US7539490B2 - Method and system for rapid channel acquisition across heterogeneous radio access technologies - Google Patents
Method and system for rapid channel acquisition across heterogeneous radio access technologies Download PDFInfo
- Publication number
- US7539490B2 US7539490B2 US11/319,867 US31986705A US7539490B2 US 7539490 B2 US7539490 B2 US 7539490B2 US 31986705 A US31986705 A US 31986705A US 7539490 B2 US7539490 B2 US 7539490B2
- Authority
- US
- United States
- Prior art keywords
- network
- communication device
- wireless
- wide area
- base station
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000005516 engineering process Methods 0.000 title abstract description 12
- 238000004891 communication Methods 0.000 claims abstract description 178
- 230000001413 cellular effect Effects 0.000 claims abstract description 5
- 238000012546 transfer Methods 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 5
- 230000000977 initiatory effect Effects 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims 2
- 230000007704 transition Effects 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 6
- 230000008901 benefit Effects 0.000 description 7
- 230000009471 action Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/66—Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/02—Inter-networking arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M2250/00—Details of telephonic subscriber devices
- H04M2250/06—Details of telephonic subscriber devices including a wireless LAN interface
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/14—Reselecting a network or an air interface
- H04W36/144—Reselecting a network or an air interface over a different radio air interface technology
- H04W36/1446—Reselecting a network or an air interface over a different radio air interface technology wherein at least one of the networks is unlicensed
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/22—Manipulation of transport tunnels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
Definitions
- This invention relates generally to a system and method of transferring a wireless communication device from a first network to a second network, and more specifically to a system and method for rapidly and seamlessly transitioning a communication connection between a wireless wide area network and a wireless local area network having a different radio access technology.
- GPRS General Packet Radio Service
- WLAN Wireless LAN
- VOIP Voice Over IP
- IMS IP Multimedia Subsystem
- GSM Global System for Mobile communications
- the device when a user moves from an IP Multimedia Subsystem (IMS) LAN network to a GSM wide area network, the device must scan the area to detect the wide area network and then determine (generally by downloading large amounts of data) what kind of network it is, what protocol it uses, how to connect to it, what channels to use, when to connect and, so forth.
- IMS IP Multimedia Subsystem
- the device must scan the area to detect the wide area network and then determine (generally by downloading large amounts of data) what kind of network it is, what protocol it uses, how to connect to it, what channels to use, when to connect and, so forth.
- Each of these steps consumes both time and device processing power. Consequently, when the process takes too long, voice and data connections may be delayed or interrupted.
- FIG. 1 illustrates a wireless transceiver network capable of accommodating transfers of a communication device with a wide area network in accordance with various embodiments.
- FIG. 2 illustrates a controller and associated modules in accordance with various embodiments.
- FIG. 3 illustrates a communication device capable of communicating with a plurality of communication networks in accordance with various embodiments.
- FIGS. 4-6 illustrate a method of transferring a communication device between a wide area network and a local area network in accordance with various embodiments.
- a multimode communication device such as a mobile telephone
- the communication device can switch from one radio access technology to the next in less time, and using less processing power, than with prior art systems. This is the case even where the different radio access technology networks are owned or operated by different entities.
- the communication device is able to rapidly acquire and register itself on a wide area wireless network when exiting an alternate radio access technology, such as a WLAN.
- the rapid channel acquisition and registration helps to ensure a seamless transition for voice, data and multimedia services, thereby reducing the probability for data transfer interruptions.
- the device when the communication device moves from a wide area network (such as a conventional cellular network) to an IMS-WLAN, the device delivers wide area network servicing base station information to an access point within the IMS-WLAN.
- a controller within the IMS-WLAN then links the delivered information with a specific access point to which the communication device delivered the information.
- wide area network servicing base station information is passed to the exiting communication device, thereby enabling the device to bypass the traditional wide area network scanning process.
- a wireless transceiver network 100 capable of accommodating transfers of a communication device 101 between a wide area network 116 (having towers 102 , 103 , 104 ) and the wireless transceiver network 105 .
- the communication device 101 comprises a radiotelephone.
- the communication device 101 may alternatively be a laptop or other personal or portable computer, a personal digital assistant with wireless communication capabilities, or similarly equipped electronic devices having the ability to send, receive, or both, wireless communication information.
- the wireless transceiver network 105 includes a plurality of access points 106 , 107 , 108 , 109 , 110 , 111 that are configured to communicate wirelessly with the communication device 161 .
