US7397493B2 - Laser printhead having a mechanical skew correction mechanism - Google Patents
Laser printhead having a mechanical skew correction mechanism Download PDFInfo
- Publication number
- US7397493B2 US7397493B2 US11/234,777 US23477705A US7397493B2 US 7397493 B2 US7397493 B2 US 7397493B2 US 23477705 A US23477705 A US 23477705A US 7397493 B2 US7397493 B2 US 7397493B2
- Authority
- US
- United States
- Prior art keywords
- main body
- printhead
- camshaft
- imaging apparatus
- correction mechanism
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 50
- 238000012937 correction Methods 0.000 title claims abstract description 43
- 238000003384 imaging method Methods 0.000 claims abstract description 23
- 238000012546 transfer Methods 0.000 description 12
- 239000000758 substrate Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 239000004727 Noryl Substances 0.000 description 1
- 229920001207 Noryl Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/04—Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
- G03G15/04036—Details of illuminating systems, e.g. lamps, reflectors
- G03G15/04045—Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers
- G03G15/04072—Details of illuminating systems, e.g. lamps, reflectors for exposing image information provided otherwise than by directly projecting the original image onto the photoconductive recording material, e.g. digital copiers by laser
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G2215/00—Apparatus for electrophotographic processes
- G03G2215/01—Apparatus for electrophotographic processes for producing multicoloured copies
- G03G2215/0103—Plural electrographic recording members
- G03G2215/0119—Linear arrangement adjacent plural transfer points
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G2215/00—Apparatus for electrophotographic processes
- G03G2215/04—Arrangements for exposing and producing an image
- G03G2215/0402—Exposure devices
- G03G2215/0404—Laser
Definitions
- the present invention relates to a mechanical skew correction mechanism for adjusting the position of a printhead housing main body relative to a portion of a printer frame.
- Multi-laser color printers may comprise a plurality of printheads each including a housing containing a laser diode and a rotating polygonal mirror for generating a corresponding scanning laser beam for creating a latent image on a corresponding photoconductive drum.
- Each latent image is developed and may be transferred to an intermediate transfer belt so as to form a composite toner image, which is later transferred to a substrate.
- the substrate with the toner image is subsequently passed through a fuser where heat is applied to melt the toner and fuse it to the substrate.
- Each color image needs to be accurately registered relative to all of the other color images to ensure that print quality is satisfactory.
- skew Process direction misregistration that varies in magnitude along a single scan line is commonly referred to as skew and is typically caused by a misalignment of the scanning laser beam.
- Scan line skew may be adjusted by mechanically rotating the printhead housing about a pivot point.
- U.S. Pat. No. 6,281,918 B1 discloses a printhead skew adjustment mechanism for correcting printhead skew.
- the skew adjustment mechanism comprises a cam which engages a cam backstop mounted to a printer frame and further engages a single cam follower surface of a base of the printhead.
- Such a skew adjustment mechanism has limitations as only a single cam follower surface of the printhead base is capable of being engaged for movement.
- U.S. Pat. No. 6,429,891 B1 discloses a printhead fine adjustment mechanism comprising an adjustment frame and an engagement shaft.
- the engagement shaft can be rotated so as to move one of its opposing engagement ends into contact with one of two resilient elongate members of a printhead housing.
- the fine adjustment mechanism must be directly coupled to the printer frame after the position of the printhead housing is adjusted during a coarse skew adjustment operation.
- the required secondary operation of coupling the fine adjustment mechanism to the printer frame after effecting coarse skew adjustment is a time consuming operation.
- an imaging apparatus comprising a frame having a portion upon which a printhead is adapted to be mounted.
- the printhead may comprise a housing including a main body, at least one flexible mounting beam extending from the main body, and at least one structural member coupled to the at least one flexible mounting beam.
- the printhead may also comprise a skew correction mechanism mounted solely to the printhead housing.
- the skew correction mechanism may include an adjustment member capable of engaging at least one surface on the printhead housing main body so as to adjust the position of the printhead housing main body relative to the frame portion.
- the at least one surface on the printhead housing main body may comprise first and second surfaces on the printhead housing main body such that the adjustment member is capable of engaging the first and second surfaces on the printhead housing main body.
- the at least one flexible mounting beam may comprise at least first and second flexible mounting beams extending from the main body and wherein the at least one structural member may comprise a first substantially rigid structural member coupled to the first and second flexible mounting beams.
- the at least one flexible mounting beam may further comprise third and fourth flexible mounting beams extending from the main body and wherein the at least one structural member may further comprise a second substantially rigid structural member coupled to the third and fourth flexible mounting beams.
- Each of the first and second substantially rigid structural members may comprise at least one mounting feature for fixing the printhead housing to the frame portion.
- the mounting feature may have an enlarged mounting slot through which a fastener extends such that the fastener may be lightly secured to the frame portion to allow the printhead housing to be subsequently adjusted relative to the frame portion.
- the adjustment member of the skew correction mechanism may comprise a camshaft and first and second cam lobes coupled to the camshaft.
- the first cam lobe is adapted to engage the first surface on the printhead housing main body and the second cam lobe is adapted to engage the second surface on the printhead housing main body.
- the first and second surfaces on the printhead housing main body may be defined by first and second cam follower surfaces on the printhead housing main body.
