/mspress/books/sampshap/1589.asp>, Jan. 5, 2000, 12 pages.
OA dated Aug. 30, 2010 for U.S. Appl. No. 10/402,075, 12 pages.
OA dated Aug. 4, 2008 for U.S. Appl. No. 10/402,075, 14 pages.
OA dated Feb. 1, 2010 for U.S. Appl. No. 10/692,324, 14 pages.
OA dated Mar. 4, 2009 for U.S. Appl. No. 10/402,075, 15 pages.
OA dated Mar. 4, 2010 for U.S. Appl. No. 10/402,075, 20 pages.
OA dated May 15, 2007 for U.S. Appl. No. 10/402,075, 14 pages.
OA dated Nov. 28, 2007 for U.S. Appl. No. 10/402,075, 14 pages.
Ohtani, A., et al., "A File Sharing Method for Storing Area Network and Its Performance Verification," NEC Res. & Develop. 44(1):85-90, Jan. 2003.
P. DiLascia, "More Fun with MFC:DIBs, Palettes, Subclassing, and a Gamut of Goodies, Part III," Microsoft Systems Journal, Jun. 1997, 20 pages.
Piernas, J., et al., "DualIFS: A New Journaling File System Without Meta-Data Duplication," Conference Proceedings of the 2002 International Conference on Supercomputing, New York, Jun. 22-26, 2002, p. 137-46.
Rao, R., et al., "Rich Interaction in the Digital Library," Communications of the ACM 38(4):29-39, 1995.
Ray, Jay, Mac OS C Unleashed, Nov. 2001, Sams, Chapter 4. The Finder: Working with Filed and Applications (pp. 1-15), Getting File Information (pp. 1-7).
Sankaranarayanan, A., and M. Mataric, "The Multi-Agent-Based Schedule Calculator (Masc) System," Proceedings of the 2nd International Conference on Autonomous Agents, Minneapolis, Minn., May 9-13, 1998, pp. 465-466.
Sankaranarayanan, A., and M. Matarić, "The Multi-Agent-Based Schedule Calculator (Masc) System," Proceedings of the 2nd International Conference on Autonomous Agents, Minneapolis, Minn., May 9-13, 1998, pp. 465-466.
Seltzer, M., et al., "Journaling Versus Soft Updates: Asynchronous Meta-data Protection in File Systems," Proceedings of the 2000 USENIX Technical Conference, San Diego, Calif., Jun. 18-23, 2000, pp. 71-84.
Shah, Sarju, "Window XP Preview," FiringSquad, May 4, 2001, online, printed pp. 1-2; Figure: Hi-Res Image Viewer.
Simpson, Alan, Windows 95 Uncut, 1995, IDG Books Worldwide, Inc., pp. 104-10.
Stanek R. William, "Microsoft Windows XP Professional Administrator's Pocket Consultant," Sep. 24, 2001; Microsoft Press, Chapter 9, printed pp. 1-8.
Stelovsky, J., and C. Aschwanden, "Software Architecture for Unified Management of Event Notification and Stream I/O and Its Use for Recording and Analysis of User Events," Proceedings of the 35th Annual Hawaii International Conference on System Sciences, IEEE Computer Society, Big Island, Hawaii, Jan. 7-10, 2002, p. 1862-1867.
Supplementary European Search Report for EP 04780390 dated Jun. 18, 2007.
Wang, G, et al., "Extending XML Schema with Nonmonotonic Inheritance," in M.S. Jesufeld and O. Paster (eds.), ER 2003 Workshops, Lecture Notes in Computer Science 2814:402-407, 2003.
Weinreich, H., et al., "The Look of the Link-Concepts for the User Interface of Extended Hyperlinks," Proceedings of the Twelfth ACM Conference on Hypertext and Hypermedia, Aarhus, Denmark, Aug. 2001, pp. 19-28.
Wikipedia, File Allocation Table, 2006, .
Wikipedia, File Allocation Table, 2006, <http://en.wikipedia.org/wiki/File—Allocation—Tables>.
Windows Commander (website) , accessed using http://archive.org/web.php, in particular, http://web.archive.org/web/200302047145141/www.ghislercom/featurel.htm, archived on Feb. 7, 2003; http://web.archive.org/web/20021017022627/www.ghisler.com/addons.htm, archived on Oct. 17, 2002; http://web.archive.org/web/20021009213316/www.ghisler.com/efaquser.htm, archived on Oct. 9, 2003; unable to access website.
Windows Commander (website) <URL:http://www.shisler.com>, accessed using http://archive.org/web.php, in particular, http://web.archive.org/web/200302047145141/www.ghislercom/featurel.htm, archived on Feb. 7, 2003; http://web.archive.org/web/20021017022627/www.ghisler.com/addons.htm, archived on Oct. 17, 2002; http://web.archive.org/web/20021009213316/www.ghisler.com/efaquser.htm, archived on Oct. 9, 2003; unable to access website.
Written Opinion of SG 200301764-7 dated Jan. 11, 2007.
Written Opinion of Singapore Application No. 2004032220-7 dated May 18, 2006.

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080307061A1 (en) * 2004-07-23 2008-12-11 Michal Jacovi Message notification in instant messaging
US9071464B2 (en) * 2004-07-23 2015-06-30 International Business Machines Corporation Message notification in instant messaging
US20090192970A1 (en) * 2008-01-30 2009-07-30 International Business Machines Corporation Content and context based handling of instant messages
US9367521B2 (en) * 2008-01-30 2016-06-14 International Business Machines Corporation Content and context based handling of instant messages
US20100107179A1 (en) * 2008-10-29 2010-04-29 Dell Products L.P. Communication Event Management Methods, Media and Systems
US8745636B2 (en) * 2008-10-29 2014-06-03 Dell Products L.P. Communication event management methods, media and systems
US20110047479A1 (en) * 2009-08-21 2011-02-24 Avaya Inc. Unified greetings for social media
US8645841B2 (en) 2009-08-21 2014-02-04 Avaya Inc. Unified greetings for social media
US20110257966A1 (en) * 2010-04-19 2011-10-20 Bohuslav Rychlik System and method of providing voice updates
US8595014B2 (en) * 2010-04-19 2013-11-26 Qualcomm Incorporated Providing audible navigation system direction updates during predetermined time windows so as to minimize impact on conversations
US8600754B2 (en) 2010-04-19 2013-12-03 Qualcomm Incorporated System and method of providing voice updates from a navigation system that recognizes an active conversation

Also Published As

Publication number Publication date
US20040194116A1 (en) 2004-09-30

Similar Documents

Publication Publication Date Title
US7865904B2 (en) Extensible user context system for delivery of notifications
US7827561B2 (en) System and method for public consumption of communication events between arbitrary processes
US20050021540A1 (en) System and method for a rules based engine
KR101201183B1 (en) When-free messaging
US7287056B2 (en) Dispatching notification to a device based on the current context of a user with the device
US6886002B2 (en) Computational architecture for managing the transmittal and rendering of information, alerts, and notifications
US7383303B1 (en) System and method for integrating personal information management and messaging applications
US7747752B2 (en) Systems and methods for managing electronic communications using various negotiation techniques
KR101149999B1 (en) Structured communication using instant messaging
US7120865B1 (en) Methods for display, notification, and interaction with prioritized messages
US7417650B1 (en) Display and human-computer interaction for a notification platform
US20070198725A1 (en) System and method for utilizing contact information, presence information and device activity
KR20040077457A (en) Bounded-deferral policies for guiding the timing of alerting, interaction and communications using local sensory information
US20070198696A1 (en) System and method for utilizing contact information, presence information and device activity
Cho et al. I share, you care: Private status sharing and sender-controlled notifications in mobile instant messaging
US7469272B2 (en) System and method utilizing test notifications

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICROSOFT CORPORATION, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCKEE, TIMOTHY P.;ARCURI, MICHAEL P.;SAREEN, CHAITANYA D.;REEL/FRAME:014864/0281

Effective date: 20040324

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROSOFT CORPORATION;REEL/FRAME:034541/0477

Effective date: 20141014

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12