- These access points 106 , 107 , 108 , 109 , 110 , 111 serve as “mini-towers” for the wireless transceiver network 105 as they provide the wireless, radio frequency communication to and from wireless devices (e.g. 113 , 119 ) disposed within the network 105 .
- a controller 114 is coupled to the access points 106 , 107 , 108 , 109 , 110 , 111 .
- “coupled” may refer to either a direct or indirect connection.
- the controller 114 serves as a central data and communication hub for information flowing across the network 105 .
- the controller 114 which may be a networked computer, server or other central control device, includes various modules operable with the access points.
- the modules which may either be configured in hardware or software, assist the controller in both managing information and facilitating fast, seamless transfers of communication devices between the network 105 and other radio access technology networks (e.g. 116 ).
- FIG. 2 illustrated is one embodiment of a controller 114 , with associated modules 201 , 202 , 203 , 204 , 205 , 206 —shown in FIG. 2 as being configured in software.
- a detection module 201 configured to detect the presence of a communication device when the device is within a predetermined proximity of any of the access points (e.g. 106 ).
- the detection module 201 may, for example, notify either the controller 114 or a specific access point that a communication device is within an acceptable range such that communication with the wireless transceiver network may begin.
- an association module 202 is configured to authenticate and associate the communication device with the network 105 once the detection module 201 has determined that the device is present within the network 105 .
- the association module 202 may determine what type of hardware the communication device is, as well as optimal channels, protocols and other methods for communication with the communication device.
- the association module 202 may further register the communication device with the network 105 so that the device may be properly supported while within the network 105 .
- a wide area network information module 203 is configured to receive wide area network servicing base station information from the communication device once it has been authenticated and associated with the wireless transceiver network 105 .
- the wide area network information module 203 collects the wide area network servicing base station information and then provides it to exiting communication devices when appropriate.
- it is the wide area network information module 203 that receives, for example, information from the communication device regarding which wide area network it was in communication with prior to entering the wireless transceiver network 105 , what channels or frequencies it was communicating with, and other information necessary for a communication device to establish communication with a particular wide area network upon exiting, for example, the wireless transceiver network 105 .
- the controller 114 also includes a linking module 204 that is configured to associate the wide area network servicing base station information with a specific access point, e.g. access point 106 .
- the specific access point 106 is the access point from which the wide area network servicing base station information was received.
- the access point 106 would receive the wide area network servicing base station information when the communication device entered the wireless transceiver network 105 , and then would deliver it back to the communication device if the device left the wireless transceiver network through the same portal of entry.
- a scenario may occur when a user of the device enters and leaves through the same door of a building, for example.
- the specific access point 106 and the access point delivering the wide area network servicing base station information to the communication device are different.
- the specific access point 106 receives the wide area network servicing base station information regarding tower 102 , and the controller 114 causes some or all of it to be delivered to other access points as required by exiting devices, e.g., access point 108 .
- exiting devices e.g., access point 108 .
- Such a scenario may occur when a communication device operating on wide area network A, provided by carrier A, enters through one door of a building, and either the same communication device or another communication device leaves through a different door.
- the access point closest to the exiting door, access point 108 in this example will wirelessly deliver information to the exiting communication device.
- the controller 114 retrieves the wide area network servicing base station information received from the specific access point 106 , and optionally other access points 107 , 108 , by way of the linking module 204 . The controller 114 may then extract or filter some or all of the information so as to deliver on the appropriate wide area network data required by the exiting device through access point 108 .
- the controller 114 is capable of learning which access points may be in contact with overlapping wide area networks as it receives more wide area network servicing base station information from various devices. Once the linking module 204 associates this information with a specific access point, the controller 114 , which may be stand alone or embedded in any of the access points, is able to store and map the information as a shared resource. As such, an exiting device may receive information from an access point that is different from the access point of entry.
- a delivery module 205 facilitates the delivery of the wide area servicing base station information from an access point to the communication device.
- the delivery module 205 delivers the wide area network servicing base station information to that communication device.
- the specific access point 106 i.e. the access point from which the information was received, and the access point delivering the information may be the same access point or different access points.
- the controller 114 may distribute the wide area network servicing base station information received from the communication device to any of the plurality of access points as requested by an exiting device.
- the delivery module 205 then delivers the information to the communication device.