- the first and second cam lobes may be axially spaced apart along the camshaft. Further, each of the first and second cam lobes may extend through a maximum angle falling within a range of about 10 degrees to about 180 degrees.
- the skew correction mechanism may further comprise a detent wheel coupled to the camshaft such that the camshaft rotates with the detent wheel.
- the skew correction mechanism may further comprise a first camshaft support mounted to the first substantially rigid structural member.
- the first camshaft support may include a pawl including an engagement member for engaging one of a plurality of recesses provided in the detent wheel.
- the skew correction mechanism may further comprise a second camshaft support on the first substantially rigid structural member for receiving an end portion of the camshaft.
- an imaging apparatus comprising a frame having a portion upon which a printhead is adapted to be mounted.
- the printhead may comprise a housing including a main body, at least one flexible mounting beam extending from the main body, and at least one structural member coupled to the at least one flexible mounting beam.
- the printhead may further comprise a skew correction mechanism associated with the printhead housing.
- the skew correction mechanism may include an adjustment member capable of engaging first and second surfaces on the printhead housing main body so as to adjust the position of the printhead housing main body relative to the frame portion.
- an imaging apparatus comprising a frame having a portion upon which a printhead is adapted to be mounted.
- the printhead may comprise a housing including a main body, at least one flexible mounting beam extending from the main body, and at least one structural member coupled to the at least one flexible mounting beam.
- the printhead may further comprise a skew correction mechanism associated with the printhead housing.
- the skew correction mechanism may include an adjustment member having first and second camming members capable of engaging first and second cam follower surfaces on the printhead housing main body so as to adjust the position of the printhead housing main body relative to the frame portion.
- the adjustment member of the skew correction mechanism may comprise a camshaft and first and second cam lobes defined by the first and second camming members.
- FIG. 1 is a schematic side view of a printer having a plurality of printheads, each of which may be provided with a mechanical skew correction mechanism constructed in accordance with the present invention
- FIG. 2 is a perspective view of one of the printheads illustrated in FIG. 1 coupled to a printer frame portion;
- FIG. 3 is a top view of the printhead of FIG. 2 ;
- FIG. 3A is a perspective view of the printer frame portion illustrated in FIGS. 2 and 3 without a printhead mounted thereto;
- FIG. 4 is a view taken along view line 4 - 4 in FIG. 3 ;
- FIG. 5 is a perspective view of a camshaft, detent wheel and first camshaft support
- FIG. 6 is a perspective view of a portion of the printhead of FIG. 2 including first and second flexible mounting beams, a first substantially rigid structural member, a first section of the printhead housing main body and a control card support structure and with the camshaft, detent wheel and first camshaft support removed;
- FIG. 7 is a perspective view partially in section of a portion of the printhead of FIG. 2 illustrating the first and second flexible mounting beams, the first section of the printhead housing main body and the control card support structure and further illustrating in exploded form the camshaft, detent wheel and first camshaft support and with the first substantially rigid structural member removed;
- FIG. 8 is a perspective view of a portion of the printhead of FIG. 2 illustrating the first and second flexible mounting beams, the first section of the printhead housing main body, the control card support structure, the camshaft, the detent wheel and the first camshaft support and with the first substantially rigid structural member removed;
- FIG. 8A is a view partially in section of the camshaft and the first and second cam lobes formed on the camshaft;
- FIG. 9 is a perspective view of a portion of the printhead of FIG. 2 illustrating the first and second flexible mounting beams, the first section of the printhead housing main body, the control card support structure, the first substantially rigid structural member, the camshaft, the detent wheel and the first camshaft support.
- a color electrophotographic (EP) printer 10 including four image forming stations 12 A- 12 D for creating yellow (Y), cyan (C), magenta (M) and black (K) toner images.
- Each of the image forming stations 12 A- 12 D includes a corresponding laser printhead 20 A- 20 D, toner supply 22 A- 22 D and developing assembly 56 A- 56 D.
- Each image forming station 12 A- 12 D also includes a rotatable photoconductive (PC) drum 24 A- 24 D.
- PC photoconductive
- a uniform charge is provided on each PC drum 24 A- 24 D, which is selectively dissipated by a scanning laser beam 21 A- 21 D generated by a corresponding printhead 20 A- 20 D, such that a latent image is formed on the PC drum 24 A- 24 D.
- the latent image is then developed during an image development process via a corresponding toner supply 22 A- 22 D and developing assembly 56 A- 56 D, in which electrically charged toner particles adhere to the discharged areas on the PC drum to form a toned image thereon.
- An electrically biased transfer roller 26 opposes each PC drum 24 A- 24 D.
- An intermediate transfer member (ITM) belt 28 travels in an endless loop and passes through a nip defined between each PC drum 24 A- 24 D and a corresponding transfer roller 26 .
- the toner image developed on each PC drum 24 A- 24 D is transferred during a first transfer operation to the ITM belt 28 by an electrically biased roll transfer operation.
- the four PC drums 24 A- 24 D and corresponding transfer rollers 26 constitute first image transfer stations 32 .
- a composite toner image i.e., the yellow (Y), cyan (C), magenta (M) and black (K) toner images combined, is transferred from the ITM belt 28 to a substrate 36 , see FIG. 1 .
- the second image transfer station 34 includes a backup roller 38 , on the inside of the ITM belt 28 , and a transfer roller 40 , positioned opposite the backup roller 38 .
