US7425467B2 - Web process interconnect in electronic assemblies - Google Patents

Web process interconnect in electronic assemblies Download PDF

Info

Publication number
US7425467B2
US7425467B2 US11869665 US86966507A US7425467B2 US 7425467 B2 US7425467 B2 US 7425467B2 US 11869665 US11869665 US 11869665 US 86966507 A US86966507 A US 86966507A US 7425467 B2 US7425467 B2 US 7425467B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
display
substrate
material
interconnect
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US11869665
Other versions
US20080036087A1 (en )
Inventor
Jeffrey Jay Jacobsen
Glenn Wilhelm Gengel
Mark A. Hadley
Gordon S. W. Craig
John Stephen Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ruizhang Technology Ltd Co
Original Assignee
Alien Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5387Flexible insulating substrates
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/50Tape automated bonding [TAB] connectors, i.e. film carriers; Manufacturing methods related thereto
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/76Apparatus for connecting with build-up interconnects
    • H01L2224/7615Means for depositing
    • H01L2224/76151Means for direct writing
    • H01L2224/76155Jetting means, e.g. ink jet
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/76Apparatus for connecting with build-up interconnects
    • H01L2224/7665Means for transporting the components to be connected
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/821Forming a build-up interconnect
    • H01L2224/82101Forming a build-up interconnect by additive methods, e.g. direct writing
    • H01L2224/82102Forming a build-up interconnect by additive methods, e.g. direct writing using jetting, e.g. ink jet
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/95053Bonding environment
    • H01L2224/95085Bonding environment being a liquid, e.g. for fluidic self-assembly
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/9512Aligning the plurality of semiconductor or solid-state bodies
    • H01L2224/95136Aligning the plurality of semiconductor or solid-state bodies involving guiding structures, e.g. shape matching, spacers or supporting members
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01084Polonium [Po]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • H01L2924/15155Shape the die mounting substrate comprising a recess for hosting the device the shape of the recess being other than a cuboid
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/15165Monolayer substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/901Printed circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24926Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including ceramic, glass, porcelain or quartz layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]

Abstract

Apparatuses and methods for forming displays are claimed. One embodiment of the invention relates to depositing a plurality of blocks onto a substrate and is coupled to a flexible layer having interconnect deposited thereon. Another embodiment of the invention relates to forming a display along a length of a flexible layer wherein a slurry containing a plurality of elements with circuit elements thereon washes over the flexible layer and slides into recessed regions or holes found in the flexible layer. Interconnect is then deposited thereon. In another embodiment, interconnect is placed on the flexible layer followed by a slurry containing a plurality of elements.

Description

RELATED APPLICATIONS

This is a continuation of U.S. patent application Ser. No. 10/966,617, filed on Oct. 14, 2004, now U.S. Pat. No. 7,288,432 which is a divisional of U.S. patent application Ser. No. 10/176,795, filed on Jun. 21, 2002, now U.S. Pat. No. 7,070,851, which is a divisional of U.S. patent application Ser. No. 09/268,755, filed on Mar. 16, 1999, now U.S. Pat. No. 6,468,638.

BACKGROUND INFORMATION

1 Field of the Invention

The present invention relates generally to the field of fabricating electrical assemblies which include functional blocks that are deposited onto a substrate.

2. Description of Related Art

Various different types of assemblies include functional blocks which are separately fabricated and then are deposited onto receiving regions of a substrate. One such type of an assembly is a display panel. Fabrication of display panels is well known in the art. Display panels may be comprised of active matrix or passive matrix panels. Active matrix panels and passive matrix panels may be either transmissive or reflective. Transmissive displays include polysilicon thin-film transistor (TFT) displays, and high-resolution polysilicon displays. Reflective displays typically comprise single crystal silicon integrated circuit substrates that have reflective pixels.

Liquid crystals, electroluminescent (EL) materials, organic light emitting diodes (OLEDs), up and downconverting phosphor (U/DCP), electrophoretic (EP) materials, or light emitting diodes (LEDs) may be used in fabricating fiat-panel display panels. Each of these is known in the art and is discussed briefly below.

Liquid crystal displays (LCDs) can have an active matrix backplane in which thin-film transistors are co-located with LCD pixels. Flat-panel displays employing LCDs generally include five different components or layers: a White or sequential Red, Green, Blue light source, a first polarizing filter, that is mounted on one side of a circuit panel on which the TFTs are arrayed to form pixels, a filter plate containing at least three primary colors arranged into pixels, and a second polarizing filter. A volume between the circuit panel and the filter plate is filled with a liquid crystal material. This material will rotate the polarized light when an electric field is applied between the circuit panel and a transparent ground electrode affixed to the filter plate or a cover glass. Thus, when a particular pixel of the display is turned on, the liquid crystal material rotates polarized light being transmitted through the material so that it will pass through the second polarizing filter. Some liquid crystal materials, however, require no polarizers. LCDs may also have a passive matrix backplane which is usually two planes of strip electrodes which sandwich the liquid crystal material. However, passive matrices generally provide a lower quality display compared to active matrices. U/DCP and EP displays are formed in a similar fashion except the active medium is different (e.g., upconverting gas, downconverting gas, electrophoretic materials).

EL displays have one or more pixels that are energized by an alternating current (AC) that must be provided to each pixel by row and column interconnects. EL displays generally provide a low brightness output because passive circuitry for exciting pixel phosphors typically operates at a pixel excitation frequency that is low relative to the luminance decay time of the phosphor material. However, an active matrix reduces the interconnect capacitance allowing the use of high frequency AC in order to obtain more efficient electroluminescence in the pixel phosphor. This results in increased brightness in the display.

LED displays are also used in flat-panel displays. LEDs emit light when energized. OLEDs operate like the LEDs except OLEDs use organic material in the formation of the diode.

Regardless of the type of active medium used, displays are generally comprised of at least a substrate and a backplane. The backplane forms the electrical interconnection of the display and comprises electrodes, capacitors, and transistors in at least some embodiments of a backplane.

FIG. 1A illustrates a rigid display device wherein the active matrix display backplane 10 is coupled to a rigid substrate 12. Typically, the active matrix display backplane is also rigid. FIG. 1B shows another rigid display. There, the active matrix display backplane 10 is coupled to a rigid substrate 12 (e.g., glass). Also shown is a plurality of blocks 14. These blocks may be fabricated separately and then deposited into holes on substrate 12 by a process known as fluidic self assembly (FSA); an example of this process is described in U.S. Pat. No. 5,5457,291. These blocks may each contain driver circuitry (e.g., MOSFET and capacitor) for driving a pixel electrode. The active matrix backplane includes transparent pixel electrodes and row/column interconnects (not shown) to electrically interconnect the blocks 14. The plurality of blocks 14 is coupled to the active matrix display backplane 10 and the rigid substrate 12. FIG. 1C shows a reflective display 16 coupled to a rigid substrate 12. FIG. 1D shows a reflective display 16 coupled to a rigid substrate 12. A plurality of blocks 14 is coupled to the reflective display 16 and to the rigid substrate 12.

Placing elements, such as pixel drivers, on a rigid substrate is well known. Prior techniques can be generally divided into two types: deterministic methods or random methods. Deterministic methods, such as pick and place, use a human or robot arm to pick each element and place it into its corresponding location in a different substrate. Pick and place methods generally place devices one at a time and are generally not applicable to very small or numerous elements such as those needed for large arrays, such as an active matrix liquid crystal display.

Random placement techniques are more effective and result in high yields if the elements to be placed have the right shape. U.S. Pat. No. 5,545,291 describes a method that uses random placement. In this method, microstructures are assembled onto a different substrate through fluid transport. This is sometimes referred to as fluidic self-assembly. Using this technique, various blocks, each containing a functional component, may be fabricated on one substrate and then separated from that substrate and assembled onto a separate rigid substrate through the FSA process. The blocks which are deposited onto receptor regions of a substrate may include any of a number of different functional components, such as LEDs, pixel drivers, sensors, etc. An example of a particular type of block and its functional component is described in copending U.S. patent application Ser. No. 09/251,220 which was filed Feb. 16, 1999 by the inventor John Stephen Smith and which is entitled “Functionally Symmetric Integrated Circuit Die”. This application is hereby incorporated herein by reference.

As noted above, FIGS. 1B and 1D illustrate a display substrate 12 with blocks 14 formed in the rigid substrate 12. These blocks 14 may be deposited through an FSA process. In the FSA process, a slurry containing the blocks 14 is deposited over the rigid substrate 12 and the blocks 14 rest in corresponding openings in the substrate 12.

FIG. 2 shows a block 14 and a circuit element (not shown) on the top surface 18 of block 14. Generally, blocks 14 have a trapezoidal cross-section where the top of the block is wider than the bottom of the block 14.

FIG. 3 shows block 14 in a recessed region of the rigid substrate 12. Between the block 14 and the rigid substrate is an esthetic layer 13. The block 14 has a top surface 18.

FIG. 4 shows a planar side view of a rigid substrate coupled to a rigid display backplane with a plurality of blocks between the display backplane 30 and substrate 12. The plurality of blocks are functionally part of the display backplane 30 and are deposited onto receptor regions of the substrate 12. Each block drives at least one transparent pixel electrode. The pixel electrode is fabricated over a transistor which is fabricated in the block.

FIG. 5 shows a portion of an array in an active matrix display backplane. The control line rows 31 and 32 in this device are coupled to gate electrodes along a row and the control line columns 34 and 35 are coupled to data drivers which supply pixel voltages which are applied to the pixel electrodes. A column line 34 is connected to a source electrode of field effect transistor (FET) 36. Another column line 35 is coupled to a source electrode of FET 37. A row line 32 is coupled to the gates of both FETs 36 and 37. The drain of FET 36 is coupled through capacitor 38 to a transparent pixel electrode along the row 32 formed by FETs 36 and 37, and the drain of PET 37 is coupled through a capacitor to another pixel electrode along the row. In one typical example, the backplane may be formed by depositing blocks, using an FSA technique, into a rigid substrate (e.g., glass); each block contains a FET and a capacitor and is interconnected to other blocks by column and row conductors that are deposited onto the rigid substrate; and, the capacitor is coupled to a pixel electrode by another conductor that is deposited onto the rigid substrate. The active medium (e.g., a liquid crystal) is deposited at least on the pixel electrodes which will optically change the active medium's properties in response to the combined voltages or currents produced by the pixel electrodes. The active medium at a given pixel electrode 42 will appear as a square or dot in the overall checkerboard type matrix of the display. The actual size of the FETs and the pixel electrodes 42 are not now drawn to scale, but are shown schematically for the purposes of illustration.

Several disadvantages exist relative to the related art. Display resolution of a flexible display is limited by the amount of interconnect placed on a flexible substrate. Too much interconnect allowing increased conductance of current could damage a substrate made of plastic. Accordingly, it is desirable to use extensive web process interconnect in a display to increase resolution but avoid the problem of a flexible substrate (e.g., plastic substrate) from being harmed by the interconnect.

BRIEF SUMMARY OF THE INVENTION

The present invention provides apparatuses and methods for creating an assembly with an electrical interconnect. A plurality of blocks are deposited onto a substrate. An interconnect layer is placed onto a flexible layer that is coupled to the substrate.

While an array of components (e.g. display components) for an assembly have been described as examples of the inventions an array of other assemblies such as x-ray detectors, radar detectors, micro-electro-mechanical structural elements (MEMS) or, generally, an assembly of sensors or actuators or an assembly of circuit elements also may be produced using the claimed invention. Thus, for example, flexible antennas, other sensors, detectors, or an array of circuit elements may be fabricated using one of the embodiments of the inventions. Other aspects and methods of the present invention as well as apparatuses formed using these methods are described further below in conjunction with the following figures.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example. The invention is not limited to the figures of the accompanying drawings in which like references indicate similar elements. Note also that the elements in the figures are not drawn to scale.

FIG. 1A shows a planar side view of an active matrix display backplane coupled to a rigid substrate.

FIG. 1B shows a planar side view of an active matrix display backplane coupled to a rigid substrate wherein a plurality of blocks are part of the active matrix display.

FIG. 1C shows a planar side view of a reflective display backplane coupled to a rigid substrate.

FIG. 1D shows a planar side view of a reflective display backplane coupled to a rigid substrate wherein a plurality of blocks are coupled to the reflective display and to the rigid substrate.

FIG. 2 shows a top side perspective view of a circuit element block.

FIG. 3 shows a planar side view of blocks in recessed regions of the rigid substrate and a metalization surface on the blocks.

FIG. 4 shows a planar side view of a rigid substrate coupled to a rigid display backplane with a plurality of blocks between the display backplane and substrate.

FIG. 5 schematically represents a portion of an array of an active matrix backplane.

FIG. 6 shows a top view of a plurality of pixel electrodes in a backplane.

FIGS. 7A-7G show an assembly of a display wherein blocks are deposited therein followed by a layer of interconnect. The web material is then coupled to a substrate.

FIG. 7H shows a polymer layer in between the interconnect (or dielectric layer) and the web material.

FIG. 7I shows a top view of an example of a flexible (“tape”) interconnect layer having a patterned interconnect layer. FIG. 7J shows a cross-sectional view of the tape of FIG. 7I.

FIGS. 8A-8F show an alternative embodiment of the invention. In this embodiment, interconnect is first deposited on web material followed by blocks that are deposited into recessed regions or holes in the web material.

FIGS. 9A-9D show another embodiment of the invention wherein blocks are dispensed onto a web material followed by a layer of interconnect.

FIG. 10 shows a flow chart of a method of fabricating a display device wherein a web process interconnect is coupled to a web material.

FIG. 11 shows a flow chart of a method of assembling multiple displays using web material with interconnect.

FIGS. 12A-12B show another embodiment of the invention in which a reflective display is assembled using web material.

FIG. 13 shows a method of fabricating a display device wherein a web material and a substrate undergo processing and are subsequently coupled.

FIG. 14 shows the overall process of fabricating a display device wherein a web material and a display tape undergo processing and are subsequently coupled.

FIG. 15 relates to a method of picking and placing of objects onto a web material after the FSA process has been applied to the web material.

FIG. 16 shows an embodiment of the overall in-line process of the invention.

FIG. 17 shows a display material being screen printed.

FIG. 18 shows a top view of display material being laser etched

FIG. 19 shows lithography being used to pattern display material.

FIG. 20 shows display material being deposited in a pattern.

DETAILED DESCRIPTION

The present invention relates to apparatuses and methods for forming an assembly having a substrate. The following description and drawings are illustrative of the invention and are not to be construed as limiting the invention.

One embodiment has a web material having a plurality of blocks with an interconnect deposited thereon and the web material is subsequently optionally coupled to a substrate. These displays can be made into active matrix display devices or passive matrix displays. These flexible displays can be fitted to an object which is either rigid or flexible and which has a non-planar surface. Another embodiment of the invention relates to interconnect being deposited onto a web material followed by blocks with circuit elements thereon being seated in recessed regions or holes in the web material. Other embodiments of the invention include coupling a web material having blocks to a flexible continuous substrate upon which multiple flexible displays are fabricated. The multiple flexible displays may be of similar or different sizes. These displays are separated from one another as the substrate is advanced through the web processing apparatus. The backplane of the display may be comprised of a plurality of blocks wherein each block has a circuit element thereon. The blocks are contained in a slurry which is deposited onto the flexible substrate. Although blocks may be comprised of single crystal silicon or other like material which makes the block rigid, the substrate may still be flexible because the size of these blocks (50×100 microns or 100×100 microns) is small in comparison to the flexible substrate. The flexible substrate forms part of a display backplane. The flexible displays may be either an active matrix or a passive matrix displays.

Another embodiment of the invention relates to a flexible substrate with a reflective display backplane that has tape with interconnect deposited thereon.

Incorporated by reference is U.S. Pat. No. 5,545,291 explaining how to assemble microstructures onto a substrate; this process may be referred to said FSA (fluidic self assembly), and this process may be performed with a web material. With certain embodiments of the invention, a web material is advanced through a web process apparatus. The FSA process deposits a plurality of blocks onto the web material wherein the blocks fall into recessed regions found in the web material. The web material is then advanced to a further point in the process wherein an interconnect layer is deposited thereon. In one embodiment, the interconnect includes a dielectric layer to provide a multiple layer interconnect. While the web material is advanced, a display tape is advanced to a point wherein the web material becomes coupled to the display tape. This assembly is then coupled to flexible or rigid substrate (or no substrate).

Before the coupling takes place, in certain embodiments interconnect pattern is placed onto the web material that is used to form the backplane. A display material is then deposited onto the display tape. The display material may be cholesteric liquid crystal, polymer-dispersed liquid crystal or other type of material. The display material is layered or patterned on the display tape. The display tape may also include an electrical interconnect (e.g. a cover “glass” electrode) and this interconnect may be deposited and/or etched on the display material. This is done by using laser etch, ink jet, screen print, deposit, ultraviolet light (UV) or lithography and etch.

A continuous process as in certain embodiments of the invention offers the advantage of increasing the number of flat-panel displays produced, thereby reducing the cost of manufacturing the displays. FSA in conjunction with a deterministic method of placing blocks (e.g., “pick and place”) with circuit elements of objects onto a web process material is also disclosed. In this aspect of the invention, the recessed regions of the web material are checked for empty regions. If there is an empty recessed region in the web material, an object is robotically placed into the empty recessed region. The advantage offered by robotically placing an object into an empty recessed region of a web material is that it increases the overall effectiveness and the quality of the displays.

In the following description, numerous specific details such as specific materials, processing parameters, processing steps, etc., are set forth in order to provide a thorough understanding of the invention. One skilled in the art will recognize that these details need not be specifically adhered to in order to practice the claimed invention. In other instances, known processing steps, materials, etc. are not set forth in order not to obscure the invention.

FIGS. 7A-7F show one embodiment of the invention where blocks are placed onto the web material followed by single or multiple layers of interconnect. FIG. 7A shows a substrate 59 which may be a flexible web material. FIG. 7B shows a planar side view of web material 59 having recessed regions or holes therein. These recessed regions or holes may be created by a variety of methods. For example, the recessed regions or holes may be created by a web wheel, roller, or template, that have protruding structures as described in U.S. Patent Application entitled Apparatuses and Methods for Forming Assemblies by (Docket No. 003424.P016) Jeffrey Jay Jacobsen. The hole may be circular in shape but does not separate the web material into pieces. Another method involves using a template having blocks wherein the blocks are pressed into web material 59 making recessed regions or holes into the web material 59 (see U.S. patent application entitled “Methods for Transferring Elements From a Template to a Substrate” describing the donor transfer method). FIG. 7C shows a planar side view of web material 59 wherein the blocks are seated in the recessed regions or holes. The blocks 14 comprise an active circuit element (not shown) which drives a picture element (not shown). The holes may be used to create an electrical interconnect from one side of the web material to the other side through a conductor in the hole.

FIG. 7D shows a planar side view of web material 59 wherein an electrical interconnect is deposited onto the web material 59. Interconnect may be comprised of conductive polymers, metals (e.g., aluminum, copper, silver, gold, etc.), metal particles, conductive organic compounds, or conductive oxides. The techniques used for creating Tape Automated Bonding (TAB) tape in the semiconductor industry may be used to create flexible interconnect layers. Numerous methods of depositing interconnect are described in more detail below. The interconnect may be patterned to create an intricate wiring pattern such as row and/or column interconnects for an active matrix display backplane.

It should be noted that web generally involves a roll process is a flexible sheet with very high aspect ratios such as 25:1 or more (length:width). For example, a roll of paper towel when unrolled is said to be in web form and it is fabricated in what is known as a web process. When a web is coiled, it is in a roll form.

FIG. 7E shows web material 59 with interconnect 65 deposited thereon. FIG. 7F shows the web material 59 with interconnect 65 of FIG. 7E facing a substrate 50. FIG. 7G shows the web material 59 with interconnect 65 coupled to the substrate 50 of FIG. 7F. FIG. 7H shows a web material wherein blocks are deposited into recessed regions or holes found in the web material. A thin polymer layer is deposited on top of the web material and the blocks. This polymer layer may range in thickness from 1 micron to 5 microns. The interconnect layer, in comparison, ranges in thickness from 1,000 angstroms to 1 micron. In one embodiment, vias are formed through the polymer layer and a conductive material such as an aluminum alloy is formed in the vias to connect the blocks to the interconnect.

It will be appreciated that the interconnection pattern (e.g. the rows and columns of FIG. 5) may require either multiple flexible tape layers or a multiple interconnect layer (with dielectric layers between conductive layers) on a flexible tape. The signals from one layer to the next layer are typically transmitted through vias in the layers. Furthermore, the top interconnect layer will typically provide contact pads to which external circuitry may be coupled. It will also be appreciated that many of the planar side views are not representative of (or illustrating) the actual electrical interconnect pattern which may exist. These actual patterns will depend on the application. FIGS. 7I and 7J show an example of an actual electrical pattern which may be created on a flexible interconnect layer, such as a flexible web tape material. The flexible interconnect layer 1001 may be created from one of numerous types of materials which are appropriate for a web tape material which is designed to hold electrically conductive interconnect layer(s); these materials include polyimide tapes on which are deposited a conductive trace of metal. The metal may be deposited directly on the tape (e.g. by a blanket deposition) and then patterned by etching, or a photoresist layer may be applied and patterned, leaving grooves into which metal may be deposited. FIG. 7I shows a planar top view of a flexible interconnect layer 1001 on which a plurality of row interconnects are created. These row interconnects are electrically similar to the row interconnects (e.g. 31 and 32) of FIG. 5. Each row interconnect, such as row interconnects 1002 a or 1002 b or 1002 n, includes a terminal such as terminal 1003 a or terminal 1003 b or terminal 1003 n, which is used to provide a row signal to all of the contact pads along a row, such as contact pad 1004. It will be appreciated that, in one embodiment in which the interconnect layer 1001 is used in an active material liquid crystal display backplane, the contact pads are coupled to the gates of the FETs (e.g. FETs 36 and 37) along a row of the display, and these FETs are disposed in the blocks (e.g. block 14) which are deposited by an FSA process into a substrate, such as the substrate 59. It will be understood that in this embodiment, each block with typically include the pixel driving circuitry for a particular pixel in the liquid crystal display, and the flexible interconnect tape 1001 interconnects electrically the gates of the FETs in each block along a row. The interconnect material on the tape 1001 may directly connect to a contact pad on a block or may connect electrically through a via in a tape which is sandwiched between the flexible interconnect tape 1001 and the block 14. The tape, once created, may be applied to the substrate (or onto another tape on the substrate) in order to electrically interconnect components on the substrate. The tape may also electrically interconnect traces on another tape. It will be appreciated that the flexible interconnect layer 1001 may be fabricated in a web process and then aligned with a substrate having blocks 14 either in a web process or outside of a web process. It will be further appreciated that the substrate may be rigid (and not made in a web process), or the substrate may be flexible and made in a web process. It will also be appreciated that an alignment operation, using conventional techniques, may be necessary to properly align an interconnect tape relative to another interconnect tape, or to a substrate with blocks, when the interconnect tape is coupled to the substrate or to another interconnect tape.

FIG. 7J shows a cross-sectional view of the tape 1001, where the cross-section of tape 1001 of FIG. 7I is taken along the line 7J-7J shown in FIG. 7I. As shown in FIG. 7J, a plurality of row interconnects, such as row interconnects 1002 a, 1002 b and 1002 n, are formed in a dielectric layer 1011 which is attached to the main body 1010 of the flexible interconnect layer 1001. The dielectric layer 1011 serves to electrically isolate the row interconnects and to have a flat, planar surface. Alternatively, the row interconnects may be formed on the surface of the main body 1010 such that they protrude from the surface. The dielectric layer may be formed from a photoresist which is patterned to create grooves for the row interconnects which are then deposited into grooves. A via 1009 is shown in the main body 1010 in FIG. 7J. This via 1009 is illustrated in dashed lines because it is not present in the cross-section at line 7J-7J of FIG. 7I, but rather this via is behind this cross-section. This via 1009 provides an opening for an electrical interconnection between the row interconnect 1002 a on one side of the tape's main body 1010 to the other side of the tape's main body 1010. A conductive post in the via 1009 provides the terminal 1003 a which is electrically coupled to the row interconnect 1002 a. Similarly, each row interconnect is coupled to a post in a via (not shown) in order to provide row select signals from the post, through the main body 1010 of the tape 1001, and to the row interconnects.

FIGS. 8A-8D show another embodiment of the invention in which interconnect is deposited first on the flexible web material followed by deposition of blocks. FIG. 8A shows a planar side view of web material 59. FIG. 8B shows recessed regions in the web material 59. FIG. 8C shows a gross interconnect deposited onto the web material 59. FIG. 8D shows the device of FIG. 8C with a layer of a fine interconnect deposited on top of the layer of gross interconnect. A dielectric layer may separate the fine and gross interconnects such that they are electrically isolated. In some embodiments, only one interconnect layer is deposited onto the web material before the blocks are deposited. FIG. 8E shows a plurality of blocks deposited (e.g., by an FSA process) onto the interconnect that is coupled to the web material 59. Although a preferred embodiment is to first deposit gross interconnect onto a web material (or a substrate), another embodiment is to first place fine interconnect followed by gross interconnect onto the web material (or substrate). While the side views of FIGS. 8A-8E suggest that the fine and gross conductive interconnect layers (e.g. patterned traces) appear to overlap/overlay each other and hence make electrical contact, they do not have to overlap and make electrical contact and often they will not. Rather the gross interconnect layer may be deposited first to create a first pattern (to create traces on the flexible substrate 59) and then the fine interconnect layer is deposited next to create a second pattern, and the traces of the two patterns may interconnect at certain points where required for the electrical circuit. Thus, it will be appreciated that the views of FIGS. 8A-8E do not necessarily represent that the two interconnect layers will overlap, although they will normally overlap where the two layers are in electrical contact. It will also be appreciated that a single interconnect layer may be used with the embodiment of FIGS. 8A-8E. It will be understood that the terms gross interconnect and fine interconnect refer to the difference in line width of the traces and/or spacing and/or pitch of the traces in the two types of interconnect. Typically, the traces of a fine interconnect have narrower line widths and they are spaced closer together (a tighter pitch) than the traces of a gross interconnect. A fine interconnect may be used to interconnect smaller devices (e.g. small FETs) in the block 14 on a substrate while the gross interconnect may be used to interconnect larger devices or conductive elements (e.g. pixel electrodes). FIG. 8F shows an example of an assembly having blocks deposited (e.g. through an FSA process) into the recessed regions on the interconnect layers which have been deposited into recessed regions in the flexible web material 59. A substrate is optionally placed onto the blocks and interconnect layers.

FIGS. 9A-9F show one embodiment of the invention wherein blocks are placed onto the web material followed by single or multiple layers of interconnect. FIG. 9A shows a planar side view of web material 59. FIG. 9B shows a planar side view of web material 59 having recessed regions or holes therein. These recessed regions or holes may be created by a variety of methods. FIG. 9C shows a planar view of web material 59 wherein the blocks are seated in the recessed regions or holes. The blocks comprise in one embodiment an active circuit element (not shown) which drives a picture element (not shown). FIG. 9D shows a planar view of web material 59 of FIG. 9C wherein an interconnect is deposited onto the web material 59. This interconnect 65 may be comprised of copper, aluminum, or other conductive material listed above. Numerous methods of depositing interconnect are described in more detail below. Although fine interconnect is shown, gross interconnect may be used in place of fine interconnect or gross interconnect could be deposited onto the web material followed by a dielectric layer and then followed by a layer of fine interconnect.

FIG. 10 shows one method of assembling a flexible display along the length of a flexible substrate 70A in accordance with an embodiment of the invention. Initially, blocks are assembled into the openings of the flexible substrate. Utilizing an FSA process, a plurality of blocks are deposited in a slurry and blocks go into the recessed regions of a substrate. Planarization of the assembly of blocks into substrate 72 is the next operation. Extrusion bar coating is one of many methods that may be used to planarize web material. The blocks may then be electrically interconnected using a flexible interconnect layer in operation 74. The display may then be coupled to a substrate in operation 76. The display can be made to conform the object's shape in operation 78. Operations for forming the display may be done in a different order than that found in FIG. 10 and thus the operation 78 may be performed after operation 80. A display generation substrate (e.g., a PDLC layer) is coupled to the active matrix backplane at operation 80.

FIG. 11 shows a method of manufacturing multiple displays along a flexible substrate as in a web process. Multiple display components are created on a flexible substrate at operation 200. Interconnect is deposited on web material. Interconnect may be deposited by a variety of methods such as screen printing, laser etching, or dropping display material from container. The flexible substrate is advanced to a second region on the substrate at operation 202. A new display component is created on the flexible substrate in a different region of the substrate at operation 204 by advancing the flexible substrate through a web processing of apparatus at operation 206 and coupling a display material to the substrate at operation 208. Separation of the display panel occurs at the end of the process at operation 210.

FIGS. 12A-12B show another embodiment of the invention in which a reflective display is assembled. FIG. 12A shows a flexible reflective display. Blocks 14 are coupled to the substrate 59 and to the flexible interconnect layers 1245 and 1248. As in the case of FIG. 8D, the layers 1245 and 1248 do not have to overlap as shown in FIG. 12A except where desired for an electrical interconnect. Coupled to the flexible substrate 59 is a flexible reflector 1247. FIG. 12B shows a flexible reflective display wherein recessed regions contain reflective material 1264. It should be noted that a flexible interconnect layer 1245 could be placed between the plurality of blocks and substrate 59. Interconnect may be fine, gross, or both.

FIG. 13 shows a method of fabricating a display device wherein a substrate 50 and a substrate undergo processing and are subsequently coupled. There, the substrate 50 is advanced along a process line at operation 500. A slurry containing a plurality of blocks is dispensed onto a substrate at operation 502. A second slurry containing a plurality of blocks is again dispensed onto the substrate. Excess slurry is collected in a container and is recycled. The blocks fall into recessed regions into the substrate. Adhesives and spacers are deposited onto the substrate at operation 504. Display material is placed onto the substrate at operation 508. This material may comprise polymer-dispersed liquid crystal, cholesteric liquid crystal, electrophoretic liquid crystal, upconverting phosphor, or downconverting phosphor.

FIG. 14 shows the overall process of fabricating a display device wherein a web material 120 and a display tape 160 undergo processing separately and are subsequently coupled. There, the web material is advanced along a first process line and advances through a first set of support members 122. A first slurry 124 containing a plurality of blocks is dispensed onto the substrate. A second slurry 126 containing a plurality of blocks is again dispensed onto the substrate. Excess slurry is collected in a container 128 and is recycled. The blocks fall into recessed regions in the substrate. Substrate 120 is advanced through a second set of support members 130. An interconnect 132 is then deposited onto the substrate 120. In one embodiment, the interconnect may be a flexible tape which is created in a separate web process, where this tape is joined to the substrate 120. The substrate is then advanced to point 134. In conjunction with this process, display tape 160 undergoes a separate process. Display material is placed onto at least one side of the display tape 160. Display tape 160 is advanced through a first set of support members 164. The display material is patterned or layered at point 168. This display material may comprise polymer-dispersed liquid crystal, cholesteric liquid crystal, electrophoretic liquid crystal, upconverting phosphor, or downconverting phosphor. Display tape 160 is advanced through a second set of support members 170. An interconnect 172 is either deposited or etched onto the display tape 160. The display tape is then advanced to point 134 where the display tape is coupled to the substrate. This assembly (the combination of the processed substrate 120 and the display tape 160) is then coupled to a rigid or flexible substrate. A conveyor belt 174 surrounds the support members.

FIG. 15 relates to a method of picking and placing of objects onto a substrate after the FSA process has been applied to the substrate. A slurry containing a plurality of objects is dispensed onto the substrate at operation 90. The objects fall into recessed regions in the substrate. The excess slurry is collected and recycled at operation 91. The substrate is checked for empty recessed regions at operation 92. This checking is performed by a camera which views the substrate. Objects are robotically placed into empty regions found in substrate at operation 94. A metalization material is placed onto at least one of the substrate's surfaces and is patterned or etched at operation 96. The display tape is coupled to the substrate at operation 98.

FIG. 16 shows an embodiment of the overall in-line process of the invention. A web apparatus machine 119 is used to process the substrate. At operation 120, the material is unrolled and apertures are created in the substrate. These apertures can be created by a number of methods. For example, the apertures can be punched into the substrate. Another method involves using a template to create the apertures. A laser could also be used to create the apertures. The substrate advances over a plurality of support members 122. The FSA process is applied to the web material. FSA comprises a slurry which contains a plurality of functional blocks. These blocks have, in one embodiment, a circuit element (not shown) which drives the picture element (not shown). The FSA process occurs at block 124. It is then applied again at 126. The excess slurry is collected in container 128. Then, the substrate advances through support members 130. The substrate then has an interconnect 131 deposited on the top of the flexible substrate 132. The resulting flexible substrate advances over a guide member and meets at a point 134 wherein it is coupled to a display tape which in one embodiment is a flexible substrate which includes separate regions each having a display material on this flexible substrate. A different portion of the process involves the display tape 160. Before the display tape is coupled with the substrate, the display tape goes through its own separate process which is described below.

The display tape has display material 162 deposited on at least one side of the display tape. There are a variety of ways that display material may be deposited onto the display tape. For example, display material may be sprayed onto the display tape; the display material also may be placed on a screen over the display tape; or the display tape may be placed into a container which holds the display material. The display tape advances through support members 164. The display tape then has display material layered or patterned on the display tape at 168. This display tape then advances through another plurality of support members 170. A large area metal interconnect is then deposited or etched onto the display tape 172. This may be performed by inkjet, lithography and etch, screen print, laser etch, or deposit. In one embodiment of the invention, this large interconnect is a cover glass electrode. At point 134, the display tape is coupled with a substrate.

FIG. 17 shows a display material being placed through a screen 180 onto display tape 168. The screen 180 has a desired pattern created by holes which go through the screen 180. This desired pattern may be dictated by a customer or by the manufacturer.

Another method of placing display material onto the display tape is shown in FIG. 18. FIG. 18 shows a top view of display material being laser etched onto display tape 168. The etching occurs when the high intensity light from the laser 182 strikes the display material on top of the display tape 168. A pattern is created in the display material by the laser 182.

Another method of depositing display material is shown in FIG. 19. FIG. 19 shows lithography being used to pattern the display material. Lithography involves using a block 183 with a pattern engraved in the bottom surface of the block 183. The bottom surface of the block 183 contacts the display material.

FIG. 20 shows yet another method of depositing display material onto the display tape. There, display Material is deposited in a pattern onto the display tape 168. The display material is deposited by a container 184 which contains the display material. The container 184 is placed over the display tape 168. The display material drops onto the display tape 168 in a pattern.

While an array of components (e.g. display components) for an assembly have been described as examples of the invention, an array of other assemblies such as x-ray detectors, radar detectors, micro-electro-mechanical structural elements (MEMS) or, generally, an assembly of sensors or actuators or an assembly of circuit elements also may be produced using the claimed invention. Thus, for example, flexible antennas, other sensors, detectors, or an array of circuit elements may be fabricated using one of the embodiments of the inventions. Other aspects and methods of the present invention as well as apparatuses formed using these methods are described further below in conjunction with the following figures.

Listed below are related U.S. Patent Applications that describe various improvements to the methods and devices of the invention described herein. These patent applications and a U.S. Patent are incorporated by reference.

Co-pending U.S. patent application Ser. No.09/270146, entitled “Apparatuses and methods Are Forming Assemblies,” filed by Jeffrey J. Jacobsen and assigned to the same Assignee as the present invention, describes a method and apparatus of assembling flexible displays. This co-pending application is hereby incorporated herein by reference.

Co-pending U.S. patent application Ser. No. 09270157, entitled “Methods for Transferring Elements From A Template To A Substrate”, filed by Jeffrey J. Jacobsen, Mark A. Hadley, and John Stephen Smith and assigned to the same Assignee of the present invention, describe an FSA on a template with transfer to another substrate. These co-pending applications are hereby incorporated herein by reference.

Co-pending U.S. patent application Ser. No. 09/270159, entitled “Methods and Apparatuses for Fabricating A Multiple Module Assembly”, filed by Jeffrey J. Jacobsen, Glenn Wilhelm Gengel, and Cordon S. W. Craig and assigned to the same Assignee as the present invention, describes an electronic modular assembly. This co-pending application is hereby incorporated herein by reference.

Co-pending U.S. patent application Ser. No. 09/270147, entitled “Apparatuses and Methods Used in Forming Electronic Assemblies”, filed by Jeffrey J. Jacobsen, Glenn Wilhelm Gengel, and John Stephen Smith and assigned to the same Assignee as the present invention, describes a method of molding substances. This co-pending application is hereby incorporated herein by reference.

Co-pending U.S. patent application Ser. No. 09/270165, entitled “Apparatuses and Methods for Forming Assemblies”, filed by Jeffrey J. Jacobsen and assigned to the same Assignee as the present invention) describes a method of rolling blocks into their recessed regions. This co-pending application is hereby incorporated herein by reference.

U.S. Pat. No. 5,545.291 entitled “Method for Fabricating Self-Assembling Microstructures,” filed by John S. Smith and Hsi-Jen J. Yeh, issued Aug. 13, 1996.

In the preceding detailed description, the invention is described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Claims (10)

1. A method of fabricating an electronic assembly, the method comprising:
providing a flexible web material, the web material have an aspect ratio of at least 25:1;
forming contact pads on the web material, the contact pads configured to couple to an external circuitry, the external circuitry being a flexible antenna;
advancing the web material in a process line; and
placing integrated circuit elements onto the web material, each of the integrated circuit elements electrically coupled to at least one of the contact pads.
2. The method of claim 1 wherein the placing is performed robotically.
3. The method of claim 1 further comprising forming vias to electrically couple the integrated circuit elements to the contact pads.
4. The method of claim 1 wherein the forming contact pads uses screen printing.
5. The method of claim 1 wherein the placing the integrated circuit elements positions the integrated circuit elements as an array on the web material.
6. The method of claim 1 wherein the contact pads comprise silver.
7. The method of claim 1 wherein the contact pads comprise at least one of metal, conductive polymer, metal particles, conductive organic compounds, or conductive oxides.
8. The method of claim 1 wherein the contact pads are gross interconnects.
9. The method of claim 1 wherein the web material is at least one of polyethylene terephthalate, polyimide, polyether sulfone, polyester, and polyamide-imide.
10. A method of fabricating an electronic assembly, the method comprising:
providing a flexible web material, the web material have an aspect ratio of at least 25:1;
screen printing contact pads on the web material, the contact pads configured to couple to an external circuitry, the external circuitry being flexible antenna;
advancing the web material in a process line; and
robotically placing integrated circuit elements onto the web material as an array, each of the integrated circuit elements electrically coupled to at least one of the contact pads.
US11869665 1999-03-16 2007-10-09 Web process interconnect in electronic assemblies Active US7425467B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09268755 US6468638B2 (en) 1999-03-16 1999-03-16 Web process interconnect in electronic assemblies
US10176795 US7070851B2 (en) 1999-03-16 2002-06-21 Web process interconnect in electronic assemblies
US10966617 US7288432B2 (en) 1999-03-16 2004-10-14 Electronic devices with small functional elements supported on a carrier
US11869665 US7425467B2 (en) 1999-03-16 2007-10-09 Web process interconnect in electronic assemblies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11869665 US7425467B2 (en) 1999-03-16 2007-10-09 Web process interconnect in electronic assemblies

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10966617 Continuation US7288432B2 (en) 1999-03-16 2004-10-14 Electronic devices with small functional elements supported on a carrier

Publications (2)

Publication Number Publication Date
US20080036087A1 true US20080036087A1 (en) 2008-02-14
US7425467B2 true US7425467B2 (en) 2008-09-16

Family

ID=23024327

Family Applications (4)

Application Number Title Priority Date Filing Date
US09268755 Active US6468638B2 (en) 1999-03-16 1999-03-16 Web process interconnect in electronic assemblies
US10176795 Active US7070851B2 (en) 1999-03-16 2002-06-21 Web process interconnect in electronic assemblies
US10966617 Active 2019-07-06 US7288432B2 (en) 1999-03-16 2004-10-14 Electronic devices with small functional elements supported on a carrier
US11869665 Active US7425467B2 (en) 1999-03-16 2007-10-09 Web process interconnect in electronic assemblies

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09268755 Active US6468638B2 (en) 1999-03-16 1999-03-16 Web process interconnect in electronic assemblies
US10176795 Active US7070851B2 (en) 1999-03-16 2002-06-21 Web process interconnect in electronic assemblies
US10966617 Active 2019-07-06 US7288432B2 (en) 1999-03-16 2004-10-14 Electronic devices with small functional elements supported on a carrier

Country Status (4)

Country Link
US (4) US6468638B2 (en)
EP (1) EP1173888A1 (en)
JP (1) JP2003501676A (en)
WO (1) WO2000055915A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133768B2 (en) 2007-05-31 2012-03-13 Nthdegree Technologies Worldwide Inc Method of manufacturing a light emitting, photovoltaic or other electronic apparatus and system
US8183772B2 (en) 2004-12-27 2012-05-22 Nthdegree Technologies Worldwide Inc Static and addressable emissive displays
US8384630B2 (en) 2007-05-31 2013-02-26 Nthdegree Technologies Worldwide Inc Light emitting, photovoltaic or other electronic apparatus and system
US8415879B2 (en) 2007-05-31 2013-04-09 Nthdegree Technologies Worldwide Inc Diode for a printable composition
US8413359B2 (en) 2008-05-13 2013-04-09 Nthdegree Technologies Worldwide Inc Illuminating display systems
US8674593B2 (en) 2007-05-31 2014-03-18 Nthdegree Technologies Worldwide Inc Diode for a printable composition
US8739441B2 (en) 2008-05-13 2014-06-03 Nthdegree Technologies Worldwide Inc Apparatuses for providing power for illumination of a display object
US8809126B2 (en) 2007-05-31 2014-08-19 Nthdegree Technologies Worldwide Inc Printable composition of a liquid or gel suspension of diodes
US8846457B2 (en) 2007-05-31 2014-09-30 Nthdegree Technologies Worldwide Inc Printable composition of a liquid or gel suspension of diodes
US8852467B2 (en) 2007-05-31 2014-10-07 Nthdegree Technologies Worldwide Inc Method of manufacturing a printable composition of a liquid or gel suspension of diodes
US8877101B2 (en) 2007-05-31 2014-11-04 Nthdegree Technologies Worldwide Inc Method of manufacturing a light emitting, power generating or other electronic apparatus
US8889216B2 (en) 2007-05-31 2014-11-18 Nthdegree Technologies Worldwide Inc Method of manufacturing addressable and static electronic displays
US9018833B2 (en) 2007-05-31 2015-04-28 Nthdegree Technologies Worldwide Inc Apparatus with light emitting or absorbing diodes
US9343593B2 (en) 2007-05-31 2016-05-17 Nthdegree Technologies Worldwide Inc Printable composition of a liquid or gel suspension of diodes
US9419142B2 (en) 2006-03-03 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9419179B2 (en) 2007-05-31 2016-08-16 Nthdegree Technologies Worldwide Inc Diode for a printable composition
US9425357B2 (en) 2007-05-31 2016-08-23 Nthdegree Technologies Worldwide Inc. Diode for a printable composition
US9534772B2 (en) 2007-05-31 2017-01-03 Nthdegree Technologies Worldwide Inc Apparatus with light emitting diodes
US9825202B2 (en) 2014-10-31 2017-11-21 eLux, Inc. Display with surface mount emissive elements

Families Citing this family (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6869870B2 (en) * 1998-12-21 2005-03-22 Megic Corporation High performance system-on-chip discrete components using post passivation process
US6850312B2 (en) 1999-03-16 2005-02-01 Alien Technology Corporation Apparatuses and methods for flexible displays
EP1157421A1 (en) * 1999-02-05 2001-11-28 Alien Technology Corporation Apparatuses and methods for forming assemblies
US6683663B1 (en) * 1999-02-05 2004-01-27 Alien Technology Corporation Web fabrication of devices
US6731353B1 (en) * 2001-08-17 2004-05-04 Alien Technology Corporation Method and apparatus for transferring blocks
US6468638B2 (en) * 1999-03-16 2002-10-22 Alien Technology Corporation Web process interconnect in electronic assemblies
US6233033B1 (en) * 1999-03-29 2001-05-15 National Semiconductor Corp. Pixel array for LC silicon light valve featuring pixels with overlapping edges
US6420266B1 (en) * 1999-11-02 2002-07-16 Alien Technology Corporation Methods for creating elements of predetermined shape and apparatuses using these elements
US6479395B1 (en) * 1999-11-02 2002-11-12 Alien Technology Corporation Methods for forming openings in a substrate and apparatuses with these openings and methods for creating assemblies with openings
US6623579B1 (en) * 1999-11-02 2003-09-23 Alien Technology Corporation Methods and apparatus for fluidic self assembly
US6723576B2 (en) * 2000-06-30 2004-04-20 Seiko Epson Corporation Disposing method for semiconductor elements
US6780696B1 (en) * 2000-09-12 2004-08-24 Alien Technology Corporation Method and apparatus for self-assembly of functional blocks on a substrate facilitated by electrode pairs
DE10053334A1 (en) * 2000-10-27 2002-05-08 Bosch Gmbh Robert Micro controller system for actuators in vehicle braking system, uses range of sensor inputs and has test cycle
US7199527B2 (en) 2000-11-21 2007-04-03 Alien Technology Corporation Display device and methods of manufacturing and control
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
DE60232134D1 (en) * 2001-02-16 2009-06-10 Ignis Innovation Inc Flexible display device
US7569849B2 (en) 2001-02-16 2009-08-04 Ignis Innovation Inc. Pixel driver circuit and pixel circuit having the pixel driver circuit
US7242398B2 (en) * 2002-02-18 2007-07-10 Ignis Innovation Inc. Flexible display device
US6606247B2 (en) * 2001-05-31 2003-08-12 Alien Technology Corporation Multi-feature-size electronic structures
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
JP2003005212A (en) * 2001-06-20 2003-01-08 Seiko Instruments Inc Liquid crystal display device having single crystal silicon transistor element, and its manufacturing method
US6727970B2 (en) 2001-06-25 2004-04-27 Avery Dennison Corporation Method of making a hybrid display device having a rigid substrate and a flexible substrate
US6856086B2 (en) 2001-06-25 2005-02-15 Avery Dennison Corporation Hybrid display device
US6967640B2 (en) * 2001-07-27 2005-11-22 E Ink Corporation Microencapsulated electrophoretic display with integrated driver
JP3682584B2 (en) * 2001-08-06 2005-08-10 ソニー株式会社 Method of producing the mounting method and the image display device of the light emitting element
US7218527B1 (en) * 2001-08-17 2007-05-15 Alien Technology Corporation Apparatuses and methods for forming smart labels
US6885032B2 (en) 2001-11-21 2005-04-26 Visible Tech-Knowledgy, Inc. Display assembly having flexible transistors on a flexible substrate
KR100855884B1 (en) * 2001-12-24 2008-09-03 엘지디스플레이 주식회사 Align Key for Liquid Crystal Display Device
US6951596B2 (en) 2002-01-18 2005-10-04 Avery Dennison Corporation RFID label technique
US7214569B2 (en) 2002-01-23 2007-05-08 Alien Technology Corporation Apparatus incorporating small-feature-size and large-feature-size components and method for making same
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US6927382B2 (en) 2002-05-22 2005-08-09 Agilent Technologies Optical excitation/detection device and method for making same using fluidic self-assembly techniques
US6811815B2 (en) 2002-06-14 2004-11-02 Avery Dennison Corporation Method for roll-to-roll deposition of optically transparent and high conductivity metallic thin films
US6867983B2 (en) * 2002-08-07 2005-03-15 Avery Dennison Corporation Radio frequency identification device and method
US6764885B2 (en) 2002-10-17 2004-07-20 Avery Dennison Corporation Method of fabricating transistor device
GB0229191D0 (en) * 2002-12-14 2003-01-22 Plastic Logic Ltd Embossing of polymer devices
DE10262143B4 (en) * 2002-12-20 2011-01-20 Ksg Leiterplatten Gmbh light-emitting device
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US7224280B2 (en) 2002-12-31 2007-05-29 Avery Dennison Corporation RFID device and method of forming
US6940408B2 (en) 2002-12-31 2005-09-06 Avery Dennison Corporation RFID device and method of forming
US7253735B2 (en) 2003-03-24 2007-08-07 Alien Technology Corporation RFID tags and processes for producing RFID tags
US7244326B2 (en) 2003-05-16 2007-07-17 Alien Technology Corporation Transfer assembly for manufacturing electronic devices
US8665247B2 (en) * 2003-05-30 2014-03-04 Global Oled Technology Llc Flexible display
US7170481B2 (en) * 2003-07-02 2007-01-30 Kent Displays Incorporated Single substrate liquid crystal display
WO2005072455A3 (en) * 2004-01-28 2006-05-11 William J Doane Drapable liquid crystal transfer display films
US7737928B2 (en) * 2003-07-02 2010-06-15 Kent Displays Incorporated Stacked display with shared electrode addressing
EP1664366A1 (en) * 2003-08-12 2006-06-07 Sandvik Intellectual Property AB New metal strip product
US7265803B2 (en) * 2003-08-27 2007-09-04 Avago Technologies General Ip (Singapore) Pte. Ltd. Reconfigurable logic through deposition of organic pathways
CA2443206A1 (en) 2003-09-23 2005-03-23 Ignis Innovation Inc. Amoled display backplanes - pixel driver circuits, array architecture, and external compensation
WO2005033659A3 (en) 2003-09-29 2007-01-18 Pelikan Technologies Inc Method and apparatus for an improved sample capture device
WO2005037095A1 (en) 2003-10-14 2005-04-28 Pelikan Technologies, Inc. Method and apparatus for a variable user interface
US7112463B2 (en) * 2003-11-13 2006-09-26 Honeywell International Inc. Method for making devices using ink jet printing
WO2005065414A3 (en) 2003-12-31 2005-12-29 Pelikan Technologies Inc Method and apparatus for improving fluidic flow and sample capture
JP3978189B2 (en) * 2004-01-23 2007-09-19 松下電器産業株式会社 Manufacturing method and apparatus for manufacturing a semiconductor device
US7236151B2 (en) * 2004-01-28 2007-06-26 Kent Displays Incorporated Liquid crystal display
US8199086B2 (en) * 2004-01-28 2012-06-12 Kent Displays Incorporated Stacked color photodisplay
CN1934707B (en) * 2004-03-22 2014-09-10 株式会社半导体能源研究所 Method of forminig integrated circuit
JP2008507114A (en) * 2004-04-27 2008-03-06 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Soft composite patterning device for a lithographic
US20080055581A1 (en) * 2004-04-27 2008-03-06 Rogers John A Devices and methods for pattern generation by ink lithography
DE102004025684A1 (en) 2004-04-29 2005-11-17 Osram Opto Semiconductors Gmbh The optoelectronic semiconductor chip and method of forming a contact structure for the electrical contacting of an optoelectronic semiconductor chip
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH & Co. KG Printable hydrogel for biosensors
US7268063B1 (en) * 2004-06-01 2007-09-11 University Of Central Florida Process for fabricating semiconductor component
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc Method and apparatus for a fluid sampling device
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US7521292B2 (en) 2004-06-04 2009-04-21 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
US7799699B2 (en) * 2004-06-04 2010-09-21 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
US8217381B2 (en) * 2004-06-04 2012-07-10 The Board Of Trustees Of The University Of Illinois Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
KR101504579B1 (en) 2004-06-04 2015-03-23 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Methods and devices for fabricating and assembling printable semiconductor elements
US7943491B2 (en) 2004-06-04 2011-05-17 The Board Of Trustees Of The University Of Illinois Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
CA2472671A1 (en) 2004-06-29 2005-12-29 Ignis Innovation Inc. Voltage-programming scheme for current-driven amoled displays
US20060051517A1 (en) * 2004-09-03 2006-03-09 Eastman Kodak Company Thermally controlled fluidic self-assembly method and support
US7251882B2 (en) 2004-09-03 2007-08-07 Eastman Kodak Company Method for assembling micro-components to binding sites
US7629026B2 (en) * 2004-09-03 2009-12-08 Eastman Kodak Company Thermally controlled fluidic self-assembly
US7353598B2 (en) * 2004-11-08 2008-04-08 Alien Technology Corporation Assembly comprising functional devices and method of making same
US7615479B1 (en) 2004-11-08 2009-11-10 Alien Technology Corporation Assembly comprising functional block deposited therein
US20060109130A1 (en) * 2004-11-22 2006-05-25 Hattick John B Radio frequency identification (RFID) tag for an item having a conductive layer included or attached
US7385284B2 (en) * 2004-11-22 2008-06-10 Alien Technology Corporation Transponder incorporated into an electronic device
US7688206B2 (en) 2004-11-22 2010-03-30 Alien Technology Corporation Radio frequency identification (RFID) tag for an item having a conductive layer included or attached
CA2490858A1 (en) 2004-12-07 2006-06-07 Ignis Innovation Inc. Driving method for compensated voltage-programming of amoled displays
US7687277B2 (en) * 2004-12-22 2010-03-30 Eastman Kodak Company Thermally controlled fluidic self-assembly
JP4546483B2 (en) * 2005-01-24 2010-09-15 パナソニック株式会社 A method of manufacturing a semiconductor chip
CA2495726A1 (en) 2005-01-28 2006-07-28 Ignis Innovation Inc. Locally referenced voltage programmed pixel for amoled displays
KR101249192B1 (en) 2005-04-12 2013-04-03 아사히 가라스 가부시키가이샤 Ink composition and metallic material
WO2007005832A9 (en) * 2005-06-30 2007-05-24 Univ Virginia Reliant thermal barrier coating system and related methods and apparatus of making the same
US7791700B2 (en) * 2005-09-16 2010-09-07 Kent Displays Incorporated Liquid crystal display on a printed circuit board
JP4149507B2 (en) * 2005-09-29 2008-09-10 松下電器産業株式会社 Mounting method and mounting apparatus of the electronic circuit components
KR20090006198A (en) 2006-04-19 2009-01-14 이그니스 이노베이션 인크. Stable driving scheme for active matrix displays
US20070158804A1 (en) * 2006-01-10 2007-07-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method of semiconductor device, and RFID tag
JP2009528254A (en) 2006-03-03 2009-08-06 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ The method for manufacturing a spatially arranged nanotubes and nanotube arrays
KR100763894B1 (en) * 2006-03-21 2007-10-05 삼성에스디아이 주식회사 Method of manufacturing display device using LED chips
KR101610885B1 (en) 2007-01-17 2016-04-08 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Optical systems fabricated by printing-based assembly
JP2008241784A (en) * 2007-03-26 2008-10-09 Sony Corp Display device and method of manufacturing the same
GB0717055D0 (en) * 2007-09-01 2007-10-17 Eastman Kodak Co An electronic device
CN103872002B (en) 2008-03-05 2017-03-01 伊利诺伊大学评议会 Stretchable and foldable electronic device
US8470701B2 (en) 2008-04-03 2013-06-25 Advanced Diamond Technologies, Inc. Printable, flexible and stretchable diamond for thermal management
US8017451B2 (en) 2008-04-04 2011-09-13 The Charles Stark Draper Laboratory, Inc. Electronic modules and methods for forming the same
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
US8946683B2 (en) * 2008-06-16 2015-02-03 The Board Of Trustees Of The University Of Illinois Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates
US8886334B2 (en) 2008-10-07 2014-11-11 Mc10, Inc. Systems, methods, and devices using stretchable or flexible electronics for medical applications
US8372726B2 (en) 2008-10-07 2013-02-12 Mc10, Inc. Methods and applications of non-planar imaging arrays
US8097926B2 (en) 2008-10-07 2012-01-17 Mc10, Inc. Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
EP2349440A4 (en) 2008-10-07 2014-03-19 Mc10 Inc Catheter balloon having stretchable integrated circuitry and sensor array
US8389862B2 (en) 2008-10-07 2013-03-05 Mc10, Inc. Extremely stretchable electronics
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
KR101706915B1 (en) 2009-05-12 2017-02-15 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
EP2448026A4 (en) 2009-06-26 2013-08-14 Asahi Rubber Inc White color reflecting material and process for production thereof
WO2011041727A1 (en) 2009-10-01 2011-04-07 Mc10, Inc. Protective cases with integrated electronics
KR101094300B1 (en) * 2009-10-12 2011-12-19 삼성모바일디스플레이주식회사 Organic light emitting diode lighting apparatus and method for manufacturing the same
US8283967B2 (en) 2009-11-12 2012-10-09 Ignis Innovation Inc. Stable current source for system integration to display substrate
US20110140844A1 (en) 2009-12-15 2011-06-16 Mcguire Kenneth Stephen Packaged product having a reactive label and a method of its use
US9936574B2 (en) 2009-12-16 2018-04-03 The Board Of Trustees Of The University Of Illinois Waterproof stretchable optoelectronics
WO2011115643A1 (en) 2010-03-17 2011-09-22 The Board Of Trustees Of The University Of Illinois Implantable biomedical devices on bioresorbable substrates
CN106025053A (en) 2010-03-23 2016-10-12 株式会社朝日橡胶 Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate
US8446252B2 (en) 2010-03-31 2013-05-21 The Procter & Gamble Company Interactive product package that forms a node of a product-centric communications network
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8349653B2 (en) 2010-06-02 2013-01-08 Maxim Integrated Products, Inc. Use of device assembly for a generalization of three-dimensional metal interconnect technologies
WO2012048137A3 (en) * 2010-10-06 2012-07-12 The Charles Stark Draper Laboratory, Inc. Flexible circuits and methods for making the same
US9442285B2 (en) 2011-01-14 2016-09-13 The Board Of Trustees Of The University Of Illinois Optical component array having adjustable curvature
US9765934B2 (en) 2011-05-16 2017-09-19 The Board Of Trustees Of The University Of Illinois Thermally managed LED arrays assembled by printing
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9721505B2 (en) 2013-03-08 2017-08-01 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9134825B2 (en) 2011-05-17 2015-09-15 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9159635B2 (en) 2011-05-27 2015-10-13 Mc10, Inc. Flexible electronic structure
US8934965B2 (en) 2011-06-03 2015-01-13 The Board Of Trustees Of The University Of Illinois Conformable actively multiplexed high-density surface electrode array for brain interfacing
US9070775B2 (en) 2011-08-03 2015-06-30 Ignis Innovations Inc. Thin film transistor
US8901579B2 (en) 2011-08-03 2014-12-02 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
JP6231489B2 (en) 2011-12-01 2017-11-15 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Transition device designed to suffer programmable change
KR20130076402A (en) * 2011-12-28 2013-07-08 삼성디스플레이 주식회사 Flexible display apparatus and the method of manufacturing the same
EP2830492A4 (en) 2012-03-30 2015-11-18 Univ Illinois Appendage mountable electronic devices conformable to surfaces
US9024526B1 (en) 2012-06-11 2015-05-05 Imaging Systems Technology, Inc. Detector element with antenna
US20140071142A1 (en) * 2012-09-13 2014-03-13 Pixtronix, Inc. Display apparatus incorporating vertically oriented electrical interconnects
US9171794B2 (en) 2012-10-09 2015-10-27 Mc10, Inc. Embedding thin chips in polymer
US9128289B2 (en) 2012-12-28 2015-09-08 Pixtronix, Inc. Display apparatus incorporating high-aspect ratio electrical interconnects
CN105247462A (en) 2013-03-15 2016-01-13 伊格尼斯创新公司 Dynamic adjustment of touch resolutions on AMOLED display
KR20140139326A (en) * 2013-05-27 2014-12-05 삼성디스플레이 주식회사 Display device and driving method thereof
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
CA2872563A1 (en) 2014-11-28 2016-05-28 Ignis Innovation Inc. High pixel density array architecture

Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3903590A (en) 1973-03-10 1975-09-09 Tokyo Shibaura Electric Co Multiple chip integrated circuits and method of manufacturing the same
US4670770A (en) 1984-02-21 1987-06-02 American Telephone And Telegraph Company Integrated circuit chip-and-substrate assembly
US4783695A (en) 1986-09-26 1988-11-08 General Electric Company Multichip integrated circuit packaging configuration and method
US4818855A (en) 1985-01-11 1989-04-04 Indala Corporation Identification system
US4857893A (en) 1986-07-18 1989-08-15 Bi Inc. Single chip transponder device
US4918811A (en) 1986-09-26 1990-04-24 General Electric Company Multichip integrated circuit packaging method
US4937653A (en) 1988-07-21 1990-06-26 American Telephone And Telegraph Company Semiconductor integrated circuit chip-to-chip interconnection scheme
US4957776A (en) 1988-01-14 1990-09-18 Sanyo Electric Co., Ltd. Method of manufacturing optical disc
US4990462A (en) 1989-04-12 1991-02-05 Advanced Micro Devices, Inc. Method for coplanar integration of semiconductor ic devices
US5008213A (en) 1988-12-09 1991-04-16 The United States Of America As Represented By The Secretary Of The Air Force Hybrid wafer scale microcircuit integration
US5032896A (en) 1989-08-31 1991-07-16 Hughes Aircraft Company 3-D integrated circuit assembly employing discrete chips
US5048179A (en) 1986-05-23 1991-09-17 Ricoh Company, Ltd. IC chip mounting method
US5049978A (en) * 1990-09-10 1991-09-17 General Electric Company Conductively enclosed hybrid integrated circuit assembly using a silicon substrate
US5083697A (en) 1990-02-14 1992-01-28 Difrancesco Louis Particle-enhanced joining of metal surfaces
US5099227A (en) 1989-07-18 1992-03-24 Indala Corporation Proximity detecting apparatus
US5138436A (en) 1990-11-16 1992-08-11 Ball Corporation Interconnect package having means for waveguide transmission of rf signals
US5138433A (en) 1990-03-16 1992-08-11 Kabushiki Kaisha Toshiba Multi-chip package type semiconductor device
US5188984A (en) 1987-04-21 1993-02-23 Sumitomo Electric Industries, Ltd. Semiconductor device and production method thereof
US5205032A (en) 1990-09-28 1993-04-27 Kabushiki Kaisha Toshiba Electronic parts mounting apparatus
US5212625A (en) 1988-12-01 1993-05-18 Akzo Nv Semiconductor module having projecting cooling fin groups
US5221831A (en) 1991-11-29 1993-06-22 Indala Corporation Flap-type portal reader
US5231751A (en) 1991-10-29 1993-08-03 International Business Machines Corporation Process for thin film interconnect
US5241456A (en) 1990-07-02 1993-08-31 General Electric Company Compact high density interconnect structure
USD343261S (en) 1991-07-11 1994-01-11 Indala Corporation Transponder tag housing for attachment to the ear of an animal
US5298685A (en) 1990-10-30 1994-03-29 International Business Machines Corporation Interconnection method and structure for organic circuit boards
US5353498A (en) 1993-02-08 1994-10-11 General Electric Company Method for fabricating an integrated circuit module
US5373627A (en) 1993-11-23 1994-12-20 Grebe; Kurt R. Method of forming multi-chip module with high density interconnections
US5378880A (en) 1993-08-20 1995-01-03 Indala Corporation Housing structure for an access control RFID reader
US5382952A (en) 1992-01-22 1995-01-17 Indala Corporation Transponder for proximity identification system
US5382784A (en) 1993-02-08 1995-01-17 Indala Corporation Hand-held dual technology identification tag reading head
US5420757A (en) 1993-02-11 1995-05-30 Indala Corporation Method of producing a radio frequency transponder with a molded environmentally sealed package
US5422513A (en) 1992-10-16 1995-06-06 Martin Marietta Corporation Integrated circuit chip placement in a high density interconnect structure
US5430441A (en) 1993-10-12 1995-07-04 Motorola, Inc. Transponding tag and method
US5434751A (en) 1994-04-11 1995-07-18 Martin Marietta Corporation Reworkable high density interconnect structure incorporating a release layer
US5444223A (en) 1994-01-11 1995-08-22 Blama; Michael J. Radio frequency identification tag and method
US5514613A (en) 1994-01-27 1996-05-07 Integrated Device Technology Parallel manufacturing of semiconductor devices and the resulting structure
US5517752A (en) 1992-05-13 1996-05-21 Fujitsu Limited Method of connecting a pressure-connector terminal of a device with a terminal electrode of a substrate
US5528222A (en) 1994-09-09 1996-06-18 International Business Machines Corporation Radio frequency circuit and memory in thin flexible package
US5545291A (en) 1993-12-17 1996-08-13 The Regents Of The University Of California Method for fabricating self-assembling microstructures
US5554996A (en) 1994-07-15 1996-09-10 Motorola, Inc. Antenna for communication device
US5556441A (en) 1993-11-22 1996-09-17 Textron Inc. Air filter for internal combustion engine
US5557470A (en) 1993-05-27 1996-09-17 Nikon Corporation Zoom lens system
US5565846A (en) 1994-04-25 1996-10-15 Indala Corporation Reader system for waste bin pickup vehicles
US5574470A (en) 1994-09-30 1996-11-12 Palomar Technologies Corporation Radio frequency identification transponder apparatus and method
US5612254A (en) 1992-06-29 1997-03-18 Intel Corporation Methods of forming an interconnect on a semiconductor substrate
US5627931A (en) 1996-05-28 1997-05-06 Motorola Optoelectronic transducer
US5682143A (en) 1994-09-09 1997-10-28 International Business Machines Corporation Radio frequency identification tag
US5707902A (en) 1995-02-13 1998-01-13 Industrial Technology Research Institute Composite bump structure and methods of fabrication
US5708419A (en) 1996-07-22 1998-01-13 Checkpoint Systems, Inc. Method of wire bonding an integrated circuit to an ultraflexible substrate
US5715594A (en) 1994-07-15 1998-02-10 National Semiconductor Corporation Method of making removable computer peripheral cards having a solid one-piece housing
US5735040A (en) 1991-12-26 1998-04-07 Mitsubishi Denki Kabushiki Kaisha Method of making IC card
US5745984A (en) 1995-07-10 1998-05-05 Martin Marietta Corporation Method for making an electronic module
US5754110A (en) 1996-03-07 1998-05-19 Checkpoint Systems, Inc. Security tag and manufacturing method
US5779839A (en) 1992-06-17 1998-07-14 Micron Communications, Inc. Method of manufacturing an enclosed transceiver
US5798050A (en) 1997-01-10 1998-08-25 International Business Machines Corporation Process for fabrication of a selectively filled flexible adhesive device for solderless connection of electronic modules to a substrate
US5818348A (en) 1995-03-13 1998-10-06 Motorola, Inc. Method and radio frequency identification system for a novel protocol for reliable communication
US5824186A (en) 1993-12-17 1998-10-20 The Regents Of The University Of California Method and apparatus for fabricating self-assembling microstructures
US5904545A (en) 1993-12-17 1999-05-18 The Regents Of The University Of California Apparatus for fabricating self-assembling microstructures
US5910770A (en) 1997-08-22 1999-06-08 Uni Electronics Industry Co., Ltd. Tag for theft prevention
US5914862A (en) 1995-05-19 1999-06-22 Kasten Chase Applied Research Limited Radio frequency identification tag
US5995006A (en) 1995-09-05 1999-11-30 Intermec Ip Corp. Radio frequency tag
US6018299A (en) 1998-06-09 2000-01-25 Motorola, Inc. Radio frequency identification tag having a printed antenna and method
US6019284A (en) 1998-01-27 2000-02-01 Viztec Inc. Flexible chip card with display
US6031450A (en) 1999-02-03 2000-02-29 Huang; Tien-Tsai Tire pressure alarm system with centrifugal force-controlled power switch
US6040773A (en) 1995-10-11 2000-03-21 Motorola, Inc. Radio frequency identification tag arranged for magnetically storing tag state information
US6044046A (en) 1996-04-26 2000-03-28 Giesecke & Devrient Gmbh CD with built-in chip
US6064116A (en) 1997-06-06 2000-05-16 Micron Technology, Inc. Device for electrically or thermally coupling to the backsides of integrated circuit dice in chip-on-board applications
US6078791A (en) 1992-06-17 2000-06-20 Micron Communications, Inc. Radio frequency identification transceiver and antenna
US6091332A (en) 1998-06-09 2000-07-18 Motorola, Inc. Radio frequency identification tag having printed circuit interconnections
US6094138A (en) 1998-02-27 2000-07-25 Motorola, Inc. Integrated circuit assembly and method of assembly
US6094173A (en) 1997-04-18 2000-07-25 Motorola, Inc. Method and apparatus for detecting an RFID tag signal
US6100804A (en) 1998-10-29 2000-08-08 Intecmec Ip Corp. Radio frequency identification system
US6107920A (en) 1998-06-09 2000-08-22 Motorola, Inc. Radio frequency identification tag having an article integrated antenna
US6122492A (en) 1999-02-08 2000-09-19 Motorola, Inc. Adjustable radio frequency power amplifier and transmitter
US6133835A (en) 1997-12-05 2000-10-17 U.S. Philips Corporation Identification transponder
US6133833A (en) 1999-02-25 2000-10-17 Motorola, Inc. Wireless add-on keyboard system and method
US6134130A (en) 1999-07-19 2000-10-17 Motorola, Inc. Power reception circuits for a device receiving an AC power signal
US6147662A (en) 1999-09-10 2000-11-14 Moore North America, Inc. Radio frequency identification tags and labels
US6147605A (en) 1998-09-11 2000-11-14 Motorola, Inc. Method and apparatus for an optimized circuit for an electrostatic radio frequency identification tag
US6164551A (en) 1997-10-29 2000-12-26 Meto International Gmbh Radio frequency identification transponder having non-encapsulated IC chip
US6181287B1 (en) 1997-03-10 2001-01-30 Precision Dynamics Corporation Reactively coupled elements in circuits on flexible substrates
US6189208B1 (en) 1998-09-11 2001-02-20 Polymer Flip Chip Corp. Flip chip mounting technique
US6194119B1 (en) 1999-01-15 2001-02-27 3M Innovative Properties Company Thermal transfer element and process for forming organic electroluminescent devices
US6204163B1 (en) 1998-04-13 2001-03-20 Harris Corporation Integrated circuit package for flip chip with alignment preform feature and method of forming same
US6206282B1 (en) 1998-03-03 2001-03-27 Pyper Products Corporation RF embedded identification device
US6211572B1 (en) 1995-10-31 2001-04-03 Tessera, Inc. Semiconductor chip package with fan-in leads
US6219911B1 (en) 1998-03-23 2001-04-24 Polymer Flip Chip Corp. Flip chip mounting technique
US6222212B1 (en) 1994-01-27 2001-04-24 Integrated Device Technology, Inc. Semiconductor device having programmable interconnect layers
US6229203B1 (en) 1997-03-12 2001-05-08 General Electric Company Semiconductor interconnect structure for high temperature applications
US6229442B1 (en) 2000-03-14 2001-05-08 Motorola, Inc, Radio frequency identification device having displacement current control and method thereof
US6236316B1 (en) 1999-01-05 2001-05-22 Motorola, Inc. Transport device with openings for capacitive coupled readers
US6246327B1 (en) 1998-06-09 2001-06-12 Motorola, Inc. Radio frequency identification tag circuit chip having printed interconnection pads
US6252508B1 (en) 1995-10-11 2001-06-26 Motorola, Inc. Radio frequency identification tag arranged for magnetically storing tag state information
US6262692B1 (en) 1999-01-13 2001-07-17 Brady Worldwide, Inc. Laminate RFID label and method of manufacture
US6459084B1 (en) * 1997-05-30 2002-10-01 University Of Central Florida Area receiver with antenna-coupled infrared sensors
US20060022287A1 (en) * 2004-07-29 2006-02-02 Fujikura Ltd. Semiconductor device and method for manufacturing the same
US20070031992A1 (en) * 2005-08-05 2007-02-08 Schatz Kenneth D Apparatuses and methods facilitating functional block deposition
US7353598B2 (en) * 2004-11-08 2008-04-08 Alien Technology Corporation Assembly comprising functional devices and method of making same

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246595A (en) 1977-03-08 1981-01-20 Matsushita Electric Industrial Co., Ltd. Electronics circuit device and method of making the same
DE3777164D1 (en) 1986-09-26 1992-04-09 Gen Electric Method and arrangement for testing electronic circuits and integrated circuit chips with a releasable covering layer.
US4766670A (en) 1987-02-02 1988-08-30 International Business Machines Corporation Full panel electronic packaging structure and method of making same
JP3280394B2 (en) 1990-04-05 2002-05-13 ロックヒード マーティン コーポレーション The electronic device
FR2672428B1 (en) 1991-02-04 1993-05-28 Schiltz Andre Method and chips insertion device in the housing of a substrate by gluing head.
US6274391B1 (en) * 1992-10-26 2001-08-14 Texas Instruments Incorporated HDI land grid array packaged device having electrical and optical interconnects
US6864570B2 (en) * 1993-12-17 2005-03-08 The Regents Of The University Of California Method and apparatus for fabricating self-assembling microstructures
FR2751767B1 (en) * 1996-07-26 1998-12-18 Thomson Csf Secure storage of system data on CD-ROM
DE19703058C1 (en) * 1996-12-20 1998-06-10 Siemens Ag Non-conductive substrate for chip card carrier element
US6281794B1 (en) * 1998-01-02 2001-08-28 Intermec Ip Corp. Radio frequency transponder with improved read distance
US6410415B1 (en) * 1999-03-23 2002-06-25 Polymer Flip Chip Corporation Flip chip mounting technique
US20010024127A1 (en) * 1998-03-30 2001-09-27 William E. Bernier Semiconductor testing using electrically conductive adhesives
ES2344741T3 (en) * 1998-08-14 2010-09-06 3M Innovative Properties Company Rfid reader.
DE19840210A1 (en) * 1998-09-03 2000-03-09 Fraunhofer Ges Forschung A method of handling a plurality of circuit chips
KR100437007B1 (en) 1998-09-11 2004-06-23 모토로라 인코포레이티드 Radio frequency identification tag apparatus and related method
EP1032980A1 (en) * 1998-09-17 2000-09-06 Trakus, Inc. Moldable transceiver for use with apparel
EP1157421A1 (en) * 1999-02-05 2001-11-28 Alien Technology Corporation Apparatuses and methods for forming assemblies
US6281038B1 (en) * 1999-02-05 2001-08-28 Alien Technology Corporation Methods for forming assemblies
US6468638B2 (en) * 1999-03-16 2002-10-22 Alien Technology Corporation Web process interconnect in electronic assemblies
EP1043684A1 (en) * 1999-03-29 2000-10-11 OMD Productions AG Data carrier
JP3928682B2 (en) * 1999-06-22 2007-06-13 オムロン株式会社 Conjugates of the wiring boards, the bonding method of the wiring boards, a method of manufacturing a data carrier, and mounting apparatus of the electronic component module
WO2001037215A1 (en) * 1999-11-18 2001-05-25 Siemens Aktiengesellschaft Mobile data carrier with a transponder made from a surface wave component with a slot antenna
WO2001062517A1 (en) 2000-02-22 2001-08-30 Toray Engineering Company,Limited Noncontact id card or the like and method of manufacturing the same
EP1278612B1 (en) * 2000-03-10 2010-02-24 Chippac, Inc. Flip chip Interconnection structure and method of obtaining the same
WO2001075789A1 (en) 2000-04-04 2001-10-11 Toray Engineering Company, Limited Method of manufacturing cof package
WO2001090849A3 (en) * 2000-05-22 2002-05-30 Avery Dennison Corp Trackable files and systems for using the same
JP3840926B2 (en) * 2000-07-07 2006-11-01 セイコーエプソン株式会社 Organic el display body and a manufacturing method thereof and an electronic apparatus,
US6483473B1 (en) * 2000-07-18 2002-11-19 Marconi Communications Inc. Wireless communication device and method
US6780696B1 (en) * 2000-09-12 2004-08-24 Alien Technology Corporation Method and apparatus for self-assembly of functional blocks on a substrate facilitated by electrode pairs
US6448109B1 (en) * 2000-11-15 2002-09-10 Analog Devices, Inc. Wafer level method of capping multiple MEMS elements
US7221648B2 (en) * 2000-11-29 2007-05-22 Lucent Technologies Inc. Rate adaptation in a wireless communication system
US6611237B2 (en) * 2000-11-30 2003-08-26 The Regents Of The University Of California Fluidic self-assembly of active antenna
US20020149107A1 (en) * 2001-02-02 2002-10-17 Avery Dennison Corporation Method of making a flexible substrate containing self-assembling microstructures
US7101091B2 (en) * 2001-02-21 2006-09-05 Zarlink Semiconductor, Inc. Apparatus for coupling a fiber optic cable to an optoelectronic device, a system including the apparatus, and a method of forming the same
DE10120269C1 (en) * 2001-04-25 2002-07-25 Muehlbauer Ag Microchip transponder manufacturing method has chip module carrier band combined with antenna carrier band with chip module terminals coupled to antenna
US6727970B2 (en) 2001-06-25 2004-04-27 Avery Dennison Corporation Method of making a hybrid display device having a rigid substrate and a flexible substrate
US6590346B1 (en) * 2001-07-16 2003-07-08 Alien Technology Corporation Double-metal background driven displays
US20030036249A1 (en) * 2001-08-06 2003-02-20 Bauer Donald G. Chip alignment and placement apparatus for integrated circuit, MEMS, photonic or other devices
US6530649B1 (en) * 2001-08-16 2003-03-11 Hewlett-Packard Company Hermetic seal in microelectronic devices
US6951596B2 (en) * 2002-01-18 2005-10-04 Avery Dennison Corporation RFID label technique
KR20030076274A (en) * 2002-03-18 2003-09-26 도레 엔지니아린구 가부시키가이샤 Non-contact id card and the method for producing thereof
US20040052203A1 (en) * 2002-09-13 2004-03-18 Brollier Brian W. Light enabled RFID in information disks
US20040052202A1 (en) * 2002-09-13 2004-03-18 Brollier Brian W. RFID enabled information disks
US6940408B2 (en) * 2002-12-31 2005-09-06 Avery Dennison Corporation RFID device and method of forming
US7120987B2 (en) * 2003-08-05 2006-10-17 Avery Dennison Corporation Method of making RFID device
KR101119989B1 (en) * 2003-11-04 2012-03-15 애버리 데니슨 코포레이션 Rfid tag with enhanced readability
US7158037B2 (en) * 2004-03-22 2007-01-02 Avery Dennison Corporation Low cost method of producing radio frequency identification tags with straps without antenna patterning

Patent Citations (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3903590A (en) 1973-03-10 1975-09-09 Tokyo Shibaura Electric Co Multiple chip integrated circuits and method of manufacturing the same
US4670770A (en) 1984-02-21 1987-06-02 American Telephone And Telegraph Company Integrated circuit chip-and-substrate assembly
US4818855A (en) 1985-01-11 1989-04-04 Indala Corporation Identification system
US5048179A (en) 1986-05-23 1991-09-17 Ricoh Company, Ltd. IC chip mounting method
US4857893A (en) 1986-07-18 1989-08-15 Bi Inc. Single chip transponder device
US4783695A (en) 1986-09-26 1988-11-08 General Electric Company Multichip integrated circuit packaging configuration and method
US4918811A (en) 1986-09-26 1990-04-24 General Electric Company Multichip integrated circuit packaging method
US5188984A (en) 1987-04-21 1993-02-23 Sumitomo Electric Industries, Ltd. Semiconductor device and production method thereof
US4957776A (en) 1988-01-14 1990-09-18 Sanyo Electric Co., Ltd. Method of manufacturing optical disc
USRE35119E (en) 1988-07-21 1995-12-12 At&T Corp. Textured metallic compression bonding
US4937653A (en) 1988-07-21 1990-06-26 American Telephone And Telegraph Company Semiconductor integrated circuit chip-to-chip interconnection scheme
US5212625A (en) 1988-12-01 1993-05-18 Akzo Nv Semiconductor module having projecting cooling fin groups
US5008213A (en) 1988-12-09 1991-04-16 The United States Of America As Represented By The Secretary Of The Air Force Hybrid wafer scale microcircuit integration
US4990462A (en) 1989-04-12 1991-02-05 Advanced Micro Devices, Inc. Method for coplanar integration of semiconductor ic devices
US5099227A (en) 1989-07-18 1992-03-24 Indala Corporation Proximity detecting apparatus
US5032896A (en) 1989-08-31 1991-07-16 Hughes Aircraft Company 3-D integrated circuit assembly employing discrete chips
US5083697A (en) 1990-02-14 1992-01-28 Difrancesco Louis Particle-enhanced joining of metal surfaces
US5138433A (en) 1990-03-16 1992-08-11 Kabushiki Kaisha Toshiba Multi-chip package type semiconductor device
US5241456A (en) 1990-07-02 1993-08-31 General Electric Company Compact high density interconnect structure
US5049978A (en) * 1990-09-10 1991-09-17 General Electric Company Conductively enclosed hybrid integrated circuit assembly using a silicon substrate
US5205032A (en) 1990-09-28 1993-04-27 Kabushiki Kaisha Toshiba Electronic parts mounting apparatus
US5298685A (en) 1990-10-30 1994-03-29 International Business Machines Corporation Interconnection method and structure for organic circuit boards
US5435057A (en) 1990-10-30 1995-07-25 International Business Machines Corporation Interconnection method and structure for organic circuit boards
US5138436A (en) 1990-11-16 1992-08-11 Ball Corporation Interconnect package having means for waveguide transmission of rf signals
USD343261S (en) 1991-07-11 1994-01-11 Indala Corporation Transponder tag housing for attachment to the ear of an animal
US5231751A (en) 1991-10-29 1993-08-03 International Business Machines Corporation Process for thin film interconnect
US5221831A (en) 1991-11-29 1993-06-22 Indala Corporation Flap-type portal reader
US5735040A (en) 1991-12-26 1998-04-07 Mitsubishi Denki Kabushiki Kaisha Method of making IC card
US5382952A (en) 1992-01-22 1995-01-17 Indala Corporation Transponder for proximity identification system
USD353343S (en) 1992-03-17 1994-12-13 Indala Corporation Identification transponder tag for fabric-type articles
US5517752A (en) 1992-05-13 1996-05-21 Fujitsu Limited Method of connecting a pressure-connector terminal of a device with a terminal electrode of a substrate
US5779839A (en) 1992-06-17 1998-07-14 Micron Communications, Inc. Method of manufacturing an enclosed transceiver
US6078791A (en) 1992-06-17 2000-06-20 Micron Communications, Inc. Radio frequency identification transceiver and antenna
US5612254A (en) 1992-06-29 1997-03-18 Intel Corporation Methods of forming an interconnect on a semiconductor substrate
US5422513A (en) 1992-10-16 1995-06-06 Martin Marietta Corporation Integrated circuit chip placement in a high density interconnect structure
US5353498A (en) 1993-02-08 1994-10-11 General Electric Company Method for fabricating an integrated circuit module
US5382784A (en) 1993-02-08 1995-01-17 Indala Corporation Hand-held dual technology identification tag reading head
US5420757A (en) 1993-02-11 1995-05-30 Indala Corporation Method of producing a radio frequency transponder with a molded environmentally sealed package
US5557470A (en) 1993-05-27 1996-09-17 Nikon Corporation Zoom lens system
US5378880A (en) 1993-08-20 1995-01-03 Indala Corporation Housing structure for an access control RFID reader
US5430441A (en) 1993-10-12 1995-07-04 Motorola, Inc. Transponding tag and method
US5556441A (en) 1993-11-22 1996-09-17 Textron Inc. Air filter for internal combustion engine
US5373627A (en) 1993-11-23 1994-12-20 Grebe; Kurt R. Method of forming multi-chip module with high density interconnections
US5824186A (en) 1993-12-17 1998-10-20 The Regents Of The University Of California Method and apparatus for fabricating self-assembling microstructures
US5904545A (en) 1993-12-17 1999-05-18 The Regents Of The University Of California Apparatus for fabricating self-assembling microstructures
US5545291A (en) 1993-12-17 1996-08-13 The Regents Of The University Of California Method for fabricating self-assembling microstructures
US5783856A (en) 1993-12-17 1998-07-21 The Regents Of The University Of California Method for fabricating self-assembling microstructures
US5444223A (en) 1994-01-11 1995-08-22 Blama; Michael J. Radio frequency identification tag and method
US5514613A (en) 1994-01-27 1996-05-07 Integrated Device Technology Parallel manufacturing of semiconductor devices and the resulting structure
US6222212B1 (en) 1994-01-27 2001-04-24 Integrated Device Technology, Inc. Semiconductor device having programmable interconnect layers
USD378578S (en) 1994-02-25 1997-03-25 Indala Corporation Identification transponder tag
US5434751A (en) 1994-04-11 1995-07-18 Martin Marietta Corporation Reworkable high density interconnect structure incorporating a release layer
US5565846A (en) 1994-04-25 1996-10-15 Indala Corporation Reader system for waste bin pickup vehicles
US5554996A (en) 1994-07-15 1996-09-10 Motorola, Inc. Antenna for communication device
US5715594A (en) 1994-07-15 1998-02-10 National Semiconductor Corporation Method of making removable computer peripheral cards having a solid one-piece housing
US5528222A (en) 1994-09-09 1996-06-18 International Business Machines Corporation Radio frequency circuit and memory in thin flexible package
US5682143A (en) 1994-09-09 1997-10-28 International Business Machines Corporation Radio frequency identification tag
US5574470A (en) 1994-09-30 1996-11-12 Palomar Technologies Corporation Radio frequency identification transponder apparatus and method
US5707902A (en) 1995-02-13 1998-01-13 Industrial Technology Research Institute Composite bump structure and methods of fabrication
US5818348A (en) 1995-03-13 1998-10-06 Motorola, Inc. Method and radio frequency identification system for a novel protocol for reliable communication
US5914862A (en) 1995-05-19 1999-06-22 Kasten Chase Applied Research Limited Radio frequency identification tag
US6195858B1 (en) 1995-05-19 2001-03-06 Kasten Chase Applied Research Limited Method of making a radio frequency identification tag
US5745984A (en) 1995-07-10 1998-05-05 Martin Marietta Corporation Method for making an electronic module
US5995006A (en) 1995-09-05 1999-11-30 Intermec Ip Corp. Radio frequency tag
US6252508B1 (en) 1995-10-11 2001-06-26 Motorola, Inc. Radio frequency identification tag arranged for magnetically storing tag state information
US6040773A (en) 1995-10-11 2000-03-21 Motorola, Inc. Radio frequency identification tag arranged for magnetically storing tag state information
US6211572B1 (en) 1995-10-31 2001-04-03 Tessera, Inc. Semiconductor chip package with fan-in leads
US5754110A (en) 1996-03-07 1998-05-19 Checkpoint Systems, Inc. Security tag and manufacturing method
US6044046A (en) 1996-04-26 2000-03-28 Giesecke & Devrient Gmbh CD with built-in chip
US5627931A (en) 1996-05-28 1997-05-06 Motorola Optoelectronic transducer
US5708419A (en) 1996-07-22 1998-01-13 Checkpoint Systems, Inc. Method of wire bonding an integrated circuit to an ultraflexible substrate
US5798050A (en) 1997-01-10 1998-08-25 International Business Machines Corporation Process for fabrication of a selectively filled flexible adhesive device for solderless connection of electronic modules to a substrate
US6181287B1 (en) 1997-03-10 2001-01-30 Precision Dynamics Corporation Reactively coupled elements in circuits on flexible substrates
US6229203B1 (en) 1997-03-12 2001-05-08 General Electric Company Semiconductor interconnect structure for high temperature applications
US6094173A (en) 1997-04-18 2000-07-25 Motorola, Inc. Method and apparatus for detecting an RFID tag signal
US6459084B1 (en) * 1997-05-30 2002-10-01 University Of Central Florida Area receiver with antenna-coupled infrared sensors
US6064116A (en) 1997-06-06 2000-05-16 Micron Technology, Inc. Device for electrically or thermally coupling to the backsides of integrated circuit dice in chip-on-board applications
US5910770A (en) 1997-08-22 1999-06-08 Uni Electronics Industry Co., Ltd. Tag for theft prevention
US6164551A (en) 1997-10-29 2000-12-26 Meto International Gmbh Radio frequency identification transponder having non-encapsulated IC chip
US6133835A (en) 1997-12-05 2000-10-17 U.S. Philips Corporation Identification transponder
US6019284A (en) 1998-01-27 2000-02-01 Viztec Inc. Flexible chip card with display
US6094138A (en) 1998-02-27 2000-07-25 Motorola, Inc. Integrated circuit assembly and method of assembly
US6206282B1 (en) 1998-03-03 2001-03-27 Pyper Products Corporation RF embedded identification device
US6219911B1 (en) 1998-03-23 2001-04-24 Polymer Flip Chip Corp. Flip chip mounting technique
US6204163B1 (en) 1998-04-13 2001-03-20 Harris Corporation Integrated circuit package for flip chip with alignment preform feature and method of forming same
US6018299A (en) 1998-06-09 2000-01-25 Motorola, Inc. Radio frequency identification tag having a printed antenna and method
US6246327B1 (en) 1998-06-09 2001-06-12 Motorola, Inc. Radio frequency identification tag circuit chip having printed interconnection pads
US6091332A (en) 1998-06-09 2000-07-18 Motorola, Inc. Radio frequency identification tag having printed circuit interconnections
US6107920A (en) 1998-06-09 2000-08-22 Motorola, Inc. Radio frequency identification tag having an article integrated antenna
US6189208B1 (en) 1998-09-11 2001-02-20 Polymer Flip Chip Corp. Flip chip mounting technique
US6147605A (en) 1998-09-11 2000-11-14 Motorola, Inc. Method and apparatus for an optimized circuit for an electrostatic radio frequency identification tag
US6100804A (en) 1998-10-29 2000-08-08 Intecmec Ip Corp. Radio frequency identification system
US6236316B1 (en) 1999-01-05 2001-05-22 Motorola, Inc. Transport device with openings for capacitive coupled readers
US6262692B1 (en) 1999-01-13 2001-07-17 Brady Worldwide, Inc. Laminate RFID label and method of manufacture
US6194119B1 (en) 1999-01-15 2001-02-27 3M Innovative Properties Company Thermal transfer element and process for forming organic electroluminescent devices
US6031450A (en) 1999-02-03 2000-02-29 Huang; Tien-Tsai Tire pressure alarm system with centrifugal force-controlled power switch
US6122492A (en) 1999-02-08 2000-09-19 Motorola, Inc. Adjustable radio frequency power amplifier and transmitter
US6133833A (en) 1999-02-25 2000-10-17 Motorola, Inc. Wireless add-on keyboard system and method
US6134130A (en) 1999-07-19 2000-10-17 Motorola, Inc. Power reception circuits for a device receiving an AC power signal
US6147662A (en) 1999-09-10 2000-11-14 Moore North America, Inc. Radio frequency identification tags and labels
US6229442B1 (en) 2000-03-14 2001-05-08 Motorola, Inc, Radio frequency identification device having displacement current control and method thereof
US20060022287A1 (en) * 2004-07-29 2006-02-02 Fujikura Ltd. Semiconductor device and method for manufacturing the same
US7353598B2 (en) * 2004-11-08 2008-04-08 Alien Technology Corporation Assembly comprising functional devices and method of making same
US20070031992A1 (en) * 2005-08-05 2007-02-08 Schatz Kenneth D Apparatuses and methods facilitating functional block deposition

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
IPRP Chapter 1, PCT Application No. PCT/US2004/009070, (7 pages) mailed Oct. 13, 2005.
IPRP Chapter 1, PCT Application No. PCT/US2005/002534, (9 pages) mailed Aug. 10, 2006.
Kriebel, Frank (2005). RFID Chip and Tag Assembly Challenges: Low Cost RFID IC Packaging and Assembly Workshop, Nov. 14, 2005, Munich, Germany. (12 pgs).
PCT International Search Report, PCT Application No. PCT US2005/002534. Mailed Nov. 11, 2005.
PCT International Written Opinion, PCT Application No. PCT US02/16474. Mailed Oct. 2002.
PCT International Written Opinion, PCT Application No. PCT US03/02115. (4 pages).
PCT Notification of Transmittal of International Preliminary Examination report for PCT Application No. PCT US02/16474. Mailed Jul. 21, 2005 (5 pages).
PCT Notification of Transmittal of International Search Report and The Written Opinion of the International Searching Authority for PCT/US2004/09070, mailed on Feb. 10, 2005 (12 pages).
PCT Notification of Transmittal of International Search Report and The Written Opinion of the International Searching Authority, or the Declaration for PCT/US2005/040772, mailed on Jul. 26, 2006 (15 pages).
PCT Search Report PCT/US00/02348 mailed 04-05-000; 5 pages.
PCT Written Opinion Report, PCT Application No. PCT US2005/002534. Mailed Nov. 11, 2005 (7 pages).

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8183772B2 (en) 2004-12-27 2012-05-22 Nthdegree Technologies Worldwide Inc Static and addressable emissive displays
US8182303B2 (en) 2004-12-27 2012-05-22 Nthdegree Technologies Worldwide Inc Method of fabricating static and addressable emissive displays
US9419142B2 (en) 2006-03-03 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8133768B2 (en) 2007-05-31 2012-03-13 Nthdegree Technologies Worldwide Inc Method of manufacturing a light emitting, photovoltaic or other electronic apparatus and system
US8395568B2 (en) 2007-05-31 2013-03-12 Nthdegree Technologies Worldwide Inc Light emitting, photovoltaic or other electronic apparatus and system
US8415879B2 (en) 2007-05-31 2013-04-09 Nthdegree Technologies Worldwide Inc Diode for a printable composition
US9777914B2 (en) 2007-05-31 2017-10-03 Nthdegree Technologies Worldwide Inc. Light emitting apparatus having at least one reverse-biased light emitting diode
US8456393B2 (en) 2007-05-31 2013-06-04 Nthdegree Technologies Worldwide Inc Method of manufacturing a light emitting, photovoltaic or other electronic apparatus and system
US8456392B2 (en) 2007-05-31 2013-06-04 Nthdegree Technologies Worldwide Inc Method of manufacturing a light emitting, photovoltaic or other electronic apparatus and system
US8674593B2 (en) 2007-05-31 2014-03-18 Nthdegree Technologies Worldwide Inc Diode for a printable composition
US8723408B2 (en) 2007-05-31 2014-05-13 Nthdegree Technologies Worldwide Inc Diode for a printable composition
US9534772B2 (en) 2007-05-31 2017-01-03 Nthdegree Technologies Worldwide Inc Apparatus with light emitting diodes
US9425357B2 (en) 2007-05-31 2016-08-23 Nthdegree Technologies Worldwide Inc. Diode for a printable composition
US8809126B2 (en) 2007-05-31 2014-08-19 Nthdegree Technologies Worldwide Inc Printable composition of a liquid or gel suspension of diodes
US8846457B2 (en) 2007-05-31 2014-09-30 Nthdegree Technologies Worldwide Inc Printable composition of a liquid or gel suspension of diodes
US8852467B2 (en) 2007-05-31 2014-10-07 Nthdegree Technologies Worldwide Inc Method of manufacturing a printable composition of a liquid or gel suspension of diodes
US8877101B2 (en) 2007-05-31 2014-11-04 Nthdegree Technologies Worldwide Inc Method of manufacturing a light emitting, power generating or other electronic apparatus
US8889216B2 (en) 2007-05-31 2014-11-18 Nthdegree Technologies Worldwide Inc Method of manufacturing addressable and static electronic displays
US9018833B2 (en) 2007-05-31 2015-04-28 Nthdegree Technologies Worldwide Inc Apparatus with light emitting or absorbing diodes
US8384630B2 (en) 2007-05-31 2013-02-26 Nthdegree Technologies Worldwide Inc Light emitting, photovoltaic or other electronic apparatus and system
US9419179B2 (en) 2007-05-31 2016-08-16 Nthdegree Technologies Worldwide Inc Diode for a printable composition
US9130124B2 (en) 2007-05-31 2015-09-08 Nthdegree Technologies Worldwide Inc Diode for a printable composition
US9200758B2 (en) 2007-05-31 2015-12-01 Nthdegree Technologies Worldwide Inc LED lighting apparatus formed by a printable composition of a liquid or gel suspension of diodes and methods of using same
US9236528B2 (en) 2007-05-31 2016-01-12 Nthdegree Technologies Worldwide Inc Light emitting, photovoltaic or other electronic apparatus and system
US9236527B2 (en) 2007-05-31 2016-01-12 Nthdegree Technologies Worldwide Inc Light emitting, photovoltaic or other electronic apparatus and system
US9316362B2 (en) 2007-05-31 2016-04-19 Nthdegree Technologies Worldwide Inc LED lighting apparatus formed by a printable composition of a liquid or gel suspension of diodes and methods of using same
US9343593B2 (en) 2007-05-31 2016-05-17 Nthdegree Technologies Worldwide Inc Printable composition of a liquid or gel suspension of diodes
US9349928B2 (en) 2007-05-31 2016-05-24 Nthdegree Technologies Worldwide Inc Method of manufacturing a printable composition of a liquid or gel suspension of diodes
US9362348B2 (en) 2007-05-31 2016-06-07 Nthdegree Technologies Worldwide Inc Method of manufacturing a light emitting, power generating or other electronic apparatus
US9400086B2 (en) 2007-05-31 2016-07-26 Nthdegree Technologies Worldwide Inc Apparatus with light emitting or absorbing diodes
US9410684B2 (en) 2007-05-31 2016-08-09 Nthdegree Technologies Worldwide Inc Bidirectional lighting apparatus with light emitting diodes
US9105812B2 (en) 2007-05-31 2015-08-11 Nthdegree Technologies Worldwide Inc Diode for a printable composition
US9865767B2 (en) 2007-05-31 2018-01-09 Nthdegree Technologies Worldwide Inc Light emitting, photovoltaic or other electronic apparatus and system
US8739441B2 (en) 2008-05-13 2014-06-03 Nthdegree Technologies Worldwide Inc Apparatuses for providing power for illumination of a display object
US9526148B2 (en) 2008-05-13 2016-12-20 Nthdegree Technologies Worldwide Inc Illuminating display systems
US8739440B2 (en) 2008-05-13 2014-06-03 Nthdegree Technologies Worldwide Inc. Illuminating display systems
US8413359B2 (en) 2008-05-13 2013-04-09 Nthdegree Technologies Worldwide Inc Illuminating display systems
US9119244B2 (en) 2008-05-13 2015-08-25 Nthdegree Technologies Worldwide Inc Illuminating display systems
US9825202B2 (en) 2014-10-31 2017-11-21 eLux, Inc. Display with surface mount emissive elements

Also Published As

Publication number Publication date Type
JP2003501676A (en) 2003-01-14 application
US7288432B2 (en) 2007-10-30 grant
US20020061392A1 (en) 2002-05-23 application
WO2000055915A1 (en) 2000-09-21 application
US20040018347A1 (en) 2004-01-29 application
US20080036087A1 (en) 2008-02-14 application
US6468638B2 (en) 2002-10-22 grant
US20050046018A1 (en) 2005-03-03 application
US7070851B2 (en) 2006-07-04 grant
JP2003501676U (en) application
EP1173888A1 (en) 2002-01-23 application

Similar Documents

Publication Publication Date Title
US6424400B1 (en) Display panel including a printed circuit board having a larger opening than the outside shape of the driving IC chip
US6617521B1 (en) Circuit board and display device using the same and electronic equipment
US7432885B2 (en) Active matrix display
US6738123B1 (en) Drive circuit connection structure including a substrate, circuit board, and semiconductor device, and display apparatus including the connection structure
US20070063939A1 (en) Liquid crystal display on a printed circuit board
US20030127972A1 (en) Dual-panel active matrix organic electroluminscent display
US5585695A (en) Thin film electroluminescent display module
US6104464A (en) Rigid circuit board for liquid crystal display including cut out for providing flexibility to said board
US7442587B2 (en) Processes for forming backplanes for electro-optic displays
US6936407B2 (en) Thin-film electronic device module
US6909532B2 (en) Matrix driven electrophoretic display with multilayer back plane
US20070031992A1 (en) Apparatuses and methods facilitating functional block deposition
US20020105263A1 (en) Liquid crystal display and method for manufacturing the same
US20130147727A1 (en) Touch Screen Integrated Organic Light Emitting Display Device And Method For Fabricating The Same
US6864435B2 (en) Electrical contacts for flexible displays
US6633134B1 (en) Active-matrix-driven organic EL display device
US20040207315A1 (en) Organic light-emitting diode display assembly for use in a large-screen display application
US20060170077A1 (en) Substrate having pattern and method for manufacturing the same, and semiconductor device and method for manufacturing the same
US20020078559A1 (en) Display fabrication using modular active devices
US7515240B2 (en) Flat display panel and assembly process or driver components in flat display panel
US20100109993A1 (en) Liquid crystal display and method of manufacturing the same
US6844673B1 (en) Split-fabrication for light emitting display structures
US20020044251A1 (en) Image device
US20070076393A1 (en) Pad area and method of fabricating the same
US6693384B1 (en) Interconnect structure for electronic devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: EAST WEST BANK, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:ALIEN TECHNOLOGY CORPORATION;REEL/FRAME:022440/0755

Effective date: 20070830

Owner name: EAST WEST BANK,CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:ALIEN TECHNOLOGY CORPORATION;REEL/FRAME:022440/0755

Effective date: 20070830

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: ALIEN TECHNOLOGY CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QUATROTEC, INC.;REEL/FRAME:028638/0924

Effective date: 20120725

AS Assignment

Owner name: ALIEN TECHNOLOGY, LLC, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:ALIEN TECHNOLOGY CORPORATION;REEL/FRAME:033888/0976

Effective date: 20140917

AS Assignment

Owner name: ALIEN TECHNOLOGY, LLC, FORMERLY KNOWN AS ALIEN TEC

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:EAST WEST BANK;REEL/FRAME:035122/0207

Effective date: 20150303

Owner name: QUATROTEC, INC., DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:EAST WEST BANK;REEL/FRAME:035122/0207

Effective date: 20150303

AS Assignment

Owner name: RUIZHANG TECHNOLOGY LIMITED COMPANY, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALIEN TECHNOLOGY, LLC;REEL/FRAME:035258/0817

Effective date: 20150306

FPAY Fee payment

Year of fee payment: 8