- a transfer module 206 is configured to disassociate and deactivate the exiting communication device from the wireless transceiver network 105 upon delivery of the wide area network servicing information to the communication device. For the communication device to begin communicating with the wide area network, for example during a single call session, a hand-off between the wireless transceiver network 105 and the wide area network must occur. The transfer module 206 facilitates this transfer by alerting the controller 114 that the exiting communication device will no longer be active on the wireless transceiver network 105 .
- this information received from the communication device upon entering the wireless transceiver network 105 and delivered to the communication device upon exiting the wireless transceiver network 105 , contains information needed by the communication device to successfully communicate with the wide area network 116 .
- Such information includes, but is not limited to, service provider identification, base station identification, base station identity code, broadcast control channel, neighbor lists, base station location, channel frequency, absolute radio frequency channel number, channel timeslot information, channel band information, primary and secondary synchronization codes, and channel identification information.
- the communication device uses this information to communicate with a base station (e.g. station 104 in FIG.
- the wide area network 116 which, in one embodiment, may be any of a GSM. network, CDMA network, TDMA network, iDEN network, WiMAX network, and UMTS network. Such information may be used when the communication device is communicating either exclusively with the wide area network 116 or with both the wide area network 116 and the wireless transceiver network 105 .
- the wide area network servicing base station information may be transmitted to and from the communication device and access points in a variety of ways.
- this information is transmitted by way of a Session Initiation Protocol (SIP) message, as is set forth in the Third Generation for Wireless Networks (3GPP) and other standard specifications.
- SIP Session Initiation Protocol
- 3GPP Third Generation for Wireless Networks
- body and other fields are populated with the wide area network servicing base station information so as to be easily transmitted between networks and devices.
- FIG. 3 illustrated therein is one embodiment of a communication device 101 suitable for use with a wireless transceiver network in accordance with various embodiments. While the exemplary device 101 illustrated in FIG. 3 is a mobile telephone, it will be clear to those of ordinary skill in the art having the benefit of this disclosure that the invention is not so limited. Other wireless communication devices may also be used, including personal digital assistants, portable computers, pagers, and other wireless information devices.
- the communication device 101 is capable of communicating with a plurality of wireless communication networks, including those with differing or heterogeneous radio access technologies.
- the device 101 may be a capable of communicating both with a wide area cellular network and a WLAN.
- the device 101 includes a transceiver and associated circuitry 306 and an antenna (collectively referred to as the “transceiver” and referenced by designator 301 ) capable of exchanging switched packet data with a first wireless communication network and a second wireless communication network.
- the transceiver 301 may be radio frequency (RF) hardware and software capable of communicating with a remote base station per a protocol associated with that base station.
- Example protocols include GSM, CDMA, TDMA, iDEN, WiMAX, and UMTS.
- the device 101 includes a central processor 302 electrically coupled to the transceiver 301 .
- the central processor serves as the control unit for the device 101 , executing an instructional code configured in embedded firmware.
- the central processor 302 includes (or is coupled with) storage memory 303 for storing instructional code sets, user data and the like.
- the device 101 also includes a power regulation module 304 that is operative. with and responsive to the central processor 302 .
- the access points associated with the WLAN are within close proximity to the device 101 .
- the access points are close in a local area network when compared to, for example, towers in a wide area cellular network.
- the transceiver 301 is communicating with an access point that may be only a few hundred feet away, rather than a few miles away as might be the case in the wide area network.
- the central processor 302 can therefore cause the power regulation module 304 to actuate a reduced power consumption mode within the device 101 without compromising reliability or performance because less power is required for signal transmission. This reduced power consumption mode extends the battery life of the device 101 .
- the device 101 includes an access point proximity detector 305 .
- the access point proximity detector 305 is capable of determining whether the device 101 exceeds a predetermined range from an access point in a wireless communication network. This proximity determination may be accomplished in a variety of ways. For example, the access point proximity detector 305 may determine that the wireless communication device exceeds a predetermined range from the access point by measuring a quality of signal received by the transceiver 301 . In the alternative, the access point proximity detector may determine that the predetermined range has been exceeded by measuring a strength of signal received by the transceiver 301 .
- a handoff of the device 101 may occur between the networks 116 , 105 .
- the device 101 is communicating with both the first communication network 116 and the second communication network 105 .
- the device 101 transmits wide area network servicing base station information 117 associated with tower 102 of the first wireless communication network 116 to the wireless second communication network 105 . Specifically, the device 101 transmits the information 117 to an access point (e.g., access point 106 ) within and coupled to the second communication network 105 .