- Substrates 36 such as paper, cardstock, labels, or transparencies, are fed from a substrate supply 42 to the second image transfer station 34 so as to be in registration with the composite toner image on the ITM belt 28 .
- the composite image is then transferred from the ITM belt 28 to the substrate 36 .
- the toned substrate 36 passes through fuser assembly 48 , where the toner image is fused to the substrate 36 .
- the substrate 36 including the fused toner image continues along a paper path 50 until it exits the printer 10 into an exit tray 51 .
- the paper path 50 taken by the substrates 36 in the printer 10 is illustrated schematically by a dashed line in FIG. 1 . It will be appreciated that other printer configurations having different paper paths may be used. Further, one or more additional media supplies or trays, including manually fed media trays, may be provided.
- the printhead orientation can be adjusted using the printhead skew correction mechanism 70 of the present invention, as is more fully described below.
- Each of the printheads 20 A- 20 D is substantially identical in structure. Accordingly, to simplify the discussion and for ease of understanding the invention, only the structure of printhead 20 A will be described in detail below in relation to FIGS. 2-9 and FIGS. 3A and 8A . However, it is to be understood that the discussion that follows with respect to printhead 20 A also applies to each of printheads 20 B- 20 D. As discussed below, one of the printheads 20 B- 20 D may comprise a reference printhead. As also discussed below, the reference printhead may not be provided with a skew correction mechanism 70 .
- the printhead 20 A comprises a housing 60 including a main body 62 .
- the main body 62 houses a laser diode (not shown), a rotating polygonal mirror (not shown), pre-scan optics (not shown) and post-scan optics (not shown).
- the laser diode is modulated according to a video signal corresponding to it color image plane.
- the laser beam passes through the pre-scan optics, is reflected off the polygonal mirror, passes through the post-scan optics and exits the printhead housing main body 62 through a lower portion 62 A of the main body 62 such that the corresponding laser beam 21 A is moved along a scan path 121 A, see FIG.
- a cover 63 is fastened to the main body 62 to prevent dust and the like from reaching the pre-scan and post-scan optics as well as the polygonal mirror.
- first and second flexible mounting beams 64 A and 64 B Extending from and integral with a first section 62 B of the printhead housing main body 62 are first and second flexible mounting beams 64 A and 64 B, see FIGS. 2 , 3 , 6 - 9 .
- a first substantially rigid structural member 65 (not shown in FIGS. 7 and 8 ) is integrally formed with the first and second flexible mounting beams 64 A and 64 B.
- Extending from and integral with a second section 62 C of the main body 62 are third and fourth flexible mounting beams 64 C and 64 D, see FIGS. 2 and 3 .
- a second substantially rigid structural member 66 is integrally formed with the third and fourth flexible mounting beams 64 C and 64 D.
- first and second structural members 65 and 66 are rigidly mounted to a frame portion of a main printer frame.
- the geometry of the first, second, third and fourth flexible mounting beams 64 A- 64 D is such that the beams 64 A- 64 D are relatively flexible in a process direction, indicated by arrow A in FIG. 3 , so as to allow movement of the main body 62 relative to the first and second structural members 65 and 66 and the printer frame.
- the printer 10 comprises a main frame to which the printheads 20 A- 20 D are mounted. More specifically, each printhead 20 A- 20 D is mounted to a corresponding frame portion or mounting bracket 120 , see FIGS. 2 and 3 , where the printhead 20 A is shown mounted to frame portion 120 .
- the frame portion 120 comprises a substantially planar upper surface 120 A having a center opening 120 B. Three tapped holes 120 C- 120 E are provided in the frame portion 120 .
- the first rigid structural member 65 is provided with a single mounting feature or boss 65 A, see FIGS. 2 and 3 .
- the second rigid structural member 66 is provided with second and third mounting features or bosses 66 A and 66 B, see FIG. 3 .
- the lower portion 62 A of the main body 62 is inserted through frame portion center opening 120 B and the mounting features 65 A, 66 A and 66 B are positioned so as to rest on the frame portion planar upper surface 120 A, see FIGS. 3 and 4 .
- the mounting features 65 A, 66 A and 66 B are positioned directly over the tapped holes 120 C- 120 E provided in the frame portion 120 .
- Each mounting feature 65 A, 66 A, 66 B is provided with an enlarged mounting slot 67 through which a corresponding fastener 68 A- 68 C extends, see FIGS. 3 , 4 and 9 .
- Each fastener 68 A- 68 C is received in a corresponding one of the tapped holes 120 C- 120 E so as couple the printhead housing 60 to the frame portion 120 .
- the printhead 20 A further comprises the skew correction mechanism 70 which, in the illustrated embodiment, is mounted solely to the printhead housing 60 .
- the skew correction mechanism 70 includes an adjustment member 72 comprising a camshaft 74 and first and second cam lobes 76 and 78 formed integral with the camshaft 74 , see FIGS. 5 and 7 .
- the skew correction mechanism 70 further comprises a detent wheel 80 and a first camshaft support 90 .
- the first camshaft support 90 includes an opening 92 through which a first end 74 A of the camshaft 74 extends prior to passing through a center opening 82 in the detent wheel 80 .
- a plurality of stop members 74 B provided on the camshaft 74 limit the distance that the camshaft first end 74 A extends into the center opening 82 in the detent wheel 80 .
- the camshaft 74 includes an opening 74 C in its first end 74 A.
- a self-tapping screw 84 passes through a washer 86 , then extends through the detent wheel center opening 82 prior to being received in the opening 74 C in the camshaft 74 so as to couple the detent wheel 80 to the camshaft 74 such that the detent wheel 80 rotates with the camshaft 74 .
- a second end 74 D of the camshaft 74 is inserted into a second camshaft support 102 formed integrally with the first substantially rigid structural member 65 , see FIGS. 6-8 .
- the first structural member 65 is cut-away to facilitate visibility of the second camshaft support 102 .
- the first camshaft support 90 is then coupled to the first structural member 65 .
- the first support 90 is provided with first and second pins (only first pin 94 is illustrated in FIG. 5 ).
- the first and second pins are received in corresponding first and second openings 65 B and 65 C provided in the first structural member 65 , see FIG. 6 .
- First opening 65 B is elongated to allow for tolerances with regard to the distance between the first and second pins.
- a screw 96 A passes through a center opening 96 provided in the first camshaft support 90 and is received in an opening 65 D in the first structural member 65 , see FIGS. 5 , 6 and 9 .
- the first camshaft support 90 includes a flexible pawl 98 having a recess-engagement member 98 A for engaging one of a plurality of recesses 80 A provided between pairs of adjacent teeth 80 B circumferentially located about the detent wheel 80 , see FIGS. 5 and 7 .
- an operator may rotate the detent wheel 80 so as to adjust the position of the printhead housing main body 62 relative to the frame portion 120 .
- the recess-engagement member 98 A releasably locks the detent wheel 80 in position by engaging a recess 80 A in the detent wheel 80 corresponding to the selected position of the main body 62 .
- the recess-engagement member 98 A also provides audible feedback during rotation of the detent wheel 80 .
- the first and second cam lobes 76 and 78 are axially spaced apart along the camshaft 74 , i.e., along a Y-axis as viewed in FIG. 5 .
- the first cam lobe 76 is positioned adjacent to or slightly in contact with a first cam follower surface 130 on a first cam follower extension 130 A, see FIG. 8 .
- the cam follower extension 130 A is formed integral with an Hsync control card support structure 140 .
- a horizontal sync (Hsync) sensor Located within the printhead housing 60 is a horizontal sync (Hsync) sensor (not shown).
- the laser beam begins scanning a new line across a corresponding PC drum 24 A.
- a mirror is coupled to the printhead housing 60 and located such that it reflects the beam onto the Hsync sensor just before the beam begins scanning across the PC drum.
- the Hsync sensor senses the beam just prior to the beam writing or imaging a line of print elements (PELs) or dots on the PC drum.
- the Hsync control card receives signals generated by the Hsync sensor. The Hsync control card is not illustrated.
- the second cam lobe 78 is positioned adjacent to or slightly in contact with a second cam follower surface 132 on a second cam follower extension 132 A, wherein the extension 132 A is also formed integral with the support structure 140 .
- the first and second cam follower surfaces 130 and 132 are vertically spaced apart along a Y axis, see FIGS. 7 and 8 , to correspond to the vertically spaced apart cam lobes 76 and 78 .
- an operator may rotate the detent wheel 80 in a first or a second direction causing one of the cam lobes 76 to apply a force to a corresponding cam follower surface 130 , 132 to effect movement of the printhead housing main body 62 relative to the rigid structural members 65 and 66 and the frame portion 120 .
- the control card support structure 140 is formed integral with the first section 62 B of the printhead housing main body 62 so as to form part of the main body 62 .
- the support structure 140 has a geometry such that forces applied by a cam lobe 76 , 78 to a corresponding cam follower surface 130 , 132 are transferred by the support structure 140 to the printhead housing main body 62 so as to cause the main body 62 to move relative to the rigid structural members 65 and 66 and the frame portion 120 .
- each of the first and second cam lobes 76 , 78 extends through an angle of about 180 degrees.
- a radius R 1 on the first cam lobe 76 as defined from a central axis 74 E of the camshaft 74 to the outer circumference 76 A of the cam lobe 76 , continuously increases from a start or home position 76 B to an end position 76 C, see FIG. 8A .
- the radius R 1H at the home position 76 B may equal 5.84 mm
- the radius R 1E at the end position 76 C may equal 7.32 mm, resulting in a cam rise or increase in radius R 1 from the home position 76 B to the end position 76 C equal to 1.48 mm.
- a radius R 2 on the second cam lobe 78 as defined from the central axis 74 E of the camshaft 74 to the outer circumference 78 A of the cam lobe, continuously increases from a start or home position 78 B to an end position 78 C.
- the radius R 2H at the home position may equal 6.3 mm
- the radius R 2E at the end position 78 C may equal 7.78 mm, resulting in a cam rise or increase in radius R 2 from the home position 78 B to the end position 78 C equal to 1.48 mm.
- the cam lobes 76 and 78 may have shapes other than an arc shape and may extend through an angle other than 180 degrees such as one which falls within the range of from about 10 degrees to about 180 degrees.
- the printhead 20 A Prior to being mounted to the printer frame 120 , the printhead 20 A is assembled such that the skew correction mechanism 70 is mounted to the printhead housing 60 .
- the lower portion 62 A of the main body 62 is inserted through the frame portion center opening 120 B and the mounting features 65 A, 66 A and 66 B are positioned so as to rest on the frame portion planar upper surface 120 A.
- the mounting features 65 A, 66 A and 66 B are located so as to be positioned directly over the tapped holes 120 C- 120 E provided in the frame portion 120 .
- the fasteners 68 A- 68 C are inserted through the enlarged mounting slots 67 in the mounting features 65 A, 66 A, 66 B and lightly threaded into the printer frame tapped holes 120 C- 120 E so as to fasten the printhead housing 60 to the frame portion 120 yet allow some movement of the printhead 20 A relative to the frame portion 120 .
- a fixture may be mounted in V-blocks within the printer frame directly below the printhead 20 A. At a later assembly operation after the fixture is removed from the V-blocks, the V-blocks receive a corresponding PC drum.
- the fixture may have sensors located so as to sense the process direction position of the scanning laser beam 21 A at first and second points 122 A and 122 B along the scan path 121 A, see FIG. 2 .
- the first and second points 122 A and 122 B may correspond to end points of a scan line of pixels or Pels, i.e., modulated data, which normally would be written on a PC drum. An operator may then move the printhead 20 A so as to adjust the location of the scanning laser beam 21 A in the process direction.
- the printhead 20 A is moved relative to the frame portion 120 to the extend permitted by the size of the mounting feature slots 67 until the scanning laser beam 21 A scans across a desired location on the fixture, e.g., corresponding to a desired straight line along a PC drum.
- this first adjustment operation allows skew of the scanning laser beam 21 A to be corrected, i.e., the scan path 121 A may be rotated about either the first scan path point 122 A or the second scan path point 122 B. It is further noted that this first adjustment operation is not limited to making skew adjustments.
- the entire scan path 121 A may be adjusted in the process direction by moving the entire printhead housing 60 in the process direction, again to the extent permitted by the mounting feature slots 67 and the fasteners 68 A- 68 C in those slots 67 .
- the fasteners 68 A- 68 C are further tightened to rigidly secure the printhead housing 60 to the frame portion 120 such that the first and second rigid structural member 65 and 66 do not rotate or otherwise move relative to the frame portion 120 .
- the first adjustment operation is preferably effected for each of the four print the ads 20 A- 20 D.
- First and second pry openings 65 E and 66 C are provided in the first and second structural members 65 and 66 , see FIG. 3 .
- the pry openings 65 E and 66 C are positioned over first and second openings (only the second opening 120 F is shown in FIG. 3A ) in the frame portion 120 .
- a pry tool such as a screwdriver may be inserted in a pry opening and a corresponding opening in the frame portion 120 so as to move the printhead housing 60 relative to the frame portion 120 .
- a slight amount of skew may be imparted to the printhead housing 60 during the tightening of the fasteners 68 A- 68 C. Further, there may be inaccuracies associated with the V-blocks that receive the fixture due to V-block tolerances such that a slight amount of printhead housing skew may be imparted to the housing 60 during the first adjustment operation.
- a second adjustment operation may be effected via the skew adjustment mechanism 70 so as to reduce or substantially eliminate small magnitudes of laser beam skew.
- the second skew adjustment is effected for three printheads relative to a reference, fourth printhead, such as one of the printheads 20 B- 20 D.
- the reference printhead may not be provided with a skew correction mechanism 70 .
- the remaining three printheads are adjusted to eliminate skew resulting from inaccuracies associated with their corresponding V-blocks and the first adjustment operation, i.e., occurring when the fasteners 68 A- 68 C are tightened for those three printheads.
- the skew of all four printheads may be adjusted relative to an ideal scan line. In such an embodiment, all four printheads 20 A- 20 D would be provided with a skew correction mechanism 70 .
- the second adjustment operation occurs after the printer 10 has been fully assembled and is operational.
- a printed test sheet may be generated.
- a printer processor generates test patterns which, when printed, define the printed test page.
- the magnitude and direction of the skew relative to a scan line generated by the reference printhead is determined either via a visual inspection of the printed test sheets or by performing image analysis of the test sheets using a scanner and a computer.
- one or more sensors may be provided in the printer 10 to sense the magnitude and direction of the skew relative to a scan line generated by the reference printhead.
- an operator rotates the detent wheel 80 in a first or a second direction causing one of the cam lobes 76 and 78 to apply a force to a corresponding cam follower surface 130 , 132 to effect rotation of the first section 62 B of the printhead housing main body 62 about a virtual pivot point 200 , see FIG. 2 .
- the main body 62 moves relative to the rigid structural members 65 and 66 and the frame portion 120 . Rotation of the detent wheel 80 in a clockwise direction, as viewed in FIG.
- Correction resolution may equal cam rise, as defined above, divided by the number of teeth 80 B provided on the detent wheel 80 corresponding the angular extent or total cam rotation angle of the corresponding cam lobe 76 , 78 .
- each cam lobe 76 , 78 extends through an angle of about 180 degrees, i.e., defines an arc of about 180 degrees.
- the detent wheel 80 is provided with total of 78 teeth 80 B
- the number of teeth 80 B provided on the detent wheel 80 corresponding the angular extent of each cam lobe 76 , 78 is equal to 78/2 teeth or 39 teeth.
- Resolution may be increased or decreased by varying the number of teeth 80 B provided on the detent wheel 80 and/or by varying the cam rise on each cam lobe 76 , 78 .
- the skew correction mechanism 70 is mounted solely to the printhead housing 60 and is not mounted to the frame portion 120 , the mechanism 70 is substantially centered relative to the printhead housing main body 62 after the first adjustment operation has been completed.
- the range of possible movement of the first section 62 B of the printhead housing main body 62 at the conclusion of the first adjustment operation is substantially the same in a first direction, generally parallel to force arrow 202 in FIG. 8 , as it is in a second direction, generally parallel to force arrow 204 .
- reaction forces generated by the first and second cam follower surfaces 130 and 132 against the first and second cam lobes 76 and 78 pass centrally through the camshaft 74 and, hence, do not create any moments which might result in unwanted rotation of the camshaft 74 .
- the printhead housing is preferably formed from a material having a low coefficient of thermal expansion, such as GE LNP Noryl CN5258.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Common Mechanisms (AREA)
Abstract
Description
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/234,777 US7397493B2 (en) | 2005-09-23 | 2005-09-23 | Laser printhead having a mechanical skew correction mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/234,777 US7397493B2 (en) | 2005-09-23 | 2005-09-23 | Laser printhead having a mechanical skew correction mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070070174A1 US20070070174A1 (en) | 2007-03-29 |
US7397493B2 true US7397493B2 (en) | 2008-07-08 |
Family
ID=37893336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/234,777 Active 2026-08-18 US7397493B2 (en) | 2005-09-23 | 2005-09-23 | Laser printhead having a mechanical skew correction mechanism |
Country Status (1)
Country | Link |
---|---|
US (1) | US7397493B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080030804A1 (en) * | 2006-07-20 | 2008-02-07 | Kabushiki Kaisha Toshiba | Optical beam scanning apparatus, image forming apparatus |
US11415182B2 (en) * | 2018-03-21 | 2022-08-16 | Heidelberger Druckmaschinen Ag | Print bar with compensation coupling |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114654887B (en) * | 2022-04-24 | 2024-09-20 | 广东顺德艾司科科技股份有限公司 | Printing ink printing machine that stability is high |
Citations (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4279199A (en) | 1979-10-19 | 1981-07-21 | International Business Machines Corporation | Print head image generator for printer subsystem |
US4570168A (en) | 1984-07-20 | 1986-02-11 | Tektronix, Inc. | Two-dimensional ink jet adjustment mechanism |
US4875153A (en) | 1988-12-05 | 1989-10-17 | Eastman Kodak Company | Mechanism for accurately mounting an electronic light emitting printhead assembly |
US4905028A (en) | 1988-06-30 | 1990-02-27 | Oki Electric Industry Co., Ltd. | Electrophotographic printer |
US4926198A (en) | 1988-12-29 | 1990-05-15 | Eastman Kodak Company | Linear printhead writer assembly |
US5050494A (en) | 1989-10-13 | 1991-09-24 | Am International, Inc. | Fine adjustment system of finishing head in a printing, duplicating and like machine |
US5146242A (en) | 1991-03-15 | 1992-09-08 | Eastman Kodak Company | Writing beam angular alignment device |
US5153608A (en) | 1991-09-27 | 1992-10-06 | Xerox Corporation | Skew and bow correction system for an image scanner |
US5214441A (en) | 1991-10-31 | 1993-05-25 | Eastman Kodak Company | Method and apparatus for alignment of scan line optics with target medium using external adjusting members |
US5237348A (en) | 1991-10-31 | 1993-08-17 | Eastman Kodak Company | Method and apparatus for alignment of scan line optics with target medium using external adjusting members |
US5294943A (en) | 1991-10-31 | 1994-03-15 | Eastman Kodak Company | Method and apparatus for alignment of scan line optics with target medium |
US5309182A (en) | 1991-10-31 | 1994-05-03 | Ricoh Co., Ltd. | Bicolor image forming apparatus for forming a bicolor image on a photoconductive element |
US5326011A (en) | 1993-01-22 | 1994-07-05 | Printware, Inc. | Reduced-skew web drive between rollers of differing coefficients of friction, particularly to transport paper, metal or film in a laser imager |
US5337486A (en) | 1991-01-09 | 1994-08-16 | Man Roland Druckmaschinen Ag | Mechanism for adjusting the skew angle of inclination of a printing plate on its plate cylinder |
US5374993A (en) | 1991-10-01 | 1994-12-20 | Xerox Corporation | Image skew adjustment for a raster output scanning (ROS) system |
US5450119A (en) | 1992-01-24 | 1995-09-12 | Xerox Corporation | Single pass color printer |
US5485190A (en) | 1993-05-20 | 1996-01-16 | Eastman Kodak Company | Printhead writer assembly engageable with a web image member |
US5608430A (en) | 1994-03-07 | 1997-03-04 | Tektronix, Inc. | Printer print head positioning apparatus and method |
US5638106A (en) | 1992-12-01 | 1997-06-10 | Intermec Corporation | Method and apparatus for adjusting a printhead |
US5737003A (en) | 1995-11-17 | 1998-04-07 | Imation Corp. | System for registration of color separation images on a photoconductor belt |
US5764269A (en) | 1994-04-08 | 1998-06-09 | Hitachi Koki Co., Ltd. | Electrophotographic apparatus with optical scanning unit pivotable in horizontal plane |
US5844222A (en) | 1996-07-02 | 1998-12-01 | Intermec Corporation | Rastering laser scanner with beam location feedback |
US5946023A (en) | 1998-05-13 | 1999-08-31 | Eastman Kodak Company | Mount for beam shaping optics in a laser scanner |
US5963240A (en) | 1996-02-02 | 1999-10-05 | Ricoh Company, Ltd. | Deflecting mirror adjusting device for an image forming apparatus |
US5970597A (en) | 1998-05-13 | 1999-10-26 | Eastman Kodak Company | Precision assembly technique using alignment fixture and the resulting assembly |
US6055006A (en) | 1996-12-27 | 2000-04-25 | Kyocera Corporation | Image forming apparatus having easily aligned light emitting element arrays |
US6281918B1 (en) | 2000-03-15 | 2001-08-28 | Lexmark International, Inc. | Laser printhead mounting apparatus and printhead skew adjustment mechanism for an electrophotographic machine |
US6396524B1 (en) | 2000-05-18 | 2002-05-28 | Nexpress Solutions Llc | Skew adjustment for optical writer in a document printer/copier |
US6429891B1 (en) | 2000-07-31 | 2002-08-06 | Lexmark International, Inc | Printhead mounting apparatus providing adjustment to effect printhead skew correction |
US6486906B1 (en) | 2000-09-13 | 2002-11-26 | Lexmark International, Inc. | Apparatus and method for printhead to machine skew and margin adjustment for an electrophotographic machine |
US6535236B1 (en) * | 2000-11-09 | 2003-03-18 | Lexmark International, Inc. | Referencing mechanism for an imaging apparatus |
US6600504B2 (en) * | 2000-09-11 | 2003-07-29 | Konica Corporation | Image forming apparatus having light beam adjusting mechanism |
-
2005
- 2005-09-23 US US11/234,777 patent/US7397493B2/en active Active
Patent Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4279199A (en) | 1979-10-19 | 1981-07-21 | International Business Machines Corporation | Print head image generator for printer subsystem |
US4570168A (en) | 1984-07-20 | 1986-02-11 | Tektronix, Inc. | Two-dimensional ink jet adjustment mechanism |
US4905028A (en) | 1988-06-30 | 1990-02-27 | Oki Electric Industry Co., Ltd. | Electrophotographic printer |
US4875153A (en) | 1988-12-05 | 1989-10-17 | Eastman Kodak Company | Mechanism for accurately mounting an electronic light emitting printhead assembly |
US4926198A (en) | 1988-12-29 | 1990-05-15 | Eastman Kodak Company | Linear printhead writer assembly |
US5050494A (en) | 1989-10-13 | 1991-09-24 | Am International, Inc. | Fine adjustment system of finishing head in a printing, duplicating and like machine |
US5337486A (en) | 1991-01-09 | 1994-08-16 | Man Roland Druckmaschinen Ag | Mechanism for adjusting the skew angle of inclination of a printing plate on its plate cylinder |
US5146242A (en) | 1991-03-15 | 1992-09-08 | Eastman Kodak Company | Writing beam angular alignment device |
US5153608A (en) | 1991-09-27 | 1992-10-06 | Xerox Corporation | Skew and bow correction system for an image scanner |
US5374993A (en) | 1991-10-01 | 1994-12-20 | Xerox Corporation | Image skew adjustment for a raster output scanning (ROS) system |
US5214441A (en) | 1991-10-31 | 1993-05-25 | Eastman Kodak Company | Method and apparatus for alignment of scan line optics with target medium using external adjusting members |
US5309182A (en) | 1991-10-31 | 1994-05-03 | Ricoh Co., Ltd. | Bicolor image forming apparatus for forming a bicolor image on a photoconductive element |
US5294943A (en) | 1991-10-31 | 1994-03-15 | Eastman Kodak Company | Method and apparatus for alignment of scan line optics with target medium |
US5237348A (en) | 1991-10-31 | 1993-08-17 | Eastman Kodak Company | Method and apparatus for alignment of scan line optics with target medium using external adjusting members |
US5450119A (en) | 1992-01-24 | 1995-09-12 | Xerox Corporation | Single pass color printer |
US5638106A (en) | 1992-12-01 | 1997-06-10 | Intermec Corporation | Method and apparatus for adjusting a printhead |
US5326011A (en) | 1993-01-22 | 1994-07-05 | Printware, Inc. | Reduced-skew web drive between rollers of differing coefficients of friction, particularly to transport paper, metal or film in a laser imager |
US5485190A (en) | 1993-05-20 | 1996-01-16 | Eastman Kodak Company | Printhead writer assembly engageable with a web image member |
US5608430A (en) | 1994-03-07 | 1997-03-04 | Tektronix, Inc. | Printer print head positioning apparatus and method |
US5764269A (en) | 1994-04-08 | 1998-06-09 | Hitachi Koki Co., Ltd. | Electrophotographic apparatus with optical scanning unit pivotable in horizontal plane |
US5737003A (en) | 1995-11-17 | 1998-04-07 | Imation Corp. | System for registration of color separation images on a photoconductor belt |
US5963240A (en) | 1996-02-02 | 1999-10-05 | Ricoh Company, Ltd. | Deflecting mirror adjusting device for an image forming apparatus |
US5844222A (en) | 1996-07-02 | 1998-12-01 | Intermec Corporation | Rastering laser scanner with beam location feedback |
US6055006A (en) | 1996-12-27 | 2000-04-25 | Kyocera Corporation | Image forming apparatus having easily aligned light emitting element arrays |
US5970597A (en) | 1998-05-13 | 1999-10-26 | Eastman Kodak Company | Precision assembly technique using alignment fixture and the resulting assembly |
US6052142A (en) | 1998-05-13 | 2000-04-18 | Eastman Kodak Company | Precision assembly technique using alignment fixture and the resulting assembly |
US5946023A (en) | 1998-05-13 | 1999-08-31 | Eastman Kodak Company | Mount for beam shaping optics in a laser scanner |
US6281918B1 (en) | 2000-03-15 | 2001-08-28 | Lexmark International, Inc. | Laser printhead mounting apparatus and printhead skew adjustment mechanism for an electrophotographic machine |
US6396524B1 (en) | 2000-05-18 | 2002-05-28 | Nexpress Solutions Llc | Skew adjustment for optical writer in a document printer/copier |
US6429891B1 (en) | 2000-07-31 | 2002-08-06 | Lexmark International, Inc | Printhead mounting apparatus providing adjustment to effect printhead skew correction |
US6600504B2 (en) * | 2000-09-11 | 2003-07-29 | Konica Corporation | Image forming apparatus having light beam adjusting mechanism |
US6486906B1 (en) | 2000-09-13 | 2002-11-26 | Lexmark International, Inc. | Apparatus and method for printhead to machine skew and margin adjustment for an electrophotographic machine |
US6535236B1 (en) * | 2000-11-09 | 2003-03-18 | Lexmark International, Inc. | Referencing mechanism for an imaging apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080030804A1 (en) * | 2006-07-20 | 2008-02-07 | Kabushiki Kaisha Toshiba | Optical beam scanning apparatus, image forming apparatus |
US11415182B2 (en) * | 2018-03-21 | 2022-08-16 | Heidelberger Druckmaschinen Ag | Print bar with compensation coupling |
Also Published As
Publication number | Publication date |
---|---|
US20070070174A1 (en) | 2007-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4537285B2 (en) | Optical scanning apparatus having scanning line curvature correction mechanism | |
US8824022B2 (en) | Optical scanning apparatus and image forming apparatus | |
US7253935B2 (en) | Optical scanner, image forming apparatus, and optical scanner attitude correcting method | |
US4816844A (en) | Superimposed image forming apparatus | |
US20090123201A1 (en) | Image forming apparatus | |
JPH07271136A (en) | Optical-contrast achieving method | |
US6335747B1 (en) | Image forming apparatus, adjustment method and memory medium | |
US20080068439A1 (en) | Focus adjustment method of led print head and image forming apparatus | |
US7397493B2 (en) | Laser printhead having a mechanical skew correction mechanism | |
US20080158328A1 (en) | Image forming apparatus | |
EP1067767B1 (en) | Image recording method and image recording apparatus | |
JP4559727B2 (en) | Method for maintaining image placement and image-to-image registration | |
US6281918B1 (en) | Laser printhead mounting apparatus and printhead skew adjustment mechanism for an electrophotographic machine | |
JP3491466B2 (en) | Color electrophotographic equipment | |
US7952605B2 (en) | Light scanning unit assembly, electrophotographic image forming apparatus including the same, and method of adjusting scanning line skew | |
JP4365774B2 (en) | Image forming apparatus | |
US6429891B1 (en) | Printhead mounting apparatus providing adjustment to effect printhead skew correction | |
JP4500385B2 (en) | Optical scanning apparatus and color recording apparatus | |
US20120148292A1 (en) | Image forming apparatus, optical print head, and process cartridge | |
JP2001125347A (en) | Method for adjusting position of print head in image forming device | |
US6535236B1 (en) | Referencing mechanism for an imaging apparatus | |
JP4949633B2 (en) | Optical scanning apparatus and image forming apparatus | |
JP2001088351A (en) | Image forming apparatus | |
JP2008200978A (en) | Writing device | |
JP2007241086A (en) | Optical scanner and image forming apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LEXMARK INTERNATIONAL, INC., KENTUCKY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEE, CHRISTOPHER G.;HORRALL, PAUL D.;HUDSON, RANDALL L.;REEL/FRAME:017036/0387 Effective date: 20050921 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: CHINA CITIC BANK CORPORATION LIMITED, GUANGZHOU BR Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:LEXMARK INTERNATIONAL, INC.;REEL/FRAME:046989/0396 Effective date: 20180402 |
|
AS | Assignment |
Owner name: CHINA CITIC BANK CORPORATION LIMITED, GUANGZHOU BR Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT U.S. PATENT NUMBER PREVIOUSLY RECORDED AT REEL: 046989 FRAME: 0396. ASSIGNOR(S) HEREBY CONFIRMS THE PATENT SECURITY AGREEMENT;ASSIGNOR:LEXMARK INTERNATIONAL, INC.;REEL/FRAME:047760/0795 Effective date: 20180402 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
AS | Assignment |
Owner name: LEXMARK INTERNATIONAL, INC., KENTUCKY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CHINA CITIC BANK CORPORATION LIMITED, GUANGZHOU BRANCH, AS COLLATERAL AGENT;REEL/FRAME:066345/0026 Effective date: 20220713 |