US7565030B2 - Detecting orientation of digital images using face detection information - Google Patents

Detecting orientation of digital images using face detection information Download PDF

Info

Publication number
US7565030B2
US7565030B2 US11024046 US2404604A US7565030B2 US 7565030 B2 US7565030 B2 US 7565030B2 US 11024046 US11024046 US 11024046 US 2404604 A US2404604 A US 2404604A US 7565030 B2 US7565030 B2 US 7565030B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
image
classifiers
orientation
digital
match
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11024046
Other versions
US20060204110A1 (en )
Inventor
Eran Steinberg
Yury Prilutsky
Peter Corcoran
Petronel Bigioi
Leo Blonk
Mihnea Gangea
Constantin Vertan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fotonation Ltd
Original Assignee
FotoNation Vision Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/20Image acquisition
    • G06K9/32Aligning or centering of the image pick-up or image-field
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00221Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
    • G06K9/00228Detection; Localisation; Normalisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/20Image acquisition
    • G06K9/32Aligning or centering of the image pick-up or image-field
    • G06K9/3208Orientation detection or correction, e.g. rotation of multiples of 90 degrees

Abstract

A method of automatically establishing the correct orientation of an image using facial information. This method is based on the exploitation of the inherent property of image recognition algorithms in general and face detection in particular, where the recognition is based on criteria that is highly orientation sensitive. By applying a detection algorithm to images in various orientations, or alternatively by rotating the classifiers, and comparing the number of successful faces that are detected in each orientation, one may conclude as to the most likely correct orientation. Such method can be implemented as an automated method or a semi automatic method to guide users in viewing, capturing or printing of images.

Description

PRIORITY

This application is a Continuation in Part of U.S. patent application Ser. No. 10/608,772, filed Jun. 26, 2003, now U.S. Pat. No. 7,440,593 hereby incorporated by reference.

BACKGROUND

1. Field of the Invention

The invention relates to automatic suggesting or processing of enhancements of a digital image using information gained from identifying and analyzing faces appearing within the image, and in particular method of detection the image orientation using face detection. The invention provides automated orientation detection for photographs taken and/or images detected, acquired or captured in digital form or converted to digital form, by using information about the faces in the photographs and/or images.

2. Description of the Related Art

Viola and Jones in the paper entitled “Robust Real Time Object Detection” as presented in the 2nd international workshop on Statistical and Computational theories of Vision, in Vancouver, Canada, Jul. 31st, 2001, describe a visual object detection framework that is capable of processing images extremely rapidly while achieving high detection rates. The paper demonstrates this framework by the task of face detection. The technique is based on a learning technique where a small number of critical visual features yield a set of classifiers.

Yang et al., IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 1, pages 34-58, give a useful and comprehensive review of face detection techniques January 2002. These authors discuss various methods of face detection which may be divided into four main categories: (i) knowledge-based methods; (ii) feature-invariant approaches, including the identification of facial features, texture and skin color; (iii) template matching methods, both fixed and deformable and (iv) appearance based methods, including eigenface techniques, statistical distribution based methods and neural network approaches. They also discuss a number of the main applications for face detections technology. It is recognized in the present invention that none of the prior art describes or suggests using detection and knowledge of faces in images to create and/or use tools for the enhancement or correction of the images according to the invention as set forth in the claims below, nor as described in detail below as preferred and alternative embodiments.

Blluja, 1997 describes methods of extending the upright, frontal template based face detection system to efficiently handle all in plane rotations, this achieving a rotation invariant face detection system.

a. Faces as Subject Matter

It is well known that human faces are the most photographed subject matter for the amateur and professional photographer. Thus it is possible to assume a high starting percentage for algorithms based on the existence of faces in them.

b. Orientation

The camera is usually held horizontally or vertically, in counter clockwise or clockwise in relations to the horizontal position when the picture is taken, creating what is referred to as a landscape mode or portrait mode, respectively. Thus most images are taken in either one of the three orientations, namely landscape, clockwise portrait and counterclockwise portrait. When viewing images, it is preferable to determine ahead of time the orientation of the camera at acquisition, thus eliminating a step of rotating the image and automatically orienting the image. The system may try to determine if the image was shot horizontally, which is also referred to as landscape format, where the width is larger than the height of an image, or vertically, also referred to as portrait mode, where the height of the image is larger than the width. Techniques may be used to determine an orientation of an image. Primarily these techniques include either recording the camera orientation at an acquisition time using an in camera mechanical indicator or attempting to analyze image content post-acquisition. In-camera methods, although providing precision, use additional hardware and sometimes movable hardware components which can increase the price of the camera and add a potential maintenance challenge. However, post-acquisition analysis may not generally provide sufficient precision. Knowledge of location, size and orientation of faces in a photograph, a computerized system can offer powerful automatic tools to enhance and correct such images or to provide options for enhancing and correcting images.

c. Face Recognition as a Function of Orientation

It is a well known fact for one familiar in the art of face recognition that the human visual system is very sensitive to the orientation of the faces. As a matter of fact, experiments indicated that the way the human mind stores faces is different for upright and inverted faces, as described in Endo, 1982. In particular, recognition of inverted faces is known to be a difficult perceptual task. While the human visual system performs well in recognizing different faces, performing the same task with inverted faces is significantly worse. Such results are illustrated for example in Moses, 1994, where face memory and face recognition is determined to be highly orientation dependent. A detailed review of face recognition of inverted faces is available in Valentine, 1988.

It is therefore only natural that artificial intelligence detection algorithms based on face related classifiers may have the same features of being orientation variant.

d. Image Classifiers for Scene Analysis:

Even though human beings have no problem to interpret images semantically, the challenge to do so using artificial intelligence is not that straight forward. A few methods are available to those familiar in the art of image and pattern recognition that separate images using a learning based descriptor space. Such methods are using a training set and a maximization methods of likelihood. Examples of such methods includes the Adatron (1989) method as described by Analauf et. al incorporated herein by reference. Other work includes scene analysis such as the work by Le Saux Bertrand et al (2004).

SUMMARY OF THE INVENTION

In view of the above, a method of analyzing and processing a digital image using the results of face detection algorithms within said image to determine the correct orientation of the image is provided.

A face detection algorithm with classifiers that are orientation sensitive, or otherwise referred to as rotation variant, is applied to an image, or a subsampled resolution of an image. The image is then rotated, or the classifiers are rotated, and the search is repeated for the orientations that are under question. Based on the results of the detection, the image with the highest amount of faces detected, and or the orientation with the highest face detection confidence level, is the one estimated to be the correct orientation of the image.

The digital image may be digitally-acquired and/or may be digitally-captured. Decisions for processing the digital image based on said face detection, selecting one or more parameters and/or for adjusting values of one or more parameters within the digital image may be automatically, semi-automatically or manually performed.

Values of orientation may be adjusted arbitrarily or in known intervals, e.g., of 90 degrees, such that a rotation value for the digital image may be determined.

The method may be performed within a digital acquisition device or an external device or a combination thereof. Rotation can also be applied as part of the transfer process between devices.

The face pixels may be identified, a false indication of another face within the image may be removed. The face pixels identifying may be automatically performed by an image processing apparatus, and a manual verification of a correct detection of at least one face within the image may be provided.

A method is further provided for detecting an orientation of a digital image using statistical classifier techniques. A set of classifiers are applied to a digital image in a first orientation and a first level of match between the digital image at the first orientation and the classifiers is determined. The digital image is rotated to a second orientation, and the classifiers are applied to the rotated digital image at the second orientation. A second level of match is determined between the rotated digital image at the second orientation and the classifiers. The first and second levels of match are compared. It is determined which of the first orientation and the second orientations has a greater probability of being a correct orientation based on which of the first and second levels of match, respectively, comprises a higher level of match.

The method may further include rotating the digital image to a third orientation, applying the classifiers to the rotated digital image at the third orientation, and determining a third level of match between the rotated digital image at the third orientation and the classifiers. The third level of match is compared with the first level of match or the second level of match, or both. It is determined which of two or more of the first orientation, the second orientation and the third orientation has a greater probability of being a correct orientation based on which of the corresponding levels of match is greater.

A method is also provided for detecting an orientation of a digital image using statistical classifier techniques. The method includes applying a set of classifiers to a digital image in a first orientation and determining a first level of match between the digital image at the first orientation and the classifiers. The set of classifiers is rotated a first predetermined amount, the classifiers rotated the first amount are applied to the digital image at the first orientation. A second level of match is determined between the digital image at the first orientation and the classifiers rotated the first amount. The first and second levels of match are compared, and it is determined which of the first and second levels of match is greater in order to determine whether the first orientation is a correct orientation of the digital image. A rotation of the classifiers by a second amount my be performed and the method performed with three relatively rotated sets of classifiers, and so on.

One or more processor readable storage devices are also provided having processor readable code embodied thereon. The processor readable code programs one or more processors to perform any of the methods for detecting an orientation of a digital image using statistical classifier techniques briefly summarized above.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 a is a flow diagram that illustrates a main orientation workflow based on rotation of a digital image that includes one or more faces.

FIG. 1 b is a flow diagram that illustrates a main orientation workflow based on rotation of classifiers relative to an orientation of a digital image that includes one or more faces.

FIG. 1 c describes an exemplary implementation of the process illustrated at FIG. 1 a and/or FIG. 1 b.

FIG. 2 a illustrates an ellipse-based orientation classifier that may be used in a process in accordance with a preferred embodiment.

FIG. 2 b illustrates an ellipse-based classifier system applied to a facial image.

FIG. 3 a illustrates four different potential orientations of a single image.

FIG. 3 b illustrates different orientations of classifiers applied to a same image.

FIG. 4 a illustrates a matching of ellipse-based classifiers within images.

FIG. 4 b illustrates a matching of complex classifiers with an image.

INCORPORATION BY REFERENCE

What follows is a cite list of references each of which is, in addition to those references otherwise cited in this application, and that which is described as background, the invention summary, the abstract, the brief description of the drawings and the drawings themselves, hereby incorporated by reference into the detailed description of the preferred embodiments below, as disclosing alternative embodiments of elements or features of the preferred embodiments not otherwise set forth in detail below. A single one or a combination of two or more of these references may be consulted to obtain a variation of the preferred embodiments described in the detailed description herein:

U. S. Pat. Nos. RE33682, RE31370, U.S. Pat. Nos. 4,047,187, 4,317,991, 4,367,027, 4,638,364, 5,291,234, 5,488,429, 5,638,136, 5,710,833, 5,724,456, 5,781,650, 5,812,193, 5,818,975, 5,835,616, 5,870,138, 5,900,909, 5,978,519, 5,991,456, 6,097,470, 6,101,271, 6,128,397, 6,148,092, 6,151,073, 6,188,777, 6,192,149, 6,249,315, 6,263,113, 6,268,939, 6,282,317, 6,301,370, 6,332,033, 6,393,148, 6,404,900, 6,407,777, 6,421,468, 6,438,264, 6,456,732, 6,459,436, 6,473,199, 6,501,857, 6,504,942, 6,504,951, 6,516,154, and 6,526,161;

U. S. published patent applications no. 2004/40013304, 2004/0223063, 2004/0013286. 2003/0071908, 2003/0052991, 2003/0025812, 2002/20102024, 2002/0172419, 2002/0114535, 2002/0105662, and 2001/0031142;

Japanese patent application no. JP5260360A2;

British patent application no. GB0031423.7; and

  • Anlauf, J. K. and Biehl, M.: “The adatron: and adaptive perception algorithm”. Neurophysics Letters, 10:687-692, 1989.
  • Baluja & Rowley, “Neural Network-Based Face Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 1, pages 23-28, January 1998
  • Baluja, Shumeet in “Face Detection with In-Plane rotation: Early Concepts and Preliminary Results”, Technical Report JPRC-TR-97-001
  • Endo, M., “Perception of upside-down faces: and analysis form the viewpoint of cue saliency”, in Ellis, H. Jeeves, M., Newcombe, F,. and Young, A., editors, Aspects of Face Processing, 53-58, 1986, Matnus Nijhoff Publishers
  • Moses, Yael and Ullman, Shimon and Shimon Edelman in “Generalization to Novel Images in Upright and Inverted Faces”, 1994.
  • Le Saux, Bertrand and Amato, Giuseppe: “Image Classifiers for Scene Analysis”, International Conference on Computer Vision and Graphics (ICCVG'04), Warsaw, Poland, September 2004
  • Valentine, T., Upsaide Down Faces: “A review of the effect of inversion and encoding activity upon face recognition” , 1988, Acta Psychologica, 61:259-273.
  • Viola and Jones “Robust Real Time Object Detection”, 2nd international workshop on Statistical and Computational theories of Vision, in Vancouver, Canada, July 31st, 2001,
  • Yang et al., IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, no. 1, pp 34-58 (January 2002).
ILLUSTRATIVE DEFINITIONS

“Face Detection” involves the art of detecting faces in a digital image. One or more faces may be first isolated and/or identified within a larger digital image prior to further processing based at least in part on the detection of the faces. Face detection includes a process of determining whether a human face is present in an input image, and may include or is preferably used in combination with determining a position and/or other features, properties, parameters or values of parameters of the face within the input image;

“Image-enhancement” or “image correction” involves the art of modifying a digital image to improve its quality or according to another selected manual or automatic input criteria. A “global” modification is one that is applied to an entire image or substantially the entire image, while a “selective” modification is applied differently to different portions of the image or to only a selected portion of the image.

A “pixel” is a picture element or a basic unit of the composition of a digital image or any of the small discrete elements that together constitute an image;

A “digitally-captured image” includes an image that is digitally located and held in a detector, preferably of a portable digital camera or other digital image acquisition device.

A “digitally-acquired image” includes an image that is digitally recorded in a permanent file and/or preserved in a more or less permanent digital form.

“A digitally-detected image” is an image comprising digitally detected electromagnetic waves.

“Classifiers” are generally reference parameters selectively or automatically correlated or calibrated to some framework or absolute reference criteria. For example, one or more orientation classifiers in a 2-dimensional image may be configured according to a proper and/or selected orientation of a detected face within a digital image. Such classifiers may be calibrated or correlated with a detected facial orientation such that an overall digital image containing a face may be oriented according to these calibrated or correlated classifiers.

Classifiers may be statistical or absolute: Statistical classifiers assign a class ωi so that given a pattern ŷ, the most probable P(ω1|ŷ) is the largest. In many cases, it is not desired to actually calculate P(ωi|ŷ), but rather to find (i) so that ωi will provide the largest P(ωi|ŷ). The accuracy of a statistical classifier generally depends on the quality of training data and of the algorithm used for classification. The selected populations of pixels used for training should be statistically significant. This means that a minimum number of observations are generally required to characterize a particular site to some selected or acceptable threshold level of error.

FIG. 2 a and FIG. 2 b illustrate in a graphical form non-exhaustive examples of classifiers. Objects 210, 212, and 214 in FIG. 2 a represent a simple ellipse classifier, in varying sizes. FIG. 2 b illustrates a complex classifier of a face, which is made of simpler classifiers. In this case, the mouth, 224 and the eyes 226, 228 correspond to ellipse classifiers 210 and 214 as defined in FIG. 2 a.

The classifiers may not necessarily be only of certain shape. More complex classifiers can be of a more abstract physical nature. Alternatively, a classifier can be of color data. For example, a color classifier may be a classifier with higher content of blue towards the top and higher content of green or brown towards the bottom.

An “image orientation” is a rotational position of an image relative to a selected or permanent coordinate or coordinate system that may itself be determined relative to an absolute spatial system, such as the earth, or a system determined or selected within a frame of a digital image. Generally herein, an image orientation is identified relative to an orientation of one or more classifiers, such as the elliptical classifiers illustrated at 2 a-2 b, 3 b and 4 a-4 b.

As another example, an image orientation may identified relative to a horizontal/vertical system, such as illustrated in FIG. 3 a. The image 310 may be rotated relative to this coordinate system or to an orientation of one or more elliptical classifiers by 90° counter clockwise 320 or clock wise 330. A fourth orientation 340 is a 180° degree rotation which is also illustrated in FIG. 3 a. For most practical reasons, a 180 degree orientation is typically not a desired or viable situation for hand held pictures. However, technically and theoretically, the up-side-down orientation can be included in the algorithm Rotational positions may be defined relative to absolute or image-based coordinates, and rotations of the image and/or of the classifiers may be of arbitrary angular extent, e.g., 1° or finer, 5°, 10°, 15°, 30°, 45°, or others, may be selected in accordance with embodiments of the invention.

Classifier orientation is illustrated in FIG. 3 b. The classifiers of FIG. 3 b are oriented in three orientations corresponding to the image orientations shown. Object 360 represents a “correctly” oriented image, as selected or built-in to the digital system, block 350 represents a counter clockwise orientation, and block 370 represents a clockwise orientation. A “correct” orientation may be determined based on a combined level of match of multiple classifiers and/or on relative positions of the classifiers once matched to their respective facial regions. These regions may include the two eyes and mouth of a detected face, and may also include an outline of a person's head or entire face. The arrow labeled “N” in the example of FIG. 3 b points in a direction that is selected or determined to be the “correct” vertical axis of the image. The orientations illustrated at FIG. 3 b correspond to illustrative images 310, 320 and 330 in FIG. 3 a.

“Matching image classifiers to images” involves correlating or assigning classifier constructs to actual digital images or portions or sub-samplings of digital images. Such matching is illustrated at FIGS. 4 a and 4 b. According to FIG. 4 a different sized ellipses, as already described as being examples of classifiers, e.g., ellipses 210, 212 and 214 of FIG. 2 a, are matched to various objects, e.g., eyes and mouth regions, in facial images. The matching is preferably performed for different image and/or facial region orientations, e.g., 400 and 410 of FIG. 4 a, to determine a correct or selected orientation of the digital image.

A correctly oriented ellipse may, however, match different objects in two orientations of an image or may match different objects than desired in images regardless of orientation. Referring to FIG. 4 a, e.g., ellipse 214 matches correctly the lips 414 in image 410 but also the nose bridge 404 when the image is “incorrectly” oriented or not in the desired orientation. The smaller ellipse 410 matches both instances of eyes 412 and 413 in the correctly oriented image 410. This example illustrates an instance wherein it is not sufficient to use a single classifier, as there may be cases of false detection. This illustrates an advantage of the process of determining the orientation of faces based on statistical classifiers in accordance with a preferred embodiment of the present invention.

Concatenation is generally used herein to describe a technique wherein classifiers, objects, axes, or parameters are connected, linked, correlated, matched, compared or otherwise related according to a selected or built-in set of criteria, and/or to describe sequential performance of operation or processes in methods in accordance with embodiments of the invention. For example, an image may be determined to be properly aligned when axes of a pair of eye ellipses are determined to be collinear or the image is oriented or re-oriented such that they are made to be collinear, or when an image and/or classifiers are rotated to cause the foci of eye ellipses to form an isosceles triangle with a center of a mouth ellipse, etc.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred embodiments are described below including methods and devices for providing or suggesting options for determining image orientation automatically using face detection. A preferred embodiment includes an image processing application whether implemented in software or in firmware, as part of the image capture process, such as in a digital camera, or as part of post processing, such as a desktop, in the camera as a post processing background process or on a server application. This system receives images in digital form, where the images can be translated into a grid representation including multiple pixels.

The preferred embodiment describes a method of re-using face detection information in different orientations of the image to determine the orientation with the highest probability to be the correct one. The information regarding the location and size of faces in an image assist in determining correct orientation.

Advantages of the preferred embodiments include the ability to automatically perform or suggest or assist in the determination of the correct orientation of an image. Another advantage is that the processing may be automatically performed and/or suggested based on this information. Such automatic processing is fast enough and efficient enough to handle multiple images in close to real time, or be used for a single image as part of the image processing in the acquisition device.

Many advantageous techniques are provided in accordance with preferred and alternative embodiments set forth herein. For example, this method of detection the image orientation can be combined wit other methods of face detection, thus improving the functionality, and re-purposing the process for future applications.

Two or more methods of detecting faces in different orientations may be combined to achieve better accuracy and parameters of a single algorithm may be concatenated into a single parameter. The digital image may be transformed to speed up the process, such as subsampling or reducing the color depth. The digital image may be transformed to enhance the accuracy such as preprocessing stage for improving the color balance, exposure or sharpness. The digital image may post processed to enhance the accuracy such asremoval of false positives as a post processing process, based on parameters and criteria ourside of the face detection algorithm.

Values of orientation may be adjusted such that a rotation value for the digital image is determined. This technique may be implemented for supporting arbitrary rotation or fixed interval rotation such as 90 degree rotation.

The method may be performed within any digital image capture device, which as, but not limited to digital still camera, phone handset with built in camera, web camera or digital video camera. Determining which of the sub-group of pixels belong to which of the group of face pixels may be performed. The determining of the initial values of one or more parameters of pixels may be calculated based on the spatial orientation of the one or more sub-groups that correspond to one or more facial features. The spatial orientation of the one or more sub-groups that correspond to one or more facial features may be calculated based on an axis of an ellipse fit to the sub-group. The adjusted values of pixels within the digital image may be rounded to a closest multiple of 90 degrees. The initial values may be adjusted to adjusted values for re-orienting the image to an adjusted orientation. The one or more facial features may include an eye, two eyes, two eyes and a mouth, an eye, a mouth, hairline, ears, nostrils, nose bridge, eyebrows or a nose, or combinations thereof. On a more abstract level the features used for the detection of objects in general in the image, or faces specifically may be determined through a mathematical classifiers that are either deduced via a learning process or inserted into the system. One example of such classifiers are described by Viola Jones in the paper incorporated herein by reference. Other classifiers can be the eigenfaces, which are the basis functions that define images with faces.

Each of the methods provided are preferably implemented within software and/or firmware either in the camera or with external processing equipment. The software may also be downloaded into the camera or image processing equipment. In this sense, one or more processor readable storage devices having processor readable code embodied thereon are provided. The processor readable code programs one or more processors to perform any of the above or below described methods.

FIG. 1 a illustrates a process flow according to a preferred embodiment. The input is an image which can come from various sources. According to this exemplary procedure, an image may be opened by a software, firmware or other program application in block 102. The process may be initiated when a photographer takes a picture at block 103, or as an automatic background process for an application or acquisition device at block 104.

The classifiers are preferably pre-determined for the specific image classification. A detailed description of the learning process to create the appropriate classifiers can be found in the paper by Viola and Jones that has been cited and incorporated by reference hereinabove. The classifiers are loaded, at step 108, into the application.

The image is preferably rotated into three orientations at block 110. Only two or more than three orientation may alternatively be used: The preferred orientations are counter clockwise 112, no rotation 114 and clockwise, 116. Note that a fourth orientation which is the upside down 118 is technically and theoretically plausible but is not preferred due to the statistical improbability of such images. One or more images rotated by 1°, or a few seconds or minutes, or by 3° or 45°, or an arbitrary amount, may also be used.

The three images are then provided to the face detection software at block 120 and the results are analyzed at block 130. The image with the highest probability of detection of faces is determined at block 140 to be most likely the one with the right orientation.

FIG. 1 b is an alternative embodiment, wherein the classifiers are rotated as opposed to the images. By doing so, even if the results are similar, the execution time is highly optimized because the process is preferably not repeated over three images, and is instead performed over only a single image with two, three or more times the number of classifiers. Preferably, two sets of rotated classifiers are used along with an unrotated set. According to FIG. 1 b, the classifiers loaded at block 108 are rotated at block 160 to create counter clockwise classifiers 162, original classifiers 164 and clockwise classifiers 166. As explained above, if desired, a fourth set of classifiers 168 of 180 degree rotation can be generated, and in fact, any number of classifier sets may be generated according to rotations of arbitrary or selected amounts in accordance with alternative embodiments of this invention. In a third embodiment, both the image and the classifiers may be rotated.

The classifiers are preferably combined into a single set of classifiers at block 170. The concatenation of the classifiers is preferably performed in such a manner that an false eliminating process would still be optimized. Note that these operations need not be executed at the time of analysis, but can be prepared prior to running the process on an image, as a preparatory step. Also note that the two approaches may be combined, where some classifiers may or may not be used depending on the results of the previous classifies. It may be possible to merge the preferred three sets, or an arbitrary number of two or more sets, of rotated classifiers.

Part-way through, the common classifiers one would branch into the specific classifiers for each orientation. This would speed up the algorithm because the first part of the classification would be common to the three orientations.

In another embodiment, where the classifier set contains rotation invariant classifiers it is possible to reduce the number of classifiers which must be applied to an image from 3N to 3N-2M where N is the number of classifiers in the original classifier set and M is the number of rotation invariant classifiers. The image is then prepared at block 158 to run the face detection algorithm at block 122. Such preparation varies on the algorithm and can include different operations such as converting the image format, the color depth, the pixel representation etc. In some cases the image is converted, such as described by Viola and Jones, to form a pixel based representation from an integral one. In other cases the image may be subsampled to reduce computation, converted to a gray scale representation, or various image enhancement algorithms such as edge enhancement, sharpening, blurring, noise reduction etc. may be applied to the image. Numerous operations on the image in preparation may also be concatenated. The face detection algorithm is run once on the image at block 122, using the multiple set of classifiers 170. The results are then collated at block 128, according to each of the three orientations of the preferred classifier set. The number of surviving face regions for each orientation of the classifier set are next compared at block 130. The orientation with the highest number of surviving face regions is determined at block 140—to be the one with the highest likelihood orientation.

In an additional embodiment, the algorithm handles may handle cases of false detection of faces. The problem occurs where in some cases regions that are not faces are marked as potential faces. In such cases, it is not enough to count the occurrence of faces, but the probability of false detection and missed faces needs to be accounted for.

Such algorithm which is an expansion of Block 140 of FIGS. 1 a and 1 b is described with reference to the flow diagram illustrated at FIG. 1 c:

    • Some representations used in the algorithm include the following:
    • DIR: the most populated direction and the maximal number of detected faces on any direction (DIR is on of CCW, O, CW).
    • M: the minimal non-zero number of detected faces on any direction (m).
    • NZ: the number of populated directions (directions for which we have detection).
    • N: the total number of detected faces.
    • CONST: probability factor, which is based on empirical results can be from 0.6 to 0.9.

An exemplary orientation decision may be determined as follows:

    • 1410 NZ=0, no faces are found in the image, image orientation is, 1490 DEFAULT (keep image as it is)
    • 1420 NZ=1 there is as single face in the image, image orientation is DIR
    • 1421 If NZ>1
    • 1430 if NZ*m/N<=CONST there are multiple faces, multiple orientations with a predominant orientation, image orientation is Dir
    • Therefore 1431 NZ*m/N>CONST there are multiple faces, multiple orientations without a predominant orientation, image orientation is, 1490 DEFAULT (no decision can be taken). (keep image as it is)

Automatic Orientation detection and in particular orientation detection using faces, particularly for digital image processing applications according to preferred and alternative embodiments set forth herein, are further advantageous in accordance with various modifications of the systems and methods of the above description as may be understood by those skilled in the art, as set forth in the references cited and incorporated by reference herein and as may be otherwise described below.

For example, an apparatus according to another embodiment may be provided for detection and recognition of specific features in an image using an eigenvector approach to face detection (see, e.g., U.S. Pat. No. 5,710,833 to Moghaddam et al., incorporated by reference). Additional eigenvectors may be used in addition to or alternatively to the principal eigenvector components, e.g., all eigenvectors may be used. The use of all eigenvectors may be intended to increase the accuracy of the apparatus to detect complex multi-featured objects. Such eigenvectors are orientation sensitive, a feature that can be utilized according to this invention.

Faces may be detected in complex visual scenes and/or in a neural network based face detection system, particularly for digital image processing in accordance with preferred or alternative embodiments herein (see, e.g., U.S. Pat. No. 6,128,397 to Baluja & Rowley; and “Neural Network-Based Face Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 1, pages 23-28, January 1998 by the same authors, each reference being hereby incorporated by reference. An image may be rotated prior to the application of the neural network analysis in order to optimize the success rate of the neural-network based detection (see, e.g., U.S. Pat. No. 6,128,397, incorporated by reference). This technique is particularly advantageous when faces are oriented vertically. Face detection in accordance with preferred and alternative embodiments, and which are particularly advantageous when a complex background is involved, may use one or more of skin color detection, spanning tree minimization and/or heuristic elimination of false positives (see, e.g., U.S. Pat. No. 6,263,113 to Abdel-Mottaleb et al., incorporated by reference). Alternatively, according to this invention, the neural-network classifiers may be rotated, to determine the match based the image orientation, as described by this invention.

In the context of automatic image rotation, and determining image orientation, an embodiment including electrical, software and/or firmware components that detect blue sky within images may be included (see, e.g., U.S. Pat. No. 6,504,951 to Luo et al., incorporated by reference) This feature allows image orientation to be determined once the blue-sky region(s) are located and analyzed in an image. In accordance with an alternative embodiment, other image aspects are also used in combination with blue sky detection and analysis, and in particular the existence of facial regions in the image, to determine the correct orientation of an image. In accordance with this invention, such filters, including color based filters with specific orientation characteristics to them can be introduced into the system as added classifiers, this expanding the scope of the invention form face detection to generic automatic orientation detection using generic image object analysis.

Another embodiment includes scene recognition method and a system using brightness and ranging mapping (see, e.g., US published patent application 2001/0031142 to Whiteside, incorporated by reference). Auto-ranging and/or brightness measurement may be used as orientation specific features for this invention.

In further preferred and alternative embodiments, the orientation may be suggested to a user in the acquisition device after the image has been acquired or captured by a camera (see, e.g., U.S. Pat. No. 6,516,154 to Parulski et al., incorporated by reference). According to these embodiments, a user may confirm the new orientation before saving a picture or before deciding to re-save or delete the picture. The user may choose to re-take a picture using different settings on the camera. Suggestion for improvements may be made by the camera user-interface.

In preferred embodiments herein, automatically or semi-automatically improving the appearance of faces in images based on automatically and/or manually detecting such facial images in the digital image is an advantageous feature (see also US published patent application 20020172419, to Lin et al., incorporated by reference) Lightness contrast and color level modification of an image may be performed to produce better results. Moreover, using such information for detecting orientation, may provide assistance as part of an in-camera acquisition process to perform other face related operations such as composition or a slide show as may be recited at U.S. patent application Ser. No. 10/608,772, filed Jun. 26, 2003, hereby incorporated by reference.

Based on the detection of the correct orientation, Image enhancement according to preferred and alternative embodiment herein may be applied to a face region or face regions only, or the enhancement may be applied to the entire image, or selective and distinct corrections may be applied to both background and foreground regions, particularly facial regions, based on knowledge of the presence of faces in the image and/or other image regions such as blue sky or other detectable features.

In further embodiments, various schemes may be used for selecting an area or areas of interest from an electronically captured image, most preferably areas including faces or facial regions (see also UK patent application number GB0031423.7 entitled “automatic cropping of electronic images”, incorporated by reference). Regions of interest may be automatically or semi-automatically selected within an image in response to a selection signal (see, e.g., US published patent application 2003/0025812, incorporated by reference).

While an exemplary drawings and specific embodiments of the present invention have been described and illustrated, it is to be understood that that the scope of the present invention is not to be limited to the particular embodiments discussed. Thus, the embodiments shall be regarded as illustrative rather than restrictive, and it should be understood that variations may be made in those embodiments by workers skilled in the arts without departing from the scope of the present invention as set forth in the claims that follow and their structural and functional equivalents.

In addition, in methods that may be performed according to preferred embodiments herein, the operations have been described in selected typographical sequences. However, the sequences have been selected and so ordered for typographical convenience and are not intended to imply any particular order for performing the operations, unless a particular ordering is expressly provided or understood by those skilled in the art as being necessary.

Claims (76)

1. A method of detecting an orientation of a digital image using statistical classifier techniques comprising:
using a processor to perform the following steps:
(a) applying a set of classifiers to a digital image in a first orientation and determining a first level of match between said digital image at said first orientation and said classifiers;
(b) rotating said digital image to a second orientation, applying the classifiers to said rotated digital image at said second orientation, and determining a second level of match between said rotated digital image at said second orientation and said classifiers;
(c) comparing said first and second levels of match between said classifiers and said digital image and between said classifiers and said rotated digital image, respectively; and
(d) determining which of the first orientation and the second orientations has a greater probability of being a correct orientation based on which of the first and second levels of match, respectively, comprises a higher level of match;
(e) rotating said digital image to a third orientation, applying the classifiers to said rotated digital image at said third orientation, and determining a third level of match between said rotated digital image at said third orientation and said classifiers;
(f) comparing said third level of match with said first level of match or said second level of match, or both; and
(g) determining which of two or more of the first orientation, the second orientations and the third orientation has a greater probability of being a correct orientation based on which of the two or more the first, second and third levels of match, respectively, comprises a higher level of match.
2. The method of claim 1, wherein the rotating to the second orientation and the rotating to the third orientation comprise rotations in opposite directions.
3. The method of claim 1, wherein the second orientation and the third orientation comprise orientations of the digital image that are relatively rotated from the first orientation, each by an acute or obtuse amount, in opposite directions.
4. The method of claim 1, wherein said classifiers comprise face detection classifiers.
5. The method of claim 4, wherein said classifiers comprise elliptical classifiers.
6. The method of claim 5, wherein said elliptical classifiers are oriented at known orientations.
7. The method of claim 4, wherein said classifiers correspond to regions of a detected face.
8. The method of claim 7, wherein said regions include an eye, two eyes, a nose, a mouth, or an entire face, or combinations thereof.
9. The method of claim 1, wherein said classifiers comprise color based classifiers.
10. The method of claim 1, wherein said classifiers comprise image classifiers for scene analysis.
11. The method of claim 10, wherein said classifiers based on scene analysis comprise perception-based classifiers.
12. The method of claim 1, wherein said classifiers comprise face detection classifiers, color classifiers, semantic-based classifiers, scene analysis classifiers, or combinations thereof.
13. The method of claim 1, further comprising preparing said digital image prior to applying said classifiers to said digital image and determining said level of match between said digital image and said classifiers.
14. The method of claim 13, wherein said preparing said digital image comprises subsampling, color conversion, edge enhancement, blurring, sharpening, tone reproduction correction, exposure correction, gray scale transformation, region segmentation, cropping, or combinations thereof.
15. The method of claim 13, wherein said preparing said digital image includes subsampling.
16. The method of claim 13, wherein said preparing said digital image includes image quality correcting.
17. The method of claim 1, farther comprising;
(h) rotating said digital image to a fourth orientation, applying the classifiers to said rotated digital image at said fourth orientation, and determining a fourth level of match between said rotated digital image at said fourth orientation and said classifiers;
(f) comparing said fourth level of match with said first level of match, said second level of match, or said third level of match, or combinations thereof; and
(g) determining which of two or more of the first orientation, the second orientation, the third orientation, and the fourth orientation has a greater probability of being a correct orientation based on which of the two or more of the first, second, third, and fourth levels of match, respectively, comprises a higher level of match.
18. The method of claim 17, wherein said second and third orientations comprise 90° opposite rotations of said digital image from said first orientation, and said fourth rotations comprises a 180° rotation of said digital image from said first orientation.
19. The method of claim 1, wherein said second and third orientations comprise 90° opposite rotations of said digital image from said first orientation.
20. A method of detecting an orientation of a digital image using statistical classifier techniques comprising:
using a processor to perform the following steps:
(a) applying a set of classifiers to a digital image in a first orientation and determining a first level of match between said digital image at said first orientation and said classifiers;
(b)rotating said set of classifiers a first predetermined amount, applying the classifiers rotated said first amount to said digital image at said first orientation, and determining a second level of match between said digital image at said first orientation and said classifiers rotated said first amount
(c) comparing said first and second levels of match between said classifiers and said digital image and between said rotated classifiers and said digital image, respectively; and
(d) determining which of the first and second levels of match, respectively, comprises a higher level of match in order to determine whether said first orientation is a correct orientation of said digital image;
(e) rotating said set of classifiers a second predetermined amount, applying the classifiers rotated said second amount to said digital image at said first orientation, and determining a third level of match between said digital image at said first orientation and said classifiers rotated said second amount;
(f) comparing said third level of match with said first level of match or said second level of match, or both; and
(g) determining which of two or more of the first orientation, the second orientations and the third orientation has a greater probability of being a correct orientation based on which of the two or more of the first, second and third levels of match, respectively, comprises a higher level of match.
21. The method of claim 20, wherein the rotating by the first and second amounts comprise rotations in opposite directions.
22. The method of claim 20, wherein the first and second amounts comprise acute or obtuse amounts equal in magnitude and opposite in direction.
23. The method of claim 20, wherein said classifiers comprise face detection classifiers.
24. The method of claim 23, wherein said classifiers comprise elliptical classifiers.
25. The method of claim 24, wherein said elliptical classifiers are initially oriented at known orientations and, when rotated by said first and second amounts, are rotated to different known orientations.
26. The method of claim 23, wherein said classifiers correspond to regions of a detected face.
27. The method of claim 26, wherein said regions include an eye, two eyes, a nose, a mouth, or an entire face, or combinations thereof.
28. The method of claim 20, wherein said classifiers comprise color based classifiers.
29. The method of claim 20, wherein said classifiers comprise image classifiers for scene analysis.
30. The method of claim 29, wherein said classifiers based on scene analysis comprise perception-based classifiers.
31. The method of claim 20, wherein said classifiers comprise face detection classifiers, color classifiers, semantic-based classifiers, scene analysis classifiers, or combinations thereof.
32. The method of claim 20, further comprising preparing said digital image prior to applying said classifiers to said digital image and determining said level of match between said digital image and said classifiers.
33. The method of claim 32, wherein said preparing said digital image comprises subsampling, color conversion, edge enhancement, blurring, sharpening, tone reproduction correction, exposure correction, gray scale transformation, region segmentation, cropping, or combinations thereof.
34. The method of claim 32, wherein said preparing said digital image includes subsampling.
35. The method of claim 32, wherein said preparing said digital image includes image quality correcting.
36. The method of claim 20, farther comprising;
(h) rotating said set of classifiers a third predetermined amount, applying the classifiers rotated by said third amount to said digital image at said first orientation, and determining a fourth level of match between said digital image at said first orientation and said classifiers rotated by said third amount;
(f) comparing said fourth level of match with two or more of said first level of match, said second level of match, and said third level of match; and
(g) determining which of the two or more of the unrotated classifiers, and those rotated by the first amount, the second amount, and the third amount has a greater probability of matching the first orientation of the digital image based on which of the two or more of the first, second, third, and fourth levels of match, respectively, comprises a higher level of match.
37. The method of claim 36, wherein said first and second amounts comprise 90° opposite rotations of said set of classifiers from an initial orientation, and said third amount comprises a 180° rotation of said set of classifiers.
38. The method of claim 20, wherein said first and second amounts comprise 90° opposite rotations of said set of classifiers from an initial orientation.
39. One or more processor readable storage devices having processor readable code embodied thereon, said processor readable code for programming one or more processors to perform a method of detecting an orientation of a digital image using statistical classifier techniques, the method comprising:
(a) applying a set of classifiers to a digital image in a first orientation and determining a first level of match between said digital image at said first orientation and said classifiers;
(b) rotating said digital image to a second orientation, applying the classifiers to said rotated digital image at said second orientation, and determining a second level of match between said rotated digital image at said second orientation and said classifiers;
(c) comparing said first and second levels of match between said classifiers and said digital image and between said classifiers and said rotation digital image, respectively; and
(d) determining which of the first orientation and the second orientations has a greater probability of being a correct orientation based on which of the first and second levels of match, respectively, comprises a higher level of match
(e) rotating said digital image to a third orientation, applying the classifiers to said rotated digital image at said third orientation, and determining a third level of match between said rotated digital image at said third orientation and said classifiers;
(f) comparing said third level of match with said first level of match or said second level of match, or both; and
(g) determining which of two or more of the first orientation, the second orientations and the third orientation has a greater probability of being a correct orientation based on which of the two or more the first, second and third levels of match, respectively, comprises a higher level of match.
40. The one or more storage devices of claim 39, wherein the rotating to the second orientation and the rotating to the third orientation comprise rotations in opposite directions.
41. The one or more storage devices of claim 39, wherein the second orientation and the third orientation comprise orientations of the digital image that are relatively rotated from the first orientation, each by an acute or obtuse amount, in opposite directions.
42. The one or more storage devices of claim 39, wherein said classifiers comprise face detection classifiers.
43. The one or more storage devices of claim 42, wherein said classifiers comprise elliptical classifiers.
44. The one or more storage devices of claim 43, wherein said elliptical classifiers are oriented at known orientations.
45. The one or more storage devices of claim 42, wherein said classifiers correspond to regions of a detected face.
46. The one or more storage devices of claim 45, wherein said regions include an eye, two eyes, a nose, a mouth, or an entire face, or combinations thereof.
47. The one or more storage devices of claim 39, wherein said classifiers comprise color based classifiers.
48. The one or more storage devices of claim 39, wherein said classifiers comprise image classifiers for scene analysis.
49. The one or more storage devices of claim 48, wherein said classifiers based on scene analysis comprise perception-based classifiers.
50. The one or more storage devices of claim 39, wherein said classifiers comprise face detection classifiers, color classifiers, semantic-based classifiers, scene analysis classifiers, or combinations thereof.
51. The one or more storage devices of claim 39, the method further comprising preparing said digital image prior to applying said classifiers to said digital image and determining said level of match between said digital image and said classifiers.
52. The one or more storage devices of claim 51, wherein said preparing said digital image comprises subsampling, color conversion, edge enhancement, blurring, sharpening, tone reproduction correction, exposure correction, gray scale transformation, region segmentation, cropping, or combinations thereof.
53. The one or more storage devices of claim 51, wherein said preparing said digital image includes subsampling.
54. The one or more storage devices of claim 51, wherein said preparing said digital image includes image quality correcting.
55. The one or more storage devices of claim 39, the method further comprising;
(h) rotating said digital image to a fourth orientation, applying the classifiers to said rotated digital image at said fourth orientation, and determining a fourth level of match between said rotated digital image at said fourth orientation and said classifiers;
(f) comparing said fourth level of match with said first level of match, said second level of match, or said third level of match, or combinations thereof; and
(g) determining which of two or more of the first orientation, the second orientation, the third orientation, and the fourth orientation has a greater probability of being a correct orientation based on which of the two or more of the first, second, third, and fourth levels of match, respectively, comprises a higher level of match.
56. The one or more storage devices of claim 55, wherein said second and third orientations comprise 90° opposite rotations of said digital image from said first orientation, and said fourth rotations comprises a 180° rotation of said digital image from said first orientation.
57. The one or more storage devices of claim 39, wherein said second and third orientations comprise 90° opposite rotations of said digital image from said first orientation.
58. One or more processor readable storage devices having processor readable code embodied thereon, said processor readable code for programming one or more processors to perform a method of detecting an orientation of a digital image using statistical classifier techniques, the method comprising:
(a) applying a set of classifiers to a digital image in a first orientation and determining a first level of match between said digital image at said first orientation and said classifiers;
(b) rotating said set of classifiers a first predetermined amount, applying the classifiers rotated said first amount to said digital image at said first orientation, and determining a second level of match between said digital image at said first orientation and said classifiers rotated said first amount;
(c) comparing said first and second levels of match between said classifiers and said digital image and between said rotated classifiers and said digital image, respectively; and
(d) determining which of the first and second levels of match, respectively, comprises a higher level of match in order to determine whether said first orientation is a correct orientation of said digital image;
(e) rotating said set of classifiers a second predetermined amount, applying the classifiers rotated said second amount to said digital image at said first orientation, and determining a third level of match between said digital image at said first orientation and said classifiers rotated said second amount;
(f) comparing said third level of match with said first level of match or said second level of match, or both; and
(g) determining which of two or more of the first orientation, the second orientations and the third orientation has a greater probability of being a correct orientation based on which of the two or more of the first, second and third levels of match, respectively, comprises a higher level of match.
59. The one or more storage devices of claim 58, wherein the rotating by the first and second amounts comprise rotations in opposite directions.
60. The one or more storage devices of claim 58, wherein the first and second amounts comprise acute or obtuse amounts equal in magnitude and opposite in direction.
61. The one or more storage devices of claim 58, wherein said classifiers comprise face detection classifiers.
62. The one or more storage devices of claim 61, wherein said classifiers comprise elliptical classifiers.
63. The one or more storage devices of claim 62, wherein said elliptical classifiers are initially oriented at known orientations and, when rotated by said first and second amounts, are rotated to different known orientations.
64. The one or more storage devices of claim 61, wherein said classifiers correspond to regions of a detected face.
65. The one or more storage devices of claim 64, wherein said regions include an eye, two eyes, a nose, a mouth, or an entire face, or combinations thereof.
66. The one or more storage devices of claim 58, wherein said classifiers comprise color based classifiers.
67. The one or more storage devices of claim 58, wherein said classifiers comprise image classifiers for scene analysis.
68. The one or more storage devices of claim 67, wherein said classifiers based on scene analysis comprise perception-based classifiers.
69. The one or more storage devices of claim 58, wherein said classifiers comprise face detection classifiers, color classifiers, semantic-based classifiers, scene analysis classifiers, or combinations thereof.
70. The one or more storage devices of claim 58, the method further comprising preparing said digital image prior to applying said classifiers to said digital image and determining said level of match between said digital image and said classifiers.
71. The one or more storage devices of claim 70, wherein said preparing said digital image comprises subsampling, color conversion, edge enhancement, blurring, sharpening, tone reproduction correction, exposure correction, gray scale transformation, region segmentation, cropping, or combinations thereof.
72. The one or more storage devices of claim 70, wherein said preparing said digital image includes subsampling.
73. The one or more storage devices of claim 70, wherein said preparing said digital image includes image quality correcting.
74. The one or more storage devices of claim 58, the method further comprising:
(h) rotating said set of classifiers a third predetermined amount, applying the classifiers rotated by said third amount to said digital image at said first orientation, and determining a fourth level of match between said digital image at said first orientation and said classifiers rotated by said third amount;
(f) comparing said fourth level of match with two or more of said first level match, said second level of match, and said third level of match; and
(g) determining which of the two or more of the unrotated classifiers, and those rotated by the first amount, the second amount, and the third amount has a greater probability of matching the first orientation of the digital image based on which of the two or more of the first, second, third, and fourth levels of match, respectively, comprises a higher level of match.
75. The one or more storage devices of claim 74, wherein said first and second amounts comprise 90° opposite rotations of said set of classifiers from an initial orientation, and said third amount comprises a 180° rotation of said set of classifiers.
76. the one or more storage devices of claim 58, wherein said first and second amounts comprise 90° opposite rotations of said set of classifiers from an initial orientation.
US11024046 2003-06-26 2004-12-27 Detecting orientation of digital images using face detection information Active 2026-01-07 US7565030B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10608772 US7440593B1 (en) 2003-06-26 2003-06-26 Method of improving orientation and color balance of digital images using face detection information
US11024046 US7565030B2 (en) 2003-06-26 2004-12-27 Detecting orientation of digital images using face detection information

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US11024046 US7565030B2 (en) 2003-06-26 2004-12-27 Detecting orientation of digital images using face detection information
US12140950 US9129381B2 (en) 2003-06-26 2008-06-17 Modification of post-viewing parameters for digital images using image region or feature information
US12482305 US7844135B2 (en) 2003-06-26 2009-06-10 Detecting orientation of digital images using face detection information
US12629450 US8265399B2 (en) 2003-06-26 2009-12-02 Detecting orientation of digital images using face detection information
US12949751 US8081844B2 (en) 2003-06-26 2010-11-18 Detecting orientation of digital images using face detection information
US13330480 US8391645B2 (en) 2003-06-26 2011-12-19 Detecting orientation of digital images using face detection information
US13778128 US20130169821A1 (en) 2003-06-26 2013-02-27 Detecting Orientation of Digital Images Using Face Detection Information
US14846390 US9692964B2 (en) 2003-06-26 2015-09-04 Modification of post-viewing parameters for digital images using image region or feature information
US15633328 US20180013950A1 (en) 2003-06-26 2017-06-26 Modification of post-viewing parameters for digital images using image region or feature information

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10608772 Continuation-In-Part US7440593B1 (en) 2003-06-26 2003-06-26 Method of improving orientation and color balance of digital images using face detection information

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12482305 Continuation US7844135B2 (en) 2003-06-26 2009-06-10 Detecting orientation of digital images using face detection information

Publications (2)

Publication Number Publication Date
US20060204110A1 true US20060204110A1 (en) 2006-09-14
US7565030B2 true US7565030B2 (en) 2009-07-21

Family

ID=46321731

Family Applications (4)

Application Number Title Priority Date Filing Date
US11024046 Active 2026-01-07 US7565030B2 (en) 2003-06-26 2004-12-27 Detecting orientation of digital images using face detection information
US12482305 Active US7844135B2 (en) 2003-06-26 2009-06-10 Detecting orientation of digital images using face detection information
US12629450 Active 2024-02-26 US8265399B2 (en) 2003-06-26 2009-12-02 Detecting orientation of digital images using face detection information
US12949751 Active US8081844B2 (en) 2003-06-26 2010-11-18 Detecting orientation of digital images using face detection information

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12482305 Active US7844135B2 (en) 2003-06-26 2009-06-10 Detecting orientation of digital images using face detection information
US12629450 Active 2024-02-26 US8265399B2 (en) 2003-06-26 2009-12-02 Detecting orientation of digital images using face detection information
US12949751 Active US8081844B2 (en) 2003-06-26 2010-11-18 Detecting orientation of digital images using face detection information

Country Status (1)

Country Link
US (4) US7565030B2 (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060098891A1 (en) * 2004-11-10 2006-05-11 Eran Steinberg Method of notifying users regarding motion artifacts based on image analysis
US20060285750A1 (en) * 2005-06-21 2006-12-21 Sony Corporation Imaging apparatus, processing method of the apparatus and program making computer execute the method
US20070223049A1 (en) * 2006-03-27 2007-09-27 Fujifilm Corporation Method, apparatus, and program for displaying data
US20070229909A1 (en) * 2006-04-03 2007-10-04 Canon Kabushiki Kaisha Information processing apparatus, information processing system, control method, program, and storage medium
US20080010612A1 (en) * 2006-05-24 2008-01-10 Canon Kabushiki Kaisha Information processing apparatus, information processing system, control method thereof, program, and storage medium
US20080024627A1 (en) * 2006-07-25 2008-01-31 Fujifilm Corporation Image display apparatus, image taking apparatus, image display method, and program
US20080152199A1 (en) * 2006-12-21 2008-06-26 Sony Ericsson Mobile Communications Ab Image orientation for display
US20080181455A1 (en) * 2007-01-30 2008-07-31 Hewlett-Packard Development Company, L.P. Pre-Filter for Object Detection
US20080231713A1 (en) * 2007-03-25 2008-09-25 Fotonation Vision Limited Handheld Article with Movement Discrimination
US20080309769A1 (en) * 2007-06-14 2008-12-18 Fotonation Ireland Limited Fast Motion Estimation Method
US20080316327A1 (en) * 2007-06-21 2008-12-25 Fotonation Ireland Limited Image capture device with contemporaneous reference image capture mechanism
US20090080796A1 (en) * 2007-09-21 2009-03-26 Fotonation Vision Limited Defect Correction in Blurred Images
US20090167893A1 (en) * 2007-03-05 2009-07-02 Fotonation Vision Limited RGBW Sensor Array
US20090196466A1 (en) * 2008-02-05 2009-08-06 Fotonation Vision Limited Face Detection in Mid-Shot Digital Images
US7636486B2 (en) 2004-11-10 2009-12-22 Fotonation Ireland Ltd. Method of determining PSF using multiple instances of a nominally similar scene
US20100142768A1 (en) * 2008-12-04 2010-06-10 Kongqiao Wang Method, apparatus and computer program product for providing an orientation independent face detector
US7853043B2 (en) 2003-06-26 2010-12-14 Tessera Technologies Ireland Limited Digital image processing using face detection information
US7962629B2 (en) 2005-06-17 2011-06-14 Tessera Technologies Ireland Limited Method for establishing a paired connection between media devices
US20110141229A1 (en) * 2009-12-11 2011-06-16 Fotonation Ireland Limited Panorama imaging using super-resolution
US20110141224A1 (en) * 2009-12-11 2011-06-16 Fotonation Ireland Limited Panorama Imaging Using Lo-Res Images
US20110141227A1 (en) * 2009-12-11 2011-06-16 Petronel Bigioi Stereoscopic (3d) panorama creation on handheld device
US20110141225A1 (en) * 2009-12-11 2011-06-16 Fotonation Ireland Limited Panorama Imaging Based on Low-Res Images
US20110141300A1 (en) * 2009-12-11 2011-06-16 Fotonation Ireland Limited Panorama Imaging Using a Blending Map
US20110141226A1 (en) * 2009-12-11 2011-06-16 Fotonation Ireland Limited Panorama imaging based on a lo-res map
WO2011069698A1 (en) 2009-12-11 2011-06-16 Tessera Technologies Ireland Limited Panorama imaging
US7965875B2 (en) 2006-06-12 2011-06-21 Tessera Technologies Ireland Limited Advances in extending the AAM techniques from grayscale to color images
WO2011107448A2 (en) 2010-03-05 2011-09-09 Tessera Technologies Ireland Limited Object detection and rendering for wide field of view (wfov) image acquisition systems
US8055067B2 (en) 2007-01-18 2011-11-08 DigitalOptics Corporation Europe Limited Color segmentation
WO2012041892A1 (en) 2010-09-28 2012-04-05 DigitalOptics Corporation Europe Limited Continuous autofocus based on face detection and tracking
WO2012050878A1 (en) 2010-09-29 2012-04-19 Tessera, Inc. Systems and methods for ergonomic measurement
US8169486B2 (en) 2006-06-05 2012-05-01 DigitalOptics Corporation Europe Limited Image acquisition method and apparatus
US8199222B2 (en) 2007-03-05 2012-06-12 DigitalOptics Corporation Europe Limited Low-light video frame enhancement
US8244053B2 (en) 2004-11-10 2012-08-14 DigitalOptics Corporation Europe Limited Method and apparatus for initiating subsequent exposures based on determination of motion blurring artifacts
EP2515526A2 (en) 2011-04-08 2012-10-24 DigitalOptics Corporation Europe Limited Display device with image capture and analysis module
US20120294533A1 (en) * 2009-12-03 2012-11-22 Sony Computer Entertainment Inc. Image processing device and image processing method
US8326066B2 (en) 2003-06-26 2012-12-04 DigitalOptics Corporation Europe Limited Digital image adjustable compression and resolution using face detection information
US8330831B2 (en) 2003-08-05 2012-12-11 DigitalOptics Corporation Europe Limited Method of gathering visual meta data using a reference image
US8335355B2 (en) 2004-12-29 2012-12-18 DigitalOptics Corporation Europe Limited Method and component for image recognition
US8345114B2 (en) 2008-07-30 2013-01-01 DigitalOptics Corporation Europe Limited Automatic face and skin beautification using face detection
US8369586B2 (en) 2003-06-26 2013-02-05 DigitalOptics Corporation Europe Limited Digital image processing using face detection and skin tone information
US8417055B2 (en) 2007-03-05 2013-04-09 DigitalOptics Corporation Europe Limited Image processing method and apparatus
US8503800B2 (en) 2007-03-05 2013-08-06 DigitalOptics Corporation Europe Limited Illumination detection using classifier chains
KR20130098298A (en) 2010-07-07 2013-09-04 디지털옵틱스 코포레이션 유럽 리미티드 Real-time video frame pre-processing hardware
WO2013136053A1 (en) 2012-03-10 2013-09-19 Digitaloptics Corporation Miniature camera module with mems-actuated autofocus
US8593542B2 (en) 2005-12-27 2013-11-26 DigitalOptics Corporation Europe Limited Foreground/background separation using reference images
US8649604B2 (en) 2007-03-05 2014-02-11 DigitalOptics Corporation Europe Limited Face searching and detection in a digital image acquisition device
WO2014033099A2 (en) 2012-08-27 2014-03-06 Digital Optics Corporation Europe Limited Rearview imaging systems for vehicle
US8682097B2 (en) 2006-02-14 2014-03-25 DigitalOptics Corporation Europe Limited Digital image enhancement with reference images
US8723959B2 (en) 2011-03-31 2014-05-13 DigitalOptics Corporation Europe Limited Face and other object tracking in off-center peripheral regions for nonlinear lens geometries
WO2014072837A2 (en) 2012-06-07 2014-05-15 DigitalOptics Corporation Europe Limited Mems fast focus camera module
US8860816B2 (en) 2011-03-31 2014-10-14 Fotonation Limited Scene enhancements in off-center peripheral regions for nonlinear lens geometries
US8896703B2 (en) 2011-03-31 2014-11-25 Fotonation Limited Superresolution enhancment of peripheral regions in nonlinear lens geometries
US8913005B2 (en) 2011-04-08 2014-12-16 Fotonation Limited Methods and systems for ergonomic feedback using an image analysis module
US8982180B2 (en) 2011-03-31 2015-03-17 Fotonation Limited Face and other object detection and tracking in off-center peripheral regions for nonlinear lens geometries
US8989516B2 (en) 2007-09-18 2015-03-24 Fotonation Limited Image processing method and apparatus
US8995715B2 (en) 2010-10-26 2015-03-31 Fotonation Limited Face or other object detection including template matching
US9001268B2 (en) 2012-08-10 2015-04-07 Nan Chang O-Film Optoelectronics Technology Ltd Auto-focus camera module with flexible printed circuit extension
US9007520B2 (en) 2012-08-10 2015-04-14 Nanchang O-Film Optoelectronics Technology Ltd Camera module with EMI shield
US9525807B2 (en) 2010-12-01 2016-12-20 Nan Chang O-Film Optoelectronics Technology Ltd Three-pole tilt control system for camera module
US9817206B2 (en) 2012-03-10 2017-11-14 Digitaloptics Corporation MEMS auto focus miniature camera module with fixed and movable lens groups

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9412007B2 (en) 2003-08-05 2016-08-09 Fotonation Limited Partial face detector red-eye filter method and apparatus
US8520093B2 (en) 2003-08-05 2013-08-27 DigitalOptics Corporation Europe Limited Face tracker and partial face tracker for red-eye filter method and apparatus
US7680342B2 (en) 2004-08-16 2010-03-16 Fotonation Vision Limited Indoor/outdoor classification in digital images
US7042505B1 (en) 1997-10-09 2006-05-09 Fotonation Ireland Ltd. Red-eye filter method and apparatus
US7738015B2 (en) 1997-10-09 2010-06-15 Fotonation Vision Limited Red-eye filter method and apparatus
US7630006B2 (en) 1997-10-09 2009-12-08 Fotonation Ireland Limited Detecting red eye filter and apparatus using meta-data
US7606417B2 (en) 2004-08-16 2009-10-20 Fotonation Vision Limited Foreground/background segmentation in digital images with differential exposure calculations
US9129381B2 (en) 2003-06-26 2015-09-08 Fotonation Limited Modification of post-viewing parameters for digital images using image region or feature information
US9692964B2 (en) 2003-06-26 2017-06-27 Fotonation Limited Modification of post-viewing parameters for digital images using image region or feature information
US7440593B1 (en) 2003-06-26 2008-10-21 Fotonation Vision Limited Method of improving orientation and color balance of digital images using face detection information
US8948468B2 (en) 2003-06-26 2015-02-03 Fotonation Limited Modification of viewing parameters for digital images using face detection information
US7471846B2 (en) 2003-06-26 2008-12-30 Fotonation Vision Limited Perfecting the effect of flash within an image acquisition devices using face detection
US7565030B2 (en) 2003-06-26 2009-07-21 Fotonation Vision Limited Detecting orientation of digital images using face detection information
US8989453B2 (en) 2003-06-26 2015-03-24 Fotonation Limited Digital image processing using face detection information
US7362368B2 (en) * 2003-06-26 2008-04-22 Fotonation Vision Limited Perfecting the optics within a digital image acquisition device using face detection
US7315630B2 (en) * 2003-06-26 2008-01-01 Fotonation Vision Limited Perfecting of digital image rendering parameters within rendering devices using face detection
US8498452B2 (en) 2003-06-26 2013-07-30 DigitalOptics Corporation Europe Limited Digital image processing using face detection information
US8254674B2 (en) 2004-10-28 2012-08-28 DigitalOptics Corporation Europe Limited Analyzing partial face regions for red-eye detection in acquired digital images
US8320641B2 (en) 2004-10-28 2012-11-27 DigitalOptics Corporation Europe Limited Method and apparatus for red-eye detection using preview or other reference images
US7505051B2 (en) * 2004-12-16 2009-03-17 Corel Tw Corp. Method for generating a slide show of an image
US7433711B2 (en) * 2004-12-27 2008-10-07 Nokia Corporation Mobile communications terminal and method therefor
US7694048B2 (en) * 2005-05-06 2010-04-06 Fotonation Vision Limited Remote control apparatus for printer appliances
US7685341B2 (en) * 2005-05-06 2010-03-23 Fotonation Vision Limited Remote control apparatus for consumer electronic appliances
US7970182B2 (en) 2005-11-18 2011-06-28 Tessera Technologies Ireland Limited Two stage detection for photographic eye artifacts
US7920723B2 (en) 2005-11-18 2011-04-05 Tessera Technologies Ireland Limited Two stage detection for photographic eye artifacts
US7599577B2 (en) 2005-11-18 2009-10-06 Fotonation Vision Limited Method and apparatus of correcting hybrid flash artifacts in digital images
US7689009B2 (en) 2005-11-18 2010-03-30 Fotonation Vision Ltd. Two stage detection for photographic eye artifacts
JP4643715B2 (en) 2006-02-14 2011-03-02 テセラ テクノロジーズ アイルランド リミテッド Automatic detection and correction of defects due to the eyes of the flash is not a red-eye
EP2050043A2 (en) 2006-08-02 2009-04-22 Fotonation Vision Limited Face recognition with combined pca-based datasets
US7315631B1 (en) 2006-08-11 2008-01-01 Fotonation Vision Limited Real-time face tracking in a digital image acquisition device
US7403643B2 (en) 2006-08-11 2008-07-22 Fotonation Vision Limited Real-time face tracking in a digital image acquisition device
US7620218B2 (en) 2006-08-11 2009-11-17 Fotonation Ireland Limited Real-time face tracking with reference images
US7916897B2 (en) 2006-08-11 2011-03-29 Tessera Technologies Ireland Limited Face tracking for controlling imaging parameters
US8170294B2 (en) 2006-11-10 2012-05-01 DigitalOptics Corporation Europe Limited Method of detecting redeye in a digital image
DE602008001607D1 (en) * 2007-02-28 2010-08-05 Fotonation Vision Ltd Separation of the directional lighting variability in the statistical modeling face on the basis of texture space decompositions
EP2145288A4 (en) 2007-03-05 2013-09-04 Digitaloptics Corp Europe Ltd Red eye false positive filtering using face location and orientation
US8363909B2 (en) * 2007-03-20 2013-01-29 Ricoh Company, Limited Image processing apparatus, image processing method, and computer program product
JP5009172B2 (en) * 2007-03-20 2012-08-22 株式会社リコー The image processing apparatus, an imaging apparatus, an image processing method, the face detection program and a recording medium
CN101271515B (en) * 2007-03-21 2014-03-19 株式会社理光 Image detection device capable of recognizing multi-angle objective
US8244068B2 (en) * 2007-03-28 2012-08-14 Sony Ericsson Mobile Communications Ab Device and method for adjusting orientation of a data representation displayed on a display
US7916971B2 (en) 2007-05-24 2011-03-29 Tessera Technologies Ireland Limited Image processing method and apparatus
KR101477182B1 (en) * 2007-06-01 2014-12-29 삼성전자주식회사 Terminal, and a method of image shooting
US8340430B2 (en) * 2007-07-10 2012-12-25 Sharp Laboratories Of America, Inc. Methods and systems for identifying digital image characteristics
JP4946730B2 (en) * 2007-08-27 2012-06-06 ソニー株式会社 Face image processing apparatus and a face image processing method, and computer program
US8503818B2 (en) 2007-09-25 2013-08-06 DigitalOptics Corporation Europe Limited Eye defect detection in international standards organization images
US8155397B2 (en) 2007-09-26 2012-04-10 DigitalOptics Corporation Europe Limited Face tracking in a camera processor
JP4663700B2 (en) * 2007-09-28 2011-04-06 富士フイルム株式会社 Imaging apparatus, and imaging method
US8184925B1 (en) 2007-10-22 2012-05-22 Berridge & Associates System for converting a photograph into a portrait-style image
US8036458B2 (en) 2007-11-08 2011-10-11 DigitalOptics Corporation Europe Limited Detecting redeye defects in digital images
US8094892B2 (en) * 2007-11-19 2012-01-10 Arcsoft, Inc. Automatic photo orientation detection
JP5337818B2 (en) * 2008-01-18 2013-11-06 デジタルオプティックス・コーポレイション・ヨーロッパ・リミテッドDigitaloptics Corporation Europe Limited Image processing method and apparatus
US8212864B2 (en) 2008-01-30 2012-07-03 DigitalOptics Corporation Europe Limited Methods and apparatuses for using image acquisition data to detect and correct image defects
JP4655235B2 (en) * 2008-03-14 2011-03-23 ソニー株式会社 An information processing apparatus and method, and program
US7855737B2 (en) 2008-03-26 2010-12-21 Fotonation Ireland Limited Method of making a digital camera image of a scene including the camera user
US8023741B2 (en) * 2008-05-23 2011-09-20 Sharp Laboratories Of America, Inc. Methods and systems for detecting numerals in a digital image
US8023770B2 (en) 2008-05-23 2011-09-20 Sharp Laboratories Of America, Inc. Methods and systems for identifying the orientation of a digital image
US8160365B2 (en) * 2008-06-30 2012-04-17 Sharp Laboratories Of America, Inc. Methods and systems for identifying digital image characteristics
US8520089B2 (en) 2008-07-30 2013-08-27 DigitalOptics Corporation Europe Limited Eye beautification
US8081254B2 (en) 2008-08-14 2011-12-20 DigitalOptics Corporation Europe Limited In-camera based method of detecting defect eye with high accuracy
WO2010036251A1 (en) * 2008-09-24 2010-04-01 Nikon Corporation Method and device for image deblurring using joint bilateral filtering
US8442327B2 (en) * 2008-11-21 2013-05-14 Nvidia Corporation Application of classifiers to sub-sampled integral images for detecting faces in images
WO2010063463A3 (en) 2008-12-05 2010-07-29 Fotonation Ireland Limited Face recognition using face detection classifier data
CN101853389A (en) * 2009-04-01 2010-10-06 索尼株式会社 Detection device and method for multi-class targets
US20120117133A1 (en) * 2009-05-27 2012-05-10 Canon Kabushiki Kaisha Method and device for processing a digital signal
JP5359645B2 (en) * 2009-07-23 2013-12-04 ソニー株式会社 Composition determination apparatus, an imaging system, composition determination method, a program
US8724928B2 (en) * 2009-08-31 2014-05-13 Intellectual Ventures Fund 83 Llc Using captured high and low resolution images
US8379917B2 (en) 2009-10-02 2013-02-19 DigitalOptics Corporation Europe Limited Face recognition performance using additional image features
US8363085B2 (en) 2010-07-06 2013-01-29 DigitalOptics Corporation Europe Limited Scene background blurring including determining a depth map
US8659697B2 (en) 2010-11-11 2014-02-25 DigitalOptics Corporation Europe Limited Rapid auto-focus using classifier chains, MEMS and/or multiple object focusing
US8648959B2 (en) 2010-11-11 2014-02-11 DigitalOptics Corporation Europe Limited Rapid auto-focus using classifier chains, MEMS and/or multiple object focusing
WO2012085330A1 (en) * 2010-12-20 2012-06-28 Nokia Corporation Picture rotation based on object detection
US8587666B2 (en) 2011-02-15 2013-11-19 DigitalOptics Corporation Europe Limited Object detection from image profiles within sequences of acquired digital images
US8705894B2 (en) 2011-02-15 2014-04-22 Digital Optics Corporation Europe Limited Image rotation from local motion estimates
US8587665B2 (en) 2011-02-15 2013-11-19 DigitalOptics Corporation Europe Limited Fast rotation estimation of objects in sequences of acquired digital images
US20120259638A1 (en) * 2011-04-08 2012-10-11 Sony Computer Entertainment Inc. Apparatus and method for determining relevance of input speech
CN102842128B (en) * 2011-05-23 2016-03-30 华硕电脑股份有限公司 Object detecting method and apparatus
EP2721582A4 (en) 2011-06-20 2015-03-25 Nokia Corp Methods, apparatuses and computer program products for performing accurate pose estimation of objects
US9916538B2 (en) 2012-09-15 2018-03-13 Z Advanced Computing, Inc. Method and system for feature detection
JP5805503B2 (en) * 2011-11-25 2015-11-04 京セラ株式会社 Mobile terminal, the display direction control programs and display direction controlling method
US8643741B2 (en) 2012-01-17 2014-02-04 Apple Inc. Orientation detection using image processing
US20130314523A1 (en) * 2012-05-24 2013-11-28 Joe Russ Inverted interactive communication system
US9807299B2 (en) * 2012-08-30 2017-10-31 Htc Corporation Image capture methods and systems with positioning and angling assistance
US8560625B1 (en) * 2012-09-01 2013-10-15 Google Inc. Facilitating photo sharing
US9177360B2 (en) 2012-09-11 2015-11-03 Apple Inc. Automatic image orientation and straightening through image analysis
CN102915431A (en) * 2012-09-12 2013-02-06 广东欧珀移动通信有限公司 Method for automatically adjusting pictures according to terminal equipment picture contents
US8873813B2 (en) 2012-09-17 2014-10-28 Z Advanced Computing, Inc. Application of Z-webs and Z-factors to analytics, search engine, learning, recognition, natural language, and other utilities
US9165207B2 (en) 2013-02-25 2015-10-20 Google Inc. Screenshot orientation detection
CN103268590B (en) * 2013-05-06 2015-09-23 西南大学 A photographing processing method of rotating the viewfinder
US9959610B2 (en) * 2014-10-30 2018-05-01 Applied Materials, Inc. System and method to detect substrate and/or substrate support misalignment using imaging
US9509902B1 (en) 2015-06-10 2016-11-29 Microsoft Technology Licensing, Llc Methods and devices for correction of camera module sensitivity and flash color variation
CN105006020B (en) * 2015-07-14 2017-11-07 重庆大学 A kind of virtual human face model generation based 3d

Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173068B2 (en)
US4047187A (en) 1974-04-01 1977-09-06 Canon Kabushiki Kaisha System for exposure measurement and/or focus detection by means of image senser
US4317991A (en) 1980-03-12 1982-03-02 Honeywell Inc. Digital auto focus system utilizing a photodetector array
US4367027A (en) 1980-03-12 1983-01-04 Honeywell Inc. Active auto focus system improvement
US4448510A (en) 1981-10-23 1984-05-15 Fuji Photo Film Co., Ltd. Camera shake detection apparatus
US4638364A (en) 1984-10-30 1987-01-20 Sanyo Electric Co., Ltd. Auto focus circuit for video camera
US4796043A (en) 1985-09-13 1989-01-03 Minolta Camera Kabushiki Kaisha Multi-point photometric apparatus
US4970683A (en) 1986-08-26 1990-11-13 Heads Up Technologies, Inc. Computerized checklist with predetermined sequences of sublists which automatically returns to skipped checklists
US4970663A (en) 1989-04-28 1990-11-13 Avid Technology, Inc. Method and apparatus for manipulating digital video data
US4975969A (en) 1987-10-22 1990-12-04 Peter Tal Method and apparatus for uniquely identifying individuals by particular physical characteristics and security system utilizing the same
US5008946A (en) 1987-09-09 1991-04-16 Aisin Seiki K.K. System for recognizing image
US5051770A (en) 1986-01-20 1991-09-24 Scanera S.C. Image processing device for controlling the transfer function of an optical system
US5111231A (en) 1989-07-27 1992-05-05 Canon Kabushiki Kaisha Camera system
US5150432A (en) 1990-03-26 1992-09-22 Kabushiki Kaisha Toshiba Apparatus for encoding/decoding video signals to improve quality of a specific region
US5161204A (en) 1990-06-04 1992-11-03 Neuristics, Inc. Apparatus for generating a feature matrix based on normalized out-class and in-class variation matrices
US5164992A (en) 1990-11-01 1992-11-17 Massachusetts Institute Of Technology Face recognition system
US5291234A (en) 1987-02-04 1994-03-01 Asahi Kogaku Kogyo Kabushiki Kaisha Auto optical focus detecting device and eye direction detecting optical system
US5305048A (en) 1991-02-12 1994-04-19 Nikon Corporation A photo taking apparatus capable of making a photograph with flash by a flash device
US5331544A (en) 1992-04-23 1994-07-19 A. C. Nielsen Company Market research method and system for collecting retail store and shopper market research data
US5353058A (en) 1990-10-31 1994-10-04 Canon Kabushiki Kaisha Automatic exposure control apparatus
US5384615A (en) 1993-06-08 1995-01-24 Industrial Technology Research Institute Ambient depth-of-field simulation exposuring method
US5432863A (en) 1993-07-19 1995-07-11 Eastman Kodak Company Automated detection and correction of eye color defects due to flash illumination
US5450504A (en) 1992-05-19 1995-09-12 Calia; James Method for finding a most likely matching of a target facial image in a data base of facial images
US5465308A (en) 1990-06-04 1995-11-07 Datron/Transoc, Inc. Pattern recognition system
US5488429A (en) 1992-01-13 1996-01-30 Mitsubishi Denki Kabushiki Kaisha Video signal processor for detecting flesh tones in am image
US5493409A (en) 1990-11-29 1996-02-20 Minolta Camera Kabushiki Kaisha Still video camera having a printer capable of printing a photographed image in a plurality of printing modes
US5638136A (en) 1992-01-13 1997-06-10 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for detecting flesh tones in an image
US5710833A (en) 1995-04-20 1998-01-20 Massachusetts Institute Of Technology Detection, recognition and coding of complex objects using probabilistic eigenspace analysis
US5715325A (en) 1995-08-30 1998-02-03 Siemens Corporate Research, Inc. Apparatus and method for detecting a face in a video image
US5724456A (en) 1995-03-31 1998-03-03 Polaroid Corporation Brightness adjustment of images using digital scene analysis
US5745668A (en) 1993-08-27 1998-04-28 Massachusetts Institute Of Technology Example-based image analysis and synthesis using pixelwise correspondence
US5764803A (en) 1996-04-03 1998-06-09 Lucent Technologies Inc. Motion-adaptive modelling of scene content for very low bit rate model-assisted coding of video sequences
US5771307A (en) 1992-12-15 1998-06-23 Nielsen Media Research, Inc. Audience measurement system and method
US5774129A (en) 1995-06-07 1998-06-30 Massachusetts Institute Of Technology Image analysis and synthesis networks using shape and texture information
US5781650A (en) 1994-02-18 1998-07-14 University Of Central Florida Automatic feature detection and age classification of human faces in digital images
US5812193A (en) 1992-11-07 1998-09-22 Sony Corporation Video camera system which automatically follows subject changes
US5818975A (en) 1996-10-28 1998-10-06 Eastman Kodak Company Method and apparatus for area selective exposure adjustment
US5835616A (en) 1994-02-18 1998-11-10 University Of Central Florida Face detection using templates
US5844573A (en) 1995-06-07 1998-12-01 Massachusetts Institute Of Technology Image compression by pointwise prototype correspondence using shape and texture information
US5850470A (en) 1995-08-30 1998-12-15 Siemens Corporate Research, Inc. Neural network for locating and recognizing a deformable object
US5852669A (en) 1994-04-06 1998-12-22 Lucent Technologies Inc. Automatic face and facial feature location detection for low bit rate model-assisted H.261 compatible coding of video
US5852823A (en) 1996-10-16 1998-12-22 Microsoft Image classification and retrieval system using a query-by-example paradigm
US5870138A (en) 1995-03-31 1999-02-09 Hitachi, Ltd. Facial image processing
US5905807A (en) 1992-01-23 1999-05-18 Matsushita Electric Industrial Co., Ltd. Apparatus for extracting feature points from a facial image
US5911139A (en) 1996-03-29 1999-06-08 Virage, Inc. Visual image database search engine which allows for different schema
US5966549A (en) 1997-09-09 1999-10-12 Minolta Co., Ltd. Camera
US5978519A (en) 1996-08-06 1999-11-02 Xerox Corporation Automatic image cropping
US5991456A (en) 1996-05-29 1999-11-23 Science And Technology Corporation Method of improving a digital image
US6028960A (en) 1996-09-20 2000-02-22 Lucent Technologies Inc. Face feature analysis for automatic lipreading and character animation
US6035074A (en) 1997-05-27 2000-03-07 Sharp Kabushiki Kaisha Image processing apparatus and storage medium therefor
US6061055A (en) 1997-03-21 2000-05-09 Autodesk, Inc. Method of tracking objects with an imaging device
US6072094A (en) 1997-08-06 2000-06-06 Merck & Co., Inc. Efficient synthesis of cyclopropylacetylene
US6097470A (en) 1998-05-28 2000-08-01 Eastman Kodak Company Digital photofinishing system including scene balance, contrast normalization, and image sharpening digital image processing
US6101271A (en) 1990-10-09 2000-08-08 Matsushita Electrial Industrial Co., Ltd Gradation correction method and device
US6108437A (en) 1997-11-14 2000-08-22 Seiko Epson Corporation Face recognition apparatus, method, system and computer readable medium thereof
US6128397A (en) 1997-11-21 2000-10-03 Justsystem Pittsburgh Research Center Method for finding all frontal faces in arbitrarily complex visual scenes
US6128398A (en) 1995-01-31 2000-10-03 Miros Inc. System, method and application for the recognition, verification and similarity ranking of facial or other object patterns
US6134339A (en) 1998-09-17 2000-10-17 Eastman Kodak Company Method and apparatus for determining the position of eyes and for correcting eye-defects in a captured frame
US6148092A (en) 1998-01-08 2000-11-14 Sharp Laboratories Of America, Inc System for detecting skin-tone regions within an image
US6151073A (en) 1996-03-28 2000-11-21 Fotonation, Inc. Intelligent camera flash system
US6173068B1 (en) 1996-07-29 2001-01-09 Mikos, Ltd. Method and apparatus for recognizing and classifying individuals based on minutiae
US6188777B1 (en) 1997-08-01 2001-02-13 Interval Research Corporation Method and apparatus for personnel detection and tracking
US6192149B1 (en) 1998-04-08 2001-02-20 Xerox Corporation Method and apparatus for automatic detection of image target gamma
US6246790B1 (en) 1997-12-29 2001-06-12 Cornell Research Foundation, Inc. Image indexing using color correlograms
US6246779B1 (en) 1997-12-12 2001-06-12 Kabushiki Kaisha Toshiba Gaze position detection apparatus and method
US6249315B1 (en) 1997-03-24 2001-06-19 Jack M. Holm Strategy for pictorial digital image processing
US6252976B1 (en) 1997-08-29 2001-06-26 Eastman Kodak Company Computer program product for redeye detection
US6263113B1 (en) 1998-12-11 2001-07-17 Philips Electronics North America Corp. Method for detecting a face in a digital image
US6268939B1 (en) 1998-01-08 2001-07-31 Xerox Corporation Method and apparatus for correcting luminance and chrominance data in digital color images
US6278491B1 (en) 1998-01-29 2001-08-21 Hewlett-Packard Company Apparatus and a method for automatically detecting and reducing red-eye in a digital image
US6282317B1 (en) 1998-12-31 2001-08-28 Eastman Kodak Company Method for automatic determination of main subjects in photographic images
US6301440B1 (en) 2000-04-13 2001-10-09 International Business Machines Corp. System and method for automatically setting image acquisition controls
US6301370B1 (en) 1998-04-13 2001-10-09 Eyematic Interfaces, Inc. Face recognition from video images
US6349373B2 (en) 1998-02-20 2002-02-19 Eastman Kodak Company Digital image management system having method for managing images according to image groups
US6351556B1 (en) 1998-11-20 2002-02-26 Eastman Kodak Company Method for automatically comparing content of images for classification into events
US6393148B1 (en) 1999-05-13 2002-05-21 Hewlett-Packard Company Contrast enhancement of an image using luminance and RGB statistical metrics
US6404900B1 (en) 1998-06-22 2002-06-11 Sharp Laboratories Of America, Inc. Method for robust human face tracking in presence of multiple persons
US6407777B1 (en) 1997-10-09 2002-06-18 Deluca Michael Joseph Red-eye filter method and apparatus
US6421468B1 (en) 1999-01-06 2002-07-16 Seiko Epson Corporation Method and apparatus for sharpening an image by scaling elements of a frequency-domain representation
US6426779B1 (en) 1995-01-04 2002-07-30 Sony Electronics, Inc. Method and apparatus for providing favorite station and programming information in a multiple station broadcast system
US6438264B1 (en) 1998-12-31 2002-08-20 Eastman Kodak Company Method for compensating image color when adjusting the contrast of a digital color image
US6456732B1 (en) 1998-09-11 2002-09-24 Hewlett-Packard Company Automatic rotation, cropping and scaling of images for printing
US6459436B1 (en) 1998-11-11 2002-10-01 Canon Kabushiki Kaisha Image processing method and apparatus
US6463163B1 (en) 1999-01-11 2002-10-08 Hewlett-Packard Company System and method for face detection using candidate image region selection
US6473199B1 (en) 1998-12-18 2002-10-29 Eastman Kodak Company Correcting exposure and tone scale of digital images captured by an image capture device
US6501857B1 (en) 1999-07-20 2002-12-31 Craig Gotsman Method and system for detecting and classifying objects in an image
US6502107B1 (en) 1999-05-13 2002-12-31 Fourie, Inc. Visual database system
US6504951B1 (en) 1999-11-29 2003-01-07 Eastman Kodak Company Method for detecting sky in images
US6504942B1 (en) 1998-01-23 2003-01-07 Sharp Kabushiki Kaisha Method of and apparatus for detecting a face-like region and observer tracking display
US6516154B1 (en) 2001-07-17 2003-02-04 Eastman Kodak Company Image revising camera and method
US6526161B1 (en) 1999-08-30 2003-02-25 Koninklijke Philips Electronics N.V. System and method for biometrics-based facial feature extraction
US6529630B1 (en) 1998-03-02 2003-03-04 Fuji Photo Film Co., Ltd. Method and device for extracting principal image subjects
US6549641B2 (en) 1997-10-30 2003-04-15 Minolta Co., Inc. Screen image observing device and method
US6564225B1 (en) 2000-07-14 2003-05-13 Time Warner Entertainment Company, L.P. Method and apparatus for archiving in and retrieving images from a digital image library
US6567983B1 (en) 1998-04-10 2003-05-20 Fuji Photo Film Co., Ltd. Electronic album producing and viewing system and method
US6587119B1 (en) 1998-08-04 2003-07-01 Flashpoint Technology, Inc. Method and apparatus for defining a panning and zooming path across a still image during movie creation
US20040022435A1 (en) * 2002-07-30 2004-02-05 Canon Kabushiki Kaisha Image processing apparatus and method and program storage medium
US20050104848A1 (en) * 2003-09-25 2005-05-19 Kabushiki Kaisha Toshiba Image processing device and method

Family Cites Families (357)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2370438A (en) * 1942-01-09 1945-02-27 Hydraulic Coupling Patents Ltd Hydraulic coupling and brake
US4456354A (en) 1980-01-11 1984-06-26 Olympus Optical Co., Ltd. Exposure controller for a camera
JP2525351B2 (en) * 1985-08-08 1996-08-21 キヤノン株式会社 camera
US4821074A (en) 1985-09-09 1989-04-11 Minolta Camera Kabushiki Kaisha Exposure control device for a camera
US5130935A (en) * 1986-03-31 1992-07-14 Canon Kabushiki Kaisha Color image processing apparatus for extracting image data having predetermined color information from among inputted image data and for correcting inputted image data in response to the extracted image data
US5313245A (en) * 1987-04-24 1994-05-17 Canon Kabushiki Kaisha Automatic focusing device
US4908646A (en) * 1987-06-15 1990-03-13 Nikon Corporation Range measuring device for camera
US5384912A (en) 1987-10-30 1995-01-24 New Microtime Inc. Real time video image processing system
US5018017A (en) 1987-12-25 1991-05-21 Kabushiki Kaisha Toshiba Electronic still camera and image recording method thereof
US5121151A (en) * 1988-04-28 1992-06-09 Canon Kabushiki Kaisha Focus adjustment information forming device
KR0145306B1 (en) 1988-05-20 1998-07-15 이우에 사또시 Image sensing apparatus having automatic iris function of automatically adjusting exposure in response to video signal
US5137662A (en) * 1988-11-08 1992-08-11 3-D Systems, Inc. Method and apparatus for production of three-dimensional objects by stereolithography
US5227837A (en) 1989-05-12 1993-07-13 Fuji Photo Film Co., Ltd. Photograph printing method
US5063603A (en) 1989-11-06 1991-11-05 David Sarnoff Research Center, Inc. Dynamic method for recognizing objects and image processing system therefor
JPH03214133A (en) * 1990-01-18 1991-09-19 Nikon Corp Focus detector
US5258803A (en) 1990-01-30 1993-11-02 Canon Kabushiki Kaisha Camera detecting focus to plural areas and deciding flash elimanation based on the plural areas
US5189460A (en) * 1990-01-30 1993-02-23 Canon Kabushiki Kaisha Camera detecting luminance from a plurality of areas
US5164831A (en) 1990-03-15 1992-11-17 Eastman Kodak Company Electronic still camera providing multi-format storage of full and reduced resolution images
GB9019538D0 (en) 1990-09-07 1990-10-24 Philips Electronic Associated Tracking a moving object
JP2790562B2 (en) 1992-01-06 1998-08-27 富士写真フイルム株式会社 Image processing method
US5561497A (en) * 1992-01-09 1996-10-01 Nikon Corporation Auto focusing apparatus in a camera
US5680481A (en) 1992-05-26 1997-10-21 Ricoh Corporation Facial feature extraction method and apparatus for a neural network acoustic and visual speech recognition system
JP3298072B2 (en) 1992-07-10 2002-07-02 ソニー株式会社 Video camera system
US5278923A (en) 1992-09-02 1994-01-11 Harmonic Lightwaves, Inc. Cascaded optical modulation system with high linearity
US5311240A (en) 1992-11-03 1994-05-10 Eastman Kodak Company Technique suited for use in multi-zone autofocusing cameras for improving image quality for non-standard display sizes and/or different focal length photographing modes
JPH06178261A (en) 1992-12-07 1994-06-24 Nikon Corp Digital still camera
JP2983407B2 (en) 1993-03-31 1999-11-29 三菱電機株式会社 Image tracking device
US6181805B1 (en) * 1993-08-11 2001-01-30 Nippon Telegraph & Telephone Corporation Object image detecting method and system
US7859551B2 (en) * 1993-10-15 2010-12-28 Bulman Richard L Object customization and presentation system
US5519451A (en) 1994-04-14 1996-05-21 Texas Instruments Incorporated Motion adaptive scan-rate conversion using directional edge interpolation
US5774754A (en) 1994-04-26 1998-06-30 Minolta Co., Ltd. Camera capable of previewing a photographed image
US5678098A (en) 1994-06-09 1997-10-14 Fuji Photo Film Co., Ltd. Method and apparatus for controlling exposure of camera
EP0723721A1 (en) 1994-08-12 1996-07-31 Philips Electronics N.V. Optical synchronisation arrangement, transmission system and optical receiver
US6714665B1 (en) 1994-09-02 2004-03-30 Sarnoff Corporation Fully automated iris recognition system utilizing wide and narrow fields of view
DE69531328D1 (en) 1994-09-12 2003-08-28 Nippon Telegraph & Telephone Intensity-modulated optical transmission system
CA2155901A1 (en) 1994-09-30 1996-03-31 Roberto Brunelli Method of storing and retrieving images of people, for example, in photographic archives and for the construction of identikit images
US5629752A (en) * 1994-10-28 1997-05-13 Fuji Photo Film Co., Ltd. Method of determining an exposure amount using optical recognition of facial features
US5496106A (en) 1994-12-13 1996-03-05 Apple Computer, Inc. System and method for generating a contrast overlay as a focus assist for an imaging device
JP3063073B2 (en) * 1995-06-30 2000-07-12 富士ゼロックス株式会社 Image analysis expression adding apparatus
US5912980A (en) 1995-07-13 1999-06-15 Hunke; H. Martin Target acquisition and tracking
US5842194A (en) 1995-07-28 1998-11-24 Mitsubishi Denki Kabushiki Kaisha Method of recognizing images of faces or general images using fuzzy combination of multiple resolutions
JPH09135447A (en) * 1995-11-07 1997-05-20 Toshiba Corp Intelligent encoding/decoding method, feature point display method and interactive intelligent encoding supporting device
US5802220A (en) * 1995-12-15 1998-09-01 Xerox Corporation Apparatus and method for tracking facial motion through a sequence of images
US5774591A (en) 1995-12-15 1998-06-30 Xerox Corporation Apparatus and method for recognizing facial expressions and facial gestures in a sequence of images
US5633678A (en) 1995-12-20 1997-05-27 Eastman Kodak Company Electronic still camera for capturing and categorizing images
US6151071A (en) 1996-02-29 2000-11-21 Eastman Kodak Company Circuit for generating control signals
US5802208A (en) 1996-05-06 1998-09-01 Lucent Technologies Inc. Face recognition using DCT-based feature vectors
US6188776B1 (en) 1996-05-21 2001-02-13 Interval Research Corporation Principle component analysis of images for the automatic location of control points
JP2907120B2 (en) 1996-05-29 1999-06-21 日本電気株式会社 Red-eye detection and correction apparatus
US6798834B1 (en) 1996-08-15 2004-09-28 Mitsubishi Denki Kabushiki Kaisha Image coding apparatus with segment classification and segmentation-type motion prediction circuit
US20030118216A1 (en) 1996-09-04 2003-06-26 Goldberg David A. Obtaining person-specific images in a public venue
ES2215238T3 (en) 1996-09-05 2004-10-01 Swisscom Ag Device and method for quantum cryptography.
JP2918499B2 (en) * 1996-09-17 1999-07-12 株式会社エイ・ティ・アール人間情報通信研究所 Facial image information converting method and a face image information converting device
US6765612B1 (en) 1996-12-09 2004-07-20 Flashpoint Technology, Inc. Method and system for naming images captured by a digital camera
US6526156B1 (en) 1997-01-10 2003-02-25 Xerox Corporation Apparatus and method for identifying and tracking objects with view-based representations
JPH10208047A (en) 1997-01-23 1998-08-07 Nissan Motor Co Ltd On-vehicle traveling environment recognizing device
US6441854B2 (en) 1997-02-20 2002-08-27 Eastman Kodak Company Electronic camera with quick review of last captured image
US6055340A (en) * 1997-02-28 2000-04-25 Fuji Photo Film Co., Ltd. Method and apparatus for processing digital images to suppress their noise and enhancing their sharpness
JP4040139B2 (en) * 1997-05-12 2008-01-30 キヤノン株式会社 camera
EP0987884B1 (en) 1997-05-16 2006-09-27 Sanyo Electric Co., Ltd. Automatic focusing device
US7057653B1 (en) 1997-06-19 2006-06-06 Minolta Co., Ltd. Apparatus capable of image capturing
US6009209A (en) 1997-06-27 1999-12-28 Microsoft Corporation Automated removal of red eye effect from a digital image
US6850274B1 (en) 1997-07-15 2005-02-01 Silverbrook Research Pty Ltd Image texture mapping camera
GB2330264B (en) 1997-10-07 2002-07-17 Samsung Aerospace Ind Apparatus and method for controlling a focus position for a digital still camera
US7352394B1 (en) 1997-10-09 2008-04-01 Fotonation Vision Limited Image modification based on red-eye filter analysis
US7606417B2 (en) * 2004-08-16 2009-10-20 Fotonation Vision Limited Foreground/background segmentation in digital images with differential exposure calculations
US8330831B2 (en) 2003-08-05 2012-12-11 DigitalOptics Corporation Europe Limited Method of gathering visual meta data using a reference image
US7630006B2 (en) 1997-10-09 2009-12-08 Fotonation Ireland Limited Detecting red eye filter and apparatus using meta-data
US7680342B2 (en) 2004-08-16 2010-03-16 Fotonation Vision Limited Indoor/outdoor classification in digital images
US7042505B1 (en) 1997-10-09 2006-05-09 Fotonation Ireland Ltd. Red-eye filter method and apparatus
US7738015B2 (en) * 1997-10-09 2010-06-15 Fotonation Vision Limited Red-eye filter method and apparatus
US6016354A (en) 1997-10-23 2000-01-18 Hewlett-Packard Company Apparatus and a method for reducing red-eye in a digital image
JPH11175699A (en) 1997-12-12 1999-07-02 Fuji Photo Film Co Ltd Picture processor
US6400830B1 (en) 1998-02-06 2002-06-04 Compaq Computer Corporation Technique for tracking objects through a series of images
US6556708B1 (en) 1998-02-06 2003-04-29 Compaq Computer Corporation Technique for classifying objects within an image
US6115052A (en) 1998-02-12 2000-09-05 Mitsubishi Electric Information Technology Center America, Inc. (Ita) System for reconstructing the 3-dimensional motions of a human figure from a monocularly-viewed image sequence
JPH11231358A (en) 1998-02-19 1999-08-27 Nec Corp Optical circuit and its production
DE69931973D1 (en) * 1998-03-16 2006-07-27 Sanyo Electric Co Digital camera with possibility to process
JP3657769B2 (en) 1998-03-19 2005-06-08 富士写真フイルム株式会社 The image processing method and image processing apparatus
JP2923894B1 (en) * 1998-03-31 1999-07-26 日本電気株式会社 Source determination method, a skin color correction method, a color image correction method, the light source determination apparatus, a skin color correction apparatus, a color image correction apparatus and a computer-readable recording medium
US6240198B1 (en) 1998-04-13 2001-05-29 Compaq Computer Corporation Method for figure tracking using 2-D registration
JP2000048184A (en) 1998-05-29 2000-02-18 Canon Inc Method for processing image, and method for extracting facial area and device therefor
US6661907B2 (en) 1998-06-10 2003-12-09 Canon Kabushiki Kaisha Face detection in digital images
DE69937298D1 (en) * 1998-06-22 2007-11-22 Fujifilm Corp Image forming apparatus and method
US6310970B1 (en) * 1998-06-24 2001-10-30 Colorcom, Ltd. Defining surfaces in border string sequences representing a raster image
US6275614B1 (en) * 1998-06-26 2001-08-14 Sarnoff Corporation Method and apparatus for block classification and adaptive bit allocation
US6496607B1 (en) 1998-06-26 2002-12-17 Sarnoff Corporation Method and apparatus for region-based allocation of processing resources and control of input image formation
US6292575B1 (en) 1998-07-20 2001-09-18 Lau Technologies Real-time facial recognition and verification system
DE19837004C1 (en) 1998-08-14 2000-03-09 Christian Eckes Method for recognizing objects in digitized images
GB9819323D0 (en) 1998-09-05 1998-10-28 Sharp Kk Method and apparatus for detecting a human face and observer tracking display
US6606398B2 (en) 1998-09-30 2003-08-12 Intel Corporation Automatic cataloging of people in digital photographs
WO2000033240A1 (en) 1998-12-02 2000-06-08 The Victoria University Of Manchester Face sub-space determination
US6825884B1 (en) 1998-12-03 2004-11-30 Olympus Corporation Imaging processing apparatus for generating a wide dynamic range image
US6396599B1 (en) 1998-12-21 2002-05-28 Eastman Kodak Company Method and apparatus for modifying a portion of an image in accordance with colorimetric parameters
JP2000197050A (en) 1998-12-25 2000-07-14 Canon Inc Image processing unit and its method
US6393136B1 (en) * 1999-01-04 2002-05-21 International Business Machines Corporation Method and apparatus for determining eye contact
US7038715B1 (en) 1999-01-19 2006-05-02 Texas Instruments Incorporated Digital still camera with high-quality portrait mode
CA2361486A1 (en) 1999-02-01 2000-08-10 Beonic Corporation Pty Ltd Object recognition and tracking system
US6778216B1 (en) 1999-03-25 2004-08-17 Texas Instruments Incorporated Method and apparatus for digital camera real-time image correction in preview mode
US7106374B1 (en) 1999-04-05 2006-09-12 Amherst Systems, Inc. Dynamically reconfigurable vision system
EP1139286A1 (en) 1999-05-18 2001-10-04 Sanyo Electric Co., Ltd. Dynamic image processing method and device and medium
US6760485B1 (en) 1999-05-20 2004-07-06 Eastman Kodak Company Nonlinearly modifying a rendered digital image
US6967680B1 (en) 1999-05-28 2005-11-22 Microsoft Corporation Method and apparatus for capturing images
US7248300B1 (en) 1999-06-03 2007-07-24 Fujifilm Corporation Camera and method of photographing good image
US6571003B1 (en) 1999-06-14 2003-05-27 The Procter & Gamble Company Skin imaging and analysis systems and methods
US6879705B1 (en) 1999-07-14 2005-04-12 Sarnoff Corporation Method and apparatus for tracking multiple objects in a video sequence
US6545706B1 (en) 1999-07-30 2003-04-08 Electric Planet, Inc. System, method and article of manufacture for tracking a head of a camera-generated image of a person
US6556704B1 (en) * 1999-08-25 2003-04-29 Eastman Kodak Company Method for forming a depth image from digital image data
JP4450899B2 (en) * 1999-09-10 2010-04-14 オリンパス株式会社 Multi-point distance measuring device
JP4378804B2 (en) 1999-09-10 2009-12-09 ソニー株式会社 Imaging device
WO2001028238A3 (en) * 1999-10-08 2003-12-11 Sarnoff Corp Method and apparatus for enhancing and indexing video and audio signals
US6937773B1 (en) 1999-10-20 2005-08-30 Canon Kabushiki Kaisha Image encoding method and apparatus
US7369304B2 (en) * 1999-10-29 2008-05-06 Cytyc Corporation Cytological autofocusing imaging systems and methods
US6792135B1 (en) 1999-10-29 2004-09-14 Microsoft Corporation System and method for face detection through geometric distribution of a non-intensity image property
US6754389B1 (en) 1999-12-01 2004-06-22 Koninklijke Philips Electronics N.V. Program classification using object tracking
EP1107166A3 (en) 1999-12-01 2008-08-06 Matsushita Electric Industrial Co., Ltd. Device and method for face image extraction, and recording medium having recorded program for the method
JP2001223941A (en) * 1999-12-01 2001-08-17 Ricoh Co Ltd Image pickup device and image pickup method
US6516147B2 (en) 1999-12-20 2003-02-04 Polaroid Corporation Scene recognition method and system using brightness and ranging mapping
US20030035573A1 (en) * 1999-12-22 2003-02-20 Nicolae Duta Method for learning-based object detection in cardiac magnetic resonance images
JP2001186323A (en) * 1999-12-24 2001-07-06 Fuji Photo Film Co Ltd Identification photograph system and picture on processing method
US6885760B2 (en) * 2000-02-01 2005-04-26 Matsushita Electric Industrial, Co., Ltd. Method for detecting a human face and an apparatus of the same
US6504546B1 (en) * 2000-02-08 2003-01-07 At&T Corp. Method of modeling objects to synthesize three-dimensional, photo-realistic animations
US7043465B2 (en) * 2000-02-24 2006-05-09 Holding B.E.V.S.A. Method and device for perception of an object by its shape, its size and/or its orientation
US6940545B1 (en) * 2000-02-28 2005-09-06 Eastman Kodak Company Face detecting camera and method
US6807290B2 (en) * 2000-03-09 2004-10-19 Microsoft Corporation Rapid computer modeling of faces for animation
US7106887B2 (en) 2000-04-13 2006-09-12 Fuji Photo Film Co., Ltd. Image processing method using conditions corresponding to an identified person
US20020150662A1 (en) 2000-04-19 2002-10-17 Dewis Mark Lawrence Ethyl 3-mercaptobutyrate as a flavoring or fragrance agent and methods for preparing and using same
CN100426303C (en) * 2000-04-21 2008-10-15 株式会社资生堂 Makeup counseling apparatus
JP4443722B2 (en) 2000-04-25 2010-03-31 富士通株式会社 Image recognition apparatus and method
US6944341B2 (en) 2000-05-01 2005-09-13 Xerox Corporation Loose gray-scale template matching for image processing of anti-aliased lines
EP1158786A3 (en) 2000-05-24 2005-03-09 Sony Corporation Transmission of the region of interest of an image
US6836554B1 (en) * 2000-06-16 2004-12-28 International Business Machines Corporation System and method for distorting a biometric for transactions with enhanced security and privacy
US6700999B1 (en) 2000-06-30 2004-03-02 Intel Corporation System, method, and apparatus for multiple face tracking
US6747690B2 (en) 2000-07-11 2004-06-08 Phase One A/S Digital camera with integrated accelerometers
WO2002009025A1 (en) 2000-07-24 2002-01-31 Seeing Machines Pty Ltd Facial image processing system
JP4140181B2 (en) 2000-09-08 2008-08-27 富士フイルム株式会社 Electronic camera
US6900840B1 (en) * 2000-09-14 2005-05-31 Hewlett-Packard Development Company, L.P. Digital camera and method of using same to view image in live view mode
EP1211640A3 (en) * 2000-09-15 2003-10-15 Canon Kabushiki Kaisha Image processing methods and apparatus for detecting human eyes, human face and other objects in an image
EP1199027A3 (en) * 2000-10-18 2002-05-15 Matsushita Electric Industrial Co., Ltd. System, apparatus, and method for acquiring state information, and attachable terminal apparatus
US7038709B1 (en) 2000-11-01 2006-05-02 Gilbert Verghese System and method for tracking a subject
JP4590717B2 (en) 2000-11-17 2010-12-01 ソニー株式会社 Face identification apparatus and face identification method
US7099510B2 (en) 2000-11-29 2006-08-29 Hewlett-Packard Development Company, L.P. Method and system for object detection in digital images
US6975750B2 (en) 2000-12-01 2005-12-13 Microsoft Corp. System and method for face recognition using synthesized training images
JP2002171398A (en) * 2000-12-04 2002-06-14 Konica Corp Image processing method and electronic camera
US6654507B2 (en) 2000-12-14 2003-11-25 Eastman Kodak Company Automatically producing an image of a portion of a photographic image
US6697504B2 (en) 2000-12-15 2004-02-24 Institute For Information Industry Method of multi-level facial image recognition and system using the same
GB0031423D0 (en) 2000-12-22 2001-02-07 Hewlett Packard Co Automated cropping of electronic images
US20020081003A1 (en) * 2000-12-27 2002-06-27 Sobol Robert E. System and method for automatically enhancing graphical images
US7034848B2 (en) * 2001-01-05 2006-04-25 Hewlett-Packard Development Company, L.P. System and method for automatically cropping graphical images
JP4167401B2 (en) 2001-01-12 2008-10-15 富士フイルム株式会社 Digital cameras and operation control method thereof
JP4366018B2 (en) 2001-01-17 2009-11-18 キヤノンマーケティングジャパン株式会社 Calibration method and printing apparatus
EP1231564B1 (en) 2001-02-09 2007-03-28 Imaging Solutions AG Digital local control of image properties by means of masks
EP1231565A1 (en) * 2001-02-09 2002-08-14 GRETAG IMAGING Trading AG Image colour correction based on image pattern recognition, the image pattern including a reference colour
GB0104589D0 (en) 2001-02-23 2001-04-11 Hewlett Packard Co Method of displaying a digital image
US7027621B1 (en) * 2001-03-15 2006-04-11 Mikos, Ltd. Method and apparatus for operator condition monitoring and assessment
US20020136433A1 (en) 2001-03-26 2002-09-26 Koninklijke Philips Electronics N.V. Adaptive facial recognition system and method
US6915011B2 (en) 2001-03-28 2005-07-05 Eastman Kodak Company Event clustering of images using foreground/background segmentation
US6760465B2 (en) 2001-03-30 2004-07-06 Intel Corporation Mechanism for tracking colored objects in a video sequence
JP2002334338A (en) 2001-05-09 2002-11-22 National Institute Of Advanced Industrial & Technology Device and method for object tracking and recording medium
US20020172419A1 (en) 2001-05-15 2002-11-21 Qian Lin Image enhancement using face detection
US6847733B2 (en) * 2001-05-23 2005-01-25 Eastman Kodak Company Retrieval and browsing of database images based on image emphasis and appeal
US7003135B2 (en) 2001-05-25 2006-02-21 Industrial Technology Research Institute System and method for rapidly tracking multiple faces
US7035456B2 (en) 2001-06-01 2006-04-25 Canon Kabushiki Kaisha Face detection in color images with complex background
US20020181801A1 (en) 2001-06-01 2002-12-05 Needham Bradford H. Feature-based image correction
US7027620B2 (en) * 2001-06-07 2006-04-11 Sony Corporation Method of recognizing partially occluded and/or imprecisely localized faces
US7251056B2 (en) * 2001-06-11 2007-07-31 Ricoh Company, Ltd. Image processing apparatus, image processing method and information recording medium
US7068841B2 (en) 2001-06-29 2006-06-27 Hewlett-Packard Development Company, L.P. Automatic digital image enhancement
US6980691B2 (en) 2001-07-05 2005-12-27 Corel Corporation Correction of “red-eye” effects in images
GB0116877D0 (en) * 2001-07-10 2001-09-05 Hewlett Packard Co Intelligent feature selection and pan zoom control
JP2003032542A (en) * 2001-07-19 2003-01-31 Mitsubishi Electric Corp Imaging apparatus
US6832006B2 (en) * 2001-07-23 2004-12-14 Eastman Kodak Company System and method for controlling image compression based on image emphasis
US20030023974A1 (en) * 2001-07-25 2003-01-30 Koninklijke Philips Electronics N.V. Method and apparatus to track objects in sports programs and select an appropriate camera view
JP4263416B2 (en) * 2001-08-24 2009-05-13 株式会社日立製作所 The charged particle microscope evaluation system
US7375755B2 (en) * 2001-08-30 2008-05-20 Canon Kabushiki Kaisha Image processing apparatus and method for displaying an image and posture information
EP1288858A1 (en) 2001-09-03 2003-03-05 Agfa-Gevaert AG Method for automatically detecting red-eye defects in photographic image data
EP1293933A1 (en) 2001-09-03 2003-03-19 Agfa-Gevaert AG Method for automatically detecting red-eye defects in photographic image data
US6993180B2 (en) * 2001-09-04 2006-01-31 Eastman Kodak Company Method and system for automated grouping of images
US7027619B2 (en) 2001-09-13 2006-04-11 Honeywell International Inc. Near-infrared method and system for use in face detection
US7262798B2 (en) * 2001-09-17 2007-08-28 Hewlett-Packard Development Company, L.P. System and method for simulating fill flash in photography
US7298412B2 (en) * 2001-09-18 2007-11-20 Ricoh Company, Limited Image pickup device, automatic focusing method, automatic exposure method, electronic flash control method and computer program
US7133070B2 (en) 2001-09-20 2006-11-07 Eastman Kodak Company System and method for deciding when to correct image-specific defects based on camera, scene, display and demographic data
US7110569B2 (en) 2001-09-27 2006-09-19 Koninklijke Philips Electronics N.V. Video based detection of fall-down and other events
US7130864B2 (en) * 2001-10-31 2006-10-31 Hewlett-Packard Development Company, L.P. Method and system for accessing a collection of images in a database
KR100421221B1 (en) 2001-11-05 2004-03-02 삼성전자주식회사 Illumination invariant object tracking method and image editing system adopting the method
US7162101B2 (en) 2001-11-15 2007-01-09 Canon Kabushiki Kaisha Image processing apparatus and method
US7130446B2 (en) 2001-12-03 2006-10-31 Microsoft Corporation Automatic detection and tracking of multiple individuals using multiple cues
US7688349B2 (en) 2001-12-07 2010-03-30 International Business Machines Corporation Method of detecting and tracking groups of people
US7050607B2 (en) 2001-12-08 2006-05-23 Microsoft Corp. System and method for multi-view face detection
US6931147B2 (en) * 2001-12-11 2005-08-16 Koninklijke Philips Electronics N.V. Mood based virtual photo album
US7042511B2 (en) * 2001-12-13 2006-05-09 Mediatek Inc. Apparatus and method for video data processing in digital video decoding
US7221809B2 (en) 2001-12-17 2007-05-22 Genex Technologies, Inc. Face recognition system and method
US7106366B2 (en) * 2001-12-19 2006-09-12 Eastman Kodak Company Image capture system incorporating metadata to facilitate transcoding
US7167519B2 (en) 2001-12-20 2007-01-23 Siemens Corporate Research, Inc. Real-time video object generation for smart cameras
JP2003189168A (en) * 2001-12-21 2003-07-04 Nec Corp Camera for mobile phone
US7221805B1 (en) * 2001-12-21 2007-05-22 Cognex Technology And Investment Corporation Method for generating a focused image of an object
US7035467B2 (en) 2002-01-09 2006-04-25 Eastman Kodak Company Method and system for processing images for themed imaging services
US7289664B2 (en) 2002-01-17 2007-10-30 Fujifilm Corporation Method of detecting and correcting the red eye
JP2003219225A (en) 2002-01-25 2003-07-31 Nippon Micro Systems Kk Device for monitoring moving object image
US7362354B2 (en) 2002-02-12 2008-04-22 Hewlett-Packard Development Company, L.P. Method and system for assessing the photo quality of a captured image in a digital still camera
US7215828B2 (en) * 2002-02-13 2007-05-08 Eastman Kodak Company Method and system for determining image orientation
EP1343107A3 (en) 2002-03-04 2005-03-23 Samsung Electronics Co., Ltd. Method and apparatus for recognising faces using principal component analysis and second order independent component analysis on parts of the image faces
US7146026B2 (en) 2002-06-04 2006-12-05 Hewlett-Packard Development Company, L.P. Image correction system and method
US6959109B2 (en) 2002-06-20 2005-10-25 Identix Incorporated System and method for pose-angle estimation
US7259784B2 (en) * 2002-06-21 2007-08-21 Microsoft Corporation System and method for camera color calibration and image stitching
US6801642B2 (en) 2002-06-26 2004-10-05 Motorola, Inc. Method and apparatus for limiting storage or transmission of visual information
WO2004004320A1 (en) 2002-07-01 2004-01-08 The Regents Of The University Of California Digital processing of video images
JP3700687B2 (en) * 2002-07-08 2005-09-28 カシオ計算機株式会社 The camera apparatus and the subject of the imaging method
US7227976B1 (en) 2002-07-08 2007-06-05 Videomining Corporation Method and system for real-time facial image enhancement
US7020337B2 (en) 2002-07-22 2006-03-28 Mitsubishi Electric Research Laboratories, Inc. System and method for detecting objects in images
US7110575B2 (en) 2002-08-02 2006-09-19 Eastman Kodak Company Method for locating faces in digital color images
CN100477745C (en) * 2002-08-09 2009-04-08 夏普株式会社 Image combination device and image combination method
US6919892B1 (en) * 2002-08-14 2005-07-19 Avaworks, Incorporated Photo realistic talking head creation system and method
US7035462B2 (en) * 2002-08-29 2006-04-25 Eastman Kodak Company Apparatus and method for processing digital images having eye color defects
US20040041121A1 (en) 2002-08-30 2004-03-04 Shigeyoshi Yoshida Magnetic loss material and method of producing the same
EP1398733A1 (en) 2002-09-12 2004-03-17 GRETAG IMAGING Trading AG Texture-based colour correction
JP3761169B2 (en) * 2002-09-30 2006-03-29 松下電器産業株式会社 Mobile phone
US7194114B2 (en) * 2002-10-07 2007-03-20 Carnegie Mellon University Object finder for two-dimensional images, and system for determining a set of sub-classifiers composing an object finder
KR100473598B1 (en) 2002-11-04 2005-03-11 삼성전자주식회사 System and method for detecting veilde face image
US7154510B2 (en) * 2002-11-14 2006-12-26 Eastman Kodak Company System and method for modifying a portrait image in response to a stimulus
GB0227893D0 (en) 2002-11-29 2003-01-08 Sony Uk Ltd Face detection
GB0227916D0 (en) 2002-11-29 2003-01-08 Sony Uk Ltd Face detection
US7394969B2 (en) 2002-12-11 2008-07-01 Eastman Kodak Company System and method to compose a slide show
JP3954484B2 (en) 2002-12-12 2007-08-08 株式会社東芝 An image processing apparatus and program
US7082157B2 (en) 2002-12-24 2006-07-25 Realtek Semiconductor Corp. Residual echo reduction for a full duplex transceiver
JP4178949B2 (en) 2002-12-27 2008-11-12 富士ゼロックス株式会社 Image processing apparatus, image processing method, and program
CN100465985C (en) * 2002-12-31 2009-03-04 佳能株式会社 Human eye detecting method and apparatus
JP4218348B2 (en) 2003-01-17 2009-02-04 オムロン株式会社 Imaging apparatus
JP4204336B2 (en) * 2003-01-30 2009-01-07 富士通株式会社 Orientation detection device of the face, the face orientation detecting method and a computer program
US7120279B2 (en) 2003-01-30 2006-10-10 Eastman Kodak Company Method for face orientation determination in digital color images
US7162076B2 (en) 2003-02-11 2007-01-09 New Jersey Institute Of Technology Face detection method and apparatus
JP2004274720A (en) 2003-02-18 2004-09-30 Fuji Photo Film Co Ltd Data conversion apparatus and data conversion program
US7039222B2 (en) * 2003-02-28 2006-05-02 Eastman Kodak Company Method and system for enhancing portrait images that are processed in a batch mode
US7508961B2 (en) 2003-03-12 2009-03-24 Eastman Kodak Company Method and system for face detection in digital images
US20040228505A1 (en) 2003-04-14 2004-11-18 Fuji Photo Film Co., Ltd. Image characteristic portion extraction method, computer readable medium, and data collection and processing device
US7469160B2 (en) 2003-04-18 2008-12-23 Banks Perry S Methods and apparatus for evaluating image focus
US7609908B2 (en) 2003-04-30 2009-10-27 Eastman Kodak Company Method for adjusting the brightness of a digital image utilizing belief values
US20040223649A1 (en) 2003-05-07 2004-11-11 Eastman Kodak Company Composite imaging method and system
DE60314851D1 (en) 2003-05-19 2007-08-23 St Microelectronics Sa Image processing method for numerical images with exposure by detecting skin areas of the article
JP2004350130A (en) 2003-05-23 2004-12-09 Fuji Photo Film Co Ltd Digital camera
US20040252217A1 (en) 2003-06-12 2004-12-16 Battles Amy E. System and method for analyzing a digital image
US9129381B2 (en) 2003-06-26 2015-09-08 Fotonation Limited Modification of post-viewing parameters for digital images using image region or feature information
US7269292B2 (en) 2003-06-26 2007-09-11 Fotonation Vision Limited Digital image adjustable compression and resolution using face detection information
US7844076B2 (en) 2003-06-26 2010-11-30 Fotonation Vision Limited Digital image processing using face detection and skin tone information
US7565030B2 (en) 2003-06-26 2009-07-21 Fotonation Vision Limited Detecting orientation of digital images using face detection information
US7317815B2 (en) * 2003-06-26 2008-01-08 Fotonation Vision Limited Digital image processing composition using face detection information
US7471846B2 (en) 2003-06-26 2008-12-30 Fotonation Vision Limited Perfecting the effect of flash within an image acquisition devices using face detection
US7574016B2 (en) 2003-06-26 2009-08-11 Fotonation Vision Limited Digital image processing using face detection information
US7362368B2 (en) 2003-06-26 2008-04-22 Fotonation Vision Limited Perfecting the optics within a digital image acquisition device using face detection
US7616233B2 (en) 2003-06-26 2009-11-10 Fotonation Vision Limited Perfecting of digital image capture parameters within acquisition devices using face detection
US8948468B2 (en) 2003-06-26 2015-02-03 Fotonation Limited Modification of viewing parameters for digital images using face detection information
US7440593B1 (en) 2003-06-26 2008-10-21 Fotonation Vision Limited Method of improving orientation and color balance of digital images using face detection information
US7315630B2 (en) * 2003-06-26 2008-01-01 Fotonation Vision Limited Perfecting of digital image rendering parameters within rendering devices using face detection
US7274822B2 (en) 2003-06-30 2007-09-25 Microsoft Corporation Face annotation for photo management
US7190829B2 (en) 2003-06-30 2007-03-13 Microsoft Corporation Speedup of face detection in digital images
EP1499111B1 (en) 2003-07-15 2015-01-07 Canon Kabushiki Kaisha Image sensiting apparatus, image processing apparatus, and control method thereof
US7689033B2 (en) 2003-07-16 2010-03-30 Microsoft Corporation Robust multi-view face detection methods and apparatuses
US20050140801A1 (en) 2003-08-05 2005-06-30 Yury Prilutsky Optimized performance and performance for red-eye filter method and apparatus
US20050031224A1 (en) 2003-08-05 2005-02-10 Yury Prilutsky Detecting red eye filter and apparatus using meta-data
JP2005094741A (en) * 2003-08-14 2005-04-07 Fuji Photo Film Co Ltd Image pickup device and image synthesizing method
JP3946676B2 (en) * 2003-08-28 2007-07-18 株式会社東芝 Photographed image processing apparatus and method
US7532743B2 (en) 2003-08-29 2009-05-12 Sony Corporation Object detector, object detecting method and robot
US7362210B2 (en) 2003-09-05 2008-04-22 Honeywell International Inc. System and method for gate access control
US7369712B2 (en) * 2003-09-30 2008-05-06 Fotonation Vision Limited Automated statistical self-calibrating detection and removal of blemishes in digital images based on multiple occurrences of dust in images
US7424170B2 (en) 2003-09-30 2008-09-09 Fotonation Vision Limited Automated statistical self-calibrating detection and removal of blemishes in digital images based on determining probabilities based on image analysis of single images
US7590305B2 (en) * 2003-09-30 2009-09-15 Fotonation Vision Limited Digital camera with built-in lens calibration table
US7295233B2 (en) 2003-09-30 2007-11-13 Fotonation Vision Limited Detection and removal of blemishes in digital images utilizing original images of defocused scenes
US7605847B2 (en) * 2003-10-27 2009-10-20 Hoya Corporation Digital camera having subject judgment function
EP1684506A4 (en) 2003-11-11 2008-06-04 Seiko Epson Corp Image processing device, image processing method, program thereof, and recording medium
US7274832B2 (en) 2003-11-13 2007-09-25 Eastman Kodak Company In-plane rotation invariant object detection in digitized images
US7596247B2 (en) * 2003-11-14 2009-09-29 Fujifilm Corporation Method and apparatus for object recognition using probability models
JP2005182771A (en) 2003-11-27 2005-07-07 Fuji Photo Film Co Ltd Image editing apparatus, method, and program
CA2554135C (en) * 2003-12-24 2013-09-24 Walker Digital, Llc Method and apparatus for automatically capturing and managing images
JP2005267607A (en) 2004-02-20 2005-09-29 Fuji Photo Film Co Ltd Digital picture book system, picture book search method, and picture book search program
JP2005267608A (en) 2004-02-20 2005-09-29 Fuji Photo Film Co Ltd Digital picture book system, picture book search method, and picture book search program
JP2006033793A (en) 2004-06-14 2006-02-02 Victor Co Of Japan Ltd Tracking video reproducing apparatus
JP4610614B2 (en) * 2004-06-21 2011-01-12 グーグル インク.Google Inc. Multi biometric authentication system and method based on a single image
JP4574249B2 (en) * 2004-06-29 2010-11-04 キヤノン株式会社 The image processing apparatus and method, a program, an imaging apparatus
US7457477B2 (en) 2004-07-06 2008-11-25 Microsoft Corporation Digital photography with flash/no flash extension
CN101036150B (en) 2004-07-30 2010-06-09 欧几里得发现有限责任公司 Apparatus and method for processing image data
KR100668303B1 (en) * 2004-08-04 2007-01-12 삼성전자주식회사 Method for detecting face based on skin color and pattern matching
JP4757559B2 (en) 2004-08-11 2011-08-24 富士フイルム株式会社 Apparatus and method for detecting a component of the subject
US7119838B2 (en) 2004-08-19 2006-10-10 Blue Marlin Llc Method and imager for detecting the location of objects
US7502498B2 (en) 2004-09-10 2009-03-10 Available For Licensing Patient monitoring apparatus
JP4408779B2 (en) 2004-09-15 2010-02-03 キヤノン株式会社 Image processing apparatus
US7702599B2 (en) 2004-10-07 2010-04-20 Bernard Widrow System and method for cognitive memory and auto-associative neural network based pattern recognition
US7587085B2 (en) 2004-10-28 2009-09-08 Fotonation Vision Limited Method and apparatus for red-eye detection in an acquired digital image
US8320641B2 (en) 2004-10-28 2012-11-27 DigitalOptics Corporation Europe Limited Method and apparatus for red-eye detection using preview or other reference images
US7536036B2 (en) 2004-10-28 2009-05-19 Fotonation Vision Limited Method and apparatus for red-eye detection in an acquired digital image
US20060093238A1 (en) 2004-10-28 2006-05-04 Eran Steinberg Method and apparatus for red-eye detection in an acquired digital image using face recognition
JP4383399B2 (en) * 2004-11-05 2009-12-16 富士フイルム株式会社 Detection target image search apparatus and control method thereof
US7636486B2 (en) * 2004-11-10 2009-12-22 Fotonation Ireland Ltd. Method of determining PSF using multiple instances of a nominally similar scene
US7734067B2 (en) 2004-12-07 2010-06-08 Electronics And Telecommunications Research Institute User recognition system and method thereof
DE102004062315A8 (en) 2004-12-20 2007-02-01 Mack Rides Gmbh & Co Kg Water ride
US20060006077A1 (en) * 2004-12-24 2006-01-12 Erie County Plastics Corporation Dispensing closure with integral piercing unit
US7715597B2 (en) 2004-12-29 2010-05-11 Fotonation Ireland Limited Method and component for image recognition
CN100358340C (en) 2005-01-05 2007-12-26 张健 Digital-camera capable of selecting optimum taking opportune moment
JP4755490B2 (en) 2005-01-13 2011-08-24 オリンパスイメージング株式会社 Shake correction method and an imaging apparatus
US7454058B2 (en) 2005-02-07 2008-11-18 Mitsubishi Electric Research Lab, Inc. Method of extracting and searching integral histograms of data samples
US7620208B2 (en) 2005-02-09 2009-11-17 Siemens Corporate Research, Inc. System and method for detecting features from images of vehicles
US7715649B2 (en) * 2005-02-14 2010-05-11 Fujifilm Corporation Generation and adjustment of a luminance correction curve to prevent saturation of the image during contrast enhancement
US20060203106A1 (en) 2005-03-14 2006-09-14 Lawrence Joseph P Methods and apparatus for retrieving data captured by a media device
JP4324170B2 (en) 2005-03-17 2009-09-02 キヤノン株式会社 An imaging apparatus and a display control method
US7801328B2 (en) 2005-03-31 2010-09-21 Honeywell International Inc. Methods for defining, detecting, analyzing, indexing and retrieving events using video image processing
US8107764B2 (en) 2005-05-11 2012-01-31 Fujifilm Corporation Image processing apparatus, image processing method, and image processing program
JP4519708B2 (en) 2005-05-11 2010-08-04 富士フイルム株式会社 Imaging apparatus and method, and program
JP4906034B2 (en) 2005-05-16 2012-03-28 富士フイルム株式会社 Imaging apparatus and method, and program
US7612794B2 (en) * 2005-05-25 2009-11-03 Microsoft Corp. System and method for applying digital make-up in video conferencing
WO2006129791A1 (en) 2005-06-03 2006-12-07 Nec Corporation Image processing system, 3-dimensional shape estimation system, object position posture estimation system, and image generation system
JP2006350498A (en) 2005-06-14 2006-12-28 Fujifilm Holdings Corp Image processor and image processing method and program
JP2007006182A (en) 2005-06-24 2007-01-11 Fujifilm Holdings Corp Image processing apparatus and method therefor, and program
US20070018966A1 (en) 2005-07-25 2007-01-25 Blythe Michael M Predicted object location
US7606392B2 (en) 2005-08-26 2009-10-20 Sony Corporation Capturing and processing facial motion data
JP4429241B2 (en) 2005-09-05 2010-03-10 キヤノン株式会社 Image processing apparatus and method
US7683964B2 (en) * 2005-09-05 2010-03-23 Sony Corporation Image capturing apparatus and image capturing method
JP4799101B2 (en) * 2005-09-26 2011-10-26 富士フイルム株式会社 Image processing method and apparatus, and program
JP2007094549A (en) * 2005-09-27 2007-04-12 Fujifilm Corp Image processing method, device and program
US7555149B2 (en) 2005-10-25 2009-06-30 Mitsubishi Electric Research Laboratories, Inc. Method and system for segmenting videos using face detection
US20070098303A1 (en) 2005-10-31 2007-05-03 Eastman Kodak Company Determining a particular person from a collection
JP4626493B2 (en) 2005-11-14 2011-02-09 ソニー株式会社 Image processing apparatus, image processing method, a recording medium recording a program of a program and an image processing method of the image processing method
US7689009B2 (en) * 2005-11-18 2010-03-30 Fotonation Vision Ltd. Two stage detection for photographic eye artifacts
US7599577B2 (en) * 2005-11-18 2009-10-06 Fotonation Vision Limited Method and apparatus of correcting hybrid flash artifacts in digital images
US7920723B2 (en) 2005-11-18 2011-04-05 Tessera Technologies Ireland Limited Two stage detection for photographic eye artifacts
DE102005061627A1 (en) * 2005-12-21 2007-06-28 Lanxess Deutschland Gmbh Synthetic rubber having a narrow molecular weight distribution, a process for its preparation and its use
US8593542B2 (en) 2005-12-27 2013-11-26 DigitalOptics Corporation Europe Limited Foreground/background separation using reference images
US7643659B2 (en) 2005-12-31 2010-01-05 Arcsoft, Inc. Facial feature detection on mobile devices
US7953253B2 (en) 2005-12-31 2011-05-31 Arcsoft, Inc. Face detection on mobile devices
US7702236B2 (en) 2006-02-14 2010-04-20 Fotonation Vision Limited Digital image acquisition device with built in dust and sensor mapping capability
US7469071B2 (en) 2006-02-14 2008-12-23 Fotonation Vision Limited Image blurring
JP4643715B2 (en) * 2006-02-14 2011-03-02 テセラ テクノロジーズ アイルランド リミテッド Automatic detection and correction of defects due to the eyes of the flash is not a red-eye
US8682097B2 (en) 2006-02-14 2014-03-25 DigitalOptics Corporation Europe Limited Digital image enhancement with reference images
US7551754B2 (en) 2006-02-24 2009-06-23 Fotonation Vision Limited Method and apparatus for selective rejection of digital images
US7804983B2 (en) 2006-02-24 2010-09-28 Fotonation Vision Limited Digital image acquisition control and correction method and apparatus
US7792335B2 (en) 2006-02-24 2010-09-07 Fotonation Vision Limited Method and apparatus for selective disqualification of digital images
JP4542058B2 (en) * 2006-03-24 2010-09-08 富士フイルム株式会社 An imaging apparatus and an imaging method
US8265351B2 (en) 2006-05-05 2012-09-11 Parham Aarabi Method, system and computer program product for automatic and semi-automatic modification of digital images of faces
US7539533B2 (en) 2006-05-16 2009-05-26 Bao Tran Mesh network monitoring appliance
WO2007142621A1 (en) 2006-06-02 2007-12-13 Fotonation Vision Limited Modification of post-viewing parameters for digital images using image region or feature information
US8169486B2 (en) 2006-06-05 2012-05-01 DigitalOptics Corporation Europe Limited Image acquisition method and apparatus
US7965875B2 (en) * 2006-06-12 2011-06-21 Tessera Technologies Ireland Limited Advances in extending the AAM techniques from grayscale to color images
EP2050043A2 (en) * 2006-08-02 2009-04-22 Fotonation Vision Limited Face recognition with combined pca-based datasets
US8073286B2 (en) * 2006-08-09 2011-12-06 DigitalOptics Corporation Europe Limited Detection and correction of flash artifacts from airborne particulates
US7620218B2 (en) 2006-08-11 2009-11-17 Fotonation Ireland Limited Real-time face tracking with reference images
US7315631B1 (en) * 2006-08-11 2008-01-01 Fotonation Vision Limited Real-time face tracking in a digital image acquisition device
US7403643B2 (en) 2006-08-11 2008-07-22 Fotonation Vision Limited Real-time face tracking in a digital image acquisition device
JP5390064B2 (en) * 2006-08-30 2014-01-15 ルネサスエレクトロニクス株式会社 Semiconductor device
US8055067B2 (en) 2007-01-18 2011-11-08 DigitalOptics Corporation Europe Limited Color segmentation
DE602008001607D1 (en) 2007-02-28 2010-08-05 Fotonation Vision Ltd Separation of the directional lighting variability in the statistical modeling face on the basis of texture space decompositions
US8503800B2 (en) 2007-03-05 2013-08-06 DigitalOptics Corporation Europe Limited Illumination detection using classifier chains
JP4970557B2 (en) 2007-03-05 2012-07-11 デジタルオプティックス・コーポレイション・ヨーロッパ・リミテッドDigitaloptics Corporation Europe Limited Face search and detection in a digital image capture device
WO2008131823A1 (en) 2007-04-30 2008-11-06 Fotonation Vision Limited Method and apparatus for automatically controlling the decisive moment for an image acquisition device
US7916971B2 (en) 2007-05-24 2011-03-29 Tessera Technologies Ireland Limited Image processing method and apparatus
EP2153374B1 (en) 2007-05-24 2014-10-01 FotoNation Limited Image processing method and apparatus
US8896725B2 (en) 2007-06-21 2014-11-25 Fotonation Limited Image capture device with contemporaneous reference image capture mechanism
US8155397B2 (en) 2007-09-26 2012-04-10 DigitalOptics Corporation Europe Limited Face tracking in a camera processor
US7991285B2 (en) * 2008-01-08 2011-08-02 Sony Ericsson Mobile Communications Ab Using a captured background image for taking a photograph
US8494286B2 (en) 2008-02-05 2013-07-23 DigitalOptics Corporation Europe Limited Face detection in mid-shot digital images
JP5260360B2 (en) 2009-03-06 2013-08-14 株式会社ユーシン Electric steering lock device

Patent Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173068B2 (en)
US4047187A (en) 1974-04-01 1977-09-06 Canon Kabushiki Kaisha System for exposure measurement and/or focus detection by means of image senser
USRE31370E (en) 1974-04-01 1983-09-06 Canon Kabushiki Kaisha System for exposure measurement and/or focus detection by means of image sensor
US4317991A (en) 1980-03-12 1982-03-02 Honeywell Inc. Digital auto focus system utilizing a photodetector array
US4367027A (en) 1980-03-12 1983-01-04 Honeywell Inc. Active auto focus system improvement
US4448510A (en) 1981-10-23 1984-05-15 Fuji Photo Film Co., Ltd. Camera shake detection apparatus
USRE33682E (en) 1984-10-30 1991-09-03 Sanyo Electric Co., Ltd. Auto focus circuit for video camera
US4638364A (en) 1984-10-30 1987-01-20 Sanyo Electric Co., Ltd. Auto focus circuit for video camera
US4796043A (en) 1985-09-13 1989-01-03 Minolta Camera Kabushiki Kaisha Multi-point photometric apparatus
US5051770A (en) 1986-01-20 1991-09-24 Scanera S.C. Image processing device for controlling the transfer function of an optical system
US4970683A (en) 1986-08-26 1990-11-13 Heads Up Technologies, Inc. Computerized checklist with predetermined sequences of sublists which automatically returns to skipped checklists
US5291234A (en) 1987-02-04 1994-03-01 Asahi Kogaku Kogyo Kabushiki Kaisha Auto optical focus detecting device and eye direction detecting optical system
US5008946A (en) 1987-09-09 1991-04-16 Aisin Seiki K.K. System for recognizing image
US4975969A (en) 1987-10-22 1990-12-04 Peter Tal Method and apparatus for uniquely identifying individuals by particular physical characteristics and security system utilizing the same
US4970663A (en) 1989-04-28 1990-11-13 Avid Technology, Inc. Method and apparatus for manipulating digital video data
US5111231A (en) 1989-07-27 1992-05-05 Canon Kabushiki Kaisha Camera system
US5150432A (en) 1990-03-26 1992-09-22 Kabushiki Kaisha Toshiba Apparatus for encoding/decoding video signals to improve quality of a specific region
US5465308A (en) 1990-06-04 1995-11-07 Datron/Transoc, Inc. Pattern recognition system
US5161204A (en) 1990-06-04 1992-11-03 Neuristics, Inc. Apparatus for generating a feature matrix based on normalized out-class and in-class variation matrices
US6101271A (en) 1990-10-09 2000-08-08 Matsushita Electrial Industrial Co., Ltd Gradation correction method and device
US5353058A (en) 1990-10-31 1994-10-04 Canon Kabushiki Kaisha Automatic exposure control apparatus
US5164992A (en) 1990-11-01 1992-11-17 Massachusetts Institute Of Technology Face recognition system
USRE36041E (en) 1990-11-01 1999-01-12 Massachusetts Institute Of Technology Face recognition system
US5493409A (en) 1990-11-29 1996-02-20 Minolta Camera Kabushiki Kaisha Still video camera having a printer capable of printing a photographed image in a plurality of printing modes
US5305048A (en) 1991-02-12 1994-04-19 Nikon Corporation A photo taking apparatus capable of making a photograph with flash by a flash device
US5488429A (en) 1992-01-13 1996-01-30 Mitsubishi Denki Kabushiki Kaisha Video signal processor for detecting flesh tones in am image
US5638136A (en) 1992-01-13 1997-06-10 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for detecting flesh tones in an image
US5905807A (en) 1992-01-23 1999-05-18 Matsushita Electric Industrial Co., Ltd. Apparatus for extracting feature points from a facial image
US5331544A (en) 1992-04-23 1994-07-19 A. C. Nielsen Company Market research method and system for collecting retail store and shopper market research data
US5450504A (en) 1992-05-19 1995-09-12 Calia; James Method for finding a most likely matching of a target facial image in a data base of facial images
US5812193A (en) 1992-11-07 1998-09-22 Sony Corporation Video camera system which automatically follows subject changes
US5771307A (en) 1992-12-15 1998-06-23 Nielsen Media Research, Inc. Audience measurement system and method
US5384615A (en) 1993-06-08 1995-01-24 Industrial Technology Research Institute Ambient depth-of-field simulation exposuring method
US5432863A (en) 1993-07-19 1995-07-11 Eastman Kodak Company Automated detection and correction of eye color defects due to flash illumination
US5745668A (en) 1993-08-27 1998-04-28 Massachusetts Institute Of Technology Example-based image analysis and synthesis using pixelwise correspondence
US5835616A (en) 1994-02-18 1998-11-10 University Of Central Florida Face detection using templates
US5781650A (en) 1994-02-18 1998-07-14 University Of Central Florida Automatic feature detection and age classification of human faces in digital images
US5852669A (en) 1994-04-06 1998-12-22 Lucent Technologies Inc. Automatic face and facial feature location detection for low bit rate model-assisted H.261 compatible coding of video
US6426779B1 (en) 1995-01-04 2002-07-30 Sony Electronics, Inc. Method and apparatus for providing favorite station and programming information in a multiple station broadcast system
US6128398A (en) 1995-01-31 2000-10-03 Miros Inc. System, method and application for the recognition, verification and similarity ranking of facial or other object patterns
US5870138A (en) 1995-03-31 1999-02-09 Hitachi, Ltd. Facial image processing
US5724456A (en) 1995-03-31 1998-03-03 Polaroid Corporation Brightness adjustment of images using digital scene analysis
US5710833A (en) 1995-04-20 1998-01-20 Massachusetts Institute Of Technology Detection, recognition and coding of complex objects using probabilistic eigenspace analysis
US5844573A (en) 1995-06-07 1998-12-01 Massachusetts Institute Of Technology Image compression by pointwise prototype correspondence using shape and texture information
US5774129A (en) 1995-06-07 1998-06-30 Massachusetts Institute Of Technology Image analysis and synthesis networks using shape and texture information
US5850470A (en) 1995-08-30 1998-12-15 Siemens Corporate Research, Inc. Neural network for locating and recognizing a deformable object
US5715325A (en) 1995-08-30 1998-02-03 Siemens Corporate Research, Inc. Apparatus and method for detecting a face in a video image
US6151073A (en) 1996-03-28 2000-11-21 Fotonation, Inc. Intelligent camera flash system
US5911139A (en) 1996-03-29 1999-06-08 Virage, Inc. Visual image database search engine which allows for different schema
US5764803A (en) 1996-04-03 1998-06-09 Lucent Technologies Inc. Motion-adaptive modelling of scene content for very low bit rate model-assisted coding of video sequences
US5991456A (en) 1996-05-29 1999-11-23 Science And Technology Corporation Method of improving a digital image
US6173068B1 (en) 1996-07-29 2001-01-09 Mikos, Ltd. Method and apparatus for recognizing and classifying individuals based on minutiae
US5978519A (en) 1996-08-06 1999-11-02 Xerox Corporation Automatic image cropping
US6028960A (en) 1996-09-20 2000-02-22 Lucent Technologies Inc. Face feature analysis for automatic lipreading and character animation
US5852823A (en) 1996-10-16 1998-12-22 Microsoft Image classification and retrieval system using a query-by-example paradigm
US5818975A (en) 1996-10-28 1998-10-06 Eastman Kodak Company Method and apparatus for area selective exposure adjustment
US6061055A (en) 1997-03-21 2000-05-09 Autodesk, Inc. Method of tracking objects with an imaging device
US6249315B1 (en) 1997-03-24 2001-06-19 Jack M. Holm Strategy for pictorial digital image processing
US6035074A (en) 1997-05-27 2000-03-07 Sharp Kabushiki Kaisha Image processing apparatus and storage medium therefor
US6188777B1 (en) 1997-08-01 2001-02-13 Interval Research Corporation Method and apparatus for personnel detection and tracking
US6072094A (en) 1997-08-06 2000-06-06 Merck & Co., Inc. Efficient synthesis of cyclopropylacetylene
US6252976B1 (en) 1997-08-29 2001-06-26 Eastman Kodak Company Computer program product for redeye detection
US5966549A (en) 1997-09-09 1999-10-12 Minolta Co., Ltd. Camera
US6407777B1 (en) 1997-10-09 2002-06-18 Deluca Michael Joseph Red-eye filter method and apparatus
US6549641B2 (en) 1997-10-30 2003-04-15 Minolta Co., Inc. Screen image observing device and method
US6108437A (en) 1997-11-14 2000-08-22 Seiko Epson Corporation Face recognition apparatus, method, system and computer readable medium thereof
US6128397A (en) 1997-11-21 2000-10-03 Justsystem Pittsburgh Research Center Method for finding all frontal faces in arbitrarily complex visual scenes
US6246779B1 (en) 1997-12-12 2001-06-12 Kabushiki Kaisha Toshiba Gaze position detection apparatus and method
US6246790B1 (en) 1997-12-29 2001-06-12 Cornell Research Foundation, Inc. Image indexing using color correlograms
US6148092A (en) 1998-01-08 2000-11-14 Sharp Laboratories Of America, Inc System for detecting skin-tone regions within an image
US6332033B1 (en) 1998-01-08 2001-12-18 Sharp Laboratories Of America, Inc. System for detecting skin-tone regions within an image
US6268939B1 (en) 1998-01-08 2001-07-31 Xerox Corporation Method and apparatus for correcting luminance and chrominance data in digital color images
US6504942B1 (en) 1998-01-23 2003-01-07 Sharp Kabushiki Kaisha Method of and apparatus for detecting a face-like region and observer tracking display
US6278491B1 (en) 1998-01-29 2001-08-21 Hewlett-Packard Company Apparatus and a method for automatically detecting and reducing red-eye in a digital image
US6349373B2 (en) 1998-02-20 2002-02-19 Eastman Kodak Company Digital image management system having method for managing images according to image groups
US6529630B1 (en) 1998-03-02 2003-03-04 Fuji Photo Film Co., Ltd. Method and device for extracting principal image subjects
US6192149B1 (en) 1998-04-08 2001-02-20 Xerox Corporation Method and apparatus for automatic detection of image target gamma
US6567983B1 (en) 1998-04-10 2003-05-20 Fuji Photo Film Co., Ltd. Electronic album producing and viewing system and method
US6301370B1 (en) 1998-04-13 2001-10-09 Eyematic Interfaces, Inc. Face recognition from video images
US6097470A (en) 1998-05-28 2000-08-01 Eastman Kodak Company Digital photofinishing system including scene balance, contrast normalization, and image sharpening digital image processing
US6404900B1 (en) 1998-06-22 2002-06-11 Sharp Laboratories Of America, Inc. Method for robust human face tracking in presence of multiple persons
US6587119B1 (en) 1998-08-04 2003-07-01 Flashpoint Technology, Inc. Method and apparatus for defining a panning and zooming path across a still image during movie creation
US6456732B1 (en) 1998-09-11 2002-09-24 Hewlett-Packard Company Automatic rotation, cropping and scaling of images for printing
US6134339A (en) 1998-09-17 2000-10-17 Eastman Kodak Company Method and apparatus for determining the position of eyes and for correcting eye-defects in a captured frame
US6459436B1 (en) 1998-11-11 2002-10-01 Canon Kabushiki Kaisha Image processing method and apparatus
US6351556B1 (en) 1998-11-20 2002-02-26 Eastman Kodak Company Method for automatically comparing content of images for classification into events
US6263113B1 (en) 1998-12-11 2001-07-17 Philips Electronics North America Corp. Method for detecting a face in a digital image
US6473199B1 (en) 1998-12-18 2002-10-29 Eastman Kodak Company Correcting exposure and tone scale of digital images captured by an image capture device
US6438264B1 (en) 1998-12-31 2002-08-20 Eastman Kodak Company Method for compensating image color when adjusting the contrast of a digital color image
US6282317B1 (en) 1998-12-31 2001-08-28 Eastman Kodak Company Method for automatic determination of main subjects in photographic images
US6421468B1 (en) 1999-01-06 2002-07-16 Seiko Epson Corporation Method and apparatus for sharpening an image by scaling elements of a frequency-domain representation
US6463163B1 (en) 1999-01-11 2002-10-08 Hewlett-Packard Company System and method for face detection using candidate image region selection
US6393148B1 (en) 1999-05-13 2002-05-21 Hewlett-Packard Company Contrast enhancement of an image using luminance and RGB statistical metrics
US6502107B1 (en) 1999-05-13 2002-12-31 Fourie, Inc. Visual database system
US6501857B1 (en) 1999-07-20 2002-12-31 Craig Gotsman Method and system for detecting and classifying objects in an image
US6526161B1 (en) 1999-08-30 2003-02-25 Koninklijke Philips Electronics N.V. System and method for biometrics-based facial feature extraction
US6504951B1 (en) 1999-11-29 2003-01-07 Eastman Kodak Company Method for detecting sky in images
US6301440B1 (en) 2000-04-13 2001-10-09 International Business Machines Corp. System and method for automatically setting image acquisition controls
US6564225B1 (en) 2000-07-14 2003-05-13 Time Warner Entertainment Company, L.P. Method and apparatus for archiving in and retrieving images from a digital image library
US6516154B1 (en) 2001-07-17 2003-02-04 Eastman Kodak Company Image revising camera and method
US20040022435A1 (en) * 2002-07-30 2004-02-05 Canon Kabushiki Kaisha Image processing apparatus and method and program storage medium
US20050104848A1 (en) * 2003-09-25 2005-05-19 Kabushiki Kaisha Toshiba Image processing device and method

Non-Patent Citations (74)

* Cited by examiner, † Cited by third party
Title
Arun Krishman, Panoramic Image Acquisition, 1996 Conference on Computer Vision and Pattern Recognition (CVPR '96), Jun. 18-20, 1996, San Francisco, CA, Abstract printed from http://csdl.computer.org/comp/proceedings/cvpr/1996/7258/00/72580379abs.htm.
Batur, A. et al., "Adaptive Active Appearance Models." IEEE. vol. 14, No. 11, Nov. 2005, pp. 1707-1721.
Buenaposada, J., "Efficiently Estimating 1-3, 16 Facial Expressions and Illumination in Appearance-Based Tracking," Proc. British Machine Vision Conf., Sep. 4, 2006, XP002494036, 10 pages.
Cootes, T F. et al., "A Comparative Evaluation of Active Appearance Model Algorithms." Proc. 9th British Machine vision Conf., Brit. Machine Vision Assoc., 1998. pp. 680-689.
Cootes, T. F. et al., "Modeling Facial Shape and Appearance." Handbook of Face Recognition, Chapter 3, Springer, 2005, XP002494037, 26 pgs.
Cootes, T. F. et al., "On Representing Edge Structure for Model Matching," CVPR vol. 1, 2001, pp. 1114-1119.
Crowley, J., and Berard, F., "Multi-modal tracking of faces for video communication," In Computer Vision and Patent Recognition, 1997. http://citeseer.ist.psu.edu/crowley97multimodal.html.
D. Shock, et al., Comparison of Rural Remote Site Production of Digital Images Employing a Film Digitizer or a Computer Radiography (CR) System, 4th International Conference on Image Management and Communication (IMAC '95), Aug. 21-24, 1995, Abstract printed from http://csdl.computer.org/comp/proceedings/imac/1995/7560/00/75600071abs.htm.
Daechul Park, et al., Lenticular Stereoscopic Imaging and Displaying Techniques with no Special Glasses, 1995 International Conference on Image Processing (vol. 3), vol. 3, Oct. 23-26, 1995, Washington, D.C., Abstract printed from http://csdl.computer.org/comp/proceedings/icip1995/7310/03/73103137abs.htm.
Danijel Skocaj, Range Image Acquisition of Objects with Non-Uniform Albedo Using Structured Light Range Sensor, International Conference on Pattern Recognition (ICPR '00), vol. 2, Sep. 3-8, 2000, Barcelona, Spain, Abstract printed from http.//csdl.computer.org/comp/proceedings/icpr/2000/0750/01/07501778abs.htm.
David Beymer, Pose-Invariant Face Recognition Using Real and Virtual Views, Massachusetts Institute of Technology Artificial Intelligence Laboratory, A.I. Technology Report No. 1574, Mar. 1996, pp. 1-176.
Donner, Rene et al., "Fast Active Appearance Model Search using Canonical Correlation Analysis," IEEE, vol. 28, No. 10. Oct. 2006, pp. 1690-1694.
Edwards, G. J. et al., "Advances in Active Appearance Models," Proceedings of the 7th IEEE International Conference on Computer Vision (ICCV '99), vol. 1, pp. 137-142, Kerkyra, Greece, Sep. 1999.
Edwards, G. J. et al., "Learning to Identify and Track Faces in Image Sequence," Automatic Face and Gesture Recognition, Proc., IEEE, Apr. 14, 1998, XP010277593, pp. 260-265.
Feraud, R. et al., "A Fast and Accurate Face Detector Based on Neural Networks," IEEE, vol. 23, No. 1, Jan. 2001, pp. 42-53.
Froba, B. et al., "Face Detection With The Modified Census Transform," Dept. of Applied Elect., Proceedings of 6th IEEE, 2004, pp. 1-6, XP-002455697.
Froba, B. et al., "Real Time Face Detection," Dept. of Applied Electronics, 2002, XP-2455696A, pp. 1-6.
Gerbrands, J., On the Relationships Between SVD, KLT, and PCA, 1981, Pattern Recognition, vol. 14, Nos. 1-6, pp. 375-381.
Goodall, Charles, "Procrustes Methods in the Statistical Analysis of Shape," Journal of the Royal Statistical Society, Series B, vol. 53, No. 2, 1991, pp. 285-339.
H.H. Garnaoui, et al., Visual Masking and the Design of Magnetic Resonance Image Acquisition, 1995 International Conference on Image Processing (vol. 3), vol. 3, Oct. 23-26, 1995, Washington, D.C., Abstract printed from http://csdl.computer.org/comp/proceedings/icip/1995/7310/03/73100625abs.htm.
Henry A. Rowley, et al., Neutral Network-Based Face Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, Jan. 1998, pp. 23-38, vol. 20, No. 1.
Hiroyuki Aoki, et al., An Image Storage System Using Complex-Valued Associative Memories, International Conference on Pattern Recognition (ICPR '00), vol. 2, Sep. 3-8, 2000, Barcelona, Spain, Abstract printed from http://csdl.computer.org/comp/proceedings/icpr/2000/0750/02/07502626abs.htm.
Hou, Xinwen et al., "Direct Appearance Models," IEEE, 2001, pp. 1828-1833.
Huang, J. and Gutta, S., Wechsler, H., "Detection of human faces using decision trees" 2nd International Conference on Automatic Face and Gesture Recognition (FG '96). p. 248 IEEE Xplore http://doi.ieeecomputersociety,org/10.1109/AFGR.1996.557272.
International Search Report and Written Opinion, PCT/EP2007/006540, Nov. 7, 2008, 6 pgs.
International Search Report and Written Opinion, PCT/EP2007/006540, Nov. 8, 2007, 11 pgs.
International Search Report and Written Opinion, PCT/EP2008/001510, May 29, 2008, 13 pgs.
International Search Report and Written Opinion, PCT/EP2008/052329, Sep. 15, 2008, 12 pgs.
International Search Report and Written Opinion, PCT/IB2007/003724, Aug. 28, 2008, 9 pgs.
Internet Article: Twins Crack Face Recognition Puzzle, printed Mar. 10, 2003, 3 pages, http://www.cnn.com/2003/TECH/ptech/03/10/israel.twins.reut/index.html.
J.A. Beraldin, et al., Object Model Creation from Multiple Range Images: Acquisition, Calibration, Model Building and Verification, International Conference on Recent Advances in 3-D Digital Imaging and Modeling, May 12-15, 1997, Ottawa, Ontario, Canada, Abstract printed from http://csdl.computer.org/comp/proceedings/nrc/1997/7943/00/79430326abs.htm.
J.W. Sublett, et al., Design and Implementation of a Digital Teleultrasound System for Real-Time Remote Diagnosis, Eight Annual IEEE Symposium on Computer-Based Medical Systems (CBMS '95). Jun. 9-10, 1995, Lubbock, Texas, Abstract printed from http://csdl.computer.org/comp/roceedings/cbms/1995/71170292abs.htm.
John Dalton, Digital Cameras and Electric Color Image Acquisition, COMPCON Spring '96-41st IEEE International Conference, Feb. 25-28, 1996, San Jose, California, Abstract printed from http://csdl.computer.org/comp/proceedings/compcon/1996/7414/00/74140431abs.htm.
Jones, M and Viola, P., "Fast multi-view face detection," Mitsubishi Electric Research Laboratories, 2003. http://www.merl.com/papers/docs/TR2003-06.pdf.
Jun Zhang, et al., Face Recognition: Eigenface, Elastic, Matching, and Neutral Nets, Proceedings of the IEEE, Sep. 1997, pp. 1423-1435, vol. 85, No. 9.
Kouzani, A. Z., "Illumination-Effects Compensation in Facial Images," IEEE, 1999, p. VI-840-VI-844.
Kresimir Matkovic, et al., The 3D Wunderkammer an Indexing by Placing Approach to the Image Storage and Retrieval, Theory and Practice of Computer Graphics 2003, Jun. 3-5, 2003, University of Birmingham, UK, Abstract printed from http://csdl.computer.org/comp/proceedings/tpcg/2003/1942/00/19420034abs.htm.
Lai, Jian Huang; Yuen, Pong C.; Feng, Guo Can, "Face recognition using holistic Fourier in variant features," Pattern Recognition 34 (2001), pp. 95-109. http://digitalimaging.inf.brad.ac.uk/publication/pr34-1.pdf.
Lei, Z. et al., "A CBIR Method Based on Color-Spatial Feature," IEEE Region 10th Ann. Int. Conf. 1999 (TENCON'99, Cheju, Korea, 1999).
Lienhard, R. et al., "A Detector Tree of Boosted Classifiers for Real-Time Object Detection and Tracking," Proc. of the 2003 Intl. Conf. on Multimedia and Expo-Vo. 1, pp. 277-280 (2003), ISBN:0-7803-7965-9, Publisher IEEE Computer Society, Washington, DC, USA.
Matthew Gaubatz, et al., Automatic Red-Eye Detection and Correction, IEEE ICIP, 2002, pp. I-804-I-807.
Matthews, I. et al., "Active appearance models revisited," International Journal of Computer Vision, vol. 60, No. 2, pp. 135-164, 2004.
Mekuz, N. et al., "Adaptive Step Size Window Matching for Detection," Proc. Of the 18th Intl. Conf. on Pattern Recog., vol. 2, Aug. 2006, pp. 259-262.
Michael Kozubek, et al., Automated Multi-view 3D Image Acquisition in Human Genome Research, 1st International Symposium on 3D Data Processing Visualization and Transmission (3DPVT '02), Jun. 19-21, 2002, Padova, Italy, Abstract printed from http://csdl.computer.org/comp/proceedings/3dpvt/2002/1521/00/15210091abs.htm.
Ming-Hsuan Yang, et al., Detecting Faces in Images: A Survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, Jan. 2002, pp. 34-58, vol. 24, No. 1.
Mitra, S. et al., "Gaussian Mixture Models Based on the Frequency Spectra for Human Identification and Illumination Classification," Automatic Identification Advanced Tech., 4th IEEE Workshop on Buffalo, NY, IEEE, 2005, pp. 245-250.
Nobuyuki Kita, et al., Archiving Technology for Plant Inspection Images Captured by Mobile Active Cameras-4D Visible Memory-1st International Symposium on 3D Data Processing Visualization and Transmission (3DPVT '02), Jun. 19-21, 2002, Padova, Italy, Abstract printed from http://csdl.computer.org/comp/proceedings/3dpvt/2002/1521/00/00/15210208abs.htm.
Nordstrom, M. M. et al., "The IMM Face Database: An Annotated Dataset of 240 Face Images," Informatics and Mathematical Modelling: Tech. Univ. of Denmark. Denmark: 2004.
Ohta, Y.-I, et al., "Color Information for Region Segmentation," Comp. Graphics and Image Processing, Academic Press, NY. vol. 13, No. 3, Jul. 1, 1980, XP008026458, pp. 222-241.
P. Vuylsteke, et al., Range Image Acquisition with a Single Binary-Encoded Light Pattern, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, Abstract printed from http://csdl.computer.org/comp/trans/lp/1990/02/0148abs.htm, 1 page.
PCT Application No. PCT/US2006/021393, filed Jun. 2, 2006, entitled "Modification of Post-Viewing Parameters for Digital Images Using Image Region or Feature Information".
PCT Application No. PCT/US2006/021393. filed Jun. 2, 2006, entitled "Modification of Post-Viewing Parameters for Digital Images Using Image Region or Feature Information".
PCT Application No. PCT/US2006/060392, filed Oct. 31, 2006, entitled "Digital Image Processing Using Face Detection and Skin Tone Information".
PCT/US2006/060392, filed Oct. 31, 2006, entitled "Digital Image Processing Using Face Detection and Skin Tone Information".
Reinhold Huber, et al., Adaptive Aperture Control for Image Acquisition, Sixth IEEE Workshop on Applications of Computer Vision, Dec. 3-4, 2002, Orlando. Florida, Abstract printed from http://csdl.computer.org/comp/proceedings/wacv/2002/1858/0018580320abs.htm.
Romdhani, S. et al., "Face Identification by Fitting a 3D Morphable Model using Linear Shape and Texture Error Functions," European Conf. on Computer Vision. Berlin, DE, Jan. 1, 2002, XP003018283, 15 pgs.
Rowley, H.A., Baluja, S. Kanade, T., "Neural network-based face detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, Jan. 1998, vol. 20, Issue: 1, pp. 23-38, ISSN: 0162-8828, DOI: 10.1109/34.655647, Posted online: Aug. 6, 2002. http://ieeexplore.ieee.org/xpl/freeabs-all.jsp? arnumber=655647&isnumber=14286.
Ryu et al., "Coarse-to-Fine Classification for Image-Based Face Detection," Carnegie Melon Univ., Pittsburgh, PA, May 1999, ch. 6, p. 92, subsection 8.3.
Shand, M., "Flexible Image Acquisition Using Reconfigurable Hardware," IEEE Symposium of FPGA's for Custom Computing Machines, Apr. 19-21, 1995, Napa Valley, CA, Abstract printed from http://csdl.computer.org/comp/proceedings/fccm/1995/7086/00/70860125abs.htm.
Sharma, G. et al., "Digital Color Imaging," IEEE Transactions On Image Processing, vol. 6, No. 7, 1997, pp. 901-932.
Sim, T. et al., "The CMU Pose, Illumination and Expression (PIE)," Database of Human Faces Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Tec. Report, CMU-RI-TR-01-02, Jan. 2001, 9 pages.
Sing Bing Kang, et al., A Multibaseline Stereo System with Active Illuminationand Real-Time Image Acquisition. Fifth International Conference on Computer Vision, Jun. 20-23, 1995, Massachusetts Institute of Technology, Cambridge, Massachusetts, Abstract printed from http://csdl.computer.org/comp/proceedings/iccv/1995/7042/00/70420088abs.htm.
Smeraldi, F. et al., "Facial Feature Detection by Saccatic Exploration of the Gabor Decomposition," Image Processing, 1998 Intl. Conf., Oct. 4, 1998, pp. 163-167.
Soriano, M. et al., "Making Saturated Facial Images Useful Again," Proc. Of the Spie, Spie, Bellingham, VA, vol. 3826, Jun. 17, 1999, pp. 113-121.
Stegman, M. B. et al. "Multi-Band Modelling of Appearance," Image Vision Comp., vol. 21, No. 1, Jan. 10, 2003, XP009104697, pp. 61-67.
Stricker et al., "Similarity of Color Images," SPIE Proc., 1995, pp. 1-12.
Tianhorng, C. et al., "Texture Analysis and Classification with Tree-Structured Wavelet Transform," IEEE Trans. Of Image Processing, vol. 2, No. 4, Oct. 1993, p. 429-441.
Tjahyadi et al., "Application of the DCT Energy Histogram for Face Recognition," Proc. Of the 2nd Intl. Conf. on Information Technology for Applicaiotn, ICITA, 2004, pp. 305-310.
Tkalcic, M. et al., "Colour Spaces Perceptual, Historical and Applicational Background," IEEE, EUROCON, 2003, Sep. 22-24, 2003, vol. 1, pp. 304-308.
Tony S. Jebara, 3D Pose Estimation and Normalization for Face Recognition, Department of Electrical Engineering. McGill University, A Thesis Submitted to the Faculty of Graduate Studies and Research in Partial fulfillment of the requirements of the degree of Bachelor of Engineering, May 1996, pp. 1-121.
Turk, M. et al., "Eigenfaces for Recognition," Journal of Cognitive Neuroscience, Mass. Institute of Technology, vol. 3, No. 1, 1991, pp. 71-86.
Wan, S. J. et al., "Variance Based Color Image Quantization for Frame Buffer Display," Color Res. Applicat., vol. 15, No. 1, 1990, pp. 52-58.
Wen-Chen Hu, et al. A Line String Image Representation for Image Storage and Retrieval, 1997 International Conference on Multimedia Computing and Systems (ICMCS '97), Jun 3-6, 1997, Ottawa, Ontario, Canada, Abstract printed from http://csdl.computer.org/comp/proceedings/icmcs/1997/7819/00/78190434abs.htm.
Yuan Y. Tang, et al. Information Acquisition and Storage of Forms in Document Processing, 4th International Conference Document Analysis and Recognition (ICDAR ' 97), vol. I and vol. II, Aug. 18-20, 1997, Ulm, Germany, Abstract printed from http://csdl.computer.org/comp/proceedings/icdar/1997/7898/00/7898018abs.htm.

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8224108B2 (en) 2003-06-26 2012-07-17 DigitalOptics Corporation Europe Limited Digital image processing using face detection information
US8126208B2 (en) 2003-06-26 2012-02-28 DigitalOptics Corporation Europe Limited Digital image processing using face detection information
US7853043B2 (en) 2003-06-26 2010-12-14 Tessera Technologies Ireland Limited Digital image processing using face detection information
US8326066B2 (en) 2003-06-26 2012-12-04 DigitalOptics Corporation Europe Limited Digital image adjustable compression and resolution using face detection information
US8055090B2 (en) 2003-06-26 2011-11-08 DigitalOptics Corporation Europe Limited Digital image processing using face detection information
US8131016B2 (en) 2003-06-26 2012-03-06 DigitalOptics Corporation Europe Limited Digital image processing using face detection information
US8908932B2 (en) 2003-06-26 2014-12-09 DigitalOptics Corporation Europe Limited Digital image processing using face detection and skin tone information
US8369586B2 (en) 2003-06-26 2013-02-05 DigitalOptics Corporation Europe Limited Digital image processing using face detection and skin tone information
US8330831B2 (en) 2003-08-05 2012-12-11 DigitalOptics Corporation Europe Limited Method of gathering visual meta data using a reference image
US8494299B2 (en) 2004-11-10 2013-07-23 DigitalOptics Corporation Europe Limited Method of determining PSF using multiple instances of a nominally similar scene
US8270751B2 (en) 2004-11-10 2012-09-18 DigitalOptics Corporation Europe Limited Method of notifying users regarding motion artifacts based on image analysis
US20060098891A1 (en) * 2004-11-10 2006-05-11 Eran Steinberg Method of notifying users regarding motion artifacts based on image analysis
US8494300B2 (en) 2004-11-10 2013-07-23 DigitalOptics Corporation Europe Limited Method of notifying users regarding motion artifacts based on image analysis
US8285067B2 (en) 2004-11-10 2012-10-09 DigitalOptics Corporation Europe Limited Method of notifying users regarding motion artifacts based on image analysis
US7636486B2 (en) 2004-11-10 2009-12-22 Fotonation Ireland Ltd. Method of determining PSF using multiple instances of a nominally similar scene
US7639889B2 (en) 2004-11-10 2009-12-29 Fotonation Ireland Ltd. Method of notifying users regarding motion artifacts based on image analysis
US8244053B2 (en) 2004-11-10 2012-08-14 DigitalOptics Corporation Europe Limited Method and apparatus for initiating subsequent exposures based on determination of motion blurring artifacts
US7697778B2 (en) 2004-11-10 2010-04-13 Fotonation Vision Limited Method of notifying users regarding motion artifacts based on image analysis
US7660478B2 (en) 2004-11-10 2010-02-09 Fotonation Vision Ltd. Method of determining PSF using multiple instances of nominally scene
US8335355B2 (en) 2004-12-29 2012-12-18 DigitalOptics Corporation Europe Limited Method and component for image recognition
US9639775B2 (en) 2004-12-29 2017-05-02 Fotonation Limited Face or other object detection including template matching
US7962629B2 (en) 2005-06-17 2011-06-14 Tessera Technologies Ireland Limited Method for establishing a paired connection between media devices
US20060285750A1 (en) * 2005-06-21 2006-12-21 Sony Corporation Imaging apparatus, processing method of the apparatus and program making computer execute the method
US7796838B2 (en) * 2005-06-21 2010-09-14 Sony Corporation Imaging apparatus, processing method of the apparatus making computer execute the methods of selecting face search directions specific to a display mode and capture mode of operation
US8593542B2 (en) 2005-12-27 2013-11-26 DigitalOptics Corporation Europe Limited Foreground/background separation using reference images
US8682097B2 (en) 2006-02-14 2014-03-25 DigitalOptics Corporation Europe Limited Digital image enhancement with reference images
US20070223049A1 (en) * 2006-03-27 2007-09-27 Fujifilm Corporation Method, apparatus, and program for displaying data
US20070229909A1 (en) * 2006-04-03 2007-10-04 Canon Kabushiki Kaisha Information processing apparatus, information processing system, control method, program, and storage medium
US20080010612A1 (en) * 2006-05-24 2008-01-10 Canon Kabushiki Kaisha Information processing apparatus, information processing system, control method thereof, program, and storage medium
US8169486B2 (en) 2006-06-05 2012-05-01 DigitalOptics Corporation Europe Limited Image acquisition method and apparatus
US8520082B2 (en) 2006-06-05 2013-08-27 DigitalOptics Corporation Europe Limited Image acquisition method and apparatus
US7965875B2 (en) 2006-06-12 2011-06-21 Tessera Technologies Ireland Limited Advances in extending the AAM techniques from grayscale to color images
US20080024627A1 (en) * 2006-07-25 2008-01-31 Fujifilm Corporation Image display apparatus, image taking apparatus, image display method, and program
US7706579B2 (en) * 2006-12-21 2010-04-27 Sony Ericsson Communications Ab Image orientation for display
US20080152199A1 (en) * 2006-12-21 2008-06-26 Sony Ericsson Mobile Communications Ab Image orientation for display
US8055067B2 (en) 2007-01-18 2011-11-08 DigitalOptics Corporation Europe Limited Color segmentation
US8300973B2 (en) * 2007-01-30 2012-10-30 Hewlett-Packard Development Company, L.P. Pre-filter for object detection
US20080181455A1 (en) * 2007-01-30 2008-07-31 Hewlett-Packard Development Company, L.P. Pre-Filter for Object Detection
US8878967B2 (en) 2007-03-05 2014-11-04 DigitalOptics Corporation Europe Limited RGBW sensor array
US8649604B2 (en) 2007-03-05 2014-02-11 DigitalOptics Corporation Europe Limited Face searching and detection in a digital image acquisition device
US20090167893A1 (en) * 2007-03-05 2009-07-02 Fotonation Vision Limited RGBW Sensor Array
US8417055B2 (en) 2007-03-05 2013-04-09 DigitalOptics Corporation Europe Limited Image processing method and apparatus
US9224034B2 (en) 2007-03-05 2015-12-29 Fotonation Limited Face searching and detection in a digital image acquisition device
US8503800B2 (en) 2007-03-05 2013-08-06 DigitalOptics Corporation Europe Limited Illumination detection using classifier chains
US8923564B2 (en) 2007-03-05 2014-12-30 DigitalOptics Corporation Europe Limited Face searching and detection in a digital image acquisition device
US8264576B2 (en) 2007-03-05 2012-09-11 DigitalOptics Corporation Europe Limited RGBW sensor array
US8199222B2 (en) 2007-03-05 2012-06-12 DigitalOptics Corporation Europe Limited Low-light video frame enhancement
US20080231713A1 (en) * 2007-03-25 2008-09-25 Fotonation Vision Limited Handheld Article with Movement Discrimination
US8212882B2 (en) 2007-03-25 2012-07-03 DigitalOptics Corporation Europe Limited Handheld article with movement discrimination
US7773118B2 (en) 2007-03-25 2010-08-10 Fotonation Vision Limited Handheld article with movement discrimination
US9160897B2 (en) 2007-06-14 2015-10-13 Fotonation Limited Fast motion estimation method
US20080309769A1 (en) * 2007-06-14 2008-12-18 Fotonation Ireland Limited Fast Motion Estimation Method
US20080316327A1 (en) * 2007-06-21 2008-12-25 Fotonation Ireland Limited Image capture device with contemporaneous reference image capture mechanism
US9767539B2 (en) 2007-06-21 2017-09-19 Fotonation Limited Image capture device with contemporaneous image correction mechanism
US8896725B2 (en) 2007-06-21 2014-11-25 Fotonation Limited Image capture device with contemporaneous reference image capture mechanism
US8989516B2 (en) 2007-09-18 2015-03-24 Fotonation Limited Image processing method and apparatus
US8180173B2 (en) 2007-09-21 2012-05-15 DigitalOptics Corporation Europe Limited Flash artifact eye defect correction in blurred images using anisotropic blurring
US20090080796A1 (en) * 2007-09-21 2009-03-26 Fotonation Vision Limited Defect Correction in Blurred Images
US8494286B2 (en) 2008-02-05 2013-07-23 DigitalOptics Corporation Europe Limited Face detection in mid-shot digital images
US20090196466A1 (en) * 2008-02-05 2009-08-06 Fotonation Vision Limited Face Detection in Mid-Shot Digital Images
US8345114B2 (en) 2008-07-30 2013-01-01 DigitalOptics Corporation Europe Limited Automatic face and skin beautification using face detection
US9007480B2 (en) 2008-07-30 2015-04-14 Fotonation Limited Automatic face and skin beautification using face detection
US8384793B2 (en) 2008-07-30 2013-02-26 DigitalOptics Corporation Europe Limited Automatic face and skin beautification using face detection
US20100142768A1 (en) * 2008-12-04 2010-06-10 Kongqiao Wang Method, apparatus and computer program product for providing an orientation independent face detector
US8144945B2 (en) * 2008-12-04 2012-03-27 Nokia Corporation Method, apparatus and computer program product for providing an orientation independent face detector
US20120294533A1 (en) * 2009-12-03 2012-11-22 Sony Computer Entertainment Inc. Image processing device and image processing method
US9049397B2 (en) * 2009-12-03 2015-06-02 Sony Corporation Image processing device and image processing method
US20110141227A1 (en) * 2009-12-11 2011-06-16 Petronel Bigioi Stereoscopic (3d) panorama creation on handheld device
US20110141225A1 (en) * 2009-12-11 2011-06-16 Fotonation Ireland Limited Panorama Imaging Based on Low-Res Images
US20110141229A1 (en) * 2009-12-11 2011-06-16 Fotonation Ireland Limited Panorama imaging using super-resolution
US20110141300A1 (en) * 2009-12-11 2011-06-16 Fotonation Ireland Limited Panorama Imaging Using a Blending Map
WO2011069698A1 (en) 2009-12-11 2011-06-16 Tessera Technologies Ireland Limited Panorama imaging
US20110141226A1 (en) * 2009-12-11 2011-06-16 Fotonation Ireland Limited Panorama imaging based on a lo-res map
US20110141224A1 (en) * 2009-12-11 2011-06-16 Fotonation Ireland Limited Panorama Imaging Using Lo-Res Images
US8294748B2 (en) 2009-12-11 2012-10-23 DigitalOptics Corporation Europe Limited Panorama imaging using a blending map
US8692867B2 (en) 2010-03-05 2014-04-08 DigitalOptics Corporation Europe Limited Object detection and rendering for wide field of view (WFOV) image acquisition systems
US8872887B2 (en) 2010-03-05 2014-10-28 Fotonation Limited Object detection and rendering for wide field of view (WFOV) image acquisition systems
WO2011107448A2 (en) 2010-03-05 2011-09-09 Tessera Technologies Ireland Limited Object detection and rendering for wide field of view (wfov) image acquisition systems
KR20130098298A (en) 2010-07-07 2013-09-04 디지털옵틱스 코포레이션 유럽 리미티드 Real-time video frame pre-processing hardware
KR20130103527A (en) 2010-09-09 2013-09-23 디지털옵틱스 코포레이션 유럽 리미티드 Stereoscopic (3d) panorama creation on handheld device
DE112011103011T5 (en) 2010-09-09 2013-11-07 Digitaloptics Corporation Europe Ltd. Stereoscopic (3D) panorama creation on portable devices
US8970770B2 (en) 2010-09-28 2015-03-03 Fotonation Limited Continuous autofocus based on face detection and tracking
WO2012041892A1 (en) 2010-09-28 2012-04-05 DigitalOptics Corporation Europe Limited Continuous autofocus based on face detection and tracking
WO2012050878A1 (en) 2010-09-29 2012-04-19 Tessera, Inc. Systems and methods for ergonomic measurement
US8730332B2 (en) 2010-09-29 2014-05-20 Digitaloptics Corporation Systems and methods for ergonomic measurement
US8995715B2 (en) 2010-10-26 2015-03-31 Fotonation Limited Face or other object detection including template matching
US9525807B2 (en) 2010-12-01 2016-12-20 Nan Chang O-Film Optoelectronics Technology Ltd Three-pole tilt control system for camera module
US8947501B2 (en) 2011-03-31 2015-02-03 Fotonation Limited Scene enhancements in off-center peripheral regions for nonlinear lens geometries
US8860816B2 (en) 2011-03-31 2014-10-14 Fotonation Limited Scene enhancements in off-center peripheral regions for nonlinear lens geometries
US8982180B2 (en) 2011-03-31 2015-03-17 Fotonation Limited Face and other object detection and tracking in off-center peripheral regions for nonlinear lens geometries
US8896703B2 (en) 2011-03-31 2014-11-25 Fotonation Limited Superresolution enhancment of peripheral regions in nonlinear lens geometries
US8723959B2 (en) 2011-03-31 2014-05-13 DigitalOptics Corporation Europe Limited Face and other object tracking in off-center peripheral regions for nonlinear lens geometries
US8913005B2 (en) 2011-04-08 2014-12-16 Fotonation Limited Methods and systems for ergonomic feedback using an image analysis module
EP2515526A2 (en) 2011-04-08 2012-10-24 DigitalOptics Corporation Europe Limited Display device with image capture and analysis module
US9817206B2 (en) 2012-03-10 2017-11-14 Digitaloptics Corporation MEMS auto focus miniature camera module with fixed and movable lens groups
WO2013136053A1 (en) 2012-03-10 2013-09-19 Digitaloptics Corporation Miniature camera module with mems-actuated autofocus
WO2014072837A2 (en) 2012-06-07 2014-05-15 DigitalOptics Corporation Europe Limited Mems fast focus camera module
US9001268B2 (en) 2012-08-10 2015-04-07 Nan Chang O-Film Optoelectronics Technology Ltd Auto-focus camera module with flexible printed circuit extension
US9007520B2 (en) 2012-08-10 2015-04-14 Nanchang O-Film Optoelectronics Technology Ltd Camera module with EMI shield
WO2014033099A2 (en) 2012-08-27 2014-03-06 Digital Optics Corporation Europe Limited Rearview imaging systems for vehicle

Also Published As

Publication number Publication date Type
US20110064329A1 (en) 2011-03-17 application
US20100165150A1 (en) 2010-07-01 application
US8265399B2 (en) 2012-09-11 grant
US20090245693A1 (en) 2009-10-01 application
US8081844B2 (en) 2011-12-20 grant
US7844135B2 (en) 2010-11-30 grant
US20060204110A1 (en) 2006-09-14 application

Similar Documents

Publication Publication Date Title
US6807286B1 (en) Object recognition using binary image quantization and hough kernels
US6526161B1 (en) System and method for biometrics-based facial feature extraction
US7062086B2 (en) Red-eye detection based on red region detection with eye confirmation
US20100026833A1 (en) Automatic face and skin beautification using face detection
US20070263928A1 (en) Method, apparatus, and program for processing red eyes
US20050100195A1 (en) Apparatus, method, and program for discriminating subjects
US20070070440A1 (en) Image processing method, image processing apparatus, and computer-readable recording medium storing image processing program
US20080309777A1 (en) Method, apparatus and program for image processing
US20090278958A1 (en) Method and an apparatus for detecting a composition adjusted
US20060274949A1 (en) Using photographer identity to classify images
US20150091900A1 (en) Systems and Methods for Depth-Assisted Perspective Distortion Correction
US20100128927A1 (en) Image processing apparatus and image processing method
US20060177110A1 (en) Face detection device
US20080218603A1 (en) Imaging apparatus and control method thereof
US8615108B1 (en) Systems and methods for initializing motion tracking of human hands
US20050249429A1 (en) Method, apparatus, and program for image processing
US8213737B2 (en) Digital image enhancement with reference images
US20080219517A1 (en) Illumination Detection Using Classifier Chains
US20150071547A1 (en) Automated Selection Of Keeper Images From A Burst Photo Captured Set
US20080232692A1 (en) Image processing apparatus and image processing method
US20080317378A1 (en) Digital image enhancement with reference images
US20080316328A1 (en) Foreground/background separation using reference images
US20120092329A1 (en) Text-based 3d augmented reality
US20040022435A1 (en) Image processing apparatus and method and program storage medium
US20080317357A1 (en) Method of gathering visual meta data using a reference image

Legal Events

Date Code Title Description
AS Assignment

Owner name: FOTONATION VISION LIMITED, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STEINBERG, ERAN;PRILUTSKY, YURY;CORCORAN, PETER;AND OTHERS;REEL/FRAME:015916/0290

Effective date: 20050409

AS Assignment

Owner name: FOTONATION VISION LIMITED, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FOTONATION IRELAND LIMITED;REEL/FRAME:018782/0939

Effective date: 20041227

Owner name: FOTONATION VISION LIMITED,IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FOTONATION IRELAND LIMITED;REEL/FRAME:018782/0939

Effective date: 20041227

AS Assignment

Owner name: TESSERA TECHNOLOGIES IRELAND LIMITED, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FOTONATION VISION LIMITED;REEL/FRAME:025429/0885

Effective date: 20101001

AS Assignment

Owner name: DIGITALOPTICS CORPORATION EUROPE LIMITED, IRELAND

Free format text: CHANGE OF NAME;ASSIGNOR:TESSERA TECHNOLOGIES IRELAND LIMITED;REEL/FRAME:027151/0382

Effective date: 20110713

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: FOTONATION LIMITED, IRELAND

Free format text: CHANGE OF NAME;ASSIGNOR:DIGITALOPTICS CORPORATION EUROPE LIMITED;REEL/FRAME:034512/0972

Effective date: 20140609

FPAY Fee payment

Year of fee payment: 8