US7624797B2 - Downhole tool operated by shape memory material - Google Patents
Downhole tool operated by shape memory material Download PDFInfo
- Publication number
- US7624797B2 US7624797B2 US11/487,221 US48722106A US7624797B2 US 7624797 B2 US7624797 B2 US 7624797B2 US 48722106 A US48722106 A US 48722106A US 7624797 B2 US7624797 B2 US 7624797B2
- Authority
- US
- United States
- Prior art keywords
- component
- spring
- transition temperature
- downhole tool
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000012781 shape memory material Substances 0.000 title claims abstract description 25
- 230000007704 transition Effects 0.000 claims abstract description 35
- 239000012530 fluid Substances 0.000 claims abstract description 9
- 238000005381 potential energy Methods 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 229910000990 Ni alloy Inorganic materials 0.000 claims 1
- 229910001069 Ti alloy Inorganic materials 0.000 claims 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- 239000010936 titanium Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 8
- 238000000034 method Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B23/00—Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/06—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
- F03G7/065—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
Definitions
- the field of the invention is downhole tools and more particularly tools that operate using a potential energy source and most particularly where the energy source is a biasing member made of a shape memory material.
- Shape memory materials are materials that revert to an original shape once reaching a transition temperature. They typically exhibit high moduli of elasticity and high yield strengths above said transition temperature and comparatively low moduli and low yield strengths below the transition temperature. Such materials have been used to make coiled springs, as illustrated in U.S. Pat. No. 6,427,712; leaf springs, as shown in U.S. Pat. No. 6,436,223 and hollow tube springs, as shown in U.S. Pat. No. 5,226,979. Shape memory materials have been used in downhole tool applications to move components that actuate the tool directly in response to an energy input usually from a heating element. Some examples of downhole tool applications are U.S. Pat. Nos.
- U.S. Pat. No. 6,433,991 shows a tool that uses a first shape memory device to move a sleeve and a second independently operated shape memory device to act as a ratchet that locks the just shifted sleeve into a position that the first device just moved it to.
- the tool has to be configured to contain a heating element in close proximity to the shape memory material so that the desired phase change is accomplished.
- the phase change in the shape memory material is to be initiated using the surrounding well fluid, prior applications that simply use exposure to such fluid could be prone to actuation due to prolonged exposures above the transition temperature well before the tool reaches the desired location.
- the present invention addresses these issues.
- springs in a downhole tool it provides for use of a shape memory material for the springs.
- the tool length can be shortened using such material for the springs in that they can be compressed to greater percentages of their free length than standard spring materials.
- the low modulus of shape memory materials means less force is needed to pre-compress them during assembly thus removing some level of risk from the assembly process.
- the crossing over the transition temperature simply energizes the springs without setting the tool. Some independent act is still undertaken to set the tool as to allow the tool to be properly positioned in the well before it is set as opposed to simply setting it when the transition temperature is crossed.
- the invention features the use of a shape memory material in a downhole application to provide an energy source for at least in part setting the tool.
- the springs that set slips for a liner hanger are made from the shape memory material and easily pre-compressed below the transition temperature when the material has low modulus of elasticity.
- the tool is run into position where a heat source such as well fluids or a heater can bring the springs above the transition temperature to store a force.
- the tool is then independently released to allow the stored force to set the tool.
- FIG. 1 is a section view of a liner hanger using springs made from a shape memory material
- FIG. 1 a is a section view along line 1 a - 1 a of FIG. 1 .
- FIG. 2 shows one of the springs in FIG. 1 pre-compressed at below its transition temperature
- FIG. 3 shows the spring of FIG. 2 enlarged after it is raised above its transition temperature and has set the tool of FIG. 1 .
- FIG. 1 shows a liner hanger 10 that features slips 12 that ride on dovetails 14 to move the slips 12 radially outwardly of body 20 so that the surrounding tubular string can be engaged for support of another tubular string (not shown) that extends from the lower end 18 of the hanger 10 .
- the housing 16 is retained to the body 20 by a snap ring 22 held by a retainer 24 .
- An actuation rod 26 is initially pinned to housing 16 by a pin 28 .
- a piston 30 is responsive to pressure in passage with a heat source 32 to move into contact with rod 26 to move the retainer 24 away from the snap ring 22 .
- the springs 34 are preferably coiled springs to get the required power to move the slips 12 during the required stroke length.
- the springs are preferably made of a shape memory material such as Nitinol® and are pre-compressed at below their transition temperature where their modulus is fairly low. This reduces the force required to compress them for assembly and install them. The safety risks to assembly personnel are thus reduced due to this lower energy input to the springs.
- FIG. 2 shows a spring in the compressed state upon assembly at a temperature below the transition temperature.
- the well fluids can be warm enough to exceed the transition temperature.
- the springs 34 after being subjected to this temperature will want to return to their original length as they get stiffer. However, in the hanger 10 of FIG. 1 as the spring try to get longer their growth will be stopped by the fact that the housing 16 is still locked by snap ring 22 against movement. What actually happens is that a potential energy force is created and trapped as the springs 34 get stiffer and try to grow or grow to some extent.
- the piston 30 is actuated to remove support for the snap ring 22 and that lets the springs 34 grow or grow further as they push the housing 16 which in turn pulls the slips 12 along their dovetails 14 to move them radially outwardly for a set of the tool.
- the springs 34 can be said to be selectively locked until released and it is equally valid to state that the slips 12 are locked until released. Either way, with the transition temperature crossed, something is locked that is independently released be it the component that is made from the shape memory material or an element of the downhole tool whose movement distinguishes the run in from the set position of the tool.
- the tool is not set just because the springs 34 are energized to store potential energy by being raised to above their transition temperature. Instead in the case of the hanger 10 a ball (not shown) is landed on a seat (not shown) so that pressure can be built up on the piston 30 to unlock the housing 16 so that the tool can set in the manner described above.
- a ball (not shown) is landed on a seat (not shown) so that pressure can be built up on the piston 30 to unlock the housing 16 so that the tool can set in the manner described above.
- Those skilled in the art will realize that the manner of locking the tool after the transition temperature is crossed can be varied.
- the tool is not automatically set only by virtue of application of enough heat to the springs 34 .
- the tool is not set prematurely especially when relying on temperatures of well fluids downhole as the heat source to cross the transition temperature with the shape memory material, which in this embodiment happens to be the springs 34 .
- a separate act occurs to set the tool after the transition temperature of the shape memory material occurs, regardless of the nature of the tool or which component is made from the shape memory material or which material that has shape memory is actually selected.
- springs 34 have been described as being made from a shape memory material, in a given tool other and/or additional components can be made of such a material.
- the part that could be referred to as the last component to move to define a set position in the tool and/or other parts in between that move when the tool is set could be made from a shape memory material in conjunction with a lock that prevents a tool set position and still be within the scope of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Chemical & Material Sciences (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Springs (AREA)
- Coating Apparatus (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
The invention features the use of a shape memory material in a downhole application to provide an energy source for at least in part setting the tool. In a specific application the springs that set slips for a liner hanger are made from the shape memory material and easily pre-compressed below the transition temperature when the material has low modulus of elasticity. The tool is run into position where a heat source such as well fluids or a heater can bring the springs above the transition temperature to store a force. The tool is then independently released to allow the stored force to set the tool.
Description
The field of the invention is downhole tools and more particularly tools that operate using a potential energy source and most particularly where the energy source is a biasing member made of a shape memory material.
Shape memory materials are materials that revert to an original shape once reaching a transition temperature. They typically exhibit high moduli of elasticity and high yield strengths above said transition temperature and comparatively low moduli and low yield strengths below the transition temperature. Such materials have been used to make coiled springs, as illustrated in U.S. Pat. No. 6,427,712; leaf springs, as shown in U.S. Pat. No. 6,436,223 and hollow tube springs, as shown in U.S. Pat. No. 5,226,979. Shape memory materials have been used in downhole tool applications to move components that actuate the tool directly in response to an energy input usually from a heating element. Some examples of downhole tool applications are U.S. Pat. Nos. 5,199,497; 6,216,799 and 6,349,767. Sometimes more than one device operated by shape memory material can be incorporated into a single tool. U.S. Pat. No. 6,433,991 shows a tool that uses a first shape memory device to move a sleeve and a second independently operated shape memory device to act as a ratchet that locks the just shifted sleeve into a position that the first device just moved it to.