- an access point e.g., access point 106
- a controller 114 coupled to the access point 106 may associate the wide area network servicing base station information 117 associated with tower 102 of the first wireless communication network 116 with an address of the access point 106 in the second wireless communication network 105 from which the information 117 was received.
- the controller 114 determines, for example, that a “model A” handset just came within a predetermined proximity of access point B, and delivered information that the handset had been talking with network C provided by carrier D using technology E and with available services F and G.
- the linking module 204 then associates this information to the address of the receiving access point, as another communication device exiting from this access point has a probable need to be delivered this same information.
- the controller 114 then distributes this information to the other access points 107 , 108 , 109 , 110 , 111 in the second communication network 105 as required by an exiting device. This distribution is illustrated by copy information 118 being delivered to access points 110 and 111 .
- the central processor 302 within the device 119 causes the power regulation module 304 to actuate a reduced power consumption mode within the wireless communication device 119 .
- the reduced power consumption mode is that the battery disposed in the device 119 will be able to deliver extended talk time.
- wide area network servicing base station information must be delivered to the device.
- the access point proximity detector in an exiting communication device e.g. device 112
- the central processor 302 of the device 112 causes the transceiver 301 to transmit a request to the access point 108 for wide area network servicing base station information associated with the first wireless communication network 116 .
- the controller 114 then causes the access point 108 to deliver wide area network servicing base station information 121 to the device 112 so that the device 112 may acquire and access the first communication network 116 without the need of going through the traditional scanning and acquisition process.
- the access point receiving the wide area network servicing base station information i.e. access point 106 in FIG. 1
- the access point delivering the wide area network servicing base station information may be the specific access point 116 , it need not be.
- the delivering access point, access point 108 need not be the specific access point 116 . They can be the same or can be different.
- the system can optimize delivery.
- the controller may first attempt to deliver tower 102 information from access point 106 and tower 103 information from access point 108 to further expedite the handoff process.
- the local network detects the presence of a communication device. This may be done in any of a variety of ways, including receiving a communication request from the communication device, detecting an emitted signal by the communication device and periodically polling the local network to detect new devices.
- the local network determines if it is entering or exiting the local network at decision 402 . Where the device is entering the local network, wide area network servicing base station information will be received from the device. Where the device is exiting the local network, wide area network servicing base station information will be delivered to the device.
- the network will authenticate the first device at step 403 .
- this delivering device will be referred to as the “first” device, although the delivering device and receiving device may be the same or different.
- the receiving device will be referred to as the “second” device.
- the local network will then associate the first device with the local network at step 404 in accordance with existing protocols.
- the local network receives the wide area network servicing base station information from the first device.
- the controller of the network may wish to catalog and sort the information as well. For example, as noted above, the controller may associate an access point address with the information when received.
- the local network will additionally store the wide area network servicing base station information in a local memory.
- the wide area network servicing base station information may optionally be linked to a particular access point as shown at step 406 . Additionally the wide area network servicing base station information may be distributed to other access points, as shown at step 407 .
- the network When the second wireless communication device, be it the same as the first or different, leaves the local network as determined in decision 402 , the network first retrieves the wide area network servicing base station information from the local memory and then provides the information to the second device at step 408 . Since the second device is being handed off to the wide area network, the local network disassociates the second device from the local network at step 409 , and deactivates the device from the network at step 410 in accordance with existing protocols. Thus, communication ceases between the second device and the local network at end point 411 .
- FIGS. 5 and 6 illustrated therein is a signal flow representation of the method shown in FIG. 4 , illustrating with more specificity the interaction of the various components.
- FIG. 5 illustrates the “device entering” scenario
- FIG. 6 illustrates the “device exiting” scenario.
- FIG. 5 and FIG. 6 illustrate a wide area network 501 , a communication device 502 an access point of a wireless local area network 503 , and a controller 504 of the wireless local area network.
- one first step is for the communication device 502 to detect the local network.
- this detection initiates a transition from the wide area network to the local network as shown in block 505 .
- the device 502 then begins to authenticate and associate with an access point 503 in the local network as illustrated at segment 506 .
- the device 502 then compiles the wide area servicing base station information as illustrated in block 507 .
- one exemplary mechanism for transmitting this data is by way of a SIP message.
- the device 502 transmits the wide area network servicing base station information to the access point 503 and thus to the controller 504 as is illustrated by segment 508 .
- the controller 504 may then link the wide area network servicing base station information to the specific access point as illustrated in block 509 .
- the device 502 due to the fact that it is communicating only with the local network, is able to enter a reduced power consumption mode as shown in block 510 .
- the steps are shown in FIG. 6 .
- the communication device perhaps by way of the proximity detector, determines that a transition from the local network to the wide area network is warranted. Exiting the reduced power consumption mode (if activated), the wide area network communication information is again activated at block 602 .
- the controller 504 retrieves the wide area network servicing base station information at block 603 and delivers it to the device 502 at segment 604 .
- the device 502 is then able to rapidly acquire, associate and register with the wide area network beginning at segment 605 and completing at block 607 .
- the completion occurs after disassociation and deactivation from the local network (segment 606 ).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Claims (22)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/319,867 US7539490B2 (en) | 2005-12-27 | 2005-12-27 | Method and system for rapid channel acquisition across heterogeneous radio access technologies |
BRPI0621271-9A BRPI0621271B1 (en) | 2005-12-27 | 2006-12-19 | WIRELESS TRANSCEIVERS NETWORK, WIRELESS COMMUNICATION DEVICE AND TRANSFER METHOD OF A WIRELESS COMMUNICATION DEVICE |
EP06845822.3A EP1974532B1 (en) | 2005-12-27 | 2006-12-19 | Method and system for rapid channel acquisition across heterogeneous radio access technologies |
KR1020087015511A KR101324912B1 (en) | 2005-12-27 | 2006-12-19 | Method and system for rapid channel acquisition across heterogeneous radio access technologies |
PCT/US2006/048450 WO2007075697A2 (en) | 2005-12-27 | 2006-12-19 | Method and system for rapid channel acquisition across heterogeneous radio access technologies |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/319,867 US7539490B2 (en) | 2005-12-27 | 2005-12-27 | Method and system for rapid channel acquisition across heterogeneous radio access technologies |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070149172A1 US20070149172A1 (en) | 2007-06-28 |
US7539490B2 true US7539490B2 (en) | 2009-05-26 |
Family
ID=38194519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/319,867 Active 2027-03-01 US7539490B2 (en) | 2005-12-27 | 2005-12-27 | Method and system for rapid channel acquisition across heterogeneous radio access technologies |
Country Status (5)
Country | Link |
---|---|
US (1) | US7539490B2 (en) |
EP (1) | EP1974532B1 (en) |
KR (1) | KR101324912B1 (en) |
BR (1) | BRPI0621271B1 (en) |
WO (1) | WO2007075697A2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070253369A1 (en) * | 2006-04-28 | 2007-11-01 | Microsoft Corporation | Coordinating a transition of a roaming client between wireless access points using another client in physical proximity |
US20070293210A1 (en) * | 2006-06-20 | 2007-12-20 | Lyle Strub | Secure communication network user mobility apparatus and methods |
US20090129301A1 (en) * | 2007-11-15 | 2009-05-21 | Nokia Corporation And Recordation | Configuring a user device to remotely access a private network |
US20090196576A1 (en) * | 2006-06-15 | 2009-08-06 | Kenichi Watanabe | Information notification apparatus and portable communication terminal |
US20100285825A1 (en) * | 2009-05-05 | 2010-11-11 | Nokia Corporation | Communication |
US20150057000A1 (en) * | 2012-05-03 | 2015-02-26 | Huawei Technologies Sweden Ab | Sending access information from physical access control system to user terminal |
US20150381740A1 (en) * | 2014-06-27 | 2015-12-31 | Paul J. Gwin | System and method for automatic session data transfer between computing devices based on zone transition detection |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7653392B2 (en) * | 2006-04-26 | 2010-01-26 | Intel Corporation | Methods and systems for heterogeneous wireless network discovery and selection |
KR101502803B1 (en) * | 2007-04-24 | 2015-03-17 | 삼성전자주식회사 | Method for managing wireless network and wireless device thereof |
US9083713B2 (en) * | 2008-12-08 | 2015-07-14 | Qualcomm Incorporated | Apparatus and method for providing mobility to IMS sessions in mobile IP networks |
US20110238242A1 (en) * | 2010-03-29 | 2011-09-29 | Invensys Rail Corporation | Synchronization to adjacent wireless networks using single radio |
US9432258B2 (en) * | 2011-06-06 | 2016-08-30 | At&T Intellectual Property I, L.P. | Methods and apparatus to configure virtual private mobile networks to reduce latency |
US9736703B2 (en) | 2012-04-06 | 2017-08-15 | Plume Design, Inc. | Interference management and network performance optimization in dense WiFi networks |
US11109244B2 (en) | 2012-04-06 | 2021-08-31 | Plume Design, Inc. | Optimization of distributed Wi-Fi networks |
US9060289B2 (en) | 2012-04-23 | 2015-06-16 | Wildfire.Exchange, Inc. | Interference management and network performance optimization in small cells |
US9131392B2 (en) | 2012-08-06 | 2015-09-08 | Wildfire.Exchange, Inc. | Hidden nodes detection |
WO2014176503A1 (en) * | 2013-04-25 | 2014-10-30 | Accelera Mobile Broadband, Inc. | Cloud-based management platform for heterogeneous wireless devices |
US9661515B2 (en) | 2013-04-25 | 2017-05-23 | Plume Design, Inc. | Cloud-based management platform for heterogeneous wireless devices |
KR20150051126A (en) * | 2013-10-31 | 2015-05-11 | 삼성전자주식회사 | Method and apparatus for wlan control |
US20160212690A1 (en) * | 2015-01-20 | 2016-07-21 | Qualcomm Incorporated | Method and System for Cooperative Acquisition of Network Access Information |
US10051455B2 (en) | 2016-03-18 | 2018-08-14 | Plume Design, Inc. | Systems and methods for changing topology and firmware in distributed wi-fi networks |
US10554482B2 (en) | 2016-03-18 | 2020-02-04 | Plume Design, Inc. | Optimization of distributed Wi-Fi networks estimation and learning |
US11140215B2 (en) | 2016-03-18 | 2021-10-05 | Plume Design, Inc. | Claiming network devices for a home network in a distributed Wi-Fi network |
WO2017161260A2 (en) | 2016-03-18 | 2017-09-21 | Plume Design, Inc. | Optimization of distributed wi-fi networks |
US10554733B2 (en) | 2016-03-18 | 2020-02-04 | Plume Design, Inc. | Controlling clients in distributed Wi-Fi networks |
JP6724174B2 (en) | 2016-03-18 | 2020-07-15 | プリューム デザイン インコーポレイテッドPlume Design, Inc. | Data collection to enable optimization of distributed Wi-Fi networks |
WO2017161361A2 (en) | 2016-03-18 | 2017-09-21 | Plume Design, Inc. | Cloud-based control of a wi-fi network |
US10420155B2 (en) | 2016-03-18 | 2019-09-17 | Plume Design, Inc. | Distributed Wi-Fi setup systems and methods |
US11445386B2 (en) | 2016-03-18 | 2022-09-13 | Plume Design, Inc. | Distributed Wi-Fi network visualization and troubleshooting |
US10931477B2 (en) | 2016-03-18 | 2021-02-23 | Plume Design, Inc. | Layer two network tunnels for Wi-Fi client bridging in a distributed Wi-Fi network |
US10341193B2 (en) | 2016-03-18 | 2019-07-02 | Plume Design, Inc. | Optimization on multiple timescales in a distributed Wi-Fi system |
US9674187B1 (en) | 2016-09-28 | 2017-06-06 | Network Performance Research Group Llc | Systems, methods and computer-readable storage media facilitating mobile device guest network access |
US10944534B2 (en) * | 2016-09-30 | 2021-03-09 | Hewlett Packard Enterprise Development Lp | Identifying doorway access points |
US10462929B1 (en) | 2018-06-05 | 2019-10-29 | Plume Design, Inc. | Cooling of a compact electronic device |
US10777877B2 (en) | 2018-06-05 | 2020-09-15 | Plume Design, Inc. | Compact, direct plugged, and high-performance Wi-Fi access point |
US11337086B2 (en) | 2019-10-02 | 2022-05-17 | Plume Design, Inc. | OFDMA optimized steering in Wi-Fi networks |
US11516802B2 (en) | 2019-10-07 | 2022-11-29 | Plume Design, Inc. | Resource unit reservation in Wi-Fi networks |
US12016151B2 (en) | 2022-07-07 | 2024-06-18 | Plume Design, Inc. | Controlling airflow through a compact electronic device |
US20240064610A1 (en) * | 2022-08-22 | 2024-02-22 | Plume Design, Inc. | Geographic limitation of Wi-Fi access points with cellular connection |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5561836A (en) * | 1994-05-02 | 1996-10-01 | Motorola, Inc. | Method and apparatus for qualifying access to communication system services based on subscriber unit location |
US5926761A (en) * | 1996-06-11 | 1999-07-20 | Motorola, Inc. | Method and apparatus for mitigating the effects of interference in a wireless communication system |
US20040087307A1 (en) * | 2002-10-18 | 2004-05-06 | Ibe Oliver C. | Method of seamless roaming between wireless local area networks and cellular carrier networks |
US20050025182A1 (en) * | 2003-06-25 | 2005-02-03 | Ala Nazari | Systems and methods using multiprotocol communication |
US20050048972A1 (en) | 2003-08-26 | 2005-03-03 | Motorola, Inc. | System and method to improve WLAN handover behavior at entry/exit points |
US20060111112A1 (en) * | 2004-10-22 | 2006-05-25 | Santera Systems, Inc. | Mobility management apparatus and methods |
US20060291455A1 (en) * | 2001-05-16 | 2006-12-28 | Eyal Katz | Access to plmn networks for non-plmn devices, and to issues arising in interfaces in general between plmn and non-plmn networks |
US7469142B2 (en) * | 2000-04-28 | 2008-12-23 | Cisco Technology, Inc. | Method and apparatus for inter-cell handover in wireless networks using multiple protocols |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7016362B2 (en) * | 2002-01-11 | 2006-03-21 | Lockheed Martin Corporation | System for and method of implementing wireless neighborhood area networks |
CA2831170A1 (en) | 2003-07-17 | 2005-02-03 | Interdigital Technology Corporation | Method and system for delivery of assistance data |
-
2005
- 2005-12-27 US US11/319,867 patent/US7539490B2/en active Active
-
2006
- 2006-12-19 BR BRPI0621271-9A patent/BRPI0621271B1/en not_active IP Right Cessation
- 2006-12-19 WO PCT/US2006/048450 patent/WO2007075697A2/en active Application Filing
- 2006-12-19 EP EP06845822.3A patent/EP1974532B1/en not_active Not-in-force
- 2006-12-19 KR KR1020087015511A patent/KR101324912B1/en active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5561836A (en) * | 1994-05-02 | 1996-10-01 | Motorola, Inc. | Method and apparatus for qualifying access to communication system services based on subscriber unit location |
US5926761A (en) * | 1996-06-11 | 1999-07-20 | Motorola, Inc. | Method and apparatus for mitigating the effects of interference in a wireless communication system |
US7469142B2 (en) * | 2000-04-28 | 2008-12-23 | Cisco Technology, Inc. | Method and apparatus for inter-cell handover in wireless networks using multiple protocols |
US20060291455A1 (en) * | 2001-05-16 | 2006-12-28 | Eyal Katz | Access to plmn networks for non-plmn devices, and to issues arising in interfaces in general between plmn and non-plmn networks |
US20040087307A1 (en) * | 2002-10-18 | 2004-05-06 | Ibe Oliver C. | Method of seamless roaming between wireless local area networks and cellular carrier networks |
US20050025182A1 (en) * | 2003-06-25 | 2005-02-03 | Ala Nazari | Systems and methods using multiprotocol communication |
US20050048972A1 (en) | 2003-08-26 | 2005-03-03 | Motorola, Inc. | System and method to improve WLAN handover behavior at entry/exit points |
US20060111112A1 (en) * | 2004-10-22 | 2006-05-25 | Santera Systems, Inc. | Mobility management apparatus and methods |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070253369A1 (en) * | 2006-04-28 | 2007-11-01 | Microsoft Corporation | Coordinating a transition of a roaming client between wireless access points using another client in physical proximity |
US8102813B2 (en) * | 2006-04-28 | 2012-01-24 | Microsoft Corporation | Coordinating a transition of a roaming client between wireless access points using another client in physical proximity |
US20090196576A1 (en) * | 2006-06-15 | 2009-08-06 | Kenichi Watanabe | Information notification apparatus and portable communication terminal |
US8019377B2 (en) * | 2006-06-15 | 2011-09-13 | Sharp Kabushiki Kaisha | Information notification apparatus and portable communication terminal |
US20070293210A1 (en) * | 2006-06-20 | 2007-12-20 | Lyle Strub | Secure communication network user mobility apparatus and methods |
US8346265B2 (en) * | 2006-06-20 | 2013-01-01 | Alcatel Lucent | Secure communication network user mobility apparatus and methods |
US20090129301A1 (en) * | 2007-11-15 | 2009-05-21 | Nokia Corporation And Recordation | Configuring a user device to remotely access a private network |
US20100285825A1 (en) * | 2009-05-05 | 2010-11-11 | Nokia Corporation | Communication |
US8565672B2 (en) * | 2009-05-05 | 2013-10-22 | Nokia Corporation | Communication |
US20150057000A1 (en) * | 2012-05-03 | 2015-02-26 | Huawei Technologies Sweden Ab | Sending access information from physical access control system to user terminal |
US9848363B2 (en) * | 2012-05-03 | 2017-12-19 | Huawei Technologies Sweden Ab | Sending access information from physical access control system to user terminal |
US20150381740A1 (en) * | 2014-06-27 | 2015-12-31 | Paul J. Gwin | System and method for automatic session data transfer between computing devices based on zone transition detection |
US9560143B2 (en) * | 2014-06-27 | 2017-01-31 | Intel Corporation | System and method for automatic session data transfer between computing devices based on zone transition detection |
Also Published As
Publication number | Publication date |
---|---|
WO2007075697A3 (en) | 2008-12-24 |
KR101324912B1 (en) | 2013-12-02 |
BRPI0621271A8 (en) | 2016-12-13 |
US20070149172A1 (en) | 2007-06-28 |
BRPI0621271A2 (en) | 2011-12-06 |
EP1974532A4 (en) | 2012-07-04 |
EP1974532A2 (en) | 2008-10-01 |
KR20080089363A (en) | 2008-10-06 |
WO2007075697A2 (en) | 2007-07-05 |
BRPI0621271B1 (en) | 2019-08-20 |
EP1974532B1 (en) | 2017-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7539490B2 (en) | Method and system for rapid channel acquisition across heterogeneous radio access technologies | |
US7266101B2 (en) | Fast handover through proactive registration | |
US7242923B2 (en) | System and method for authenticating wireless device with fixed station | |
US8446830B2 (en) | System, method and device for switching between WWAN and WLAN in a mobile wireless hotspot device | |
US8880126B2 (en) | Method and system for wireless LAN network detection | |
US8577375B2 (en) | Handover method and apparatus for multi-mode mobile station | |
US7835751B2 (en) | Method of seamless roaming between wireless local area networks and cellular carrier networks | |
US8311021B2 (en) | Method, system and computer program product for providing session initiation/delivery through a WLAN to a terminal | |
US8903318B2 (en) | Method and apparatus of connectivity recovery in wireless network | |
RU2411658C2 (en) | Methods and devices to support system of service transfer control, associatively related to network of wireless communication | |
US20070171879A1 (en) | Method and apparatus for facilitating switched packet data services on multiple networks | |
US20060268799A1 (en) | METHOD AND APPARATUS FOR WiFi TERMINAL WITH DUAL MAC STRUCTURE THAT ENABLES SEAMLESS VOICE COMMUNICATIONS HANDOVER | |
US20080025262A1 (en) | Method for performing handoff from WiBro(WIMAX) service to wireless LAN service and terminal apparatus using the same title | |
EP2252115A1 (en) | Device and method for switching between the WWAN and WLAN interfaces of a mobile wireless hotspot device | |
US9178722B1 (en) | Roaming method and apparatus for VOIP handset | |
US8953568B2 (en) | Roaming method and apparatus for terminals in wireless local area network | |
EP1883186B1 (en) | Using multiple internet protocol addresses for WIFI handover | |
US20080014936A1 (en) | Methods and devices for communication network selection by recipient | |
US20090161625A1 (en) | Seamless mobility for non-mobile internet protocol capable wireless devices in a time division duplex system | |
WO2008013970A2 (en) | Method for performing handoff from wibro (wimax) service to wireless lan service and terminal and terminal apparatus using the same title | |
JP2006174153A (en) | Self-owned base station equipment, mobile terminal, radio communication system and radio communication method comprising them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MOTOROLA, INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DICKINSON, TIMOTHY A.;REEL/FRAME:017433/0538 Effective date: 20060313 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: MOTOROLA MOBILITY, INC, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOTOROLA, INC;REEL/FRAME:025673/0558 Effective date: 20100731 |
|
AS | Assignment |
Owner name: MOTOROLA MOBILITY LLC, ILLINOIS Free format text: CHANGE OF NAME;ASSIGNOR:MOTOROLA MOBILITY, INC.;REEL/FRAME:029216/0282 Effective date: 20120622 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: GOOGLE TECHNOLOGY HOLDINGS LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOTOROLA MOBILITY LLC;REEL/FRAME:034500/0001 Effective date: 20141028 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |