US7816307B2 - Powder mixture suitable for sintering to form a self-lubricating solid material - Google Patents

Powder mixture suitable for sintering to form a self-lubricating solid material Download PDF

Info

Publication number
US7816307B2
US7816307B2 US11/329,034 US32903406A US7816307B2 US 7816307 B2 US7816307 B2 US 7816307B2 US 32903406 A US32903406 A US 32903406A US 7816307 B2 US7816307 B2 US 7816307B2
Authority
US
United States
Prior art keywords
solid lubricant
powder mixture
lubricating
metal alloy
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11/329,034
Other versions
US20060150768A1 (en
Inventor
Frederic Braillard
Christelle Foucher
Philippe Perruchaut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA Services SA
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA Services SA, SNECMA SAS filed Critical SNECMA Services SA
Assigned to SNECMA SERVICES, SNECMA reassignment SNECMA SERVICES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRAILLARD, FREDERIC, FOUCHER, CHRISTELLE, PERRUCHAUT, PHILIPPE
Publication of US20060150768A1 publication Critical patent/US20060150768A1/en
Application granted granted Critical
Publication of US7816307B2 publication Critical patent/US7816307B2/en
Assigned to SNECMA reassignment SNECMA MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SNECMA SERVICES SA (A/K/A SNECMA SERVICES)
Assigned to SAFRAN AIRCRAFT ENGINES reassignment SAFRAN AIRCRAFT ENGINES CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SNECMA
Assigned to SAFRAN AIRCRAFT ENGINES reassignment SAFRAN AIRCRAFT ENGINES CORRECTIVE ASSIGNMENT TO CORRECT THE COVER SHEET TO REMOVE APPLICATION NOS. 10250419, 10786507, 10786409, 12416418, 12531115, 12996294, 12094637 12416422 PREVIOUSLY RECORDED ON REEL 046479 FRAME 0807. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME. Assignors: SNECMA
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0089Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with other, not previously mentioned inorganic compounds as the main non-metallic constituent, e.g. sulfides, glass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/05Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/081Inorganic acids or salts thereof containing halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure

Definitions

  • the invention relates to a novel self-lubricating solid material; to a method of preparing such a material from a powder mixture; to said powder mixture; and to mechanical parts made of this novel material.
  • Solid materials that are self-lubricating when dry are commonly used to fabricate mechanical parts such as bushings, ball joints, or pivots, that are subjected to high levels of friction even though their operating conditions make it impossible to use liquid lubricants of the oil or grease type. This applies in particular to the bushings used for protecting the roots of variable-pitch vanes in the compressors of airplane turbojets.
  • bushings are generally mounted as tight fits in orifices formed through the stator casing of the compressor. They receive the roots of the variable-pitch vanes of the compressor. An example of this type of bushing is described in the US patent published under the U.S. Pat. No. 6,480,960 B2.
  • bushing and blade-root assemblies are subjected to large amounts of friction associated with the blades pivoting inside the bushings, or with the vibration caused by the operation of the turbojet.
  • the bushings are made of a material that is “softer” than the material used for the pivots so that it is the bushings that wear as a priority, thereby protecting the pivots.
  • Such a mixture generally comprises a powder of a metal alloy, acting as a precursor for the matrix of the self-lubricating material, together with particles of a solid lubricant that are stable at the temperatures at which the material is worked and used so that they do not react with said metal alloy and remain intact in order to be capable of performing their lubricating action.
  • the greater the content of such particles in the mixture the better are the self-lubricating properties of the final material (where the term “final material” is used to mean the material made from said powder mixture).
  • An object of the present invention is to propose a powder mixture that can be sintered easily and that makes it possible to make a material that presents good self-lubricating properties.
  • the invention provides a powder mixture suitable for sintering to form a self-lubricating solid material, the mixture comprising a powder of a metal alloy that is a precursor for the matrix of said self-lubricating solid material, particles of cerium trifluoride CeF 3 as a first solid lubricant for insertion in said matrix without reacting with said metal alloy during sintering of the powder, and particles of a second solid lubricant for reacting with a component of said metal alloy during sintering of the powder in order to form a lubricating phase.
  • the invention thus resides in using two types of solid lubricant, having different modes of integration in the matrix of the final material. Because of this difference, it is found that a mixture comprising x % of the first solid lubricant and y % of the second solid lubricant is easier to sinter than a mixture comprising one only of the two types of lubricant at a content of (x+y)%.
  • the content of the first solid lubricant in the mixture is equal to or less than about 15% by volume, and is preferably equal to or less than about 10% by volume.
  • the content of the second solid lubricant in said mixture is equal to or less than about 15% by volume, and preferably is equal to or less than about 10% by volume.
  • the sum of the contents of the first and second solid lubricants is greater than 10% by volume, and is preferably greater than 15% by volume.
  • the invention provides a method of preparing a self-lubricating solid material, the method comprising the steps consisting in: making a mixture of powders of the type described above in accordance with the first aspect; mixing said mixture intimately (i.e. ensuring that the mixture is thoroughly uniform); and sintering the resulting intimate mixture.
  • a binder is added to said intimate mixture.
  • the intimate mixture made in this way can then be molded by pressing or injection in a mold in such a manner as to form a blank for the part that is to be fabricated.
  • the blank is then extracted from the mold and the binder removed in conventional manner during a catalytic or thermal binder-removing step, and said blank is finally densified by sintering.
  • the method enables parts of very complex shape to be mass-produced from the powder mixture of the invention, and thus enables the cost price of said parts to be reduced.
  • the invention provides a self-lubricating solid material comprising a metal alloy matrix and particles of a solid lubricant inserted in said matrix, the material further comprising a lubricating phase comprising a sulfur compound of hexagonal structure.
  • the invention provides a mechanical part, said part being made of a material of the type described above, in accordance with the third aspect.
  • the mechanical part is a bushing for receiving the root of a variable-pitch compressor vane in an airplane turbojet.
  • FIGS. 1 and 2 respectively show first and second types of assembly comprising a bushing for a turbojet compressor vane.
  • the metal alloy that constitutes a precursor for the matrix of the final self-lubricating solid material can be selected to be an alloy based on iron, nickel, or cobalt.
  • a nickel-based alloy of the Astroloy® (registered trademark) type and more particularly of a grade including 17.3% cobalt, 14.3% chromium, 4% aluminum, and 3.5% titanium.
  • an iron-based alloy such as an alloy of the TY355® (registered trademark) type including 1.23% carbon, 4.05% vanadium, 4.68% chromium, 4.45% molybdenum, and 5.46% tungsten.
  • These two example alloys are selected for their ability to withstand oxidation at high temperatures and for their mechanical properties, in particular hardness greater than 400 on the Vickers' hardness scale (HV).
  • the first solid lubricant can be selected as cerium trifluoride CeF 3 .
  • CeF 3 is a byproduct of rare earths that presents good wear behavior, in particular because of its lamellar hexagonal structure.
  • CeF 3 presents good performance at high temperatures, up to 1000° C., thus making the powder mixture (or the self-lubricating solid material made from said mixture) particularly suitable for use in making mechanical parts that are subjected to high temperatures in operation, such as the bushings for turbojet compressor vanes.
  • the mean size for the particles of the first solid lubricant is selected as a function of the mean size of the particles of the metal alloy.
  • the mean size of the metal alloy particles preferably lies in the range 5 micrometers ( ⁇ m) to 100 ⁇ m.
  • the mean size for the particles of the first solid lubricant is selected to be less than 50 ⁇ m, so as to enable the particles of the first solid lubricant to form agglomerates of different sizes capable of becoming inserted in said matrix.
  • the second solid lubricant can be selected from tungsten disulfide WS 2 or molybdenum disulfide MoS 2 .
  • These compounds belong to the dichalcogenide family and have a lamellar hexagonal structure. They react with the matrix-precursor metal alloy to give rise to at least one lubricating phase comprising at least one sulfur compound of hexagonal structure.
  • the self-lubricating properties of the final solid material can be evaluated by measuring the friction coefficient between said final material and a reference material. These properties become advantageous once the sum of the CeF 3 and WS 2 contents exceeds 10% by volume, and advantageously 15% by volume.
  • the lubricating properties of the first solid lubricant and of the lubricating phase depend on temperature, arrangements can be made to ensure that the temperature ranges over which these lubricating properties are optimized do not overlap.
  • the lubricating properties of the Cr 7 S 8 phase are optimized at temperatures equal to or less than about 250° C.
  • the lubricating properties of CeF 3 are optimized at temperatures equal to or greater than 250° C.
  • the solid material made from the powder mixture presents satisfactory self-lubricating properties regardless of the temperature at which it is used.
  • composition of the powder mixture of the invention and of the self-lubricating material obtained from such a mixture are well understood, there follows a description of an example of a mechanical part that can be made using said material, the description being given with reference to FIGS. 1 and 2 .
  • variable-pitch vane 3 on a stator casing 5 of an airplane turbojet compressor.
  • the stator vanes 3 are disposed radially at regular intervals inside the casing 5 . They are secured to the casing 5 by their roots 7 and they present a certain pitch angle that determines the direction air flows through the compressor.
  • the vanes 3 are said to be of variable pitch since they can be pivoted about their roots 7 so as to vary the pitch angle.
  • Openings 9 are formed through the casing 5 to receive the blade roots 7 , the openings 9 and the roots 7 being cylindrical in shape. To limit friction between each root 7 and the casing 5 , bushings 11 made of a self-lubricating solid material of the invention are disposed therebetween.
  • bushings 11 per opening 9 , as shown in the figures. These bushings are mounted as a tight fit in the opening 9 so as to remain secured to the casing 5 even when it expands at high temperature.
  • Each bushing 11 presents a flange 11 a that surrounds the opening 9 on the inside or outside face of the casing 5 .
  • the bushings 11 seek to protect the casing 5 and the vane roots 7 since it is the bushings that are subjected to wear instead of the other components, and once the bushings 11 have become too worn, they are replaced.
  • a ring 13 around the root 7 so that the bushing 11 rubs against the ring.
  • the ring 13 is mounted as a tight fit around the root 7 and serves to protect the root.
  • the friction forces involved in the above assemblies naturally depend on the pairs of materials involved.
  • the blade roots 7 can be made of a metal alloy based on iron, nickel, or titanium, and the rings 13 , if any, can be made of a metal alloy based on iron, nickel, or cobalt.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Lubricants (AREA)
  • Powder Metallurgy (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The invention relates to a novel self-lubricating solid material; to a method of preparing such a material from a powder mixture; to said powder mixture; and to mechanical parts made of said novel material. Said powder mixture comprises a powder of a metal alloy that is a precursor for the matrix of said material, particles of a first solid lubricant such as CeF3 that are for insertion in said matrix without reacting with said metal alloy, and particles of a second solid lubricant such as WS2 or MoS2 for reacting with a component of said metal alloy during sintering of the powder to form a lubricating phase. Said material can be used for fabricating a bushing that is to receive a root of a variable-pitch vane of an airplane turbojet compressor.

Description

The invention relates to a novel self-lubricating solid material; to a method of preparing such a material from a powder mixture; to said powder mixture; and to mechanical parts made of this novel material.
BACKGROUND OF THE INVENTION
Solid materials that are self-lubricating when dry are commonly used to fabricate mechanical parts such as bushings, ball joints, or pivots, that are subjected to high levels of friction even though their operating conditions make it impossible to use liquid lubricants of the oil or grease type. This applies in particular to the bushings used for protecting the roots of variable-pitch vanes in the compressors of airplane turbojets.
These bushings are generally mounted as tight fits in orifices formed through the stator casing of the compressor. They receive the roots of the variable-pitch vanes of the compressor. An example of this type of bushing is described in the US patent published under the U.S. Pat. No. 6,480,960 B2.
Such bushing and blade-root assemblies are subjected to large amounts of friction associated with the blades pivoting inside the bushings, or with the vibration caused by the operation of the turbojet. The bushings are made of a material that is “softer” than the material used for the pivots so that it is the bushings that wear as a priority, thereby protecting the pivots.
In order to limit the wear of said bushings (and thus the frequency with which they need to be replaced), it is advantageous to reduce friction at the contacting surfaces between the bushings and the vane pivots. That is why such bushings are made of a self-lubricating solid material, by sintering an intimate mixture of powders.
Such a mixture generally comprises a powder of a metal alloy, acting as a precursor for the matrix of the self-lubricating material, together with particles of a solid lubricant that are stable at the temperatures at which the material is worked and used so that they do not react with said metal alloy and remain intact in order to be capable of performing their lubricating action. Naturally, the greater the content of such particles in the mixture, the better are the self-lubricating properties of the final material (where the term “final material” is used to mean the material made from said powder mixture).
Nevertheless, the Applicant company has found that beyond a certain content level of this type of solid lubricant in the intimate mixture, evaluated as being 10% by volume, problems of densification appear, and the powder mixture becomes more difficult to sinter. In practice, it becomes necessary to increase the temperature and the duration of sintering or to use more complex pressing techniques, such as hot isostatic pressing, in order to be able to densify the powder mixture, thereby leading to an increase in the cost price of the fabricated parts. In any event, the final material presents a high degree of porosity and its mechanical properties suffer accordingly.
Furthermore, beyond a limiting content of lubricant, evaluated at 15% by volume, it is generally found that it becomes very difficult, if not impossible, to sinter the powder mixture.
OBJECTS AND SUMMARY OF THE INVENTION
An object of the present invention is to propose a powder mixture that can be sintered easily and that makes it possible to make a material that presents good self-lubricating properties.
To achieve this object, in a first aspect, the invention provides a powder mixture suitable for sintering to form a self-lubricating solid material, the mixture comprising a powder of a metal alloy that is a precursor for the matrix of said self-lubricating solid material, particles of cerium trifluoride CeF3 as a first solid lubricant for insertion in said matrix without reacting with said metal alloy during sintering of the powder, and particles of a second solid lubricant for reacting with a component of said metal alloy during sintering of the powder in order to form a lubricating phase.
The invention thus resides in using two types of solid lubricant, having different modes of integration in the matrix of the final material. Because of this difference, it is found that a mixture comprising x % of the first solid lubricant and y % of the second solid lubricant is easier to sinter than a mixture comprising one only of the two types of lubricant at a content of (x+y)%.
Advantageously, in order to make said mixture easier to sinter, the content of the first solid lubricant in the mixture is equal to or less than about 15% by volume, and is preferably equal to or less than about 10% by volume. Similarly, the content of the second solid lubricant in said mixture is equal to or less than about 15% by volume, and preferably is equal to or less than about 10% by volume.
More advantageously, in order to obtain good self-lubricating properties in the final material, the sum of the contents of the first and second solid lubricants is greater than 10% by volume, and is preferably greater than 15% by volume.
It can thus be advantageous to select the contents of the first and second solid lubricants so that each lies in the range 5% to 10% by volume, with the sum of said contents being greater than 10% by volume, or even greater than 15% by volume.
In a second aspect, the invention provides a method of preparing a self-lubricating solid material, the method comprising the steps consisting in: making a mixture of powders of the type described above in accordance with the first aspect; mixing said mixture intimately (i.e. ensuring that the mixture is thoroughly uniform); and sintering the resulting intimate mixture.
Advantageously, in order to make it easier for the particles of the powder mixture to agglomerate, a binder is added to said intimate mixture.
The intimate mixture made in this way can then be molded by pressing or injection in a mold in such a manner as to form a blank for the part that is to be fabricated. The blank is then extracted from the mold and the binder removed in conventional manner during a catalytic or thermal binder-removing step, and said blank is finally densified by sintering. The method enables parts of very complex shape to be mass-produced from the powder mixture of the invention, and thus enables the cost price of said parts to be reduced.
In a third aspect, the invention provides a self-lubricating solid material comprising a metal alloy matrix and particles of a solid lubricant inserted in said matrix, the material further comprising a lubricating phase comprising a sulfur compound of hexagonal structure.
In a fourth aspect, the invention provides a mechanical part, said part being made of a material of the type described above, in accordance with the third aspect.
Advantageously, the mechanical part is a bushing for receiving the root of a variable-pitch compressor vane in an airplane turbojet.
BRIEF DESCRIPTION OF THE DRAWING
The invention and its advantages can be better understood on reading the following detailed description. The description refers to accompanying FIGS. 1 and 2 which respectively show first and second types of assembly comprising a bushing for a turbojet compressor vane.
MORE DETAILED DESCRIPTION
In a first aspect of the powder mixture of the invention, the metal alloy that constitutes a precursor for the matrix of the final self-lubricating solid material can be selected to be an alloy based on iron, nickel, or cobalt. By way of example, mention can be made of a nickel-based alloy of the Astroloy® (registered trademark) type and more particularly of a grade including 17.3% cobalt, 14.3% chromium, 4% aluminum, and 3.5% titanium. By way of example, mention can also be made of an iron-based alloy such as an alloy of the TY355® (registered trademark) type including 1.23% carbon, 4.05% vanadium, 4.68% chromium, 4.45% molybdenum, and 5.46% tungsten. These two example alloys are selected for their ability to withstand oxidation at high temperatures and for their mechanical properties, in particular hardness greater than 400 on the Vickers' hardness scale (HV).
In a second aspect of the powder mixture of the invention, the first solid lubricant can be selected as cerium trifluoride CeF3. CeF3 is a byproduct of rare earths that presents good wear behavior, in particular because of its lamellar hexagonal structure. In addition, CeF3 presents good performance at high temperatures, up to 1000° C., thus making the powder mixture (or the self-lubricating solid material made from said mixture) particularly suitable for use in making mechanical parts that are subjected to high temperatures in operation, such as the bushings for turbojet compressor vanes.
In order to ensure that the particles of the first solid lubricant are easily inserted in the metal matrix of the final material, the mean size for the particles of the first solid lubricant is selected as a function of the mean size of the particles of the metal alloy.
In order to enable the powder mixture to be capable of being molded by pressing or injection in a mold, the mean size of the metal alloy particles preferably lies in the range 5 micrometers (μm) to 100 μm. Under such circumstances, the mean size for the particles of the first solid lubricant is selected to be less than 50 μm, so as to enable the particles of the first solid lubricant to form agglomerates of different sizes capable of becoming inserted in said matrix.
In a third aspect of the powder mixture of the invention, the second solid lubricant can be selected from tungsten disulfide WS2 or molybdenum disulfide MoS2.
These compounds belong to the dichalcogenide family and have a lamellar hexagonal structure. They react with the matrix-precursor metal alloy to give rise to at least one lubricating phase comprising at least one sulfur compound of hexagonal structure.
For an alloy containing chromium, it has been found, in particular by X-ray diffraction analysis, that a majority self-lubricating phase of chromium sulfide Cr7S8 is formed. In the particular circumstance of an Astroloy® type alloy, titanium and cobalt alloys also form, but in smaller quantities than Cr7S8. With an alloy of the TY355® type, chromium and vanadium sulfides form.
The greater the quantity of the second solid lubricant in the mixture, the greater the quantity of hexagonal structure compounds that are formed and the better the self-lubricating properties of the final material.
Concerning the grain size of the second solid lubricant, good results are obtained when it remains below 50 μm.
In the particular circumstance of a mixture including powdered alloy of the Astroloy® type, CeF3 as the first solid lubricant, and WS2 as the second solid lubricant, it has been found, as specified above, that difficulties in sintering and densification become large above 10% by volume of CeF3 in the mixture. Since these difficulties become tangible as from 7%, it can be preferable to keep the content of CeF3 and more generally the content of the first solid lubricant to less than 7% by volume.
It has also been found that above 10% by volume of WS2 in the mixture that difficulties in sintering and densification appear.
The self-lubricating properties of the final solid material can be evaluated by measuring the friction coefficient between said final material and a reference material. These properties become advantageous once the sum of the CeF3 and WS2 contents exceeds 10% by volume, and advantageously 15% by volume.
Thus, good results have been obtained both in terms of sintering and in terms of lubrication, when using a powder mixture including: 5% to 10% or 5% to 7% by volume of CeF3; 5% to 10% by volume of WS2; and in which the sum of the contents of CeF3 plus WS2 exceeds 10% or even 15% by volume.
Furthermore, since the lubricating properties of the first solid lubricant and of the lubricating phase depend on temperature, arrangements can be made to ensure that the temperature ranges over which these lubricating properties are optimized do not overlap. To illustrate this, in the above example, the lubricating properties of the Cr7S8 phase are optimized at temperatures equal to or less than about 250° C., while the lubricating properties of CeF3 are optimized at temperatures equal to or greater than 250° C. In this way, the solid material made from the powder mixture presents satisfactory self-lubricating properties regardless of the temperature at which it is used.
It is also possible to make arrangements for the self-lubricating properties to be substantially constant over a large range of temperatures, e.g. from 100° C. to 400° C.
Now that the composition of the powder mixture of the invention and of the self-lubricating material obtained from such a mixture are well understood, there follows a description of an example of a mechanical part that can be made using said material, the description being given with reference to FIGS. 1 and 2.
These figures shows a variable-pitch vane 3 on a stator casing 5 of an airplane turbojet compressor.
The stator vanes 3 are disposed radially at regular intervals inside the casing 5. They are secured to the casing 5 by their roots 7 and they present a certain pitch angle that determines the direction air flows through the compressor. The vanes 3 are said to be of variable pitch since they can be pivoted about their roots 7 so as to vary the pitch angle.
Openings 9 are formed through the casing 5 to receive the blade roots 7, the openings 9 and the roots 7 being cylindrical in shape. To limit friction between each root 7 and the casing 5, bushings 11 made of a self-lubricating solid material of the invention are disposed therebetween.
It is possible to use one or two bushings 11 per opening 9, as shown in the figures. These bushings are mounted as a tight fit in the opening 9 so as to remain secured to the casing 5 even when it expands at high temperature. Each bushing 11 presents a flange 11 a that surrounds the opening 9 on the inside or outside face of the casing 5.
The bushings 11 seek to protect the casing 5 and the vane roots 7 since it is the bushings that are subjected to wear instead of the other components, and once the bushings 11 have become too worn, they are replaced.
As shown in FIG. 2, it is also possible to place a ring 13 around the root 7 so that the bushing 11 rubs against the ring. The ring 13 is mounted as a tight fit around the root 7 and serves to protect the root.
The friction forces involved in the above assemblies naturally depend on the pairs of materials involved. when the bushing is made of a material complying with the above examples (light alloy matrix of the Astroloy® or TY355® type; CeF3 solid lubricant; and self-lubricating Cr7S8 phase), the blade roots 7 can be made of a metal alloy based on iron, nickel, or titanium, and the rings 13, if any, can be made of a metal alloy based on iron, nickel, or cobalt.

Claims (18)

1. A powder mixture suitable for sintering to form a self-lubricating solid material, the mixture comprising:
a metal alloy powder that is a precursor for a matrix of the self-lubricating solid material;
particles of a first solid lubricant comprising cerium trifluoride CeF3; and
particles of a second solid lubricant;
wherein:
when the powder mixture is sintered, the first solid lubricant is incorporated into the matrix without reacting with the metal alloy; and
when the powder mixture is sintered, the second solid lubricant reacts with a component of the metal alloy to form a lubricating phase.
2. The powder mixture according to claim 1, wherein the first solid lubricant is present in the mixture in an amount of about 15% volume or less.
3. The powder mixture according to claim 2, wherein the first solid lubricant is present in the mixture in an amount of from 5% to 10% by volume.
4. The powder mixture according to claim 1, wherein the second solid lubricant is present in the mixture in an amount of about 15% by volume or less.
5. The powder mixture according to claim 4, wherein the second solid lubricant is present in the mixture in an amount of from 5% to 10% by volume.
6. The powder mixture according to claim 1, wherein the first solid lubricant and the second solid lubricant are present in the mixture in a combined amount of greater than 10% by volume.
7. The powder mixture according to claim 1, wherein the second solid lubricant comprises tungsten disulfide WS2 or molybdenum disulfide MoS2.
8. The powder mixture according to claim 1, wherein the lubricating phase comprises at least one sulfur compound of hexagonal structure.
9. The powder mixture according to claim 1, wherein the metal alloy comprises an alloy based on iron, nickel, or cobalt.
10. The powder mixture according to claim 1, wherein:
the component of the metal alloy is chromium; and
the lubricating phase comprises Cr7S8.
11. The powder mixture according to claim 1, wherein:
the second solid lubricant comprises tungsten disulfide WS2 or molybdenum disulfide MoS2;
the component of the metal alloy is chromium; and
the lubricating phase comprises Cr7S8.
12. A powder mixture according to claim 11, wherein:
the first solid lubricant is present in the mixture in an amount of from 5% to 10% by volume;
the second solid lubricant is present in the mixture lies in an amount of 5% to 10% by volume; and
a sum of the amounts of the first and second solid lubricants is greater than 10% by volume.
13. A method of preparing a self-lubricating solid material, comprising:
preparing the powder mixture according to claim 1;
intimately mixing the mixture;
adding a binder to the resulting intimate mixture;
molding the intimate mixture by pressing or injection in a mold to form a blank;
extracting the molded blank from the mold;
evacuating the binder; and
densifying the blank by sintering.
14. A self-lubricating solid material, comprising:
a matrix of a metal alloy;
particles of cerium trifluoride CeF3 as a first solid lubricant inserted in said matrix; and
a lubricating phase;
wherein:
the particles of the first solid lubricant are present in the matrix but do not react with the metal alloy;
the lubricating phase comprises a reaction product of a second solid lubricant and a component of the metal alloy; and
the lubricating phase comprises a sulfur compound of hexagonal structure.
15. The self-lubricating solid material according to claim 14, wherein the metal alloy comprises an alloy based on iron, nickel, or cobalt.
16. The self-lubricating solid material according to claim 14, wherein the sulfur compound of hexagonal structure comprises Cr7S8.
17. A mechanical part made from the material according to claim 14.
18. The mechanical part according to claim 17, consisting of a bushing for receiving a root of a variable-pitch vane of an airplane turbojet compressor.
US11/329,034 2005-01-12 2006-01-11 Powder mixture suitable for sintering to form a self-lubricating solid material Active 2028-09-07 US7816307B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0500287A FR2880564B1 (en) 2005-01-12 2005-01-12 "MIXTURE OF POWDERS SUITABLE FOR SINTING TO FORM A SOLUBLIFIER SOLID MATERIAL"
FR0500287 2005-01-12

Publications (2)

Publication Number Publication Date
US20060150768A1 US20060150768A1 (en) 2006-07-13
US7816307B2 true US7816307B2 (en) 2010-10-19

Family

ID=34953449

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/329,034 Active 2028-09-07 US7816307B2 (en) 2005-01-12 2006-01-11 Powder mixture suitable for sintering to form a self-lubricating solid material

Country Status (9)

Country Link
US (1) US7816307B2 (en)
EP (1) EP1681116B1 (en)
CN (1) CN100507062C (en)
CA (1) CA2532010C (en)
DE (1) DE602006002614D1 (en)
FR (1) FR2880564B1 (en)
IL (1) IL173067A (en)
RU (1) RU2407608C2 (en)
SG (1) SG124368A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160106554A (en) * 2013-10-25 2016-09-12 골든 인텔렉추얼 프로퍼티, 엘엘씨 Amorphous alloy containing feedstock for powder injection molding
WO2016010450A1 (en) * 2014-07-16 2016-01-21 Анатолий Георгиевич БАКАНОВ Dual rotor wind power assembly (variants)
CN105986147B (en) * 2016-07-26 2017-12-22 中国科学院兰州化学物理研究所 A kind of wide temperature range self-lubricating nickel-based composite and preparation method thereof
CN106392063A (en) * 2016-11-01 2017-02-15 安徽恒均粉末冶金科技股份有限公司 Power metallurgy preparation method for intake valve seats
CN106623905A (en) * 2016-11-16 2017-05-10 马鞍山市恒欣减压器制造有限公司 Low-emission abrasion-resisting ferrum-based powder metallurgical self-lubricating compressed natural gas (CNG) engine valve retainer and manufacturing method thereof
CN115246006B (en) * 2022-08-12 2024-06-21 厦门市佳嘉达机械有限公司 Bush for self-lubricating punch, preparation method of bush and self-lubricating punch

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1080017A (en) 1952-12-03 1954-12-06 Manufacturing process of high wear resistance collector brushes for dynamo-electric machines
US2964476A (en) 1960-12-13 Process for producing a metal-lubricant
US3678145A (en) 1969-12-23 1972-07-18 Us Air Force A method for preparing metal matrix composites containing modified polytetrafluoroethylene
SU433231A1 (en) 1972-08-22 1974-06-25 SELF-LUBRICATED SINTERED MATERIAL BASED ON BRONZE
US3956146A (en) 1973-07-20 1976-05-11 Agency Of Industrial Science & Technology Self-lubricating wear-resistant composite materials
JPS58133346A (en) 1982-01-30 1983-08-09 Oiles Ind Co Ltd High temperature sintered slide member and preparation thereof
JPS58133347A (en) 1982-01-30 1983-08-09 Oiles Ind Co Ltd High temperature sintered slide member and preparation thereof
EP0769562A1 (en) 1994-04-28 1997-04-23 Nippon Steel Corporation High-strength self-lubricating composite material for high-temperature use and process for producing the same
US5808214A (en) * 1996-03-21 1998-09-15 Toyota Jidosha Kabushiki Kaisha Powder-produced material having wear-resistance
US6123748A (en) * 1996-11-30 2000-09-26 Federal Mogul Sintered Products Limited Iron-based powder
US6245718B1 (en) 2000-05-01 2001-06-12 Bearing Sliding Inc. Composite material for antifriction workpieces

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2964476A (en) 1960-12-13 Process for producing a metal-lubricant
FR1080017A (en) 1952-12-03 1954-12-06 Manufacturing process of high wear resistance collector brushes for dynamo-electric machines
US3678145A (en) 1969-12-23 1972-07-18 Us Air Force A method for preparing metal matrix composites containing modified polytetrafluoroethylene
SU433231A1 (en) 1972-08-22 1974-06-25 SELF-LUBRICATED SINTERED MATERIAL BASED ON BRONZE
US3956146A (en) 1973-07-20 1976-05-11 Agency Of Industrial Science & Technology Self-lubricating wear-resistant composite materials
JPS58133346A (en) 1982-01-30 1983-08-09 Oiles Ind Co Ltd High temperature sintered slide member and preparation thereof
JPS58133347A (en) 1982-01-30 1983-08-09 Oiles Ind Co Ltd High temperature sintered slide member and preparation thereof
EP0769562A1 (en) 1994-04-28 1997-04-23 Nippon Steel Corporation High-strength self-lubricating composite material for high-temperature use and process for producing the same
US5808214A (en) * 1996-03-21 1998-09-15 Toyota Jidosha Kabushiki Kaisha Powder-produced material having wear-resistance
US6123748A (en) * 1996-11-30 2000-09-26 Federal Mogul Sintered Products Limited Iron-based powder
US6245718B1 (en) 2000-05-01 2001-06-12 Bearing Sliding Inc. Composite material for antifriction workpieces

Also Published As

Publication number Publication date
US20060150768A1 (en) 2006-07-13
EP1681116A1 (en) 2006-07-19
CA2532010A1 (en) 2006-07-12
RU2407608C2 (en) 2010-12-27
IL173067A (en) 2011-12-29
CA2532010C (en) 2014-11-25
RU2006101132A (en) 2007-08-10
EP1681116B1 (en) 2008-09-10
IL173067A0 (en) 2006-06-11
DE602006002614D1 (en) 2008-10-23
CN1814848A (en) 2006-08-09
CN100507062C (en) 2009-07-01
SG124368A1 (en) 2006-08-30
FR2880564B1 (en) 2008-07-25
FR2880564A1 (en) 2006-07-14

Similar Documents

Publication Publication Date Title
US7816307B2 (en) Powder mixture suitable for sintering to form a self-lubricating solid material
US8216338B2 (en) Bearing having improved consume resistivity and manufacturing method thereof
US4702771A (en) Wear-resistant, sintered iron alloy and process for producing the same
US20070258668A1 (en) A bearing made of sintered cu alloy for recirculation exhaust gas flow rate control valve of egr type internal combustion engine or the like exhibiting high strength and excellent abrasion resistance under high temperature environment
CN207494519U (en) Compressor part
JP2011052252A (en) Cu-BASED SINTERED SLIDING MEMBER
US10131972B2 (en) Iron based sintered sliding member and method for producing same
EP2781283B1 (en) Iron-base sintered sliding member and its method for producing
US6958084B2 (en) Sintered cobalt-based alloys
EP2821514B1 (en) Sintered alloy having excellent abrasion resistance
KR0149739B1 (en) Sintered contact component
JP6756995B1 (en) Copper-based sintered alloy and its manufacturing method
US20150093274A1 (en) Powder metal scrolls with modified tip designs
JP6222815B2 (en) Sintered member
JP2005281446A (en) Tetrafluoroethylene resin composition and sliding member produced by using the same
RU2169785C1 (en) Antifriction cermet alloy
JP2568843B2 (en) Heat-resistant cage for rolling bearings
JP2024016289A (en) Iron-based sintered sliding member and method for producing the same
JP2020133679A (en) Sintered bearing for supercharger
JPH0364426A (en) Sintered copper alloy for heavy-load sliding
JP2019211040A (en) Sintered bearing for supercharger and method for manufacturing the same
JPS5832910B2 (en) Current collector slider
JPH01232152A (en) Fiber reinforced aluminum alloy made piston internal combustion engine
JPH11241129A (en) Metal having self-lubricity and its production

Legal Events

Date Code Title Description
AS Assignment

Owner name: SNECMA SERVICES, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRAILLARD, FREDERIC;FOUCHER, CHRISTELLE;PERRUCHAUT, PHILIPPE;REEL/FRAME:017464/0696

Effective date: 20060106

Owner name: SNECMA, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRAILLARD, FREDERIC;FOUCHER, CHRISTELLE;PERRUCHAUT, PHILIPPE;REEL/FRAME:017464/0696

Effective date: 20060106

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8

AS Assignment

Owner name: SNECMA, FRANCE

Free format text: MERGER;ASSIGNOR:SNECMA SERVICES SA (A/K/A SNECMA SERVICES);REEL/FRAME:045829/0954

Effective date: 20090311

AS Assignment

Owner name: SAFRAN AIRCRAFT ENGINES, FRANCE

Free format text: CHANGE OF NAME;ASSIGNOR:SNECMA;REEL/FRAME:046479/0807

Effective date: 20160803

AS Assignment

Owner name: SAFRAN AIRCRAFT ENGINES, FRANCE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE COVER SHEET TO REMOVE APPLICATION NOS. 10250419, 10786507, 10786409, 12416418, 12531115, 12996294, 12094637 12416422 PREVIOUSLY RECORDED ON REEL 046479 FRAME 0807. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:SNECMA;REEL/FRAME:046939/0336

Effective date: 20160803

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12