Despite all these applications of shape memory materials, the present invention presents a different perspective on their use in downhole applications. Many downhole tools use a bias force to set. These tools have to be assembled at the surface using specialized equipment to pre-compress springs in retaining bores and hold the springs in that position as the tool is being assembled. There are risks to this procedure in that the spring may come loose and potentially cause injury to assembly personnel when the springs take off as projectiles. The springs can also fail during the assembly process where they are pre-compressed sending pieces into the air as projectiles that again can injure assembly personnel. Apart from the safety issues during assembly, there are the operational issues that arise from the way temperature is used to change phases of shape memory materials. If heat is added artificially, then the tool has to be configured to contain a heating element in close proximity to the shape memory material so that the desired phase change is accomplished. On the other hand, if the phase change in the shape memory material is to be initiated using the surrounding well fluid, prior applications that simply use exposure to such fluid could be prone to actuation due to prolonged exposures above the transition temperature well before the tool reaches the desired location.
The present invention addresses these issues. In the preferred embodiment of springs in a downhole tool, it provides for use of a shape memory material for the springs. The tool length can be shortened using such material for the springs in that they can be compressed to greater percentages of their free length than standard spring materials. The low modulus of shape memory materials means less force is needed to pre-compress them during assembly thus removing some level of risk from the assembly process. Also in the preferred embodiment, the crossing over the transition temperature simply energizes the springs without setting the tool. Some independent act is still undertaken to set the tool as to allow the tool to be properly positioned in the well before it is set as opposed to simply setting it when the transition temperature is crossed. These and other aspects of the present invention will be more apparent to those skilled in the art from a review of the description of the preferred embodiment and associated drawings, while the full scope of the invention can be found from a review of the appended claims.
The invention features the use of a shape memory material in a downhole application to provide an energy source for at least in part setting the tool. In a specific application the springs that set slips for a liner hanger are made from the shape memory material and easily pre-compressed below the transition temperature when the material has low modulus of elasticity. The tool is run into position where a heat source such as well fluids or a heater can bring the springs above the transition temperature to store a force. The tool is then independently released to allow the stored force to set the tool.
The springs 34 are preferably coiled springs to get the required power to move the slips 12 during the required stroke length. The springs are preferably made of a shape memory material such as Nitinol® and are pre-compressed at below their transition temperature where their modulus is fairly low. This reduces the force required to compress them for assembly and install them. The safety risks to assembly personnel are thus reduced due to this lower energy input to the springs. FIG. 2 shows a spring in the compressed state upon assembly at a temperature below the transition temperature.
After the tool of FIG. 1 is run into the well to the desired location, the well fluids can be warm enough to exceed the transition temperature. The springs 34 after being subjected to this temperature will want to return to their original length as they get stiffer. However, in the hanger 10 of FIG. 1 as the spring try to get longer their growth will be stopped by the fact that the housing 16 is still locked by snap ring 22 against movement. What actually happens is that a potential energy force is created and trapped as the springs 34 get stiffer and try to grow or grow to some extent. Independently, after this happens, the piston 30 is actuated to remove support for the snap ring 22 and that lets the springs 34 grow or grow further as they push the housing 16 which in turn pulls the slips 12 along their dovetails 14 to move them radially outwardly for a set of the tool. In essence, the springs 34 can be said to be selectively locked until released and it is equally valid to state that the slips 12 are locked until released. Either way, with the transition temperature crossed, something is locked that is independently released be it the component that is made from the shape memory material or an element of the downhole tool whose movement distinguishes the run in from the set position of the tool.
While use of well fluids has been illustrated as the heat source to raise the springs beyond their transition temperature, other heat sources can be used such as an electric heating coil 35, for example. The tool is not set just because the springs 34 are energized to store potential energy by being raised to above their transition temperature. Instead in the case of the hanger 10 a ball (not shown) is landed on a seat (not shown) so that pressure can be built up on the piston 30 to unlock the housing 16 so that the tool can set in the manner described above. Those skilled in the art will realize that the manner of locking the tool after the transition temperature is crossed can be varied. The tool is not automatically set only by virtue of application of enough heat to the springs 34. In that way, the tool is not set prematurely especially when relying on temperatures of well fluids downhole as the heat source to cross the transition temperature with the shape memory material, which in this embodiment happens to be the springs 34. Those skilled in the art will further understand that a separate act occurs to set the tool after the transition temperature of the shape memory material occurs, regardless of the nature of the tool or which component is made from the shape memory material or which material that has shape memory is actually selected.
While the springs 34 have been described as being made from a shape memory material, in a given tool other and/or additional components can be made of such a material. In fact, the part that could be referred to as the last component to move to define a set position in the tool and/or other parts in between that move when the tool is set could be made from a shape memory material in conjunction with a lock that prevents a tool set position and still be within the scope of the invention.
The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the literal and equivalent scope of the claims below.
Claims (17)
1. A downhole tool for a subterranean cavity extending from the surface and capable of a run in and a set position, comprising:
a body;
a component on said body made from a shape memory material that is capable of changing dimension when a temperature of said component crosses a transition temperature, said component building potential energy when restrained against movement when the temperature of said component is raised above said transition temperature;
a lock to selectively allow energy developed in said component upon reaching said transition temperature, to thereafter be selectively released from the surface to put the tool in said set position, said lock releasing independently of said potential energy developed in said component.
2. The downhole tool of claim 1 , further comprising:
a final element selectively movable by said component to define the set position of said tool;
said component attains said transition temperature from exposure to fluids downhole.
3. The downhole tool of claim 2 , wherein:
said body further comprises a heat source to attain said transition temperature in said component.
4. The downhole tool of claim 2 , wherein:
said component exerts a bias force on said final element when the transition temperature of said component is reached.
5. The downhole tool of claim 4 , wherein:
said component comprises at least one spring.
6. The downhole tool of claim 5 , wherein:
said spring is coiled.
7. The downhole tool of claim 5 , wherein:
said spring is mounted in said body in a precompressed condition.
8. The downhole tool of claim 7 , wherein:
said spring is precompressed when inserted in said body while said spring is below the transition temperature for said spring.
9. The downhole tool of claim 7 , wherein:
said spring comprises coils that contact each other when said spring is precompressed.
10. The downhole tool of claim 5 , wherein:
said spring develops and stores a force when the temperature of said spring crosses said transition temperature without moving said final element to said set position.
11. The downhole tool of claim 10 , wherein:
said spring changes length while developing said force.
12. The downhole tool of claim 10 , wherein:
said spring does not change length while developing said force.
13. The downhole tool of claim 10 , wherein:
said stored force is released by movement of said lock.
14. The downhole tool of claim 13 , wherein:
said lock is not moved by heat supplied to make said component reach said transition temperature.
15. The downhole tool of claim 13 , wherein:
said spring grows in length to move said final element to the set position after said lock is moved.
16. The downhole tool of claim 5 , wherein:
said spring is made of an alloy of nickel and titanium.
17. A downhole tool capable of a run in and a set position, comprising:
a body;
a component on said body made from a shape memory material that is capable of changing dimension when a temperature of said component crosses a transition temperature;
a lock to selectively allow energy developed in said component upon reaching said transition temperature, to thereafter be released to put the tool in said set position;
a final element selectively movable by said component to define the set position of said tool;
said component attains said transition temperature from exposure to fluids downhole;
said component exerts a bias force on said final element when the transition temperature of said component is reached;
said component comprises at least one spring;
said spring develops and stores a force when the temperature of said spring crosses said transition temperature without moving said final element to said set position;
said stored force is released by movement of said lock;
said body further comprises a piston responsive to pressure within said body to move said lock.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/487,221 US7624797B2 (en) | 2006-07-14 | 2006-07-14 | Downhole tool operated by shape memory material |
PCT/US2007/072814 WO2008008680A1 (en) | 2006-07-14 | 2007-07-05 | Downhole tool operated by shape memory material springs |
GB0901812A GB2454388B (en) | 2006-07-14 | 2007-07-05 | Downhole tool operated by shape memory material springs |
AU2007272662A AU2007272662B2 (en) | 2006-07-14 | 2007-07-05 | Downhole tool operated by shape memory material springs |
CA2669776A CA2669776C (en) | 2006-07-14 | 2007-07-05 | Downhole tool operated by shape memory material springs |
NO20090479A NO20090479L (en) | 2006-07-14 | 2009-01-30 | Well tools operated by shape memory material springs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/487,221 US7624797B2 (en) | 2006-07-14 | 2006-07-14 | Downhole tool operated by shape memory material |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080011472A1 US20080011472A1 (en) | 2008-01-17 |
US7624797B2 true US7624797B2 (en) | 2009-12-01 |
Family
ID=38577478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/487,221 Active 2027-01-01 US7624797B2 (en) | 2006-07-14 | 2006-07-14 | Downhole tool operated by shape memory material |
Country Status (6)
Country | Link |
---|---|
US (1) | US7624797B2 (en) |
AU (1) | AU2007272662B2 (en) |
CA (1) | CA2669776C (en) |
GB (1) | GB2454388B (en) |
NO (1) | NO20090479L (en) |
WO (1) | WO2008008680A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120234530A1 (en) * | 2011-03-15 | 2012-09-20 | Baker Hughes Incorporated | Remote Subterranean Tool Activation System |
US9624744B2 (en) | 2013-07-22 | 2017-04-18 | Baker Hughes Incorporated | Apparatus for subterranean tool actuation using stored torsional spring energy |
US9649780B1 (en) * | 2014-05-15 | 2017-05-16 | United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration | Shape memory alloy rock splitters (SMARS) |
US10407992B2 (en) | 2014-12-17 | 2019-09-10 | Halliburton Energy Services, Inc. | Directional drilling systems, apparatus, and methods |
US11326411B2 (en) * | 2019-06-18 | 2022-05-10 | Baker Hughes Oilfield Operations Llc | Thermal activation of liner hanger for elastomer-less completion |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090032237A1 (en) * | 2007-08-03 | 2009-02-05 | Bane Darren E | Shape Memory Alloy Closure Spring for Subsurface Safety Valves Triggered by Well Fluids |
US8916983B2 (en) | 2009-09-10 | 2014-12-23 | Schlumberger Technology Corporation | Electromagnetic harvesting of fluid oscillations for downhole power sources |
US9428977B2 (en) * | 2013-08-16 | 2016-08-30 | Baker Hughes Incorporated | Multi-stage locking system for selective release of a potential energy force to set a subterranean tool |
CN110508815A (en) * | 2019-10-09 | 2019-11-29 | 山东大学 | A method of niti-shaped memorial alloy phase transition temperature is regulated and controled based on increasing material manufacturing |
Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4423777A (en) * | 1981-10-02 | 1984-01-03 | Baker International Corporation | Fluid pressure actuated well tool |
US4424865A (en) | 1981-09-08 | 1984-01-10 | Sperry Corporation | Thermally energized packer cup |
US4484955A (en) | 1983-12-12 | 1984-11-27 | Hochstein Peter A | Shape memory material and method of treating same |
US4515213A (en) * | 1983-02-09 | 1985-05-07 | Memory Metals, Inc. | Packing tool apparatus for sealing well bores |
US4619320A (en) * | 1984-03-02 | 1986-10-28 | Memory Metals, Inc. | Subsurface well safety valve and control system |
US4640354A (en) * | 1983-12-08 | 1987-02-03 | Schlumberger Technology Corporation | Method for actuating a tool in a well at a given depth and tool allowing the method to be implemented |
US4745973A (en) * | 1987-04-23 | 1988-05-24 | Semar James E | Selective running tool for wells |
US5103901A (en) * | 1990-10-12 | 1992-04-14 | Dresser Industries, Inc | Hydraulically operated well packer |
US5159145A (en) * | 1991-08-27 | 1992-10-27 | James V. Carisella | Methods and apparatus for disarming and arming well bore explosive tools |
US5199497A (en) * | 1992-02-14 | 1993-04-06 | Baker Hughes Incorporated | Shape-memory actuator for use in subterranean wells |
US5203414A (en) * | 1991-03-15 | 1993-04-20 | Schlumberger Technology Corporation | Method of anchoring a device in a wellbore including opening an orifice between two chambers in response to an electrical signal and moving a piston in response to hydrostatic pressure when the orifice is opened |
US5226979A (en) | 1992-04-06 | 1993-07-13 | Johnson Service Company | Apparatus including a shape memory actuating element made from tubing and a means of heating |
US5346014A (en) * | 1993-03-15 | 1994-09-13 | Baker Hughes Incorporated | Heat activated ballistic blocker |
US5626581A (en) | 1995-11-27 | 1997-05-06 | Volunteers For Medical Engineering | Implantable bone lengthening apparatus |
US5829531A (en) * | 1996-01-31 | 1998-11-03 | Smith International, Inc. | Mechanical set anchor with slips pocket |
WO1999066202A1 (en) | 1998-06-15 | 1999-12-23 | Miroslav Remeta | A method and a device for transformation and use of excessive kinetic and potential energy in deceleration/braking of moving bodies for production of electric power |
US6062315A (en) * | 1998-02-06 | 2000-05-16 | Baker Hughes Inc | Downhole tool motor |
US6216779B1 (en) * | 1997-12-17 | 2001-04-17 | Baker Hughes Incorporated | Downhole tool actuator |
US6321845B1 (en) | 2000-02-02 | 2001-11-27 | Schlumberger Technology Corporation | Apparatus for device using actuator having expandable contractable element |
US6349767B2 (en) | 1998-05-13 | 2002-02-26 | Halliburton Energy Services, Inc. | Disconnect tool |
US6427712B1 (en) | 1999-06-09 | 2002-08-06 | Robertshaw Controls Company | Ambient temperature shape memory alloy actuator |
US6433991B1 (en) | 2000-02-02 | 2002-08-13 | Schlumberger Technology Corp. | Controlling activation of devices |
US6436223B1 (en) | 1999-02-16 | 2002-08-20 | International Business Machines Corporation | Process and apparatus for improved module assembly using shape memory alloy springs |
US6497288B2 (en) * | 1997-09-05 | 2002-12-24 | Schlumberger Technology Corporation | Deviated borehole drilling assembly |
US6626916B1 (en) | 1998-12-31 | 2003-09-30 | Teresa T. Yeung | Tissue fastening devices and methods for sustained holding strength |
WO2004018833A1 (en) | 2002-08-22 | 2004-03-04 | Halliburton Energy Services, Inc. | Shape memory actuated valve |
US6763899B1 (en) | 2003-02-21 | 2004-07-20 | Schlumberger Technology Corporation | Deformable blades for downhole applications in a wellbore |
US20040194969A1 (en) * | 2003-04-02 | 2004-10-07 | Espen Hiorth | Method and device related to a retrievable well plug |
US6843322B2 (en) | 2002-05-31 | 2005-01-18 | Baker Hughes Incorporated | Monobore shoe |
US6896063B2 (en) | 2003-04-07 | 2005-05-24 | Shell Oil Company | Methods of using downhole polymer plug |
US20060207771A1 (en) * | 2005-03-04 | 2006-09-21 | Rios Aristeo Iii | Whipstock anchor |
-
2006
- 2006-07-14 US US11/487,221 patent/US7624797B2/en active Active
-
2007
- 2007-07-05 GB GB0901812A patent/GB2454388B/en not_active Expired - Fee Related
- 2007-07-05 WO PCT/US2007/072814 patent/WO2008008680A1/en active Application Filing
- 2007-07-05 AU AU2007272662A patent/AU2007272662B2/en not_active Ceased
- 2007-07-05 CA CA2669776A patent/CA2669776C/en active Active
-
2009
- 2009-01-30 NO NO20090479A patent/NO20090479L/en not_active Application Discontinuation
Patent Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4424865A (en) | 1981-09-08 | 1984-01-10 | Sperry Corporation | Thermally energized packer cup |
US4423777A (en) * | 1981-10-02 | 1984-01-03 | Baker International Corporation | Fluid pressure actuated well tool |
US4515213A (en) * | 1983-02-09 | 1985-05-07 | Memory Metals, Inc. | Packing tool apparatus for sealing well bores |
US4640354A (en) * | 1983-12-08 | 1987-02-03 | Schlumberger Technology Corporation | Method for actuating a tool in a well at a given depth and tool allowing the method to be implemented |
US4484955A (en) | 1983-12-12 | 1984-11-27 | Hochstein Peter A | Shape memory material and method of treating same |
US4619320A (en) * | 1984-03-02 | 1986-10-28 | Memory Metals, Inc. | Subsurface well safety valve and control system |
US4745973A (en) * | 1987-04-23 | 1988-05-24 | Semar James E | Selective running tool for wells |
US5103901A (en) * | 1990-10-12 | 1992-04-14 | Dresser Industries, Inc | Hydraulically operated well packer |
US5203414A (en) * | 1991-03-15 | 1993-04-20 | Schlumberger Technology Corporation | Method of anchoring a device in a wellbore including opening an orifice between two chambers in response to an electrical signal and moving a piston in response to hydrostatic pressure when the orifice is opened |
US5159145A (en) * | 1991-08-27 | 1992-10-27 | James V. Carisella | Methods and apparatus for disarming and arming well bore explosive tools |
US5199497A (en) * | 1992-02-14 | 1993-04-06 | Baker Hughes Incorporated | Shape-memory actuator for use in subterranean wells |
US5226979A (en) | 1992-04-06 | 1993-07-13 | Johnson Service Company | Apparatus including a shape memory actuating element made from tubing and a means of heating |
US5346014A (en) * | 1993-03-15 | 1994-09-13 | Baker Hughes Incorporated | Heat activated ballistic blocker |
US5626581A (en) | 1995-11-27 | 1997-05-06 | Volunteers For Medical Engineering | Implantable bone lengthening apparatus |
US5829531A (en) * | 1996-01-31 | 1998-11-03 | Smith International, Inc. | Mechanical set anchor with slips pocket |
US5878818A (en) * | 1996-01-31 | 1999-03-09 | Smith International, Inc. | Mechanical set anchor with slips pocket |
US6497288B2 (en) * | 1997-09-05 | 2002-12-24 | Schlumberger Technology Corporation | Deviated borehole drilling assembly |
US6216779B1 (en) * | 1997-12-17 | 2001-04-17 | Baker Hughes Incorporated | Downhole tool actuator |
US6062315A (en) * | 1998-02-06 | 2000-05-16 | Baker Hughes Inc | Downhole tool motor |
US6349767B2 (en) | 1998-05-13 | 2002-02-26 | Halliburton Energy Services, Inc. | Disconnect tool |
WO1999066202A1 (en) | 1998-06-15 | 1999-12-23 | Miroslav Remeta | A method and a device for transformation and use of excessive kinetic and potential energy in deceleration/braking of moving bodies for production of electric power |
US6626916B1 (en) | 1998-12-31 | 2003-09-30 | Teresa T. Yeung | Tissue fastening devices and methods for sustained holding strength |
US6436223B1 (en) | 1999-02-16 | 2002-08-20 | International Business Machines Corporation | Process and apparatus for improved module assembly using shape memory alloy springs |
US6427712B1 (en) | 1999-06-09 | 2002-08-06 | Robertshaw Controls Company | Ambient temperature shape memory alloy actuator |
US20020023759A1 (en) * | 2000-02-02 | 2002-02-28 | Deaton Thomas M. | Method and apparatus of operating devices using actuators having expandable or contractable elements |
US6433991B1 (en) | 2000-02-02 | 2002-08-13 | Schlumberger Technology Corp. | Controlling activation of devices |
US6321845B1 (en) | 2000-02-02 | 2001-11-27 | Schlumberger Technology Corporation | Apparatus for device using actuator having expandable contractable element |
US6843322B2 (en) | 2002-05-31 | 2005-01-18 | Baker Hughes Incorporated | Monobore shoe |
WO2004018833A1 (en) | 2002-08-22 | 2004-03-04 | Halliburton Energy Services, Inc. | Shape memory actuated valve |
US6763899B1 (en) | 2003-02-21 | 2004-07-20 | Schlumberger Technology Corporation | Deformable blades for downhole applications in a wellbore |
US20040194969A1 (en) * | 2003-04-02 | 2004-10-07 | Espen Hiorth | Method and device related to a retrievable well plug |
US6896063B2 (en) | 2003-04-07 | 2005-05-24 | Shell Oil Company | Methods of using downhole polymer plug |
US20060207771A1 (en) * | 2005-03-04 | 2006-09-21 | Rios Aristeo Iii | Whipstock anchor |
Non-Patent Citations (3)
Title |
---|
Coronado, Martin P., Advanced Openhole Completions Utilizing a Simplified Zone Isolation System, SPE 77438; Sep.-Oct. 2002, 1-11. |
Ma, Ning U., Design and Performance Evaluation of an Ultradeepwater Subsea Blowout Preventer Control System Using Shape Memory Alloys Actuators, SPE 101080, Sep. 2006, 1-8. |
Song, G. Z., An Innovative Ultradeepwater Subsea Blowout Preventer (SSBOP) Control System Using Shape Memory Alloy Actuators, IADC/SPE 99041, Feb. 2006., 1-7. |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120234530A1 (en) * | 2011-03-15 | 2012-09-20 | Baker Hughes Incorporated | Remote Subterranean Tool Activation System |
CN103443393A (en) * | 2011-03-15 | 2013-12-11 | 贝克休斯公司 | Remote subterranean tool activation system |
US8893807B2 (en) * | 2011-03-15 | 2014-11-25 | Baker Hughes Incorporated | Remote subterranean tool activation system |
US9624744B2 (en) | 2013-07-22 | 2017-04-18 | Baker Hughes Incorporated | Apparatus for subterranean tool actuation using stored torsional spring energy |
US9649780B1 (en) * | 2014-05-15 | 2017-05-16 | United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration | Shape memory alloy rock splitters (SMARS) |
US10407992B2 (en) | 2014-12-17 | 2019-09-10 | Halliburton Energy Services, Inc. | Directional drilling systems, apparatus, and methods |
US11326411B2 (en) * | 2019-06-18 | 2022-05-10 | Baker Hughes Oilfield Operations Llc | Thermal activation of liner hanger for elastomer-less completion |
Also Published As
Publication number | Publication date |
---|---|
GB2454388B (en) | 2011-08-10 |
CA2669776A1 (en) | 2008-01-17 |
US20080011472A1 (en) | 2008-01-17 |
AU2007272662A1 (en) | 2008-01-17 |
NO20090479L (en) | 2009-04-14 |
GB2454388A (en) | 2009-05-06 |
AU2007272662B2 (en) | 2011-09-08 |
WO2008008680A1 (en) | 2008-01-17 |
GB0901812D0 (en) | 2009-03-11 |
CA2669776C (en) | 2012-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7624797B2 (en) | Downhole tool operated by shape memory material | |
EP2340350B1 (en) | Downhole device actuator and method | |
CA2559677C (en) | Modular well tool system | |
EP2122117B1 (en) | Pressure activated locking slot assembly | |
CA3041388C (en) | Well restimulation downhole assembly | |
US20090071659A1 (en) | Anchoring System for Use in a Wellbore | |
WO2004018833A1 (en) | Shape memory actuated valve | |
EP2513415A2 (en) | Retrieval method for opposed slip type packers | |
WO2016032658A1 (en) | Conditional occlusion release device | |
US20040194970A1 (en) | Expandable seal member with shape memory alloy | |
US6554076B2 (en) | Hydraulically activated selective circulating/reverse circulating packer assembly | |
WO2014077830A1 (en) | Assisting retrieval of a downhole tool | |
EP0815344B1 (en) | Whipstock | |
US20180112489A1 (en) | Perforation blocking sleeve for well restimulation | |
US9428977B2 (en) | Multi-stage locking system for selective release of a potential energy force to set a subterranean tool | |
GB2523373A (en) | Connection apparatus | |
AU2018298056B2 (en) | Potential energy actuated valve triggered by collapse of a support member | |
US11215029B2 (en) | Cemented barrier valve protection | |
WO2020096947A2 (en) | Isolation valves |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BAKER HUGHES INCORPORATED, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FAY, PETER J.;REEL/FRAME:018154/0109 Effective date: 20060814 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |