US7773505B2 - Method and system for generating packet delay variation with a uniform distribution - Google Patents
Method and system for generating packet delay variation with a uniform distribution Download PDFInfo
- Publication number
- US7773505B2 US7773505B2 US12/074,031 US7403108A US7773505B2 US 7773505 B2 US7773505 B2 US 7773505B2 US 7403108 A US7403108 A US 7403108A US 7773505 B2 US7773505 B2 US 7773505B2
- Authority
- US
- United States
- Prior art keywords
- delay
- packet
- transfer function
- pdv
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/50—Testing arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/22—Traffic shaping
Definitions
- the present invention relates generally to simulating data packet networks, and more particularly to simulating packet delay variation (PDV) in data packet networks for adaptive packet timing recovery stress testing.
- PDV packet delay variation
- the clock signals used at the physical layer do not form a timing chain but are controlled by local free-running oscillators. Further, the accuracy of physical layer transport clock is synchronized to an accuracy of ⁇ 100 ppm Therefore, the physical layer clock signals in a packet network are not sufficient to support the error-free transport of circuit switched services over a packet network, commonly called circuit emulation. As a result, other methods must be used to recovery the service clock of circuit emulation services. The method of adaptive timing recovery typically relies on the arrival characteristics of packets as a basis to create a suitable service clock for circuit emulation.
- PDV packet delay variation
- the current methodology for generating PDV is to inject background traffic with various mixes of packet sizes into a connection-oriented series of packet switches.
- the packet traffic of interest (PTI) then establishes a path through these switches and experiences delays and delay variation on a switch-by-switch basis.
- the PDV can be measured as the PTI is received after being transmitted through the packet switches.
- the current methodology is not deterministic or repeatable, since different equipment used to conduct tests can lead to different results.
- the current methodology cannot control metrics used to model the PDV of real-world networks, such as peak-to-peak variation, packet-to-packet variation, histogram probability density, and statistical specifications, such as mean, mode, and standard deviation. Accordingly, a method for generating PDV that can simulate the PDV of a real world network and provide uniform testing is desirable. This capability is needed for a variety of reasons including the creation of standardized testing methods needed to verify compliance with interface requirements for circuit emulation services.
- Gaussian probability density functions (PDFs).
- PDFs Gaussian probability density functions
- the present invention provides a method and system for generating packet delay variation (PDV) with a uniformly distributed probability density function (PDF) for packet timing recovery stress testing.
- a delay-step method is used for deterministically delaying packets based on a probability distribution function (PDF) which is pre-biased by an N root square filter in order to result in PDV having a uniform distribution.
- PDF probability distribution function
- a stream of packets is received.
- the stream of packets is generated by generating the packets at regular intervals.
- a delay-step method determines a delay for each packet in the stream of packets.
- delay-steps are determined for each packet based on delay target values.
- the delay target values are randomly selected based on a pre-biased PDF which is a uniform distribution that is pre-biased by a pre-bias function.
- the pre-bias function increase the values of small delay target values so that an increased number of delay target values are at the extremes of the uniform distribution.
- For each delay target value a series of sequential packets are adjusted by delay-steps determined based on the delay target value.
- the delay-steps can have variable or fixed sizes.
- Each packet in the stream of packets is transmitted with the delay determined for that packet.
- FIG. 1 illustrates a packet delay variation (PDV) simulator according to an embodiment of the present invention
- FIG. 2 illustrates a high level block diagram of a computer capable of implementing embodiments of the present invention
- FIG. 3 illustrates delay-steps calculated using fixed and variable delay-step sizes
- FIG. 4 illustrates repeatedly determining random delay target values and applying delay-steps to reach the delay target values
- FIG. 5 illustrates random number generation used in PDV simulation
- FIG. 6 illustrates uniform PDV delay target generation
- FIG. 7 illustrates PDV generation using variable delay-steps based on uniform PDV delay targets
- FIG. 8 illustrates PDV generation using fixed delay-steps based on uniform PDV delay targets
- FIG. 9 illustrates a pre-bias transfer function according to an embodiment of the present invention.
- FIG. 10 illustrates a PDF obtained by pre-biasing a uniform distribution with the pre-bias transfer function of FIG. 9 ;
- FIG. 11 illustrates a delay-step method for generating PDV having a uniform distribution according to an embodiment of the present invention
- FIGS. 12 and 13 illustrate pre-biased PDV delay target generation
- FIGS. 14 and 15 illustrate PDV generation using variable delay-steps based on pre-biased delay step targets
- FIGS. 16 and 17 illustrate PDV generation using fixed delay-steps based on pre-biased delay target values
- FIGS. 18 and 19 illustrate derivative PDV using variable delay-steps based on pre-biased delay target values for.
- FIGS. 20 and 21 illustrate derivative PDV using fixed delay-steps based on pre-biased delay target values.
- Packet delay variation (PDV) over a significant number of packet delay measurements can be described as having a Gaussian or normal distribution.
- This practice stems from the central limit theory that states that the distribution of a large number of samples tends to follow a normal distribution. Based on these assumptions, it has been common practice to evaluate packet timing systems using PDV based on a Gaussian probability density function (PDF).
- PDF Gaussian probability density function
- modeling PDV with a Gaussian distribution may not be best suited for stress testing adaptive timing recovery applications for connectionless networks. This is due to the fact that Gaussian PDFs tend to have the majority of values within one standard deviation of the mean. This means that few of the values at the extremes of the distribution (less than 5%) actually get tested over a given time interval. For stress testing, all values including the extreme values of a range of interest need to be tested appropriately. Therefore, embodiments of the present invention generate PDV having a uniformly distributed PDF.
- FIG. 1 illustrates a PDV simulator according to an embodiment of the present invention.
- the PDV simulator can be implemented as an application executed by a processor on a computer system.
- the PDV simulator can be implemented as a Microsoft Excel application, but the present invention is not limited thereto.
- the PDV simulator generates a user-defined delay profile for packets occurring at regular (periodic) intervals.
- the user defined profile for the PDV simulator of FIG. 1 has a uniform PDF.
- the uniform PDF used as the profile can be pre-biased by a pre-bias transfer function.
- the PDV simulator includes a packet generator 102 , which is a periodic packet generating source, a PDV generator 104 , which shapes the PDV using a uniform PDF, and a packet receiver 106 , which includes a packet delay analysis package.
- the packet generator 102 generates packets at regular (periodic) intervals. Each packet is time-stamped with the time (T s ) that the packet was sent. As they are generated, the packets are sent out to the PDV generator 104 and the packet receiver 106 .
- the PDV generator 104 determines the delay and delay variation for each packet and transmits each packet with the corresponding delay to the packet receiver 106 .
- the PDV generator 104 controls the delay and the delay variation of each packet independently.
- the delay variation is modeled as a uniformly distributed PDF.
- the uniform PDF can have selectable minimum and maximum PDV and selectable minimum and maximum delay step sizes, so that the distribution can be controlled by a user to model the distribution to accurately reflect a desired range of PDV.
- the PDV generator 104 determines the packet delay by calculating a target delay based on the uniform PDF and a delay-step size based on the target delay.
- the delay-step may be either fixed or variable with a uniform PDF.
- Each packet received at the packet receiver 106 from the PDV generator 104 is time-stamped with the time (T r ) at which the packet is received.
- the packet receiver 106 calculates and plots the total packet delay (T r ⁇ T s ) of each packet.
- the delay variation (PDV) of a fixed sample for example, 30,000 packets
- the packet delay analysis package of the packet receiver 106 may also further analyze various trends of the received PDV. For example, the packet receiver can calculate the mean, mode, peak-peak variation, or plot other statistical performance metrics including PDV derivative, TDEV or minTDEV.
- the PDV simulator of FIG. 1 and the steps of the method of FIG. 11 may be performed by computers containing processors which are executing computer program code which defines the functionality described herein.
- Such computers are well known in the art, and may be implemented, for example, using well known computer processors, memory units, storage devices, computer software, and other components.
- FIG. 2 A high level block diagram of such a computer is shown in FIG. 2 .
- Computer 202 contains a processor 204 which controls the overall operation of computer 202 by executing computer program instructions which define such operation.
- the computer program instructions may be stored in a storage device 212 (e.g., magnetic disk) and loaded into memory 210 when execution of the computer program instructions is desired.
- a storage device 212 e.g., magnetic disk
- computer 202 is defined by computer program instructions stored in memory 210 and/or storage 212 and the computer 202 will be controlled by processor 204 executing the computer program instructions.
- computer program instructions for implementing a PDV simulator application such as the PDV simulator of FIG. 1
- computer program instructions for performing the steps of the method of FIG. 11 can be stored in memory 210 and/or storage 212 and executed by processor 204 executing the computer program instructions.
- Computer 202 also includes one or more network interfaces 206 for communicating with other devices via a network.
- Computer 202 also includes input/output 208 which represents devices which allow for user interaction with the computer 202 (e.g., display, keyboard, mouse, speakers, buttons, etc.).
- input/output 208 represents devices which allow for user interaction with the computer 202 (e.g., display, keyboard, mouse, speakers, buttons, etc.).
- FIG. 2 is a high level representation of some of the components of such a computer for illustrative purposes.
- the functionality described herein may be implemented using hardware, software, and various combinations of hardware and software.
- the PDV generator 104 selects a random uniformly distributed delay target value based on the uniform PDF. The PDV generator 104 then adjusts the delays of a subsequent series of packets in defined delay-steps until the actual packet delay of a packet is equal to the delay target value. The PDV generator then selects a new random delay target value based on the uniform PDF, and the process is repeated.
- the delay-step is an adjustment to a current delay value in order to change the current delay value in a direction towards the delay target value.
- the delay-step for each packet can be calculated using a variable step size or a fixed step size.
- the delay-step is calculated as a random uniformly distributed value between minimum and maximum step sizes, D step MIN and D step MAX , respectively, where D step MIN is negative and D step MAX is positive. If the difference between the current delay and the delay target value is negative (i.e., the delay target value is larger than the current delay), then the step size value is between 0 and D step MAX . Otherwise (i.e., if the delay target value is less than the current delay), the step size value is between D step MIN and 0.
- the step size may be restricted from being larger (in either positive or negative directions) than a step size that will adjust the current delay to match the target delay.
- the delay-step is determined to be equal to either D step MIN or D step MAX . If the difference between the current delay and the delay target value is negative (i.e., the delay target value is larger than the current delay), then the step size value is D step MAX . Otherwise (i.e., if the delay target value is less than the current delay), the step size value is D step MIN . In this implementation, when the fixed step size would overshoot the delay target value, then the step size required to adjust the current delay to match the delay target value is used instead of D step MIN or D step MAX .
- FIG. 3 illustrates delay-steps calculated using fixed and variable delay-step sizes.
- a step-size of either a fixed positive step value (D step MAX ) or a fixed negative step value (D step MIN ) is used to adjust the current delay
- a step within a positive step range (between 0 and D step MAX ) or within a negative step range (between D step MIN and 0) is used to adjust the current delay.
- FIG. 4 illustrates repeatedly determining random delay target values and applying delay-steps to reach the delay target values.
- ⁇ is the mean of the uniform PDF, and the maximum and minimum limits for the packet delay correspond to D MIN and D MAX described above.
- Delay target values 402 , 404 , 406 , and 408 are determined and various delay-steps are used to reach the delay target values 402 , 404 , 406 , and 408 .
- the packet delay values can be analyzed using a 400 point histogram graph.
- the resolution of the histogram is related to the PDV range by the following equation:
- PDV_Resolution D MAX - D MIN 400 .
- the derivative of the PDV can also be calculated and analyzed.
- the derivative PDV can be calculated using the following equation:
- D_PDV ⁇ ( t ) D p ⁇ ( t ) - D p ⁇ ( t - 1 ) ⁇ , where ⁇ is the packet generation period.
- the derivative PDV values can then be analyzed by using a 400 point histogram graph. The resolution of the histogram is related to the derivative PDV range by the following equation:
- D_PDV ⁇ _Resolution D_PDV MAX - D_PDV MIN 400 .
- the values of the derivative PDV are presented as a histogram, they can also be presented and analyzed in various other formats as well.
- FIGS. 5-8 illustrate PDV simulation results of a PDV simulation using a uniformly distributed PDF target as described above with variable and fixed delay-step sizes. These results are for a PDV simulation using the following parameters:
- FIG. 5 illustrates random number generation used in the PDV simulation.
- Graph 502 shows a plot of the random number generator U i (t) over time
- graph 504 shows a histogram of the PDF of the random number generator U i (t).
- PDF distribution of the random number generator U i (t) is relatively uniform between ⁇ 1 and 1.
- FIG. 6 illustrates uniform PDV delay target generation.
- Graph 602 shows the random uniform PDV delay targets displayed over time
- graph 604 shows a PDF histogram for the random delay target distribution.
- the target distribution reflects a relatively uniform occurrence of all delay values. This distribution forms the basis of the actual delay targets selected in the delay-step process. Accordingly, it may be expected that the output PDF resulting from the delay-step process will reflect this uniformity.
- FIG. 7 illustrates PDV generation using variable delay-steps.
- the graphs of FIG. 7 show the actual PDV as seen by the packet receiver 106 .
- Graph 702 shows the PDV displayed over time
- graph 704 shows the PDF histogram of these delays.
- the delay-step changes that the packets have experienced are uniformly variable between a ⁇ 100 ⁇ s range.
- graph 704 it is clear that the PDF distribution of the output PDV is not uniformly distributed. The reason for this is that when the phase changes in relatively small step sizes (compared to the total delay variation range), it tends to spend the majority of the time reaching the target and less time at the target. This accounts for the bulge of the delay samples around the mean of the uniform distribution and fewer delay samples at the extremes.
- FIG. 8 illustrates PDV generation using fixed delay-steps.
- the graphs of FIG. 8 show the actual PDV as seen by the packet receiver 106 .
- Graph 802 shows the PDV displayed over time
- graph 804 shows the PDF histogram of these delays.
- the delay-step changes that these packets have experienced are typically fixed between a ⁇ 100 ⁇ s range.
- graph 804 it is clear that the PDF distribution of the output PDV is not uniformly distributed. Accordingly, it can be concluded that the use of small step sizes (fixed or variable) to achieve a target with a uniform PDF will not result in an output PDF that is uniform.
- FIG. 9 illustrates an example of a pre-bias transfer function that can be used to create a uniform distribution according to an embodiment of the present invention. This distribution is based on the Nth root of the uniformly distributed random value (between +1 and ⁇ 1).
- the pre-biased delay and its association with the actual output PDV are described by the following equations:
- B D ⁇ ( t ) U ⁇ ( t ) N
- B D ⁇ ( t ) - 1 ⁇ ⁇ U ⁇ ( t ) ⁇ N
- D total ⁇ ( t ) D MAX + B D ⁇ ( t ) ⁇ ( D MAX - D MIN )
- B D (t) is the pre-bias PDF
- U(t) is a uniformly generated random number between +1 and ⁇ 1
- N is a root power of the pre-bias PDF
- D total (t) is a total delay experienced by a packet
- D MAX is the maximum delay
- D MIN is the minimum delay.
- FIG. 10 illustrates a PDF obtained by pre-biasing a uniform distribution with the pre-bias transfer function of FIG. 9 .
- the PDF distribution of FIG. 10 can be used as the basis for random delay target selection in the delay-step method.
- FIG. 11 illustrates a delay-step method for generating PDV having a uniform distribution according to an embodiment of the present invention.
- the method of FIG. 11 can be performed by the PDV generator 104 of FIG. 1 .
- a packet is received at the PDV generator 104 from the packet generator 102 .
- the packet generator generates packets at regular intervals and transmits the packets in a stream to the PDV generator 104 .
- a delay target values is randomly determined based on the pre-biased PDF.
- the PDV generator 104 can select random Gamma delay target values that fit the PDF curve shown in FIG. 10 .
- the pre-biased PDF is a uniform PDF that is pre-biased by a pre-bias transfer function which increases the value of small delay values, as described above.
- the pre-biased transfer function can be implemented as an Nth root square filter, and the degree of flatness of the pre-biased PDF can be adjusted by adjusting the value of N.
- delay-steps are determined for a series of packets based on the delay target value.
- the delay-steps are adjustments to a current delay value in order to change the current delay value in a direction towards the delay target value.
- the current delay is adjusted by the delay-step determined for each packet until the delay of one of the packets is equal to the delay target value.
- the delay-steps can be calculated using a variable step size or a fixed step size according to various embodiments of the present invention.
- the current delay for the current packet is adjusted by the delay-step determined for the packet to determine a delay for the packet, and the packet is transmitted with the delay determined for that packet from the PDV generator 104 to the packet receiver 106 .
- a next packet is received at the PDV generator 102 from the packet generator 102 .
- the packet generator 104 generates the packets at regular intervals.
- step 1112 it is determined whether the current delay has reached the delay target value. If the current delay has not reached the delay target value, the delay target value is maintained and the method returns to step 1106 and determines a delay-step for the current packet based on the delay target value. If the current delay has reached the delay target value, the method returns to step 1104 and randomly determines a new delay target value based on the pre-biased PDF. Accordingly, the method repeatedly calculates delay-steps for subsequent packets based on one delay target value until the delay of a packet reaches that delay target value, then determines a new delay target value and determines delay-steps for subsequent packets to sequentially adjust the delay to the new delay target value. This method is repeated for all of the packets in a sample set.
- FIG. 12 illustrates pre-biased PDV delay target generation.
- Graph 1202 shows the random pre-biased PDV delay targets displayed over time
- graph 1204 shows a PDF histogram for the random pre-biased PDV delay target distribution.
- the delay target values in graphs 1202 and 1204 include both the D p (t) and D fixed delay components. As illustrated in graphs 802 and 804 , the delay target distribution accurately reflects the pre-bias PDF shown in FIG. 9 .
- Graph 1302 shows the random pre-biased PDV delay targets displayed over time
- graph 1304 shows a PDF histogram for the random pre-biased PDV delay target distribution. Comparing graph 1304 in FIG. 13 to graph 1204 in FIG. 12 , it can be seen that a great value for N results in a flatter PDF distribution for the delay target values.
- the graphs of FIGS. 14 and 15 show the actual PDV as seen by the packet receiver 106 .
- graph 1402 shows the PDV displayed over time
- graph 1404 shows the PDF histogram of these delays.
- the distribution shown in 1404 is relatively flat from approximately 12.4 ms to 27 ms. Beyond this range the distribution tends to fall of. By increasing the value of N, the delay values at the extreme range occur more frequently.
- graph 1502 shows the PDV displayed over time
- graph 1504 shows the PDF histogram of these delays.
- Graph 1504 shows that the uniformity of the PDV distribution can be improved by increasing the value of N. As illustrated in graph 1504 , the distribution is relatively flat from approximately 11 ms to 29 ms. Although higher values of N will further result in a slightly greater uniform range, the target range may be extended beyond the delay range of interest in order to ensure a uniform distribution over the delay range of interest.
- the graphs of FIGS. 16 and 17 show the actual PDV as seen by the packet receiver 106 .
- graph 1602 shows the PDV displayed over time
- graph 1604 shows the PDF histogram of these delays.
- the distribution shown in 1404 is relatively flat from approximately 12.5 ms to 28 ms. This performance is similar to the variable delay-step case shown in FIG. 14 . Referring to FIG.
- graph 1702 shows the PDV displayed over time
- graph 1704 shows the PDF histogram of these delays.
- Graph 1704 shows that the uniformity of the PDV distribution can be improved by increasing the value of N.
- the distribution is relatively flat from approximately 10.8 ms to 29.4 ms. This performance is similar to the variable delay-step case shown in FIG. 15 .
- the graphs of FIGS. 18 and 19 show the derivative PDV as seen by the packet receiver 106 .
- the derivative PDV shows the delay rate of change on a packet-by-packet basis.
- graph 1802 shows the derivative PDV displayed over time
- the delay rate of change (derivative PDV) is bounded between ⁇ 100 ms/sec.
- the derivative PDV bound may be divided by the packet rate to yield the minimum and maximum packet delay-step size (100 ⁇ s in this case).
- the histogram analysis shown in graph 1804 it can be seen that the majority of the distribution is uniformly distributed across this range. There is a slight spike at 0 ms/sec, indicating a tendency for packet delays to remain constant between consecutive packets.
- graph 1902 shows the derivative PDV displayed over time
- Graphs 1902 and 1904 of FIG. 19 show similar results to graphs 1802 and 1804 of FIG. 18 . Accordingly, the increases value of N, which results in a flatter PDF, seems to have no significant impact to the derivative PDV of the distribution.
- the graphs of FIGS. 20 and 21 show the derivative PDV as seen by the packet receiver 106 .
- graph 2002 shows the derivative PDV displayed over time
- the majority of the step delays are at either end of the min/max step range. This is also verified by the PDF histogram shown in graph 2004 , which shows approximately 90% of the delay-step change values are equally divided between the min and max step values. Referring to FIG.
- graph 2102 shows the derivative PDV displayed over time
- Graphs 2102 and 2104 of FIG. 21 show similar results to graphs 2002 and 2004 of FIG. 20 .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
D p(t)=(0.5+0.5×U(t))×(D MAX −D MIN)
D total(t)=D fixed +D p(t)
where Dp(t) is the packet delay due to a random uniform PDF, Dfixed is a fixed packet delay, DTotal(t) is the total delay experienced by the packet, DMAX is the maximum delay variation, DMIN is the minimum delay variation, and Ui(t) is a random number generator between −1 and 1 with a uniform PDF.
The derivative of the PDV can also be calculated and analyzed. The derivative PDV can be calculated using the following equation:
where τ is the packet generation period. The derivative PDV values can then be analyzed by using a 400 point histogram graph. The resolution of the histogram is related to the derivative PDV range by the following equation:
Although the values of the derivative PDV are presented as a histogram, they can also be presented and analyzed in various other formats as well.
where BD(t) is the pre-bias PDF, U(t) is a uniformly generated random number between +1 and −1, N is a root power of the pre-bias PDF, Dtotal(t) is a total delay experienced by a packet, DMAX is the maximum delay, and DMIN is the minimum delay.
Claims (27)
D total(t)=D MIN +B D(t)×(D MAX −D MIN),
D total(t)=D MIN +B D×(D MAX −D MIN),
D total(t)=D MIN +B D(t)×(D MAX −D MIN),
D total(t)=D MIN +B D(t)×(D MAX −D MIN),
D total(t)=D MIN +B D(t)×(D MAX −D MIN),
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/074,031 US7773505B2 (en) | 2007-03-02 | 2008-02-29 | Method and system for generating packet delay variation with a uniform distribution |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US90464607P | 2007-03-02 | 2007-03-02 | |
US12/074,031 US7773505B2 (en) | 2007-03-02 | 2008-02-29 | Method and system for generating packet delay variation with a uniform distribution |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080225746A1 US20080225746A1 (en) | 2008-09-18 |
US7773505B2 true US7773505B2 (en) | 2010-08-10 |
Family
ID=39762553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/074,031 Expired - Fee Related US7773505B2 (en) | 2007-03-02 | 2008-02-29 | Method and system for generating packet delay variation with a uniform distribution |
Country Status (1)
Country | Link |
---|---|
US (1) | US7773505B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140022928A1 (en) * | 2006-03-21 | 2014-01-23 | Cisco Technology, Inc. | Method and apparatus to schedule multiple probes for active or passive monitoring of networks |
CN107872397A (en) * | 2016-09-27 | 2018-04-03 | 阿里巴巴集团控股有限公司 | Traffic scheduling method, dispatching platform and scheduling system during pressure survey |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10992555B2 (en) * | 2009-05-29 | 2021-04-27 | Virtual Instruments Worldwide, Inc. | Recording, replay, and sharing of live network monitoring views |
CN110581787B (en) * | 2019-09-11 | 2020-12-22 | 成都安恒信息技术有限公司 | Application layer data quantity multiplication method applied to performance test |
US11876790B2 (en) * | 2020-01-21 | 2024-01-16 | The Boeing Company | Authenticating computing devices based on a dynamic port punching sequence |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6442166B1 (en) | 1996-07-17 | 2002-08-27 | Alcatel Canada Inc. | Variation fluctuation smoothing (VFS) for ATM circuit emulation |
US20030091047A1 (en) * | 2001-07-25 | 2003-05-15 | Overture Networks, Inc. | Measurement of packet delay variation |
US6571358B1 (en) | 2000-06-08 | 2003-05-27 | Fujitsu Network Communications, Inc. | Integrated multiple services switch testing system |
US6937603B1 (en) * | 2000-06-02 | 2005-08-30 | Intel Corporation | Optimizing buffer latency in a streamed packet delivery session |
US20060165003A1 (en) | 2005-01-24 | 2006-07-27 | Bbnt Solutions Llc | Method and apparatus for monitoring data routing over a network |
US20060193400A1 (en) * | 2003-07-14 | 2006-08-31 | Morris Joel M | System and method for estimating probabilities of events |
US7191355B1 (en) | 2002-02-19 | 2007-03-13 | Nortel Networks Limited | Clock synchronization backup mechanism for circuit emulation service |
US20080080563A1 (en) | 2006-09-29 | 2008-04-03 | Deepak Kataria | Methods and Apparatus for Timing Synchronization in Packet Networks |
US7418147B2 (en) * | 2003-06-25 | 2008-08-26 | Georgia Tech Research Corporation | Cauchy-distribution based coding system and method |
US20080262991A1 (en) | 2005-07-01 | 2008-10-23 | Harsh Kapoor | Systems and methods for processing data flows |
US7492732B2 (en) | 2005-11-01 | 2009-02-17 | Nortel Networks Limited | Differential clock recovery in packet networks |
US20090268783A1 (en) | 2005-06-22 | 2009-10-29 | Eices Research, Inc. | Wireless communications systems and/or methods providing low interference, high privacy and/or cognitive flexibility |
-
2008
- 2008-02-29 US US12/074,031 patent/US7773505B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6442166B1 (en) | 1996-07-17 | 2002-08-27 | Alcatel Canada Inc. | Variation fluctuation smoothing (VFS) for ATM circuit emulation |
US6937603B1 (en) * | 2000-06-02 | 2005-08-30 | Intel Corporation | Optimizing buffer latency in a streamed packet delivery session |
US6571358B1 (en) | 2000-06-08 | 2003-05-27 | Fujitsu Network Communications, Inc. | Integrated multiple services switch testing system |
US20030091047A1 (en) * | 2001-07-25 | 2003-05-15 | Overture Networks, Inc. | Measurement of packet delay variation |
US7191355B1 (en) | 2002-02-19 | 2007-03-13 | Nortel Networks Limited | Clock synchronization backup mechanism for circuit emulation service |
US7418147B2 (en) * | 2003-06-25 | 2008-08-26 | Georgia Tech Research Corporation | Cauchy-distribution based coding system and method |
US20060193400A1 (en) * | 2003-07-14 | 2006-08-31 | Morris Joel M | System and method for estimating probabilities of events |
US20060165003A1 (en) | 2005-01-24 | 2006-07-27 | Bbnt Solutions Llc | Method and apparatus for monitoring data routing over a network |
US20090268783A1 (en) | 2005-06-22 | 2009-10-29 | Eices Research, Inc. | Wireless communications systems and/or methods providing low interference, high privacy and/or cognitive flexibility |
US20080262991A1 (en) | 2005-07-01 | 2008-10-23 | Harsh Kapoor | Systems and methods for processing data flows |
US7492732B2 (en) | 2005-11-01 | 2009-02-17 | Nortel Networks Limited | Differential clock recovery in packet networks |
US20080080563A1 (en) | 2006-09-29 | 2008-04-03 | Deepak Kataria | Methods and Apparatus for Timing Synchronization in Packet Networks |
Non-Patent Citations (3)
Title |
---|
"Ethernet Network Emulators: GEM,XGEM", High Performance Precision Emulators, Anue Systems, Inc. (Nov. 2007). |
"Timing and Synchronization Aspects in Packet Networks", ITU-T Recommendation G.8261/Y.1361 (May 2006). |
S. Kaczmarek, et al., "Methods for Evaluation Packet Delay Distribution of Flows Using Expedited Forwarding PHB", Journal of Telecomm. & Information Technology (Feb. 2004). |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140022928A1 (en) * | 2006-03-21 | 2014-01-23 | Cisco Technology, Inc. | Method and apparatus to schedule multiple probes for active or passive monitoring of networks |
CN107872397A (en) * | 2016-09-27 | 2018-04-03 | 阿里巴巴集团控股有限公司 | Traffic scheduling method, dispatching platform and scheduling system during pressure survey |
Also Published As
Publication number | Publication date |
---|---|
US20080225746A1 (en) | 2008-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7778167B2 (en) | Simulating packet delay variation using step-target delay method | |
US7773505B2 (en) | Method and system for generating packet delay variation with a uniform distribution | |
US7876791B2 (en) | Synchronizing apparatus and method in packet network | |
US7693082B2 (en) | Latency measurement apparatus and method | |
EP3779641B1 (en) | Method and device for adjusting neural-network-based wireless modem, and storage medium | |
CN101636945B (en) | Method of transmitting data in a communication system | |
TWI693808B (en) | Method for testing sensitivity of a data packet signal transceiver | |
US7787374B2 (en) | Derivative packet delay variation as a metric for packet timing recovery stress testing | |
WO2006110708A2 (en) | Modular wireless test architecture and method | |
Beytur et al. | Towards AoI-aware smart IoT systems | |
JP5329557B2 (en) | Oscillator calibration | |
US8068729B2 (en) | Network testing apparatus, network testing method and recording medium thereof | |
CN112838904B (en) | TSN network delay jitter measuring device and method | |
CN111352778B (en) | Network simulation processing method and device, electronic equipment and storage medium | |
Shaikh et al. | Evaluation of delay performance of traffic shapers | |
US20180343177A1 (en) | Network statistics estimation and prediction | |
JP5554800B2 (en) | Fading simulator, mobile communication terminal test system, and fading simulation method | |
CN114124334B (en) | Processing method, client, equipment and medium of air interface data packet | |
Chilwan et al. | On modeling controller-switch interaction in openflow based sdns | |
EP2991277B1 (en) | Packet delay variation in a packet switched network | |
Paredes-Farrera et al. | Precision and accuracy of network traffic generators for packet-by-packet traffic analysis | |
US10680723B1 (en) | Measuring device and method with efficient channel simulation | |
Fabini et al. | Generic access network emulation for NGN testbeds | |
US20240267196A1 (en) | Methods, systems and computer readable media for generating dynamic time error | |
Aldini et al. | A Simulative Analysis of Internet Audio Mechanisms Using Formal Methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AGERE SYSTEMS INC., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BEDROSIAN, PAUL STEPHAN;REEL/FRAME:021186/0649 Effective date: 20080425 |
|
XAS | Not any more in us assignment database |
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BEDROSIAN, PAUL STEPHAN;REEL/FRAME:021017/0952 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:LSI CORPORATION;AGERE SYSTEMS LLC;REEL/FRAME:032856/0031 Effective date: 20140506 |
|
AS | Assignment |
Owner name: AGERE SYSTEMS LLC, PENNSYLVANIA Free format text: CERTIFICATE OF CONVERSION;ASSIGNOR:AGERE SYSTEMS INC.;REEL/FRAME:034113/0626 Effective date: 20120730 |
|
AS | Assignment |
Owner name: LSI CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AGERE SYSTEMS LLC;REEL/FRAME:034245/0655 Effective date: 20141113 |
|
AS | Assignment |
Owner name: LSI CORPORATION, CALIFORNIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS AT REEL/FRAME NO. 32856/0031;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:034286/0872 Effective date: 20141118 Owner name: AGERE SYSTEMS LLC, PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS AT REEL/FRAME NO. 32856/0031;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:034286/0872 Effective date: 20141118 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: INTEL CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LSI CORPORATION;REEL/FRAME:035090/0477 Effective date: 20141114 |
|
AS | Assignment |
Owner name: LSI CORPORATION, CALIFORNIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS (RELEASES RF 032856-0031);ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:037684/0039 Effective date: 20160201 Owner name: AGERE SYSTEMS LLC, PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS (RELEASES RF 032856-0031);ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:037684/0039 Effective date: 20160201 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20180810 |