US7263397B2 - Method and apparatus for catheter navigation and location and mapping in the heart - Google Patents
Method and apparatus for catheter navigation and location and mapping in the heart Download PDFInfo
- Publication number
- US7263397B2 US7263397B2 US10/819,027 US81902704A US7263397B2 US 7263397 B2 US7263397 B2 US 7263397B2 US 81902704 A US81902704 A US 81902704A US 7263397 B2 US7263397 B2 US 7263397B2
- Authority
- US
- United States
- Prior art keywords
- electrode
- heart
- data
- location
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
- A61B5/065—Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/107—Measuring physical dimensions, e.g. size of the entire body or parts thereof
- A61B5/1076—Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/279—Bioelectric electrodes therefor specially adapted for particular uses
- A61B5/28—Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
- A61B5/283—Invasive
- A61B5/287—Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
- A61B5/7207—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/3625—External stimulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/37—Monitoring; Protecting
- A61N1/3702—Physiological parameters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2051—Electromagnetic tracking systems
- A61B2034/2053—Tracking an applied voltage gradient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2072—Reference field transducer attached to an instrument or patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/04—Arrangements of multiple sensors of the same type
- A61B2562/046—Arrangements of multiple sensors of the same type in a matrix array
Definitions
- the present invention relates generally to a computer based medical system that can be used to position and navigate electrophysiology catheters and ablation catheters inside the heart of a patient.
- the catheters are used to create an image of the interior of the heart, and electrophysiology information collected from the catheters is presented to a physician user to guide a therapy or diagnosis.
- the present invention is disclosed in the context of a system for collecting and displaying “heart” data to a physician. This is an illustrative and not limiting example of the use of the methodologies. For example it should be clear that the techniques can be used guide the delivery of general surgical devices into the body or to guide and position drug delivery devices among other applications.
- the present invention several improved location and navigation methodologies are presented and these are used to determine more accurately the location in space of a multitude of electrodes located on catheters inserted into any heart chamber.
- This improved location data is used to create a geometric representation of the whole heart chamber.
- the improved methodologies allow for the collection and presentation of electro physiologic (EP) data to the physician.
- EP electro physiologic
- This “activation mapping” aspect of the system allows the system to present EP data and catheter location data on an accurate representation of the heart. This improves the functionality of the system for both diagnosis and intervention.
- a typical use would include the use of ablation catheters to find the origin of a cardiac arrhythmia and then to treat it with RF energy to ablate tissue.
- each electrode is “located” in space using the location algorithm and the voltage present on that electrode is measured and stored.
- the timing information related to the measured voltage and a fiducial electrographic event such as the R-wave is also stored by the system.
- the electrode location information is used to project a measurement point onto the geometry created by the roving catheter.
- the “timing” information or the voltage “magnitude” information is interpreted as a false color that is presented and projected to a point on the heart surface geometry.
- electrophysiology data or activation mapping data can change during the heartbeat.
- a typical display would include animation of the EP data showing the passage of electrographic wave fronts over the surface of the heart as represented by the geometry.
- a method of compensation for respiration is disclosed.
- the compensated signal allows for greater location accuracy of electrodes in the heart.
- the respiration motion artifact is measured and subtracted from the measurement or roving electrode position data to improve accuracy.
- a method of generating a non physical reference position which permits the operation of the system without a fixed physical reference electrode attached to the heart.
- This virtual reference is a benefit to the patient and a significant improvement for the physician.
- the improved location methodologies allow for the collection of location data from one or more catheter electrodes all during the heart contraction cycle and without keeping track of the phase of the heart.
- the data is “reduced” to create a “shell” which represents the shape of the heart chamber swept by the electrodes.
- One or more catheters having one or more electrodes are moved around in the heart chamber. Throughout this process the electrodes are in contact with the heart wall. The electrical potentials on these electrodes are measured and there location in space noted. The electrical data is then projected on the geometry as an activation map.
- the activation mapping methodology permits the display of peak to peak voltages at various locations on the geometry.
- the activation mapping methodology permits the display of timing relationships between the measured voltages and a fiducial timing reference at various locations on the geometry.
- FIG. 1 is a schematic overview of the system
- FIG. 2 is a schematic view of a catheter in a heart chamber
- FIG. 3 is a display screen showing operation and interaction with the overall system
- FIG. 4 is a is a display screen showing operation and interaction with a portion of the system
- FIG. 5 is a tracing of data showing respiration artifacts
- FIG. 6 is a tracing of data showing the elimination of respiration artifacts
- FIG. 7 is a schematic showing the patch orientations and nomenclature
- FIG. 8 is a figure showing representative expressions for calculations
- FIG. 9 is a schematic diagram of a collection of data points developed from the basic location methodology.
- FIG. 10 is a schematic diagram of a computed convex hull heart surface
- FIG. 11 is a schematic diagram of a re-sampled convex hull surface
- FIG. 12 is a smoothed computed heart surface.
- FIG. 1 shows a system level diagram in schematic form.
- the patient 11 is depicted as an oval for clarity.
- Three sets of surface electrodes are shown as 18 , 19 along a Y-axis; as 12 , 14 along an X-axis; and 16 , 22 along a Z-axis.
- Patch electrode 16 is shown on the surface closest the observer and patch 22 is shown in outline form to show the placement on the back of patient 11 .
- An additional patch electrode called a “belly” patch is also seen in the figure as patch electrode 21 .
- Each patch electrode is independently connected to a multiplex switch 24 .
- the heart 10 lies between these various sets of patch electrodes.
- a representative catheter 13 having a single distal electrode 17 for clarity.
- This distal electrode 17 is called the “roving electrode” or “measurement electrode” throughout the specification. Typically multiple electrodes on each catheter will be used.
- a fixed reference electrode 31 attached to a heart wall is also seen in the figure on an independent catheter 29 . For calibration purposes this electrode 31 is known to be stationary on the heart.
- Each patch electrode is coupled to the switch 24 and pairs of electrodes are selected by software running on computer 20 , which couples the patches to the signal generator 25 .
- a pair of electrodes for example 18 and 19 , are excited by the signal generator 25 and they generate a field in the body of the patient 11 and the heart 10 .
- the remaining patch electrodes are referenced to the belly patch 21 and the voltages impressed on these remaining electrodes are measured by the A to D converter 26 .
- Suitable lowpass filtering of the digital data is subsequently performed in software to remove electronic noise and cardiac motion artifact after suitable low pass filtering in filter 27 .
- the surface patch electrodes are divided into driven and non-driven electrode sets. While a pair of electrodes a driven by the current generator 25 the remaining non-driven electrodes are used a references to synthesize the orthogonal drive axes.
- the belly patch electrode 21 is seen in the figure is an alternative to a fixed intra-cardiac electrode 31 .
- a coronary sinus electrode or other fixed electrode in the heart can be used as a reference for measuring voltages and displacements.
- All of the raw patch voltage data is measured by the A to D converter 26 and stored in the computer under the direction of software. This electrode excitation process occurs rapidly and sequentially as alternate sets of patch electrodes are selected and the remaining members of the set are used to measure voltages. This collection of voltage measurements is referred to herein as the “patch data set”.
- the software has access to each individual voltage measurement made at each patch during each excitation of each pair of electrodes.
- the raw patch data is used to determine the “raw” location in three space (X,Y,Z) of the electrodes in side the heart such as the roving electrode 17 .
- the patch data is also used to create a respiration compensation value used to improve the raw location data for the electrode locations.
- the roving electrode 17 is swept around in the heart chamber while the heart is beating a large number of electrode locations are collected. These data points are taken at all stages of the heart beat and without regard to the cardiac phase. Since the heart changes shape during contraction only a small number of the point represent the maximum heart volume. By selecting the most exterior points it is possible to create a “shell” representing the shape of the heart. The location attribute of the electrodes within the heart are measured while the electric field is impressed on the heart by the surface patch electrodes.
- FIG. 2 shows a catheter 13 which may be a conventional EP catheter in the heart 10 .
- the catheter 13 has additional electrodes 52 54 and 56 . Since these electrodes lie in the heart the location process detects their location in the heart. While they lie on the surface and when the current source 25 is “off”, each electrode can be used to measure the voltage on the heart surface. The magnitude of this voltage as well as its timing relationship of the signal with respect to the heartbeat events are measured and presented to the cardiologist through the display 23 .
- the peak to peak voltage measured at a particular location on the heart wall shows areas of diminished conductivity and may reflect an infracted region of the heart.
- the timing relationship data are typically displayed as “isochrones”. In essence regions that receive the depolarization waveform at the same time are shown in the same false color or gray scale.
- FIG. 3 shows an illustrative computer display from the computer system 20 .
- the display 23 is used to show data to the physician user and to present certain options that allow the user to tailor system configuration for a particular use. It should be noted that the contents on the display can be easily modified and the specific data presented in illustrative and not limiting of the invention.
- An image panel 60 shows a geometry of the heart chamber 62 which shows “isochrones” in false color which is shown in grayscale in the figure with guide bar 64 . In this image the improved location methodology has been used with a roving catheter to create a chamber representation that is displayed as a smoothed contoured image.
- the guide bar 64 is graduated in milliseconds and it shows the assignment of time relationship for the false color image in the geometry.
- the relationship between the false color on the geometry image 62 and the guide bar is defined by interaction with the user in panel 66 best seen in FIG. 4 .
- FIG. 4 is an enlargement of panel 66 of FIG. 3 .
- the panel 66 represents the timing information used to generate the isochrones seen on geometry 62 .
- a fiducial point is selected as the “zero” time.
- the inflection point 70 of a voltage appearing on a reference electrode is used as the primary timing point for the creation of isochrones.
- This voltage may be acquired from either the virtual reference or a physical reference such as electrode 31 seen in FIG. 1 .
- This voltage tracing in the figure is labeled “REF” on FIG. 4 .
- the roving electrode signal is seen on FIG. 4 and it is labeled “ROV” in the figure.
- the inflection point of this voltage signal is shown at 72 .
- the color guide bar 65 shows the assignment of color or grayscale tone for the timing relationship seen between inflections 70 and 72 .
- the amplitude of the signal present on the roving electrode lies between two adjustable bands 74 and 76 . These bands are used to set selection criteria for the peak to peak voltage of the signal. In practice regions of the heart with low peak-to-peak voltage are the result of infarcted tissue and the ability to convert voltage to grayscale or false color allows identification of the regions that are infracted or ischemic.
- V 1 the tracing 78 labeled “V 1 ” in FIG. 4 is a reference electrode on the surface of the patient in the conventional 12 lead ECG setup. This reference orients the physician to the same events detected on the surface of the patient.
- the basic software process proceeds stepwise by first selecting a set of electrodes and then driving them with current pulses. While the current pulses are being delivered the voltages on several of the other remaining surface electrodes and intracavitary electrodes are measured and stored. At this point it is preferred but not required to compensate these measured values with coefficients taken from the respiration compensation process.
- the algorithm is used to compute the convex hull shape is well known and it is one of many potential algorithms suitable for use in implementing the invention.
- This shape estimates the boundary of the interior of the heart from the set of points.
- the process then proceeds to resampled the convex hull on a regular grid of points in physical space. By resampling the computed hull shape on the regular grid, a larger set of points is generated. Most significantly this enlarged set of points ensures that computational points are available along the length of each edge of the hull.
- the next process uses an algorithm for smoothing the convex hull shape. This process forms a mathematically differentiable shape approximating the physiologic shape of the heart chamber. Any of a number of interpolation processes can be adopted to implement this portion of the process.
- the final process causes the model to exit to a display routine or other process where the computed shape is used for further analysis.
- This geometry surface is also used a display surface to present the activation maps. This is also the surface that the EP data is project on.
- the EP catheters are moved over the surface of the heart and while in motion they detect the electrical activation of the heart or EP signals on the surface of the heart.
- the real time location of the catheter electrode is noted along with the value of the EP voltage or signal. Since this data is not taken with the location data used to create the geometry a projection process is used to place the electrical information on the nearest heart surfaces represented by the geometry.
- the preferred implementation is to select two close points or locations in the EP data set and to “drop” a perpendicular to the “nearest” surface point on the geometric surface. This new point is used as the “location” for the presentation of EP data in the images presented to the physician.
- the basic location methodology described above provides a first order indication of the location of a roving or other catheter electrode within the heart chamber.
- the primary artifact to mitigate in the basic location methodology is due to patient ventilation or breathing.
- error displacements exceeding two centimeters due to breathing have been noted in the left atrium experiments in human data as measured with a with a roving catheter electrode 17 .
- the same data when referenced to a fixed electrode (coronary sinus electrode) the measured error displacement still exceed about one centimeter. In these experiments the data is collected with a 0.25 Hz low pass filter setting.
- FIG. 5 shows experimental data taken under the conditions described above.
- FIG. 6 shows the same data with the 0.25 Hz low pass filter 27 setting.
- the abscissa is “samples” and there are 50 samples to 1 second.
- the virtual reference VRV has less artifact than just using a single belly patch, even greater suppression of respiration artifact can be achieved using subsequent respiration compensation.
- the respiration compensation method may still be applied using intra-cardiac reference.
- the key objective of the virtual reference is to facilitate the basic location methodology without requiring a separate stable intra-cardiac reference electrode and catheter.
- Potentials on any of the six electrodes are acquired for all samples except when an electrode is driven. Sampling while an electrode is acting as a source or sink is explicitly avoided, as the potential during this time, at the electrode will include the electrode impedance and the effects of high local current density.
- FIG. 8 table 1 defines the representative designations of electrode configuration discussed below.
- the resulting potentials measured will be the same as that obtained by negating the non-inverted drive configuration.
- the potential due to a dipole driving from electrodes A to C is equivalent to subtracting the potential due to dipole A to B and subtracting dipole C to B.
- the advantage of decomposing the problem into multiple dipoles instead of merely driving the three axes directly is that additional data is available for respiration compensation as described in that section.
- D 0 is the drive configuration where the current source is switched to deliver positive current from electrode XA, and sink the current to YA. (Each of these configurations is multiplexed at a sampling rate of about 100 times per second.)
- the net X axis potential on a given sense electrode, “E” in the heart chamber is obtained by sampling the electrode potential obtained while driving each of the 4 drive configurations, and combining them arithmetically.
- an electrode in the heart attached to the heart wall to operate as a location reference for measuring the location of other catheters.
- This can be done with a screw in type pacing lead or a pacing type lead placed in the coronary sinus.
- This is a useful expedient the presence of additional catheters in the chamber is always unwelcome during ablation procedures and the like.
- One aspect of the present invention is the creation of the virtual reference, which eliminates the need for a fixed physical reference electrode.
- the virtual reference is a computed value that is applied to the measured values of location electrode data to simulate or emulate the position of a fixed lead. The process proceeds as follows:
- the preferred method for computing the virtual reference potential for the X axis is nominally the midpoint of the chest (YB) and back (YA) patches, since each of them is used with exactly 1 ⁇ 2 of the weight of the normal electrode Ex, described above.
- the net X axis potential for electrode E is solved for by subtracting the value of the X axis virtual electrode value from the measured X axis value.
- a similar process can be used to find the other three space values for the roving or other electrode.
- a set of patch electrodes is placed on the skin or surface of the patient. Two of these are selected to source current with respect to a ground reference, while the remaining electrodes measure voltage with respect to the ground reference.
- An electrode placed in the heart exposed to the field from the current pulse is also measured with respect to ground.
- the catheters within the heart may contain multiple electrodes and each electrode ring potential is measured.
- at least one electrode is fixed to the interior surface of the heart and forms a fixed reference, which is also measured with respect to ground.
- the patch electrode data set, the internal electrode data set and the virtual electrode data set are all used to determine the location of the electrodes within the heart.
- the lung's volume changes and the impedance between patch electrodes varies not only as a function of electrode position but as respiration as well. Consequently it alters the perceived location of the electrode.
- the displacement or inaccuracies associated with respiration are small, it is important to remove them if possible because the ablation location positioning can be critical to achieve the therapeutic result desired by the physician.
- a weighting optimization is used that requires the acquisition of data at a stable catheter electrode position for a long enough epoch to ensure that a breath was acquired (10 seconds is adequate).
- the error term i.e. that which is to be minimized is the perturbation of the position of “E”.
- a 10-second buffer of data from a stable electrode “E” is acquired and the algebra described in the previous section is applied. This yields a time vector of data.
- the choice of reference is immaterial: in other words the electrode data may have the virtual reference applied (Enet), another intra-cardiac reference, or it may merely be referred to the electrical (belly patch) reference.
- the gist of the respiration compensation method requires recognizing two facts: the electrode that is “apparently” moving (due to the above-cited ventilatory mechanisms) is known to be essentially stable; and a related component of the movement artifact is present on the un-driven patch electrodes.
- the patch data is high pass filtered with a corner frequency in the neighborhood of 0.01 Hz. This removes DC information from the patch data, since we're only interested in time varying (respiration) artifact above this frequency.
- a vector of patch data designated “R” is comprised of the following, for a given time sample. Note that the four drive dipoles (D 0 -D 3 ) are used, and sampling from all six patches is obtained.
- the table B in FIG. 8 shows a representative calculation.
- a set of six weights (W) is determined, such that when each weight is multiplied by its respective R vector as defined above, and the results are summed, the inner sum is optimally close to the noise (respiration artifact) across the sampled epoch.
- the compensation is applied by merely subtracting in real time sample the weighted sum of the R vectors derived from the patch data, yielding a net compensated sample Eri defined in FIG. 8 table “D” and the Y and Z axis weights may be determined in an analogous manner.
- Stability of the input data is important; if the catheter is moved or changes position significantly during the epoch acquisition, the algorithm will attempt to determine weights to nullify that displacement.
- the electrode on an “active” or roving intra-cardiac catheter is designated via software. Ideally this would be the ablation tip electrode 17 or the first ring electrode.
- the clinician parks the catheter in an anatomically stable site as indicated by fluoroscopy.
- the -physician will interact with the display 23 by clicking a GUI button to acquire a 10-second prospective buffer.
- the user is asked for confirmation to accept the acquisition.
- the clinician is asked to move the catheter to one more stable site in the chamber, ideally far removed from the first, and a second 10-second buffer is acquired.
- the clinician is given the option to quit and apply, or acquire additional stable sites.
- the electrode data for each separate acquisition (epoch) is mean subtracted.
- the epochs are concatenated.
- Equation 1 or expression “C” on FIG. 8 as configured for each axis is applied to determine the weights for each axis.
- a specific electrode called the roving electrode 17 is placed on a roving catheter which is swept around the interior of the heart by the physician.
- the location of this roving electrode is monitored continuously and without regard to the heart phase.
- the improved location process previously described is used to collect the data points.
- the multitude of electrode locations taken over time form a “cloud” of points.
- a mathematical algorithm such as a convex hull algorithm is used to construct a surface surround this cloud of electrodes and this algorithm or process “prefers” the most exterior points so that a shell is formed around the cloud. It is generally assumed that the most exterior points occurred during distally while the more interior points most likely occurred during systole. The quality of the shell model or its accuracy depends upon both the accuracy of the location algorithm and the number of points collected.
- the exterior shell is referred to throughout the specification as the geometry of the chamber.
- FIG. 9 is a graphical representation of the results of sequential measurements made in the heart. This figure is intended to show a three dimensional cloud of data points representing the location data improved with the compensation methodology. For purposes of this illustration all the data points for all of the discrete measurement periods are displayed together, with representative data points 80 , 82 and 84 identified in the figure.
- FIG. 10 is a convex hull shape computed for the cloud of points represented in FIG. 9 .
- This surface represents connections between the most exterior points in the data set.
- the hull is composed of triangular panels. Convex hull algorithms are well known and publicly available software packages are available to perform this calculation, such as QHULL.
- FIG. 11 shows the resampling process carried out on a regular grid to increase the number of points for further computation.
- the resampling process interpolates between vertices on the exterior of the polygon. In essence intermediate points are defined within each facet of the hull or polyhedron as represented by data point 88 . Although the resampling process creates “fictitious” interpolated points these points are useful in the smoothing operation shown in FIG. 12 .
- FIG. 12 shows a smoothed shape 89 which represents a more realistic contour than the polyhedron.
- This surface is computed by fitting smooth curves to the enlarged or enhanced data set generated by the resampling process. Conventional smoothing algorithms are used corresponding to a least squares fit. This process yields a mathematically differentiable surface.
- one useful technique is to construct a normal from the surface and to note the point at which it intersects a superimposed hull of greater volume. The distance between the two surfaces is calculated along the direction of the normal and this distance measurement is used to compute velocity and acceleration for the wall at that location.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Signal Processing (AREA)
- Human Computer Interaction (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
Claims (4)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/819,027 US7263397B2 (en) | 1998-06-30 | 2004-04-06 | Method and apparatus for catheter navigation and location and mapping in the heart |
US11/044,344 US7806829B2 (en) | 1998-06-30 | 2005-01-27 | System and method for navigating an ultrasound catheter to image a beating heart |
US12/878,545 US8333705B2 (en) | 1998-06-30 | 2010-09-09 | System and method for navigating an ultrasound catheter to image a beating heart |
US13/690,901 US8876723B2 (en) | 1998-06-30 | 2012-11-30 | System and method for navigating an ultrasound catheter to image a beating heart |
US14/507,533 US20150094568A1 (en) | 1998-06-30 | 2014-10-06 | System and method for navigating an ultrasound catheter to image a beating heart |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/107,371 US7670297B1 (en) | 1998-06-30 | 1998-06-30 | Chamber mapping system |
US46100403P | 2003-04-07 | 2003-04-07 | |
US10/819,027 US7263397B2 (en) | 1998-06-30 | 2004-04-06 | Method and apparatus for catheter navigation and location and mapping in the heart |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/107,371 Continuation-In-Part US7670297B1 (en) | 1998-06-30 | 1998-06-30 | Chamber mapping system |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/044,344 Continuation-In-Part US7806829B2 (en) | 1998-06-30 | 2005-01-27 | System and method for navigating an ultrasound catheter to image a beating heart |
US13/690,901 Continuation-In-Part US8876723B2 (en) | 1998-06-30 | 2012-11-30 | System and method for navigating an ultrasound catheter to image a beating heart |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040254437A1 US20040254437A1 (en) | 2004-12-16 |
US7263397B2 true US7263397B2 (en) | 2007-08-28 |
Family
ID=33513513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/819,027 Expired - Lifetime US7263397B2 (en) | 1998-06-30 | 2004-04-06 | Method and apparatus for catheter navigation and location and mapping in the heart |
Country Status (1)
Country | Link |
---|---|
US (1) | US7263397B2 (en) |
Cited By (431)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060058647A1 (en) * | 1999-05-18 | 2006-03-16 | Mediguide Ltd. | Method and system for delivering a medical device to a selected position within a lumen |
US20060184048A1 (en) * | 2005-02-02 | 2006-08-17 | Vahid Saadat | Tissue visualization and manipulation system |
US20070016029A1 (en) * | 2005-07-15 | 2007-01-18 | General Electric Company | Physiology workstation with real-time fluoroscopy and ultrasound imaging |
US20070016028A1 (en) * | 2005-07-15 | 2007-01-18 | General Electric Company | Integrated physiology and imaging workstation |
US20070032826A1 (en) * | 2005-08-02 | 2007-02-08 | Yitzhack Schwartz | Standardization of catheter-based treatment for atrial fibrillation |
US20070043285A1 (en) * | 2005-08-02 | 2007-02-22 | Yitzhack Schwartz | Simulation of invasive procedures |
US20070299352A1 (en) * | 2006-06-13 | 2007-12-27 | Doron Harlev | Non-contact cardiac mapping, including moving catheter and multi-beat integration |
US20070299351A1 (en) * | 2006-06-13 | 2007-12-27 | Doron Harlev | Non-contact cardiac mapping, including resolution map |
US20070299353A1 (en) * | 2006-06-13 | 2007-12-27 | Doron Harlev | Non-contact cardiac mapping, including preprocessing |
US20080107357A1 (en) * | 2006-07-21 | 2008-05-08 | Yasushi Saito | Image Processing Apparatus, Image Processing Method, and Computer Program |
US20080190438A1 (en) * | 2007-02-08 | 2008-08-14 | Doron Harlev | Impedance registration and catheter tracking |
US20080283771A1 (en) * | 2007-05-17 | 2008-11-20 | General Electric Company | System and method of combining ultrasound image acquisition with fluoroscopic image acquisition |
US20080287783A1 (en) * | 2007-05-16 | 2008-11-20 | General Electric Company | System and method of tracking delivery of an imaging probe |
US20080287777A1 (en) * | 2007-05-16 | 2008-11-20 | General Electric Company | System and method to register a tracking system with an intracardiac echocardiography (ice) imaging system |
US20080287803A1 (en) * | 2007-05-16 | 2008-11-20 | General Electric Company | Intracardiac echocardiography image reconstruction in combination with position tracking system |
US20080319297A1 (en) * | 2007-06-20 | 2008-12-25 | Kenneth Danehorn | Electrode catheter positioning system |
US20090076483A1 (en) * | 2007-09-14 | 2009-03-19 | Kenneth Danehorn | Catheter localization system |
US20090093857A1 (en) * | 2006-12-28 | 2009-04-09 | Markowitz H Toby | System and method to evaluate electrode position and spacing |
US20090143677A1 (en) * | 2007-11-29 | 2009-06-04 | Assaf Govari | Flashlight view of an anatomical structure |
US20090163801A1 (en) * | 2007-12-19 | 2009-06-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System for displaying data relating to energy emitting treatment devices together with electrophysiological mapping data |
US20090163904A1 (en) * | 2005-12-06 | 2009-06-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and Method for Assessing Coupling Between an Electrode and Tissue |
US20090171235A1 (en) * | 2007-12-28 | 2009-07-02 | Clint Schneider | Method and apparatus for complex impedance compensation and for determining tissue morphology based on phase angle |
US20090167755A1 (en) * | 2007-12-28 | 2009-07-02 | Voth Eric J | Method and system for generating surface models of geometric structures |
US20090171338A1 (en) * | 2007-12-28 | 2009-07-02 | Olson Eric S | System and method for preventing collateral damage with interventional medical procedures |
US20090171345A1 (en) * | 2007-12-28 | 2009-07-02 | Miller Stephan P | System and method for measurement of an impedance using a catheter such as an ablation catheter |
US20090182224A1 (en) * | 1999-05-18 | 2009-07-16 | Mediguide Ltd. | Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors |
US20090204113A1 (en) * | 2004-05-17 | 2009-08-13 | C.R. Bard Inc. | High Density Atrial Fibrillatrion Cycle Length (AFCL) Detection and Mapping System |
WO2009105720A2 (en) | 2008-02-20 | 2009-08-27 | Guided Delivery Systems, Inc. | Electrophysiology catheter system |
WO2009120948A2 (en) | 2008-03-27 | 2009-10-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Model catheter input device |
US20090253976A1 (en) * | 2008-04-02 | 2009-10-08 | Rhythmia Medical, Inc. | Intracardiac Tracking System |
US20090262980A1 (en) * | 2008-04-18 | 2009-10-22 | Markowitz H Toby | Method and Apparatus for Determining Tracking a Virtual Point Defined Relative to a Tracked Member |
US20090264740A1 (en) * | 2008-04-18 | 2009-10-22 | Markowitz H Toby | Locating an Introducer |
US20090275827A1 (en) * | 2005-12-06 | 2009-11-05 | Aiken Robert D | System and method for assessing the proximity of an electrode to tissue in a body |
US20090299424A1 (en) * | 2008-05-13 | 2009-12-03 | Narayan Sanjiv M | Methods and systems for treating heart instability |
US20090306655A1 (en) * | 2008-06-09 | 2009-12-10 | Stangenes Todd R | Catheter assembly with front-loaded tip and multi-contact connector |
US20090315402A1 (en) * | 2006-10-04 | 2009-12-24 | The Tokyo Electric Power Company, Incorporated | Ac-dc conversion device |
US20100063400A1 (en) * | 2008-09-05 | 2010-03-11 | Anne Lindsay Hall | Method and apparatus for catheter guidance using a combination of ultrasound and x-ray imaging |
US20100069921A1 (en) * | 2006-12-06 | 2010-03-18 | Miller Stephan P | System and method for assessing lesions in tissue |
US20100094274A1 (en) * | 2008-10-09 | 2010-04-15 | Sanjiv Narayan | Methods, system and appartus for the detection, diagnosis and treatment of biological rhythm disorders |
US20100106009A1 (en) * | 2008-10-27 | 2010-04-29 | Rhythmia Medical, Inc. | Tracking System Using Field Mapping |
US20100152731A1 (en) * | 2007-04-04 | 2010-06-17 | Irvine Biomedical, Inc. | Flexible tip catheter with extended fluid lumen |
US20100168559A1 (en) * | 2008-12-31 | 2010-07-01 | Tegg Troy T | Accelerometer-based contact sensing assembly and system |
US20100168557A1 (en) * | 2008-12-30 | 2010-07-01 | Deno D Curtis | Multi-electrode ablation sensing catheter and system |
US20100168558A1 (en) * | 2008-12-31 | 2010-07-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for the cancellation of motion artifacts in medical interventional navigation |
US20100168729A1 (en) * | 2008-12-31 | 2010-07-01 | Huisun Wang | Irrigated ablation electrode assembly having off-center irrigation passageway |
US20100168550A1 (en) * | 2008-12-31 | 2010-07-01 | Byrd Israel A | Multiple shell construction to emulate chamber contraction with a mapping system |
US20100168735A1 (en) * | 2005-12-06 | 2010-07-01 | Don Curtis Deno | System and method for assessing coupling between an electrode and tissue |
US20100168568A1 (en) * | 2008-12-30 | 2010-07-01 | St. Jude Medical, Atrial Fibrillation Division Inc. | Combined Diagnostic and Therapeutic Device Using Aligned Energy Beams |
US20100228247A1 (en) * | 2005-12-06 | 2010-09-09 | Saurav Paul | Assessment of electrode coupling of tissue ablation |
US20100234730A1 (en) * | 2006-03-31 | 2010-09-16 | National University Corporation Kyoto Institute Of Technology | Image processing device, ultrasonic imaging apparatus including the same, and image processing method |
US20100256558A1 (en) * | 2008-03-27 | 2010-10-07 | Olson Eric S | Robotic catheter system |
US20100274238A1 (en) * | 2009-04-22 | 2010-10-28 | Klimovitch Gleb V | Method and apparatus for radiofrequency ablation with increased depth and/or decreased volume of ablated tissue |
US20100274150A1 (en) * | 2009-04-23 | 2010-10-28 | Rhythmia Medical, Inc. | Multi-Electrode Mapping System |
US20100286684A1 (en) * | 2009-05-07 | 2010-11-11 | Cary Hata | Irrigated ablation catheter with multiple segmented ablation electrodes |
US20100286550A1 (en) * | 2009-05-08 | 2010-11-11 | Rhythmia Medical, Inc. | Impedance Based Anatomy Generation |
US20100286551A1 (en) * | 2009-05-08 | 2010-11-11 | Rhythmia Medical, Inc. | Impedance Based Anatomy Generation |
US7860556B2 (en) | 2005-02-02 | 2010-12-28 | Voyage Medical, Inc. | Tissue imaging and extraction systems |
US20100331950A1 (en) * | 1999-05-18 | 2010-12-30 | Gera Strommer | System and method for delivering a stent to a selected position within a lumen |
US20110015569A1 (en) * | 2008-03-27 | 2011-01-20 | Kirschenman Mark B | Robotic catheter system input device |
US20110021984A1 (en) * | 2008-03-27 | 2011-01-27 | Kirschenman Mark B | Robotic catheter system with dynamic response |
US20110054308A1 (en) * | 1999-05-18 | 2011-03-03 | Amit Cohen | Method and system for superimposing virtual anatomical landmarks on an image |
US7918787B2 (en) | 2005-02-02 | 2011-04-05 | Voyage Medical, Inc. | Tissue visualization and manipulation systems |
US20110087091A1 (en) * | 2009-10-14 | 2011-04-14 | Olson Eric S | Method and apparatus for collection of cardiac geometry based on optical or magnetic tracking |
US7930016B1 (en) | 2005-02-02 | 2011-04-19 | Voyage Medical, Inc. | Tissue closure system |
US20110118727A1 (en) * | 2005-12-06 | 2011-05-19 | Fish Jeffrey M | System and method for assessing the formation of a lesion in tissue |
US20110144657A1 (en) * | 2009-12-11 | 2011-06-16 | Fish Jeffrey M | Systems and methods for determining the likelihood of endocardial barotrauma in tissue during ablation |
US20110144806A1 (en) * | 2008-03-27 | 2011-06-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Intelligent input device controller for a robotic catheter system |
WO2011072507A1 (en) | 2009-12-15 | 2011-06-23 | 四川锦江电子科技有限公司 | Method and apparatus for location determination of cardiac catheter |
US20110160571A1 (en) * | 2009-12-31 | 2011-06-30 | Amit Cohen | Tool shape estimation |
US20110160569A1 (en) * | 2009-12-31 | 2011-06-30 | Amit Cohen | system and method for real-time surface and volume mapping of anatomical structures |
US20110160593A1 (en) * | 2008-12-30 | 2011-06-30 | Deno D Curtis | Intracardiac imaging system utilizing a multipurpose catheter |
US20110156700A1 (en) * | 2009-12-31 | 2011-06-30 | Itay Kariv | System and method for assessing interference to a signal caused by a magnetic field |
US20110213260A1 (en) * | 2010-02-26 | 2011-09-01 | Pacesetter, Inc. | Crt lead placement based on optimal branch selection and optimal site selection |
US20110238010A1 (en) * | 2008-12-31 | 2011-09-29 | Kirschenman Mark B | Robotic catheter system input device |
WO2011123669A1 (en) | 2010-03-31 | 2011-10-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Intuitive user interface control for remote catheter navigation and 3d mapping and visualization systems |
WO2011127211A2 (en) | 2010-04-08 | 2011-10-13 | The Regents Of The University Of California | Methods, system and apparatus for the detection, diagnosis and treatment of biological rhythm disorders |
US8050746B2 (en) | 2005-02-02 | 2011-11-01 | Voyage Medical, Inc. | Tissue visualization device and method variations |
US8078266B2 (en) | 2005-10-25 | 2011-12-13 | Voyage Medical, Inc. | Flow reduction hood systems |
WO2011159955A1 (en) | 2010-06-16 | 2011-12-22 | St. Jude Medical, Inc. | Catheter having flexible tip with multiple flexible segments |
EP2407118A2 (en) | 2010-07-13 | 2012-01-18 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Methods and systems for filtering respiration noise from localization data |
US8106905B2 (en) | 2008-04-18 | 2012-01-31 | Medtronic, Inc. | Illustrating a three-dimensional nature of a data set on a two-dimensional display |
WO2012018439A1 (en) | 2010-08-04 | 2012-02-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Magnetically guided catheters |
US8131350B2 (en) | 2006-12-21 | 2012-03-06 | Voyage Medical, Inc. | Stabilization of visualization catheters |
EP2425871A2 (en) | 2010-09-02 | 2012-03-07 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter systems |
US8135467B2 (en) | 2007-04-18 | 2012-03-13 | Medtronic, Inc. | Chronically-implantable active fixation medical electrical leads and related methods for non-fluoroscopic implantation |
US8137333B2 (en) | 2005-10-25 | 2012-03-20 | Voyage Medical, Inc. | Delivery of biological compounds to ischemic and/or infarcted tissue |
US8175681B2 (en) | 2008-12-16 | 2012-05-08 | Medtronic Navigation Inc. | Combination of electromagnetic and electropotential localization |
WO2012071087A1 (en) | 2010-11-23 | 2012-05-31 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Medical devices having an electroanatomical system imaging element mounted thereon |
WO2012082249A1 (en) | 2010-12-17 | 2012-06-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigated ablation electrode assemblies |
WO2012082200A1 (en) | 2010-12-17 | 2012-06-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Navigation reference dislodgement detection method and system |
WO2012091784A1 (en) | 2010-12-31 | 2012-07-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Automatic identification of intracardiac devices and structures in an intracardiac echo catheter image |
WO2012091793A1 (en) | 2010-12-28 | 2012-07-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ablation electrode assemblies and methods for using same |
US20120172702A1 (en) * | 2010-12-29 | 2012-07-05 | Koyrakh Lev A | Dynamic adaptive respiration compensation with automatic gain control |
US20120172712A1 (en) * | 2010-12-29 | 2012-07-05 | Bar-Tal Meir | Respiratory effect reduction in catheter position sensing |
US8221310B2 (en) | 2005-10-25 | 2012-07-17 | Voyage Medical, Inc. | Tissue visualization device and method variations |
US20120197111A1 (en) * | 2011-01-31 | 2012-08-02 | Bar-Tal Meir | Compensation for respiratory motion |
US8235985B2 (en) | 2007-08-31 | 2012-08-07 | Voyage Medical, Inc. | Visualization and ablation system variations |
US8260395B2 (en) | 2008-04-18 | 2012-09-04 | Medtronic, Inc. | Method and apparatus for mapping a structure |
WO2012154235A1 (en) | 2011-05-11 | 2012-11-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-directional catheter control handle |
WO2012158263A1 (en) | 2011-05-13 | 2012-11-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Five degree of freedom ultrasound catheter and catheter control handle |
WO2012166216A1 (en) | 2011-06-02 | 2012-12-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-rate fluid flow and variable power delivery for ablation electrode assemblies used in catheter ablation procedures |
US8333012B2 (en) | 2008-10-10 | 2012-12-18 | Voyage Medical, Inc. | Method of forming electrode placement and connection systems |
US8355774B2 (en) | 2009-10-30 | 2013-01-15 | Medtronic, Inc. | System and method to evaluate electrode position and spacing |
US8369930B2 (en) | 2009-06-16 | 2013-02-05 | MRI Interventions, Inc. | MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time |
US8390438B2 (en) | 2008-09-24 | 2013-03-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system including haptic feedback |
US20130103064A1 (en) * | 2006-05-12 | 2013-04-25 | Vytronus, Inc. | Integrated ablation and mapping system |
US8454589B2 (en) | 2009-11-20 | 2013-06-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing effective delivery of ablation therapy |
WO2013101258A1 (en) | 2011-12-30 | 2013-07-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter with atraumatic tip |
WO2013101269A1 (en) | 2011-12-29 | 2013-07-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Drive assembly for use in a robotic control and guidance system |
WO2013101273A1 (en) | 2011-12-30 | 2013-07-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for detection and avoidance of collisions of robotically-controlled medical devices |
US8494613B2 (en) | 2009-08-31 | 2013-07-23 | Medtronic, Inc. | Combination localization system |
US8494614B2 (en) | 2009-08-31 | 2013-07-23 | Regents Of The University Of Minnesota | Combination localization system |
US8517031B2 (en) | 2010-12-29 | 2013-08-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System for determining the position of a medical device within a body |
US8527032B2 (en) | 2007-05-16 | 2013-09-03 | General Electric Company | Imaging system and method of delivery of an instrument to an imaged subject |
US8560086B2 (en) | 2010-12-02 | 2013-10-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter electrode assemblies and methods of construction therefor |
US8556850B2 (en) | 2008-12-31 | 2013-10-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Shaft and handle for a catheter with independently-deflectable segments |
WO2013165584A1 (en) | 2012-05-04 | 2013-11-07 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for controlling delivery of ablation energy to tissue |
US20130310673A1 (en) * | 2012-05-17 | 2013-11-21 | Assaf Govari | Guide wire with position sensing electrodes |
US8594777B2 (en) | 2011-05-02 | 2013-11-26 | The Reagents Of The University Of California | System and method for reconstructing cardiac activation information |
US8657805B2 (en) | 2007-05-08 | 2014-02-25 | Intuitive Surgical Operations, Inc. | Complex shape steerable tissue visualization and manipulation catheter |
US8663120B2 (en) | 2008-04-18 | 2014-03-04 | Regents Of The University Of Minnesota | Method and apparatus for mapping a structure |
US8684962B2 (en) | 2008-03-27 | 2014-04-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter device cartridge |
US8690821B2 (en) | 2008-03-27 | 2014-04-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter rotatable device cartridge |
US8694071B2 (en) | 2010-02-12 | 2014-04-08 | Intuitive Surgical Operations, Inc. | Image stabilization techniques and methods |
US8694074B2 (en) | 2010-05-11 | 2014-04-08 | Rhythmia Medical, Inc. | Electrode displacement determination |
US8696620B2 (en) | 2010-07-30 | 2014-04-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter with a mechanism for omni-directional deflection of a catheter shaft |
US8709008B2 (en) | 2007-05-11 | 2014-04-29 | Intuitive Surgical Operations, Inc. | Visual electrode ablation systems |
US8708902B2 (en) | 2010-12-30 | 2014-04-29 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter configuration interface and related system |
US8715199B1 (en) | 2013-03-15 | 2014-05-06 | Topera, Inc. | System and method to define a rotational source associated with a biological rhythm disorder |
US8715280B2 (en) | 2010-08-04 | 2014-05-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Magnetically guided catheters |
US8736212B2 (en) | 2010-12-16 | 2014-05-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method of automatic detection and prevention of motor runaway |
WO2014085256A1 (en) * | 2012-11-30 | 2014-06-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Correction of shift and drift in impedance-based medical device navigation using measured impedances at external patch electrodes |
WO2014093134A1 (en) | 2012-12-11 | 2014-06-19 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter having reduced force concentration at tissue contact site |
US8758229B2 (en) | 2006-12-21 | 2014-06-24 | Intuitive Surgical Operations, Inc. | Axial visualization systems |
WO2014107299A1 (en) | 2013-01-03 | 2014-07-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Cointegration filter for a catheter navigation system |
WO2014128637A1 (en) | 2013-02-22 | 2014-08-28 | MediGuide, Ltd. | Representative emulation of organ behavior |
WO2014137897A1 (en) | 2013-03-05 | 2014-09-12 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for detecting sheathing and unsheathing of localization elements |
US8839798B2 (en) | 2008-04-18 | 2014-09-23 | Medtronic, Inc. | System and method for determining sheath location |
WO2014149472A1 (en) | 2013-03-15 | 2014-09-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System for detecting catheter electrodes entering into and exiting from an introducer |
WO2014152344A2 (en) | 2013-03-15 | 2014-09-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Device for intravascular therapy and/or diagnosis |
WO2014150014A1 (en) | 2013-03-15 | 2014-09-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Regularization schemes for non-contact mapping with a medical device |
WO2014163899A1 (en) | 2013-03-12 | 2014-10-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Active detection of sensor transition from covered to exposed |
WO2014164681A1 (en) | 2013-03-12 | 2014-10-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Tri-curve elongate medical device |
US8858609B2 (en) | 2008-02-07 | 2014-10-14 | Intuitive Surgical Operations, Inc. | Stent delivery under direct visualization |
WO2014172524A1 (en) | 2013-04-18 | 2014-10-23 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Systems and methods for visualizing and analyzing cardiac arrhythmias using 2-d planar projection and partially unfolded surface mapping processes |
US20140330270A1 (en) * | 2013-05-03 | 2014-11-06 | William J. Anderson | Method of ablating scar tissue to orient electrical current flow |
WO2014182822A1 (en) | 2013-05-07 | 2014-11-13 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Utilization of electrode spatial arrangements for characterizing cardiac conduction conditions |
US8909502B2 (en) | 2011-12-29 | 2014-12-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and system for constructing an electrophysiology map |
WO2014201113A1 (en) | 2013-06-11 | 2014-12-18 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-electrode impedance sensing |
US8920368B2 (en) | 2011-12-22 | 2014-12-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-user touch-based control of a remote catheter guidance system (RCGS) |
US8934962B2 (en) | 2005-02-02 | 2015-01-13 | Intuitive Surgical Operations, Inc. | Electrophysiology mapping and visualization system |
US8945118B2 (en) | 2010-08-04 | 2015-02-03 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter with flexible tether and introducer for a catheter |
US8948476B2 (en) | 2010-12-20 | 2015-02-03 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Determination of cardiac geometry responsive to doppler based imaging of blood flow characteristics |
US20150057507A1 (en) * | 2013-08-20 | 2015-02-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and Method for Generating Electrophysiology Maps |
US8974454B2 (en) | 2009-12-31 | 2015-03-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Kit for non-invasive electrophysiology procedures and method of its use |
US8974445B2 (en) | 2009-01-09 | 2015-03-10 | Recor Medical, Inc. | Methods and apparatus for treatment of cardiac valve insufficiency |
US8979840B2 (en) | 2010-12-17 | 2015-03-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigant distribution system for flexible electrodes |
US8998890B2 (en) | 2005-12-06 | 2015-04-07 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US9002442B2 (en) | 2011-01-13 | 2015-04-07 | Rhythmia Medical, Inc. | Beat alignment and selection for cardiac mapping |
USD726905S1 (en) | 2011-05-11 | 2015-04-14 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Control handle for a medical device |
WO2015054048A1 (en) | 2013-10-09 | 2015-04-16 | St. Jude Medical, Cardiology Division, Inc. | System and method for generating electrophysiology maps |
WO2015066113A1 (en) | 2013-10-30 | 2015-05-07 | St. Jude Medical, Cardiology Division, Inc. | Cardiac mapping system and method for bi-directional activation detection of electrograms |
WO2015065966A2 (en) | 2013-10-28 | 2015-05-07 | St. Jude Medical, Cardiology Division, Inc. | Ablation catheter designs and methods with enhanced diagnostic capabilities |
WO2015066112A1 (en) | 2013-10-30 | 2015-05-07 | St. Jude Medical, Cardiology Division, Inc. | Cardiac mapping system and method for voltage-based evaluation of electrograms |
WO2015065648A1 (en) | 2013-10-31 | 2015-05-07 | St. Jude Medical, Cardiology Division, Inc. | System and method for generating electrophysiology maps |
WO2015069887A1 (en) | 2013-11-07 | 2015-05-14 | St. Jude Medical, Cardiology Division, Inc. | Medical device with contact force sensing tip |
US9050006B2 (en) | 2011-05-02 | 2015-06-09 | The Regents Of The University Of California | System and method for reconstructing cardiac activation information |
US9055906B2 (en) | 2006-06-14 | 2015-06-16 | Intuitive Surgical Operations, Inc. | In-vivo visualization systems |
WO2015089173A1 (en) | 2013-12-12 | 2015-06-18 | St. Jude Medical, Cardiology Division, Inc. | Medical device with contact force sensing tip |
US9066725B2 (en) | 2012-12-06 | 2015-06-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigant distribution system for electrodes |
WO2015116562A1 (en) | 2014-01-28 | 2015-08-06 | St. Jude Medical, Cardiology Division, Inc. | Medical device with a packaged electronic subassembly and method for fabricating the same |
WO2015116692A1 (en) | 2014-01-28 | 2015-08-06 | St. Jude Medical, Cardiology Division, Inc. | Catheter shaft with electrically-conductive traces |
WO2015116687A1 (en) | 2014-01-28 | 2015-08-06 | St. Jude Medical, Cardiology Division, Inc. | Elongate medical devices incorporating a flexible substrate, a sensor, and electrically-conductive traces |
US9101735B2 (en) | 2008-07-07 | 2015-08-11 | Intuitive Surgical Operations, Inc. | Catheter control systems |
WO2015119946A1 (en) | 2014-02-06 | 2015-08-13 | St. Jude Medical, Cardiology Division, Inc. | Elongate medical device including chamfered ring electrode and variable shaft |
US9107600B2 (en) | 2011-05-02 | 2015-08-18 | The Regents Of The University Of California | System and method for reconstructing cardiac activation information |
US9114232B2 (en) | 2011-12-30 | 2015-08-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter for manual and remote manipulation |
WO2015130829A1 (en) | 2014-02-25 | 2015-09-03 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for using electrophysiology properties for classifying arrhythmia sources |
US9125573B2 (en) | 2011-12-29 | 2015-09-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Electrically transparent introducer sheath |
US9132258B2 (en) | 2004-12-28 | 2015-09-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Fixed dimensional and bi-directional steerable catheter control handle |
US20150269775A1 (en) * | 2014-03-21 | 2015-09-24 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for generating a multi-dimensional surface model of a geometric structure |
US9155452B2 (en) | 2007-04-27 | 2015-10-13 | Intuitive Surgical Operations, Inc. | Complex shape steerable tissue visualization and manipulation catheter |
US9159162B2 (en) | 2011-12-28 | 2015-10-13 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and system for generating a multi-dimensional surface model of a geometric structure |
WO2015164667A1 (en) | 2014-04-23 | 2015-10-29 | St. Jude Medical, Cardiology Division, Inc. | System and method for displaying cardiac mechanical activation patterns |
US9179971B2 (en) | 2013-02-11 | 2015-11-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Printed electrode catheter |
WO2015171393A1 (en) | 2014-05-05 | 2015-11-12 | St. Jude Medical, Cardiology Division, Inc. | System and method for rendering a motion model of a beating heart |
US9198601B2 (en) | 2006-12-29 | 2015-12-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Contact sensor and sheath exit sensor |
US9204927B2 (en) | 2009-05-13 | 2015-12-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for presenting information representative of lesion formation in tissue during an ablation procedure |
US9218687B2 (en) | 2010-12-30 | 2015-12-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Display of medical device position information in a volumetric rendering |
US9216070B2 (en) | 2010-12-31 | 2015-12-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Intuitive user guided configuration routine |
CN105188524A (en) * | 2013-03-12 | 2015-12-23 | 圣犹达医疗用品电生理部门有限公司 | Non-contact mapping system and method |
CN105263405A (en) * | 2013-01-17 | 2016-01-20 | 科迪影技术股份有限公司 | Multi-parameter physiological mapping |
US9254163B2 (en) | 2005-12-06 | 2016-02-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US9259290B2 (en) | 2009-06-08 | 2016-02-16 | MRI Interventions, Inc. | MRI-guided surgical systems with proximity alerts |
US9265434B2 (en) * | 2013-12-18 | 2016-02-23 | Biosense Webster (Israel) Ltd. | Dynamic feature rich anatomical reconstruction from a point cloud |
US9277872B2 (en) | 2011-01-13 | 2016-03-08 | Rhythmia Medical, Inc. | Electroanatomical mapping |
US9282910B2 (en) | 2011-05-02 | 2016-03-15 | The Regents Of The University Of California | System and method for targeting heart rhythm disorders using shaped ablation |
US9282915B2 (en) | 2011-11-29 | 2016-03-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and system for generating and/or repairing a surface model of a geometric structure |
US9289147B2 (en) | 2010-05-11 | 2016-03-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-directional flexible wire harness for medical devices |
US9302099B2 (en) | 2014-05-05 | 2016-04-05 | Pacesetter, Inc. | System and method for evaluating lead stability of an implantable medical device |
US9301713B2 (en) | 2013-11-19 | 2016-04-05 | Pacesetter, Inc. | Method and system to assess mechanical dyssynchrony based on motion data collected by a navigation system |
US9301810B2 (en) | 2008-03-27 | 2016-04-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method of automatic detection of obstructions for a robotic catheter system |
US9314191B2 (en) | 2013-11-19 | 2016-04-19 | Pacesetter, Inc. | Method and system to measure cardiac motion using a cardiovascular navigation system |
US9314594B2 (en) | 2008-03-27 | 2016-04-19 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter manipulator assembly |
WO2016061387A1 (en) | 2014-10-15 | 2016-04-21 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for generating integrated substrate maps for cardiac arrhythmias |
WO2016061384A1 (en) | 2014-10-15 | 2016-04-21 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for mapping local conduction velocity |
US9330497B2 (en) | 2011-08-12 | 2016-05-03 | St. Jude Medical, Atrial Fibrillation Division, Inc. | User interface devices for electrophysiology lab diagnostic and therapeutic equipment |
US9326702B2 (en) | 2013-03-15 | 2016-05-03 | Mediguide Ltd. | Medical device navigation system |
US9332915B2 (en) | 2013-03-15 | 2016-05-10 | The Regents Of The University Of California | System and method to identify sources associated with biological rhythm disorders |
WO2016081130A1 (en) | 2014-11-18 | 2016-05-26 | St. Jude Medical, Cardiology Division, Inc. | Method and system for generating a patch surface model of a geometric structure |
US9380940B2 (en) | 2014-05-05 | 2016-07-05 | Pacesetter, Inc. | Method and system for displaying a three dimensional visualization of cardiac motion |
US9392948B2 (en) | 2011-12-09 | 2016-07-19 | The Regents Of The University Of California | System and method of identifying sources for biological rhythms |
WO2016128839A1 (en) | 2015-02-13 | 2016-08-18 | St. Jude Medical International Holding S.A.R.L. | Tracking-based 3d model enhancement |
US9439736B2 (en) | 2009-07-22 | 2016-09-13 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for controlling a remote medical device guidance system in three-dimensions using gestures |
US9445772B2 (en) | 2007-12-31 | 2016-09-20 | St. Jude Medical, Atrial Fibrillatin Division, Inc. | Reduced radiation fluoroscopic system |
US9468364B2 (en) | 2008-11-14 | 2016-10-18 | Intuitive Surgical Operations, Inc. | Intravascular catheter with hood and image processing systems |
US9492226B2 (en) | 2005-12-06 | 2016-11-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Graphical user interface for real-time RF lesion depth display |
US9498143B2 (en) | 2013-08-22 | 2016-11-22 | Aftx, Inc. | Methods, systems, and apparatus for identification and characterization of rotors associated with atrial fibrillation |
US9504398B2 (en) | 2002-08-24 | 2016-11-29 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Methods and apparatus for locating the fossa ovalis and performing transseptal puncture |
US9510772B2 (en) | 2012-04-10 | 2016-12-06 | Cardionxt, Inc. | System and method for localizing medical instruments during cardiovascular medical procedures |
US9510732B2 (en) | 2005-10-25 | 2016-12-06 | Intuitive Surgical Operations, Inc. | Methods and apparatus for efficient purging |
WO2016196047A1 (en) | 2015-06-03 | 2016-12-08 | St. Jude Medical, Cardiology Division, Inc. | Aligning a cardiac model |
US20160367168A1 (en) | 2015-06-19 | 2016-12-22 | St. Jude Medical, Cardiology Division, Inc. | Electromagnetic dynamic registration for device navigation |
US9547752B2 (en) | 2010-12-31 | 2017-01-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Automated catheter guidance system |
US9549689B2 (en) | 2007-03-09 | 2017-01-24 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for correction of inhomogeneous fields |
WO2017017659A1 (en) | 2015-07-30 | 2017-02-02 | St. Jude Medical International Holding S.A R.L. | Roll-sensing sensor assembly |
US9566119B2 (en) | 2004-05-28 | 2017-02-14 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for automated therapy delivery |
US9572620B2 (en) | 2010-12-29 | 2017-02-21 | Kyungmoo Ryu | System and method for treating arrhythmias in the heart using information obtained from heart wall motion |
US9585588B2 (en) | 2014-06-03 | 2017-03-07 | Boston Scientific Scimed, Inc. | Electrode assembly having an atraumatic distal tip |
WO2017040581A1 (en) | 2015-09-02 | 2017-03-09 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for identifying and mapping cardiac activation wavefronts |
US9592100B2 (en) | 2007-12-31 | 2017-03-14 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for encoding catheters with markers for identifying with imaging systems |
WO2017062250A1 (en) | 2015-10-06 | 2017-04-13 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for displaying electrophysiological lesions |
US9636032B2 (en) | 2013-05-06 | 2017-05-02 | Boston Scientific Scimed Inc. | Persistent display of nearest beat characteristics during real-time or play-back electrophysiology data visualization |
WO2017087740A1 (en) | 2015-11-20 | 2017-05-26 | St. Jude Medical, Cardiology Division, Inc. | Multi-electrode ablator tip having dual-mode, omni-directional feedback capabilities |
US9675266B2 (en) | 2010-12-30 | 2017-06-13 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for diagnosing arrhythmias and directing catheter therapies |
US9687166B2 (en) | 2013-10-14 | 2017-06-27 | Boston Scientific Scimed, Inc. | High resolution cardiac mapping electrode array catheter |
US9700372B2 (en) | 2002-07-01 | 2017-07-11 | Recor Medical, Inc. | Intraluminal methods of ablating nerve tissue |
US9700233B2 (en) | 2014-05-05 | 2017-07-11 | Pacesetter, Inc. | Method and system to equalizing cardiac cycle length between map points |
US9717478B2 (en) | 2010-12-27 | 2017-08-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Refinement of an anatomical model using ultrasound |
WO2017130135A1 (en) | 2016-01-26 | 2017-08-03 | St. Jude Medical International Holding S.A R.L. | Magnetic field distortion detection and correction in a magnetic localization system |
WO2017142850A1 (en) | 2016-02-16 | 2017-08-24 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for electrophysiology mapping using medical images |
US9763591B2 (en) | 2014-05-05 | 2017-09-19 | Pacesetter, Inc. | Method and system to subdivide a mapping area for mechanical activation analysis |
WO2017192453A1 (en) | 2016-05-03 | 2017-11-09 | St. Jude Medical, Cardiology Division, Inc. | Lesion prediction based in part on tissue characterization |
US9814522B2 (en) | 2010-04-06 | 2017-11-14 | Intuitive Surgical Operations, Inc. | Apparatus and methods for ablation efficacy |
US9814406B2 (en) | 2013-11-19 | 2017-11-14 | Pacesetter, Inc. | Method and system to identify motion data associated with consistent electrical and mechanical behavior for a region of interest |
EP3243477A1 (en) | 2013-03-08 | 2017-11-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Medical device positioner for remote catheter guidance systems |
US9848795B2 (en) | 2014-06-04 | 2017-12-26 | Boston Scientific Scimed Inc. | Electrode assembly |
US9861823B2 (en) | 2014-05-05 | 2018-01-09 | Pacesetter, Inc. | Cardiac resynchronization system and method |
US9867556B2 (en) | 2014-02-07 | 2018-01-16 | St. Jude Medical, Cardiology Division, Inc. | System and method for assessing dimensions and eccentricity of valve annulus for trans-catheter valve implantation |
WO2018013341A1 (en) | 2016-07-15 | 2018-01-18 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for generating smoothed images of an elongate medical device |
US9895076B2 (en) | 2014-05-05 | 2018-02-20 | Pacesetter, Inc. | Method and system to determine cardiac cycle length in connection with cardiac mapping |
US9901303B2 (en) | 2011-04-14 | 2018-02-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for registration of multiple navigation systems to a common coordinate frame |
WO2018037372A1 (en) | 2016-08-24 | 2018-03-01 | St. Jude Medical International Holding S.À R.L. | Composite planarity member with integrated tracking sensors |
US9918787B2 (en) | 2010-05-05 | 2018-03-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Monitoring, managing and/or protecting system and method for non-targeted tissue |
US9918649B2 (en) | 2013-05-14 | 2018-03-20 | Boston Scientific Scimed Inc. | Representation and identification of activity patterns during electro-physiology mapping using vector fields |
US9918788B2 (en) | 2012-10-31 | 2018-03-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Electrogram-based ablation control |
US9962224B2 (en) | 2007-04-04 | 2018-05-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigated catheter with improved fluid flow |
WO2018089172A1 (en) | 2016-11-11 | 2018-05-17 | St. Jude Medical, Cardiology Division, Inc. | System and method for generating electrophysiology maps |
WO2018094063A1 (en) | 2016-11-21 | 2018-05-24 | St. Jude Medical, Cardiology Division, Inc. | System and method for generating electrophysiology maps |
WO2018102376A1 (en) | 2016-11-29 | 2018-06-07 | St. Jude Medical, Cardiology Division, Inc. | Electroporation systems and catheters for electroporation systems |
US10004388B2 (en) | 2006-09-01 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Coronary sinus cannulation |
WO2018132543A1 (en) | 2017-01-13 | 2018-07-19 | St. Jude Medical, Cardiology Division, Inc. | System and method for generating premature ventricular contraction electrophysiology maps |
WO2018136733A1 (en) | 2017-01-19 | 2018-07-26 | St. Jude Medical, Cardiology Division, Inc. | System and method for re-registration of localization system after shift/drift |
US10034637B2 (en) | 2007-12-28 | 2018-07-31 | Boston Scientific Scimed, Inc. | Cardiac mapping catheter |
WO2018148532A1 (en) | 2017-02-10 | 2018-08-16 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for determining prevalence of cardiac phenomena |
WO2018148525A1 (en) | 2017-02-10 | 2018-08-16 | St. Jude Medical, Cardiology Division, Inc. | Determining ablation location using probabilistic decision-making |
WO2018152136A1 (en) | 2017-02-14 | 2018-08-23 | St. Jude Medical, Cardiology Division, Inc. | System and apparatus for detecting catheters relative to introducers |
US10064540B2 (en) | 2005-02-02 | 2018-09-04 | Intuitive Surgical Operations, Inc. | Visualization apparatus for transseptal access |
WO2018160631A1 (en) | 2017-03-02 | 2018-09-07 | St. Jude Medical, Cardiology Division, Inc. | System and method for differentiation of adipose tissue from scar tissue during electrophysiological mapping |
US10070772B2 (en) | 2006-09-01 | 2018-09-11 | Intuitive Surgical Operations, Inc. | Precision control systems for tissue visualization and manipulation assemblies |
US10070927B2 (en) | 2011-05-02 | 2018-09-11 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Sensor assembly tethered within catheter wall |
US10082395B2 (en) | 2012-10-03 | 2018-09-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Scaling of electrical impedance-based navigation space using inter-electrode spacing |
WO2018191686A1 (en) | 2017-04-14 | 2018-10-18 | St. Jude Medical, Cardiology Division, Inc. | Orientation independent sensing, mapping, interface and analysis systems and methods |
WO2018191113A1 (en) | 2017-04-10 | 2018-10-18 | St. Jude Medical, Cardiology Division, Inc. | Electroporation system and method of preconditioning tissue for electroporation therapy |
WO2018191149A1 (en) | 2017-04-10 | 2018-10-18 | St. Jude Medical, Cardiology Division, Inc. | Electroporation system and method of energizing a catheter |
US10105107B2 (en) | 2015-01-08 | 2018-10-23 | St. Jude Medical International Holding S.À R.L. | Medical system having combined and synergized data output from multiple independent inputs |
US10111705B2 (en) | 2008-10-10 | 2018-10-30 | Intuitive Surgical Operations, Inc. | Integral electrode placement and connection systems |
WO2018204375A1 (en) | 2017-05-04 | 2018-11-08 | St. Jude Medical, Cardiology Division, Inc. | System and method for determining ablation parameters |
WO2018208795A1 (en) | 2017-05-12 | 2018-11-15 | St. Jude Medical, Cardiology Division, Inc. | Electroporation systems and catheters for electroporation systems |
WO2018212996A1 (en) | 2017-05-17 | 2018-11-22 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping local activation times |
US10143374B2 (en) | 2015-09-07 | 2018-12-04 | Ablacon Inc. | Systems, devices, components and methods for detecting the locations of sources of cardiac rhythm disorders in a patient's heart |
WO2019009967A1 (en) | 2017-07-07 | 2019-01-10 | St. Jude Medical, Cardiology Division, Inc. | System and method for electrophysiological mapping |
WO2019018182A1 (en) | 2017-07-19 | 2019-01-24 | St. Jude Medical, Cardiology Division, Inc. | System and method for electrophysiological mapping |
US10188314B2 (en) | 2013-03-05 | 2019-01-29 | St. Jude Medical, Cardiology Division, Inc. | System and method for detecting sheathing and unsheathing of localization elements |
US10194885B2 (en) | 2011-12-30 | 2019-02-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Automatic monitoring for and detection of tissue pop |
US10194994B2 (en) | 2015-05-12 | 2019-02-05 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for orientation independent sensing |
WO2019035071A1 (en) | 2017-08-18 | 2019-02-21 | St. Jude Medical, Cardiology Division, Inc. | Medical catheters, systems including medical catheters, and methods of positioning medical catheters |
US10227708B2 (en) | 2014-11-18 | 2019-03-12 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for cleaning medical device electrodes |
WO2019055115A1 (en) | 2017-09-18 | 2019-03-21 | St. Jude Medical, Cardiology Division, Inc. | System and method for sorting electrophysiological signals from multi-dimensional catheters |
US10238308B2 (en) | 2015-10-06 | 2019-03-26 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for generating electrophysiological maps |
US10238350B2 (en) | 2015-05-08 | 2019-03-26 | St. Jude Medical, Cardiology Division, Inc. | System and method for real-time electrophysiological mapping |
US10238348B2 (en) | 2013-02-22 | 2019-03-26 | St Jude Medical International Holding S.À R.L. | Representative emulation of organ behavior |
US10258285B2 (en) | 2004-05-28 | 2019-04-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for automated creation of ablation lesions |
US10271757B2 (en) | 2015-09-26 | 2019-04-30 | Boston Scientific Scimed Inc. | Multiple rhythm template monitoring |
US10271758B2 (en) | 2015-09-26 | 2019-04-30 | Boston Scientific Scimed, Inc. | Intracardiac EGM signals for beat matching and acceptance |
WO2019083999A1 (en) | 2017-10-24 | 2019-05-02 | St. Jude Medical, Cardiology Division, Inc. | System for measuring impedance between a plurality of electrodes of a medical device |
US10314497B2 (en) | 2011-03-10 | 2019-06-11 | Acutus Medical Inc. | Device and method for the geometric determination of electrical dipole densities on the cardiac wall |
EP3498156A1 (en) | 2013-12-20 | 2019-06-19 | St. Jude Medical, Cardiology Division, Inc. | Coaxial electrode catheters for extracting electrophysiologic parameters |
WO2019126260A1 (en) | 2017-12-19 | 2019-06-27 | St. Jude Medical, Cardiology Division, Inc. | Methods of assessing contact between an electrode and tissue using complex impedance measurements |
US10335131B2 (en) | 2006-10-23 | 2019-07-02 | Intuitive Surgical Operations, Inc. | Methods for preventing tissue migration |
WO2019135884A1 (en) | 2018-01-02 | 2019-07-11 | St. Jude Medical, Cardiology Division, Inc. | Electroporation catheter including a distal hoop |
US10356001B1 (en) | 2018-05-09 | 2019-07-16 | Biosig Technologies, Inc. | Systems and methods to visually align signals using delay |
US10349856B2 (en) | 2015-10-07 | 2019-07-16 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for mapping cardiac restitution |
WO2019139884A1 (en) | 2018-01-09 | 2019-07-18 | St. Jude Medical, Cardiology Division, Inc. | System and method for sorting electrophysiological signals on virtual catheters |
US10362963B2 (en) | 2011-04-14 | 2019-07-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Correction of shift and drift in impedance-based medical device navigation using magnetic field information |
WO2019152420A1 (en) | 2018-01-31 | 2019-08-08 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for resolving catheter rendering issues |
WO2019156755A1 (en) | 2018-02-12 | 2019-08-15 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping cardiac muscle fiber orientation |
US10383542B2 (en) | 2013-03-14 | 2019-08-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Device, system, and method for intracardiac diagnosis or therapy with localization |
US10398338B2 (en) | 2017-10-06 | 2019-09-03 | Florida Atlantic University Board Of Trustees | Systems and methods for guiding a multi-pole sensor catheter to locate cardiac arrhythmia sources |
US10398326B2 (en) | 2013-03-15 | 2019-09-03 | The Regents Of The University Of California | System and method of identifying sources associated with biological rhythm disorders |
US10398346B2 (en) * | 2017-05-15 | 2019-09-03 | Florida Atlantic University Board Of Trustees | Systems and methods for localizing signal resources using multi-pole sensors |
US10398331B2 (en) | 2015-12-04 | 2019-09-03 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for statistically analyzing electrograms for local abnormal ventricular activities and mapping the same |
US10405766B2 (en) | 2015-09-26 | 2019-09-10 | Boston Scientific Scimed, Inc. | Method of exploring or mapping internal cardiac structures |
WO2019173288A1 (en) | 2018-03-06 | 2019-09-12 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for transmural tissue mapping |
WO2019173309A1 (en) | 2018-03-06 | 2019-09-12 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for limiting arcing in electroporation systems |
US10413206B2 (en) | 2006-08-03 | 2019-09-17 | Christoph Scharf | Method and device for determining and presenting surface charge and dipole densities on cardiac walls |
US10434319B2 (en) | 2009-10-09 | 2019-10-08 | The Regents Of The University Of California | System and method of identifying sources associated with biological rhythm disorders |
US10433929B2 (en) | 2007-03-09 | 2019-10-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for local deformable registration of a catheter navigation system to image data or a model |
US10433903B2 (en) | 2007-04-04 | 2019-10-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigated catheter |
US10441136B2 (en) | 2006-12-18 | 2019-10-15 | Intuitive Surgical Operations, Inc. | Systems and methods for unobstructed visualization and ablation |
WO2019209626A1 (en) | 2018-04-26 | 2019-10-31 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping arrhythmic driver sites |
US10463267B2 (en) | 2008-01-17 | 2019-11-05 | Christoph Scharf | Device and method for the geometric determination of electrical dipole densities on the cardiac wall |
WO2019232256A1 (en) | 2018-05-31 | 2019-12-05 | St. Jude Medical, Cardiology Division, Inc. | Catheter handle with compliant circuit |
WO2019234687A2 (en) | 2018-06-07 | 2019-12-12 | St. Jude Medical, Cardiology Division, Inc. | Sensing, mapping, and therapy catheter with multiple catheterlets |
US10506948B2 (en) | 2011-07-05 | 2019-12-17 | Cardioinsight Technologies, Inc. | Localization for electrocardiographic mapping |
WO2019241079A1 (en) | 2018-06-14 | 2019-12-19 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping cardiac activity |
US10512419B2 (en) | 2007-03-09 | 2019-12-24 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Respiratory-based control of medical procedure |
WO2020037032A1 (en) | 2018-08-17 | 2020-02-20 | St. Jude Medical, Cardiology Division, Inc. | Optical balloon catheters and methods for mapping and ablation |
WO2020039392A2 (en) | 2018-08-23 | 2020-02-27 | St. Jude Medical, Cardiology Division, Inc. | Curved high density electrode mapping catheter |
US20200069367A1 (en) * | 2018-09-02 | 2020-03-05 | EPQuant LLC | Systems and methods for cardiac mapping and vector ablation with a multifunction patch array |
US10593234B2 (en) | 2015-05-12 | 2020-03-17 | Acutus Medical, Inc. | Cardiac virtualization test tank and testing system and method |
WO2020053741A1 (en) | 2018-09-11 | 2020-03-19 | St. Jude Medical, Cardiology Division, Inc. | Unibody intravascular catheter shaft |
US10595937B2 (en) | 2011-12-29 | 2020-03-24 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System for optimized coupling of ablation catheters to body tissues and evaluation of lesions formed by the catheters |
WO2020065587A2 (en) | 2018-09-27 | 2020-04-02 | St. Jude Medical, Cardiology Division, Inc. | Uniform mapping balloon |
WO2020065500A1 (en) | 2018-09-28 | 2020-04-02 | St. Jude Medical, Cardiology Division, Inc. | Intravascular catheter tip electrode assemblies |
US10610127B2 (en) | 2012-04-23 | 2020-04-07 | St. Jude Medical, Atrial Fibrilation Division, Inc. | Electrophysiology laboratory system for use with magnetic resonance imaging systems |
US10621790B2 (en) | 2015-09-26 | 2020-04-14 | Boston Scientific Scimed Inc. | Systems and methods for anatomical shell editing |
US10631913B2 (en) | 2014-12-31 | 2020-04-28 | St. Jude Medical, Cardiology Division, Inc. | Filter circuit for electrophysiology system |
WO2020096689A1 (en) | 2018-09-10 | 2020-05-14 | St. Jude Medical, Cardiology Division, Inc. | System and method for displaying electrophysiological signals from multi-dimensional catheters |
WO2020095250A1 (en) | 2018-11-08 | 2020-05-14 | St. Jude Medical, Cardiology Division, Inc. | Printed sensor coil |
WO2020096810A1 (en) | 2018-11-07 | 2020-05-14 | St. Jude Medical International Holding S.à.r.I. | Method for medical device localization based on magnetic and impedance sensors |
US10653318B2 (en) | 2015-05-13 | 2020-05-19 | Acutus Medical, Inc. | Localization system and method useful in the acquisition and analysis of cardiac information |
WO2020104679A2 (en) | 2018-11-22 | 2020-05-28 | Afreeze Gmbh | Ablation device with adjustable ablation applicator size, ablation system, and method of operating an ablation device |
US10667753B2 (en) | 2012-08-31 | 2020-06-02 | Acutus Medical, Inc. | Catheter system and methods of medical uses of same, including diagnostic and treatment uses for the heart |
WO2020142165A1 (en) | 2019-01-03 | 2020-07-09 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping cardiac activation wavefronts |
US10716672B2 (en) | 2015-04-07 | 2020-07-21 | St. Jude Medical, Cardiology Division, Inc. | System and method for intraprocedural assessment of geometry and compliance of valve annulus for trans-catheter valve implantation |
EP3693049A1 (en) | 2019-02-11 | 2020-08-12 | St. Jude Medical, Cardiology Division, Inc. | Catheter tip assembly for a catheter shaft |
WO2020172361A1 (en) | 2019-02-22 | 2020-08-27 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for modifying geometry surface models using electrophysiology measurements |
US10758238B2 (en) | 2007-11-21 | 2020-09-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and systems for occluding vessels during cardiac ablation including optional electroanatomical guidance |
US10758144B2 (en) | 2015-08-20 | 2020-09-01 | Boston Scientific Scimed Inc. | Flexible electrode for cardiac sensing and method for making |
US10758147B2 (en) | 2016-03-01 | 2020-09-01 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for mapping cardiac activity |
WO2020176731A1 (en) | 2019-02-28 | 2020-09-03 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for displaying ep maps using confidence metrics |
WO2020181006A1 (en) | 2019-03-05 | 2020-09-10 | St. Jude Medical, Cardiology Division, Inc. | Methods and system for correcting electrode positions of an elongated medical device |
WO2020185339A1 (en) | 2019-03-12 | 2020-09-17 | St. Jude Medical, Cardiology Division, Inc. | System and method for cardiac mapping |
WO2020183438A1 (en) | 2019-03-14 | 2020-09-17 | St. Jude Medical, Cardiology Division, Inc. | Splittable sheath |
WO2020185503A1 (en) | 2019-03-08 | 2020-09-17 | St Jude Medical, Cardiology Division, Inc. | High density electrode catheters |
WO2020194212A1 (en) | 2019-03-26 | 2020-10-01 | St. Jude Medical International Holding S.À R.L. | Off-axis magnetic position sensor assembly |
EP3718496A1 (en) * | 2019-04-03 | 2020-10-07 | Biosense Webster (Israel) Ltd. | Catheter motion trace visualization |
WO2020205128A1 (en) | 2019-04-04 | 2020-10-08 | St. Jude Medical Cardiology Division, Inc. | System and method for cardiac mapping |
US10799148B2 (en) | 2015-05-07 | 2020-10-13 | St. Jude Medical, Cardiology Division, Inc. | System and method for detecting sheathing and unsheathing of localization elements |
WO2020212916A1 (en) | 2019-04-19 | 2020-10-22 | St. Jude Medical, Cardiology Division, Inc. | Magnetic field distortion detection and correction in a magnetic localization system |
WO2020212918A1 (en) | 2019-04-19 | 2020-10-22 | St. Jude Medical, Cardiology Division, Inc. | Magnetic reference sensor with reduced sensitivity to magnetic distortions |
WO2020214439A1 (en) | 2019-04-18 | 2020-10-22 | St. Jude Medical, Cardiology Division, Inc. | System and method for cardiac mapping |
WO2020219513A1 (en) | 2019-04-24 | 2020-10-29 | St. Jude Medical, Cardiology Division, Inc. | System, method, and apparatus for visualizing cardiac activation |
WO2020227469A1 (en) | 2019-05-09 | 2020-11-12 | St. Jude Medical, Cardiology Division, Inc. | System and method for detection and mapping of near field conduction in scar tissue |
WO2020242940A1 (en) | 2019-05-24 | 2020-12-03 | St. Jude Medical, Cardiology Division, Inc. | System and method for cardiac mapping |
US10863945B2 (en) | 2004-05-28 | 2020-12-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system with contact sensing feature |
WO2020251857A1 (en) | 2019-06-13 | 2020-12-17 | St. Jude Medical, Cardiology Division, Inc. | Electrode basket having high-density circumferential band of electrodes |
WO2021001772A1 (en) | 2019-07-02 | 2021-01-07 | St. Jude Medical, Cardiology Division, Inc. | Reduced impedance electrode design |
US10888235B2 (en) | 2015-01-07 | 2021-01-12 | St. Jude Medical, Cardiology Division, Inc. | System, method, and apparatus for visualizing cardiac timing information using animations |
WO2021011685A1 (en) | 2019-07-18 | 2021-01-21 | St. Jude Medical, Cardiology Division, Inc. | System and method for noise tolerant cardiac localization, navigation and mapping |
US10905494B2 (en) | 2011-12-29 | 2021-02-02 | St. Jude Medical, Atrial Fibrillation Division, Inc | Flexible conductive polymer based conformable device and method to create linear endocardial lesions |
US10918307B2 (en) | 2011-09-13 | 2021-02-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter navigation using impedance and magnetic field measurements |
US20210085425A1 (en) * | 2017-05-09 | 2021-03-25 | Boston Scientific Scimed, Inc. | Operating room devices, methods, and systems |
WO2021055320A1 (en) | 2019-09-19 | 2021-03-25 | St. Jude Medical, Cardiology Division, Inc. | Electrode loop assembly including shaped support tube and method of assembling same |
WO2021062074A1 (en) | 2019-09-27 | 2021-04-01 | St. Jude Medical, Cardiology Division, Inc. | Irrigated catheter system including fluid degassing apparatus and methods of using same |
US10967147B2 (en) | 2018-06-28 | 2021-04-06 | St. Jude Medical International Holding S.À R.L. | Reliability determination of electrode location data |
WO2021071692A1 (en) | 2019-10-07 | 2021-04-15 | St. Jude Medical, Cardiology Division, Inc. | Catheter including wire management cap and methods of assembling same |
WO2021086560A1 (en) | 2019-10-31 | 2021-05-06 | St. Jude Medical, Cardiology Division, Inc. | Catheter including deflectable shaft and methods of assembling same |
WO2021113463A1 (en) | 2019-12-03 | 2021-06-10 | St. Jude Medical, Cardiology Division, Inc. | Electroporation system and method |
US20210174940A1 (en) * | 2018-07-04 | 2021-06-10 | Navix International Limited | Systems and methods for reconstruction of medical images |
US11045109B2 (en) | 2016-10-26 | 2021-06-29 | St. Jude Medical, Cardiology Division, Inc. | Navigational electrode with magnetic tracking coil |
US11071491B2 (en) | 2015-10-07 | 2021-07-27 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for mapping cardiac repolarization |
US11071486B2 (en) | 2018-06-01 | 2021-07-27 | St. Jude Medical, Cardiology Division, Inc. | System and method for generating activation timing maps |
WO2021156673A1 (en) | 2020-02-06 | 2021-08-12 | St. Jude Medical, Cardiology Division, Inc. | Hybrid approach to distortion detection |
WO2021161093A1 (en) | 2020-02-10 | 2021-08-19 | St. Jude Medical, Cardiology Division, Inc. | Respiration compensation |
US11103177B2 (en) | 2018-04-18 | 2021-08-31 | St, Jude Medical, Cardiology Division, Inc. | System and method for mapping cardiac activity |
WO2021188182A1 (en) | 2020-03-16 | 2021-09-23 | St. Jude Medical, Cardiology Division, Inc. | System, method, and apparatus for mapping local activation times |
US11141583B2 (en) | 2015-10-12 | 2021-10-12 | St. Jude Medical, Cardiology Division, Inc. | Multi-layer body surface electrodes |
WO2021214708A1 (en) | 2020-04-23 | 2021-10-28 | St. Jude Medical, Cardiology Division, Inc. | Determination of catheter shape |
WO2021216589A1 (en) | 2020-04-21 | 2021-10-28 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping cardiac activity |
WO2021221892A1 (en) | 2020-04-29 | 2021-11-04 | St. Jude Medical, Cardiology Division, Inc. | Amplifier interface for multi-electrode catheter |
WO2021225717A1 (en) | 2020-05-08 | 2021-11-11 | St. Jude Medical, Cardiology Division, Inc. | Methods for forming a spline using a flexible circuit assembly and electrode assemblies including same |
WO2021236310A1 (en) | 2020-05-19 | 2021-11-25 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping electrophysiological activation |
WO2021236341A1 (en) | 2020-05-20 | 2021-11-25 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for monitoring return patch impedances |
WO2021247738A1 (en) | 2020-06-03 | 2021-12-09 | St. Jude Medical, Cardiology Division, Inc. | System for irreversible electroporation |
US11241165B2 (en) | 2017-12-05 | 2022-02-08 | St. Jude Medical International Holding S.À R.L. | Magnetic sensor for tracking the location of an object |
US11246658B2 (en) | 2016-10-04 | 2022-02-15 | St. Jude Medical, Cardiology Division, Inc. | Ablation catheter tip |
WO2022038546A1 (en) | 2020-08-18 | 2022-02-24 | St. Jude Medical, Cardiology Division, Inc. | High-density electrode catheters with magnetic position tracking |
US11298175B2 (en) | 2015-05-12 | 2022-04-12 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Asymmetric balanced waveform for AC cardiac irreversible electroporation |
US11331452B2 (en) | 2018-09-11 | 2022-05-17 | St. Jude Medical, Cardiology Division, Inc. | Steerable intravascular catheter with releasable locking mechanism |
US11344366B2 (en) | 2015-05-12 | 2022-05-31 | Acutus Medical, Inc. | Ultrasound sequencing system and method |
US11350986B2 (en) | 2015-03-31 | 2022-06-07 | St. Jude Medical, Cardiology Division, Inc. | High-thermal-sensitivity ablation catheters and catheter tips |
US11399759B2 (en) | 2016-05-03 | 2022-08-02 | Acutus Medical, Inc. | Cardiac mapping system with efficiency algorithm |
US11406250B2 (en) | 2005-02-02 | 2022-08-09 | Intuitive Surgical Operations, Inc. | Methods and apparatus for treatment of atrial fibrillation |
US11432740B2 (en) | 2018-06-28 | 2022-09-06 | St. Jude Medical, Cardiology Division, Inc. | Introducer sheath localization and visualization |
US11478152B2 (en) | 2005-02-02 | 2022-10-25 | Intuitive Surgical Operations, Inc. | Electrophysiology mapping and visualization system |
WO2022251163A1 (en) | 2021-05-25 | 2022-12-01 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for electroporation devices including basket and balloon configurations |
WO2022266043A1 (en) | 2021-06-14 | 2022-12-22 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for isolating wires in electroporation devices |
US11547492B2 (en) | 2018-11-07 | 2023-01-10 | St Jude Medical International Holding, Sa.R.L. | Mechanical modules of catheters for sensor fusion processes |
EP4115936A1 (en) | 2017-11-28 | 2023-01-11 | St. Jude Medical, Cardiology Division, Inc. | Lumen management catheter |
US11559240B2 (en) | 2019-09-06 | 2023-01-24 | St Jude Medical Cardiology Division, Inc | Methods and tools to merge mapping data acquired from multiple catheters |
EP4134031A2 (en) | 2021-08-12 | 2023-02-15 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for electroporation using asymmetric waveforms and waveforms with reduced burst duration |
WO2023028133A1 (en) | 2021-08-26 | 2023-03-02 | St. Jude Medical, Cardiology Division, Inc. | Method and system for generating respiration signals for use in electrophysiology procedures |
WO2023086778A1 (en) | 2021-11-12 | 2023-05-19 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for energizing electroporation catheters using quadripolar arrays |
WO2023086865A1 (en) | 2021-11-12 | 2023-05-19 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for energizing electroporation catheters |
WO2023114588A1 (en) | 2021-12-17 | 2023-06-22 | St. Jude Medical, Cardiology Division, Inc. | Method and system for visualizing ablation procedure data |
WO2023147319A1 (en) | 2022-01-28 | 2023-08-03 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for electroporation using waveforms that reduce electrical stimulation |
WO2023164001A1 (en) | 2022-02-23 | 2023-08-31 | St. Jude Medical, Cardiology Division, Inc. | High density catheter |
US11779732B2 (en) | 2016-11-21 | 2023-10-10 | St Jude Medical International Holding S.À R.L. | Medical device sensor |
WO2023205577A1 (en) | 2022-04-19 | 2023-10-26 | St. Jude Medical, Cardiology Division, Inc. | Systems for electroporation using arbitrary electrode addressing |
WO2024044205A1 (en) | 2022-08-23 | 2024-02-29 | St. Jude Medical, Cardiology Division, Inc. | System and method to selectively display mapping data based on electrode orientation relative to adjacent tissue |
US11918334B2 (en) | 2018-11-07 | 2024-03-05 | St Jude Medical International Holding, Sa.R.L. | Impedance transformation model for estimating catheter locations |
US11931157B2 (en) | 2014-03-25 | 2024-03-19 | Acutus Medical, Inc. | Cardiac analysis user interface system and method |
US11944389B2 (en) | 2015-06-19 | 2024-04-02 | St. Jude Medical, Cardiology Division, Inc. | Impedance shift and drift detection and correction |
WO2024072900A1 (en) | 2022-09-28 | 2024-04-04 | St. Jude Medical, Cardiology Division, Inc. | High density paddle catheter with distal coupler and distal electrode |
WO2024086033A1 (en) | 2022-10-17 | 2024-04-25 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for monitoring pulsed field ablation generator output |
WO2024107387A1 (en) | 2022-11-18 | 2024-05-23 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for catheters having combined mapping and ablation capabilities |
US11998287B1 (en) | 2019-03-18 | 2024-06-04 | Dopl Technologies Inc. | Platform for facilitating remote robotic medical procedures |
WO2024182047A1 (en) | 2023-02-27 | 2024-09-06 | St. Jude Medical, Cardiology Division, Inc. | High density flat balloon catheter |
WO2024182595A1 (en) | 2023-03-02 | 2024-09-06 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for automatic detection of phrenic nerve stimulation |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005005037B4 (en) * | 2005-02-03 | 2012-02-02 | Siemens Ag | Device for recording electrophysiological signals and for displaying the signals or signal information determined therefrom |
US8698844B1 (en) * | 2005-04-16 | 2014-04-15 | Apple Inc. | Processing cursor movements in a graphical user interface of a multimedia application |
EP1890590B1 (en) * | 2005-04-19 | 2015-02-25 | Philips Intellectual Property & Standards GmbH | System for measuring bioelectrical signals of a user |
US8155910B2 (en) | 2005-05-27 | 2012-04-10 | St. Jude Medical, Atrial Fibrillation Divison, Inc. | Robotically controlled catheter and method of its calibration |
US20070073151A1 (en) * | 2005-09-13 | 2007-03-29 | General Electric Company | Automated imaging and therapy system |
US8229545B2 (en) * | 2005-09-15 | 2012-07-24 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for mapping complex fractionated electrogram information |
US8038625B2 (en) | 2005-09-15 | 2011-10-18 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for three-dimensional mapping of electrophysiology information |
US7885707B2 (en) * | 2005-09-15 | 2011-02-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method of scaling navigation signals to account for impedance drift in tissue |
US7365745B2 (en) * | 2005-09-15 | 2008-04-29 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method of rendering a surface from a solid graphical image |
US20070071295A1 (en) * | 2005-09-27 | 2007-03-29 | Siemens Medical Solutions Usa, Inc. | Orientation-based assessment of cardiac synchrony in medical imaging |
WO2007111542A1 (en) | 2006-03-27 | 2007-10-04 | St. Jude Medical Ab | Medical system for monitoring and localisation of electrode leads in the heart |
US7988639B2 (en) * | 2006-05-17 | 2011-08-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for complex geometry modeling of anatomy using multiple surface models |
US7774051B2 (en) * | 2006-05-17 | 2010-08-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for mapping electrophysiology information onto complex geometry |
CN101443792A (en) * | 2006-05-17 | 2009-05-27 | 圣朱德医疗有限公司房颤分公司 | System and method for mapping electrophysiology information onto complex geometry |
EP2052362B1 (en) * | 2006-08-08 | 2018-10-17 | Koninklijke Philips N.V. | Registration of electroanatomical mapping points to corresponding image data |
US8660635B2 (en) | 2006-09-29 | 2014-02-25 | Medtronic, Inc. | Method and apparatus for optimizing a computer assisted surgical procedure |
US9585586B2 (en) | 2006-12-29 | 2017-03-07 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Navigational reference dislodgement detection method and system |
US9220439B2 (en) | 2006-12-29 | 2015-12-29 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Navigational reference dislodgement detection method and system |
US7894871B2 (en) * | 2006-12-29 | 2011-02-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Filtering method for surface modeling |
US7825925B2 (en) * | 2007-03-09 | 2010-11-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and system for repairing triangulated surface meshes |
US8503744B2 (en) * | 2007-11-19 | 2013-08-06 | Dekel Shlomi | Dynamic method and system for representing a three dimensional object navigated from within |
US8359092B2 (en) * | 2007-11-29 | 2013-01-22 | Biosense Webster, Inc. | Determining locations of ganglia and plexi in the heart using complex fractionated atrial electrogram |
EP2197347B1 (en) * | 2007-12-17 | 2015-06-24 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Systems and methods for modeling both unobstructed and obstructed portions of a catheter |
US8000941B2 (en) * | 2007-12-30 | 2011-08-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for surface reconstruction from an unstructured point set |
WO2009129475A1 (en) * | 2008-04-18 | 2009-10-22 | Medtronic, Inc. | Method and apparatus for mapping a structure |
CN102056537B (en) * | 2008-04-18 | 2014-12-10 | 美敦力公司 | Method and apparatus for mapping a structure |
US20100030312A1 (en) * | 2008-07-31 | 2010-02-04 | Xiaonan Shen | Method and apparatus for lead length determination |
US8700129B2 (en) | 2008-12-31 | 2014-04-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Devices and methods for catheter localization |
CN101836862B (en) | 2009-03-16 | 2014-03-26 | 上海微创医疗器械(集团)有限公司 | Three-dimensional mapping method of human chamber inner wall and equipment and system thereof |
WO2010129095A2 (en) * | 2009-05-08 | 2010-11-11 | Rhythmia Medical, Inc. | Impedance based anatomy generation |
US9151096B2 (en) * | 2009-09-20 | 2015-10-06 | Hanchett Entry Systems, Inc. | Access control device for a door |
US8845631B2 (en) * | 2010-04-28 | 2014-09-30 | Medtronic Ablation Frontiers Llc | Systems and methods of performing medical procedures |
US20130137963A1 (en) | 2011-11-29 | 2013-05-30 | Eric S. Olson | System and method for automatically initializing or initiating a motion compensation algorithm |
EP3517052A1 (en) * | 2012-10-23 | 2019-07-31 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
US20140125653A1 (en) * | 2012-11-06 | 2014-05-08 | Biosense Webster (Israel), Ltd. | Combining three-dimensional surfaces |
CA2899311C (en) | 2013-02-08 | 2021-05-11 | Acutus Medical, Inc. | Expandable catheter assembly with flexible printed circuit board (pcb) electrical pathways |
US10828011B2 (en) | 2013-09-13 | 2020-11-10 | Acutus Medical, Inc. | Devices and methods for determination of electrical dipole densities on a cardiac surface |
JP6203951B2 (en) | 2013-10-31 | 2017-09-27 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Medical device for high resolution mapping using local matching |
US10076258B2 (en) | 2013-11-01 | 2018-09-18 | Boston Scientific Scimed, Inc. | Cardiac mapping using latency interpolation |
CN106132334A (en) * | 2014-03-06 | 2016-11-16 | 波士顿科学医学有限公司 | The medical treatment device of mapping heart tissue and the method for display mapping data |
WO2015134276A1 (en) | 2014-03-07 | 2015-09-11 | Boston Scientific Scimed, Inc. | Medical devices for mapping cardiac tissue |
WO2015138167A1 (en) | 2014-03-11 | 2015-09-17 | Boston Scientific Scimed, Inc. | Medical devices for mapping cardiac tissue |
CN107148552B (en) | 2014-09-26 | 2020-09-18 | 科迪影技术股份有限公司 | Positioning of objects within a conductive volume |
CN105640543A (en) * | 2016-03-14 | 2016-06-08 | 恩识医疗科技(上海)有限公司 | Epicardium electrocardiogram imaging method and imaging system thereof |
JP2020516327A (en) * | 2016-11-25 | 2020-06-11 | キナプティック・エルエルシー | Haptic human/mechanical interface and wearable electronics methods and apparatus |
WO2018146613A2 (en) * | 2017-02-09 | 2018-08-16 | Navix International Limited | Intrabody probe navigation by electrical self-sensing |
US11471067B2 (en) | 2017-01-12 | 2022-10-18 | Navix International Limited | Intrabody probe navigation by electrical self-sensing |
US11311204B2 (en) | 2017-01-12 | 2022-04-26 | Navix International Limited | Systems and methods for reconstruction of intrabody electrical readings to anatomical structure |
US11730395B2 (en) | 2017-01-12 | 2023-08-22 | Navix International Limited | Reconstruction of an anatomical structure from intrabody measurements |
US20200163583A1 (en) | 2018-11-23 | 2020-05-28 | Biosense Webster (Israel) Ltd. | Compensating for artifacts while tracking an intrabody probe |
WO2021084476A1 (en) * | 2019-10-30 | 2021-05-06 | Navix International Limited | Image-guided annuloplasty |
Citations (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3954098A (en) | 1975-01-31 | 1976-05-04 | Dick Donald E | Synchronized multiple image tomographic cardiography |
US4173228A (en) | 1977-05-16 | 1979-11-06 | Applied Medical Devices | Catheter locating device |
US4304239A (en) | 1980-03-07 | 1981-12-08 | The Kendall Company | Esophageal probe with balloon electrode |
US4380237A (en) | 1979-12-03 | 1983-04-19 | Massachusetts General Hospital | Apparatus for making cardiac output conductivity measurements |
US4431005A (en) | 1981-05-07 | 1984-02-14 | Mccormick Laboratories, Inc. | Method of and apparatus for determining very accurately the position of a device inside biological tissue |
US4444195A (en) | 1981-11-02 | 1984-04-24 | Cordis Corporation | Cardiac lead having multiple ring electrodes |
US4478223A (en) | 1982-12-06 | 1984-10-23 | Allor Douglas R | Three dimensional electrocardiograph |
US4522212A (en) | 1983-11-14 | 1985-06-11 | Mansfield Scientific, Inc. | Endocardial electrode |
US4559951A (en) | 1982-11-29 | 1985-12-24 | Cardiac Pacemakers, Inc. | Catheter assembly |
US4572186A (en) | 1983-12-07 | 1986-02-25 | Cordis Corporation | Vessel dilation |
US4572206A (en) | 1982-04-21 | 1986-02-25 | Purdue Research Foundation | Method and apparatus for measuring cardiac output |
US4573473A (en) | 1984-04-13 | 1986-03-04 | Cordis Corporation | Cardiac mapping probe |
US4613866A (en) | 1983-05-13 | 1986-09-23 | Mcdonnell Douglas Corporation | Three dimensional digitizer with electromagnetic coupling |
US4628937A (en) | 1984-08-02 | 1986-12-16 | Cordis Corporation | Mapping electrode assembly |
US4641649A (en) | 1985-10-30 | 1987-02-10 | Rca Corporation | Method and apparatus for high frequency catheter ablation |
US4649924A (en) | 1984-08-14 | 1987-03-17 | Consiglio Nazionale Delle Ricerche | Method for the detection of intracardiac electrical potential fields |
US4660571A (en) | 1985-07-18 | 1987-04-28 | Cordis Corporation | Percutaneous lead having radially adjustable electrode |
US4674518A (en) | 1985-09-06 | 1987-06-23 | Cardiac Pacemakers, Inc. | Method and apparatus for measuring ventricular volume |
US4697595A (en) | 1984-07-24 | 1987-10-06 | Telectronics N.V. | Ultrasonically marked cardiac catheters |
US4699147A (en) | 1985-09-25 | 1987-10-13 | Cordis Corporation | Intraventricular multielectrode cardial mapping probe and method for using same |
US4706670A (en) | 1985-11-26 | 1987-11-17 | Meadox Surgimed A/S | Dilatation catheter |
US4721115A (en) | 1986-02-27 | 1988-01-26 | Cardiac Pacemakers, Inc. | Diagnostic catheter for monitoring cardiac output |
US4777955A (en) | 1987-11-02 | 1988-10-18 | Cordis Corporation | Left ventricle mapping probe |
US4821731A (en) | 1986-04-25 | 1989-04-18 | Intra-Sonix, Inc. | Acoustic image system and method |
US4840182A (en) | 1988-04-04 | 1989-06-20 | Rhode Island Hospital | Conductance catheter |
US4890623A (en) | 1988-03-14 | 1990-01-02 | C. R. Bard, Inc. | Biopotential sensing device and method for making |
US4898176A (en) | 1988-06-22 | 1990-02-06 | The Cleveland Clinic Foundation | Continuous cardiac output by impedance measurements in the heart |
US4898181A (en) | 1985-10-15 | 1990-02-06 | Kessler M | Method of illustrating electrocardiographic values |
US4899750A (en) | 1988-04-19 | 1990-02-13 | Siemens-Pacesetter, Inc. | Lead impedance scanning system for pacemakers |
US4911174A (en) | 1989-02-13 | 1990-03-27 | Cardiac Pacemakers, Inc. | Method for matching the sense length of an impedance measuring catheter to a ventricular chamber |
US4922912A (en) | 1987-10-21 | 1990-05-08 | Hideto Watanabe | MAP catheter |
US4940064A (en) | 1986-11-14 | 1990-07-10 | Desai Jawahar M | Catheter for mapping and ablation and method therefor |
US4945305A (en) | 1986-10-09 | 1990-07-31 | Ascension Technology Corporation | Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields |
US4945342A (en) | 1987-10-16 | 1990-07-31 | Instit Straumann | Electrical cable for performing stimulations and/or measurements inside a human or animal body and method of manufacturing the cable |
US4951682A (en) | 1988-06-22 | 1990-08-28 | The Cleveland Clinic Foundation | Continuous cardiac output by impedance measurements in the heart |
US5000190A (en) | 1988-06-22 | 1991-03-19 | The Cleveland Clinic Foundation | Continuous cardiac output by impedance measurements in the heart |
US5005587A (en) | 1989-11-13 | 1991-04-09 | Pacing Systems, Inc. | Braid Electrode leads and catheters and methods for using the same |
US5025786A (en) | 1988-07-21 | 1991-06-25 | Siegel Sharon B | Intracardiac catheter and method for detecting and diagnosing myocardial ischemia |
US5029588A (en) | 1989-06-15 | 1991-07-09 | Cardiovascular Imaging Systems, Inc. | Laser catheter with imaging capability |
US5042486A (en) | 1989-09-29 | 1991-08-27 | Siemens Aktiengesellschaft | Catheter locatable with non-ionizing field and method for locating same |
US5054492A (en) | 1990-12-17 | 1991-10-08 | Cardiovascular Imaging Systems, Inc. | Ultrasonic imaging catheter having rotational image correlation |
US5054496A (en) | 1988-07-15 | 1991-10-08 | China-Japan Friendship Hospital | Method and apparatus for recording and analyzing body surface electrocardiographic peak maps |
US5056517A (en) | 1989-07-24 | 1991-10-15 | Consiglio Nazionale Delle Ricerche | Biomagnetically localizable multipurpose catheter and method for magnetocardiographic guided intracardiac mapping, biopsy and ablation of cardiac arrhythmias |
US5058583A (en) | 1990-07-13 | 1991-10-22 | Geddes Leslie A | Multiple monopolar system and method of measuring stroke volume of the heart |
US5081993A (en) | 1987-11-11 | 1992-01-21 | Circulation Research Limited | Methods and apparatus for the examination and treatment of internal organs |
US5090411A (en) | 1990-01-31 | 1992-02-25 | Kabushiki Kaisha Toshiba | Ultrasonic diagnosis apparatus |
US5156151A (en) | 1991-02-15 | 1992-10-20 | Cardiac Pathways Corporation | Endocardial mapping and ablation system and catheter probe |
US5158092A (en) | 1987-10-27 | 1992-10-27 | Christian Glace | Method and azimuthal probe for localizing the emergence point of ventricular tachycardias |
US5161536A (en) | 1991-03-22 | 1992-11-10 | Catheter Technology | Ultrasonic position indicating apparatus and methods |
US5211165A (en) | 1991-09-03 | 1993-05-18 | General Electric Company | Tracking system to follow the position and orientation of a device with radiofrequency field gradients |
US5220924A (en) | 1989-09-28 | 1993-06-22 | Frazin Leon J | Doppler-guided retrograde catheterization using transducer equipped guide wire |
US5228442A (en) | 1991-02-15 | 1993-07-20 | Cardiac Pathways Corporation | Method for mapping, ablation, and stimulation using an endocardial catheter |
US5237996A (en) | 1992-02-11 | 1993-08-24 | Waldman Lewis K | Endocardial electrical mapping catheter |
US5255678A (en) | 1991-06-21 | 1993-10-26 | Ecole Polytechnique | Mapping electrode balloon |
US5273038A (en) | 1990-07-09 | 1993-12-28 | Beavin William C | Computer simulation of live organ |
US5282471A (en) | 1991-07-31 | 1994-02-01 | Kabushiki Kaisha Toshiba | Ultrasonic imaging system capable of displaying 3-dimensional angiogram in real time mode |
US5295484A (en) | 1992-05-19 | 1994-03-22 | Arizona Board Of Regents For And On Behalf Of The University Of Arizona | Apparatus and method for intra-cardiac ablation of arrhythmias |
US5297549A (en) | 1992-09-23 | 1994-03-29 | Endocardial Therapeutics, Inc. | Endocardial mapping system |
US5305745A (en) | 1988-06-13 | 1994-04-26 | Fred Zacouto | Device for protection against blood-related disorders, notably thromboses, embolisms, vascular spasms, hemorrhages, hemopathies and the presence of abnormal elements in the blood |
US5311866A (en) | 1992-09-23 | 1994-05-17 | Endocardial Therapeutics, Inc. | Heart mapping catheter |
US5324284A (en) | 1992-06-05 | 1994-06-28 | Cardiac Pathways, Inc. | Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method |
US5323781A (en) | 1992-01-31 | 1994-06-28 | Duke University | Methods for the diagnosis and ablation treatment of ventricular tachycardia |
US5325860A (en) | 1991-11-08 | 1994-07-05 | Mayo Foundation For Medical Education And Research | Ultrasonic and interventional catheter and method |
US5341807A (en) | 1992-06-30 | 1994-08-30 | American Cardiac Ablation Co., Inc. | Ablation catheter positioning system |
US5345936A (en) | 1991-02-15 | 1994-09-13 | Cardiac Pathways Corporation | Apparatus with basket assembly for endocardial mapping |
US5360006A (en) | 1990-06-12 | 1994-11-01 | University Of Florida Research Foundation, Inc. | Automated method for digital image quantitation |
US5372138A (en) | 1988-03-21 | 1994-12-13 | Boston Scientific Corporation | Acousting imaging catheters and the like |
US5377678A (en) | 1991-09-03 | 1995-01-03 | General Electric Company | Tracking system to follow the position and orientation of a device with radiofrequency fields |
US5385146A (en) | 1993-01-08 | 1995-01-31 | Goldreyer; Bruce N. | Orthogonal sensing for use in clinical electrophysiology |
US5391199A (en) | 1993-07-20 | 1995-02-21 | Biosense, Inc. | Apparatus and method for treating cardiac arrhythmias |
US5409000A (en) | 1993-09-14 | 1995-04-25 | Cardiac Pathways Corporation | Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method |
US5411025A (en) | 1992-06-30 | 1995-05-02 | Cordis Webster, Inc. | Cardiovascular catheter with laterally stable basket-shaped electrode array |
US5433198A (en) | 1993-03-11 | 1995-07-18 | Desai; Jawahar M. | Apparatus and method for cardiac ablation |
US5458126A (en) | 1994-02-24 | 1995-10-17 | General Electric Company | Cardiac functional analysis system employing gradient image segmentation |
US5551426A (en) | 1993-07-14 | 1996-09-03 | Hummel; John D. | Intracardiac ablation and mapping catheter |
US5553611A (en) | 1994-01-06 | 1996-09-10 | Endocardial Solutions, Inc. | Endocardial measurement method |
US5558091A (en) | 1993-10-06 | 1996-09-24 | Biosense, Inc. | Magnetic determination of position and orientation |
US5588432A (en) | 1988-03-21 | 1996-12-31 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
US5601084A (en) | 1993-06-23 | 1997-02-11 | University Of Washington | Determining cardiac wall thickness and motion by imaging and three-dimensional modeling |
US5622174A (en) | 1992-10-02 | 1997-04-22 | Kabushiki Kaisha Toshiba | Ultrasonic diagnosis apparatus and image displaying system |
US5662108A (en) | 1992-09-23 | 1997-09-02 | Endocardial Solutions, Inc. | Electrophysiology mapping system |
US5669382A (en) | 1996-11-19 | 1997-09-23 | General Electric Company | System for measuring myocardium in cardiac images |
US5687737A (en) | 1992-10-09 | 1997-11-18 | Washington University | Computerized three-dimensional cardiac mapping with interactive visual displays |
US5697377A (en) | 1995-11-22 | 1997-12-16 | Medtronic, Inc. | Catheter mapping system and method |
US5713363A (en) | 1991-11-08 | 1998-02-03 | Mayo Foundation For Medical Education And Research | Ultrasound catheter and method for imaging and hemodynamic monitoring |
US5722402A (en) | 1994-10-11 | 1998-03-03 | Ep Technologies, Inc. | Systems and methods for guiding movable electrode elements within multiple-electrode structures |
US5738096A (en) | 1993-07-20 | 1998-04-14 | Biosense, Inc. | Cardiac electromechanics |
US5797396A (en) | 1995-06-07 | 1998-08-25 | University Of Florida Research Foundation | Automated method for digital image quantitation |
US5824005A (en) | 1995-08-22 | 1998-10-20 | Board Of Regents, The University Of Texas System | Maneuverable electrophysiology catheter for percutaneous or intraoperative ablation of cardiac arrhythmias |
US5840031A (en) | 1993-07-01 | 1998-11-24 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials and ablating tissue |
US5846198A (en) | 1996-05-31 | 1998-12-08 | Siemens Aktiengesellschaft | Apparatus for localizing action currents in the heart |
US5848972A (en) | 1995-09-15 | 1998-12-15 | Children's Medical Center Corporation | Method for endocardial activation mapping using a multi-electrode catheter |
US5871019A (en) | 1996-09-23 | 1999-02-16 | Mayo Foundation For Medical Education And Research | Fast cardiac boundary imaging |
US5908446A (en) | 1994-07-07 | 1999-06-01 | Cardiac Pathways Corporation | Catheter assembly, catheter and multi-port introducer for use therewith |
US6004269A (en) | 1993-07-01 | 1999-12-21 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
US6095976A (en) | 1997-06-19 | 2000-08-01 | Medinol Ltd. | Method for enhancing an image derived from reflected ultrasound signals produced by an ultrasound transmitter and detector inserted in a bodily lumen |
US6603996B1 (en) | 2000-06-07 | 2003-08-05 | Graydon Ernest Beatty | Software for mapping potential distribution of a heart chamber |
-
2004
- 2004-04-06 US US10/819,027 patent/US7263397B2/en not_active Expired - Lifetime
Patent Citations (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3954098A (en) | 1975-01-31 | 1976-05-04 | Dick Donald E | Synchronized multiple image tomographic cardiography |
US4173228A (en) | 1977-05-16 | 1979-11-06 | Applied Medical Devices | Catheter locating device |
US4380237A (en) | 1979-12-03 | 1983-04-19 | Massachusetts General Hospital | Apparatus for making cardiac output conductivity measurements |
US4304239A (en) | 1980-03-07 | 1981-12-08 | The Kendall Company | Esophageal probe with balloon electrode |
US4431005A (en) | 1981-05-07 | 1984-02-14 | Mccormick Laboratories, Inc. | Method of and apparatus for determining very accurately the position of a device inside biological tissue |
US4444195A (en) | 1981-11-02 | 1984-04-24 | Cordis Corporation | Cardiac lead having multiple ring electrodes |
US4572206A (en) | 1982-04-21 | 1986-02-25 | Purdue Research Foundation | Method and apparatus for measuring cardiac output |
US4572206B1 (en) | 1982-04-21 | 1991-01-01 | Purdue Research Foundation | |
US4559951A (en) | 1982-11-29 | 1985-12-24 | Cardiac Pacemakers, Inc. | Catheter assembly |
US4478223A (en) | 1982-12-06 | 1984-10-23 | Allor Douglas R | Three dimensional electrocardiograph |
US4613866A (en) | 1983-05-13 | 1986-09-23 | Mcdonnell Douglas Corporation | Three dimensional digitizer with electromagnetic coupling |
US4522212A (en) | 1983-11-14 | 1985-06-11 | Mansfield Scientific, Inc. | Endocardial electrode |
US4572186A (en) | 1983-12-07 | 1986-02-25 | Cordis Corporation | Vessel dilation |
US4573473A (en) | 1984-04-13 | 1986-03-04 | Cordis Corporation | Cardiac mapping probe |
US4697595A (en) | 1984-07-24 | 1987-10-06 | Telectronics N.V. | Ultrasonically marked cardiac catheters |
US4628937A (en) | 1984-08-02 | 1986-12-16 | Cordis Corporation | Mapping electrode assembly |
US4649924A (en) | 1984-08-14 | 1987-03-17 | Consiglio Nazionale Delle Ricerche | Method for the detection of intracardiac electrical potential fields |
US4660571A (en) | 1985-07-18 | 1987-04-28 | Cordis Corporation | Percutaneous lead having radially adjustable electrode |
US4674518A (en) | 1985-09-06 | 1987-06-23 | Cardiac Pacemakers, Inc. | Method and apparatus for measuring ventricular volume |
US4699147A (en) | 1985-09-25 | 1987-10-13 | Cordis Corporation | Intraventricular multielectrode cardial mapping probe and method for using same |
US4898181A (en) | 1985-10-15 | 1990-02-06 | Kessler M | Method of illustrating electrocardiographic values |
US4641649A (en) | 1985-10-30 | 1987-02-10 | Rca Corporation | Method and apparatus for high frequency catheter ablation |
US4706670A (en) | 1985-11-26 | 1987-11-17 | Meadox Surgimed A/S | Dilatation catheter |
US4721115A (en) | 1986-02-27 | 1988-01-26 | Cardiac Pacemakers, Inc. | Diagnostic catheter for monitoring cardiac output |
US4821731A (en) | 1986-04-25 | 1989-04-18 | Intra-Sonix, Inc. | Acoustic image system and method |
US4945305A (en) | 1986-10-09 | 1990-07-31 | Ascension Technology Corporation | Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields |
US4940064A (en) | 1986-11-14 | 1990-07-10 | Desai Jawahar M | Catheter for mapping and ablation and method therefor |
US4945342A (en) | 1987-10-16 | 1990-07-31 | Instit Straumann | Electrical cable for performing stimulations and/or measurements inside a human or animal body and method of manufacturing the cable |
US4922912A (en) | 1987-10-21 | 1990-05-08 | Hideto Watanabe | MAP catheter |
US5158092A (en) | 1987-10-27 | 1992-10-27 | Christian Glace | Method and azimuthal probe for localizing the emergence point of ventricular tachycardias |
US4777955A (en) | 1987-11-02 | 1988-10-18 | Cordis Corporation | Left ventricle mapping probe |
US5081993A (en) | 1987-11-11 | 1992-01-21 | Circulation Research Limited | Methods and apparatus for the examination and treatment of internal organs |
US4890623A (en) | 1988-03-14 | 1990-01-02 | C. R. Bard, Inc. | Biopotential sensing device and method for making |
US5588432A (en) | 1988-03-21 | 1996-12-31 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
US5372138A (en) | 1988-03-21 | 1994-12-13 | Boston Scientific Corporation | Acousting imaging catheters and the like |
US4840182A (en) | 1988-04-04 | 1989-06-20 | Rhode Island Hospital | Conductance catheter |
US4899750A (en) | 1988-04-19 | 1990-02-13 | Siemens-Pacesetter, Inc. | Lead impedance scanning system for pacemakers |
US5305745A (en) | 1988-06-13 | 1994-04-26 | Fred Zacouto | Device for protection against blood-related disorders, notably thromboses, embolisms, vascular spasms, hemorrhages, hemopathies and the presence of abnormal elements in the blood |
US5000190A (en) | 1988-06-22 | 1991-03-19 | The Cleveland Clinic Foundation | Continuous cardiac output by impedance measurements in the heart |
US4898176A (en) | 1988-06-22 | 1990-02-06 | The Cleveland Clinic Foundation | Continuous cardiac output by impedance measurements in the heart |
US4951682A (en) | 1988-06-22 | 1990-08-28 | The Cleveland Clinic Foundation | Continuous cardiac output by impedance measurements in the heart |
US5054496A (en) | 1988-07-15 | 1991-10-08 | China-Japan Friendship Hospital | Method and apparatus for recording and analyzing body surface electrocardiographic peak maps |
US5025786A (en) | 1988-07-21 | 1991-06-25 | Siegel Sharon B | Intracardiac catheter and method for detecting and diagnosing myocardial ischemia |
US4911174A (en) | 1989-02-13 | 1990-03-27 | Cardiac Pacemakers, Inc. | Method for matching the sense length of an impedance measuring catheter to a ventricular chamber |
US5029588A (en) | 1989-06-15 | 1991-07-09 | Cardiovascular Imaging Systems, Inc. | Laser catheter with imaging capability |
US5056517A (en) | 1989-07-24 | 1991-10-15 | Consiglio Nazionale Delle Ricerche | Biomagnetically localizable multipurpose catheter and method for magnetocardiographic guided intracardiac mapping, biopsy and ablation of cardiac arrhythmias |
US5220924A (en) | 1989-09-28 | 1993-06-22 | Frazin Leon J | Doppler-guided retrograde catheterization using transducer equipped guide wire |
US5042486A (en) | 1989-09-29 | 1991-08-27 | Siemens Aktiengesellschaft | Catheter locatable with non-ionizing field and method for locating same |
US5005587A (en) | 1989-11-13 | 1991-04-09 | Pacing Systems, Inc. | Braid Electrode leads and catheters and methods for using the same |
US5090411A (en) | 1990-01-31 | 1992-02-25 | Kabushiki Kaisha Toshiba | Ultrasonic diagnosis apparatus |
US5360006A (en) | 1990-06-12 | 1994-11-01 | University Of Florida Research Foundation, Inc. | Automated method for digital image quantitation |
US5273038A (en) | 1990-07-09 | 1993-12-28 | Beavin William C | Computer simulation of live organ |
US5058583A (en) | 1990-07-13 | 1991-10-22 | Geddes Leslie A | Multiple monopolar system and method of measuring stroke volume of the heart |
US5054492A (en) | 1990-12-17 | 1991-10-08 | Cardiovascular Imaging Systems, Inc. | Ultrasonic imaging catheter having rotational image correlation |
US5156151A (en) | 1991-02-15 | 1992-10-20 | Cardiac Pathways Corporation | Endocardial mapping and ablation system and catheter probe |
US5228442A (en) | 1991-02-15 | 1993-07-20 | Cardiac Pathways Corporation | Method for mapping, ablation, and stimulation using an endocardial catheter |
US5345936A (en) | 1991-02-15 | 1994-09-13 | Cardiac Pathways Corporation | Apparatus with basket assembly for endocardial mapping |
US5161536A (en) | 1991-03-22 | 1992-11-10 | Catheter Technology | Ultrasonic position indicating apparatus and methods |
US5255678A (en) | 1991-06-21 | 1993-10-26 | Ecole Polytechnique | Mapping electrode balloon |
US5282471A (en) | 1991-07-31 | 1994-02-01 | Kabushiki Kaisha Toshiba | Ultrasonic imaging system capable of displaying 3-dimensional angiogram in real time mode |
US5211165A (en) | 1991-09-03 | 1993-05-18 | General Electric Company | Tracking system to follow the position and orientation of a device with radiofrequency field gradients |
US5377678A (en) | 1991-09-03 | 1995-01-03 | General Electric Company | Tracking system to follow the position and orientation of a device with radiofrequency fields |
US5325860A (en) | 1991-11-08 | 1994-07-05 | Mayo Foundation For Medical Education And Research | Ultrasonic and interventional catheter and method |
US5713363A (en) | 1991-11-08 | 1998-02-03 | Mayo Foundation For Medical Education And Research | Ultrasound catheter and method for imaging and hemodynamic monitoring |
US5323781A (en) | 1992-01-31 | 1994-06-28 | Duke University | Methods for the diagnosis and ablation treatment of ventricular tachycardia |
US5237996A (en) | 1992-02-11 | 1993-08-24 | Waldman Lewis K | Endocardial electrical mapping catheter |
US5295484A (en) | 1992-05-19 | 1994-03-22 | Arizona Board Of Regents For And On Behalf Of The University Of Arizona | Apparatus and method for intra-cardiac ablation of arrhythmias |
US5324284A (en) | 1992-06-05 | 1994-06-28 | Cardiac Pathways, Inc. | Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method |
US5411025A (en) | 1992-06-30 | 1995-05-02 | Cordis Webster, Inc. | Cardiovascular catheter with laterally stable basket-shaped electrode array |
US5341807A (en) | 1992-06-30 | 1994-08-30 | American Cardiac Ablation Co., Inc. | Ablation catheter positioning system |
US5297549A (en) | 1992-09-23 | 1994-03-29 | Endocardial Therapeutics, Inc. | Endocardial mapping system |
US5311866A (en) | 1992-09-23 | 1994-05-17 | Endocardial Therapeutics, Inc. | Heart mapping catheter |
US6990370B1 (en) * | 1992-09-23 | 2006-01-24 | Endocardial Solutions, Inc. | Method for mapping heart electrophysiology |
US5662108A (en) | 1992-09-23 | 1997-09-02 | Endocardial Solutions, Inc. | Electrophysiology mapping system |
US5622174A (en) | 1992-10-02 | 1997-04-22 | Kabushiki Kaisha Toshiba | Ultrasonic diagnosis apparatus and image displaying system |
US5701897A (en) | 1992-10-02 | 1997-12-30 | Kabushiki Kaisha Toshiba | Ultrasonic diagnosis apparatus and image displaying system |
US5687737A (en) | 1992-10-09 | 1997-11-18 | Washington University | Computerized three-dimensional cardiac mapping with interactive visual displays |
US5385146A (en) | 1993-01-08 | 1995-01-31 | Goldreyer; Bruce N. | Orthogonal sensing for use in clinical electrophysiology |
US5433198A (en) | 1993-03-11 | 1995-07-18 | Desai; Jawahar M. | Apparatus and method for cardiac ablation |
US5601084A (en) | 1993-06-23 | 1997-02-11 | University Of Washington | Determining cardiac wall thickness and motion by imaging and three-dimensional modeling |
US6004269A (en) | 1993-07-01 | 1999-12-21 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
US5840031A (en) | 1993-07-01 | 1998-11-24 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials and ablating tissue |
US5551426A (en) | 1993-07-14 | 1996-09-03 | Hummel; John D. | Intracardiac ablation and mapping catheter |
US5738096A (en) | 1993-07-20 | 1998-04-14 | Biosense, Inc. | Cardiac electromechanics |
US5391199A (en) | 1993-07-20 | 1995-02-21 | Biosense, Inc. | Apparatus and method for treating cardiac arrhythmias |
US5409000A (en) | 1993-09-14 | 1995-04-25 | Cardiac Pathways Corporation | Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method |
US5558091A (en) | 1993-10-06 | 1996-09-24 | Biosense, Inc. | Magnetic determination of position and orientation |
US5553611A (en) | 1994-01-06 | 1996-09-10 | Endocardial Solutions, Inc. | Endocardial measurement method |
US5458126A (en) | 1994-02-24 | 1995-10-17 | General Electric Company | Cardiac functional analysis system employing gradient image segmentation |
US5908446A (en) | 1994-07-07 | 1999-06-01 | Cardiac Pathways Corporation | Catheter assembly, catheter and multi-port introducer for use therewith |
US5722402A (en) | 1994-10-11 | 1998-03-03 | Ep Technologies, Inc. | Systems and methods for guiding movable electrode elements within multiple-electrode structures |
US5797396A (en) | 1995-06-07 | 1998-08-25 | University Of Florida Research Foundation | Automated method for digital image quantitation |
US5824005A (en) | 1995-08-22 | 1998-10-20 | Board Of Regents, The University Of Texas System | Maneuverable electrophysiology catheter for percutaneous or intraoperative ablation of cardiac arrhythmias |
US5848972A (en) | 1995-09-15 | 1998-12-15 | Children's Medical Center Corporation | Method for endocardial activation mapping using a multi-electrode catheter |
US5697377A (en) | 1995-11-22 | 1997-12-16 | Medtronic, Inc. | Catheter mapping system and method |
US5846198A (en) | 1996-05-31 | 1998-12-08 | Siemens Aktiengesellschaft | Apparatus for localizing action currents in the heart |
US5871019A (en) | 1996-09-23 | 1999-02-16 | Mayo Foundation For Medical Education And Research | Fast cardiac boundary imaging |
US5669382A (en) | 1996-11-19 | 1997-09-23 | General Electric Company | System for measuring myocardium in cardiac images |
US6095976A (en) | 1997-06-19 | 2000-08-01 | Medinol Ltd. | Method for enhancing an image derived from reflected ultrasound signals produced by an ultrasound transmitter and detector inserted in a bodily lumen |
US6603996B1 (en) | 2000-06-07 | 2003-08-05 | Graydon Ernest Beatty | Software for mapping potential distribution of a heart chamber |
Non-Patent Citations (72)
Title |
---|
"New Catheter Will Find And Treat Cardiac Arrhythmias," WPI Journal, Summer 1993, 2 pages. |
"Quickhull Algorithm For Convex Hulls," ACM Transactions on Mathematical Software, vol. 22, No. 4, Dec. 1996, 1 page. |
Arisi, G., et al., "Localization Of Ectopic Ventricular Focuses By Means Of A Diameter Multielectrode Catheter," Advances in Electrocardiology, Elsevier Science Publishers B.V. (Biomedical Division), Z. Antaloczy et al., editors, pp. 67-70 (1990). |
Branham B., et al., "A System For Accurate Interactive 3-D Display Of Cardiac Electrical Activity," Computers in Cardiology, IEEE Computer Society Press 0276-6547/92, pp. 335-338 (Oct. 11-14, 1992). |
Breyer, B. and Cikes, I., "Ultrasonically Marked Catheter-A Method For Positive Echographic Catheter Position Identification," Med. & Biol. Eng. & Comput., 22:268-271 (May 1984). |
Buckles, D., et al., "Computer-Enhanced Mapping Of Activation Sequences In The Surgical Treatment Of Supraventricular Arrhythmias, " PACE, vol. 13, Part I, pp. 1401-1407 (Nov. 1990). |
Cikes I., "Interventional Echocardiography," 5th Symposium on Echocardiology, Rotterdam, Abstracts p. 38 (1983). |
Cikes, I. and Breyer, B., "Complete Cardiac Catheterisation Guided By Ultrasound," European Heart Journal, vol. 4 (suppl. E), p. 21 (1983). |
Cikes, I., et al., "Cardiac Catheterisation Guided By Ultrasound," Journal of the American College of Cardiology, vol. 3, No. 2, p. 564 (Feb. 1984). |
Cikes, I., et al., "Interventional Echocardiography," Interventional Ultrasound, 1st edition, chapter 25, Munksgaard, Copenhagen, pp. 160-168 (1985). |
Cox, J., et al., "Surgery For Atrial Fibrillation," Cardiac Surgery: State of the Art Reviews, vol. 4, No. 1, pp. 207-217 (1990). |
De Bakker, J., et al., "Endocardial Mapping By Simultaneous Recording Of Endocardial Electrograms During Cardiac Surgery For Ventricular Aneurysm," Journal of American College of Cardiology, vol. 2, No. 5, pp. 947-953 (Nov. 1983). |
Derfus, D. and Pilkington, T., "Assessing The Effect Of Uncertainty In Intracavitary Electrode Position On Endocardial Potential Estimates," IEEE Transactions on Biomedical Engineering, vol. 39, No. 7, pp. 676-681 (Jul. 1992). |
Derfus, D. and Pilkington, T., "Effect Of Intracavitary Electrode Position On Endocardial Potential Estimates," IEEE Engineering in Medicine & Biology Society 10th Annual International Conference, pp. 185-186 (1988). |
Derfus, D., et al. "A Comparison of Measured and Calculated Intracavitary Potentials for Electrical Stimuli in the Exposed Dog Heart," IEEE Transactions on Biomedical Engineering, vol. 39, No. 11, pp. 1192-1206 (Nov. 1992). |
Derfus, D., et al., "Calculating Intracavitary Potentials from Measured Endocardial Potentials," Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 12, No. 2, p. 635 (1990). |
Desai, J., et al., "Orthogonal Electrode Catheter Array for Mapping of Endocardial Focal Site of Ventricular Activation," PACE, vol. 14, Part I, pp. 557-574 (Apr. 1991). |
Downar, E., et al., "Endocardial Mapping of Ventricular Tachycardia in the Intact Human Ventricle: Evidence for Reentrant Mechanisms," Journal of the American College of Cardiology, vol. 11, No. 4, pp. 783-791 (Apr. 1988). |
Durrer, D. and Van Der Tweel, L., "Spread of Activation in the Left Ventricular Wall of the Dog. II.: Activation Conditions at the Epicardial Surface," American Heart Journal, pp. 192-203 (Aug. 1953). |
Fann, J., et al., "Endocardial Activation Mapping and Endocardial Pace-Mapping Using a Balloon Apparatus," Am. J. Cardiol., vol. 55, pp. 1076-1083 (1985). |
Fenici, R. and Melillo, G., "Biomagnetically Localizable Multipurpose Catheter And Method For MCG Guided Intracardiac Electrophysiology, Biopsy And Ablation Of Cardiac Arrhythmias," International Journal of Cardiac Imaging, vol. 7, pp. 207-215 (1991). |
Fenici, R. and Melillo, G., "Magnetocardiography: Ventricular Arrhythmias," European Heart Journal, vol. 14 (Suppl. E), pp. 53-60 (1993). |
Fenici, R., et al., "Catheter Ablation Of Cardiac Arrhythmias: Magnetocardiographic Localization Of Electrocatheters And Arrhythmogenic Foci," 8th International Congress "The New Frontiers of Arrhythmias," Marilleva, Italy, pp. 723-731 (Jan. 31-Feb. 6, 1988). |
Fenici, R., et al., "Clinical Magnetocardiography: 10 Years Experience At The Catholic University," International Journal of Cardiac Imaging, vol. 7, pp. 151-167 (1991). |
Harada, A., et al., "Potential Distribution Mapping: New Method For Precise Localization Of Intramural Septal Origin Of Ventricular Tachycardia," Circulation, vol. 78 (Suppl. III), No. 5, pp. III-137-III-147 (Nov. 1988). |
Hauer, R., et al. "Endocardial Catheter Mapping: Wire Skeleton Technique For Representation Of Computed Arrhythmogenic Sites Compared With Intraoperative Mapping," Circulation, vol. 74, No. 6, pp. 1346-1354 (Dec. 1986). |
Hauer, R., et al., "Endocardial Catheter Mapping: Validation Of A Cineradiographic Method For Accurate Localization Of Left Ventricular Sites," Circulation, vol. 74, No. 4, pp. 862-868 (Oct. 1986). |
Ideker, R., "A Study To Evaluate The Ability Of A Multielectrode Intracavitary Probe To Determine The Site Of Origin Of Ventricular Tachycardia," Basic Arrhythmia Laboratory, Engineering Research Center in Emerging Cardiovascular Technologies, Duke University, pp. 1-3. |
Ideker, R., et al., "A Computerized Method For The Rapid Display Of Ventricular Activation During The Intraoperative Study Of Arrhythmias," Circulation, vol. 59, No. 3, pp. 449-458 (Mar. 1979). |
Ideker, R., et al., "Simultaneous Multichannel Cardiac Mapping Systems," PACE, vol. 10, pp. 281-292 (Mar.-Apr. 1987). |
Jackman, W., et al., "New Catheter Technique For Recording Left Free-Wall Accessory Atrioventricular Pathway Activation: Identification Of Pathway Fiber Orientation," Circulation, vol. 78, No. 3, pp. 598-611 (Sep. 1988). |
Josephson, M., Clinical Cardiac Electrophysiology: Techniques and Interpretations, 2nd ed., pp. 566-580, 608-615, and 770-783 (1993). |
Josephson, M., et al., "Comparison Of Endocardial Catheter Mapping With Intraoperative Mapping Of Ventricular Tachycardia," Circulation, vol. 61, No. 2, pp. 395-404 (Feb. 1980). |
Josephson, M., et al., "Role Of Catheter Mapping In Evaluation Of Ventricular Tachycardia," Ventricular Tachycardia-Mechanisms And Management, pp. 309-330, Mt. Kisco, NY: Futura Publishing Co. (1982). |
Josephson, M., et al., "Role Of Catheter Mapping In The Preoperative Evaluation Of Ventricular Tachycardia," American Journal of Cardiology, vol. 40, pp. 207-220 (Jan. 1982). |
Josephson, M., et al., "Ventricular Activation During Ventricular Endocardial Pacing. II. Role Of Pace-Mapping To Localize Origin Of Ventricular Tachycardia," The American Journal of Cardiology, vol. 50, pp. 11-22, (Jul. 1982). |
Kaltenbrunner, W., et al., "Epicardial And Endocardial Mapping Of Ventricular Tachycardia In Patients With Myocardial Infarction: Is The Origin Of The Tachycardia Always Subendocardially Localized?," Circulation, vol. 84, No. 3, pp. 1058-1071 (Sep. 1991). |
Khoury D. and Rudy, Y., "Reconstruction Of Endocardial Potentials From Intracavitary Probe Potentials: A Model Study," IEEE 0276-6547/92, pp. 9-12 (1992). |
Khoury, D. and Rudy, Y., "A Model Study Of Volume Conductor Effects On Endocardial And Intracavitary Potentials," Circulation Research, vol. 71, No. 3, pp. 511-525 (Sep. 1992). |
Kristin Clingman Spencer, "A Feasibility Study of Determining the Position of an Intracavitary Multielectrode Probe Via Impedance Measurements," Department of Electrical Engineering in the Graduate School of Duke University, 1991, pp. i-vii and 1-49. |
Kun, S. and Peura, R., "Conductance Volumetric Model Of An Eccentrically Positioned Catheter Within A Three-Compartment Ellipsoidal Ventricle," IEEE Transactions on Biomedical Engineering, vol. 40, No. 6, pp. 589-592 (Jun. 1993). |
Langberg, J., et al., "The Echo-Transponder Electrode Catheter: A New Method For Mapping The Left Ventricle," Journal of the American College of Cardiology, vol. 12, pp. 218-223 (Jul. 1988). |
Laxer, C., et al., "A Graphical Display System For Animating Mapped Cardiac Potentials," Third Annual IEEE Symposium on Computer-Based Medical Systems, IEEE Computer Society, pp. 197-204 (1990). |
Lu, S. and Eiho, S., "Compound 3-D Visualization Of Reconstructed Coronary Arteries, Left Ventricle And Aorta From Biplane X-Ray Angiograms," Computers in Cardiology, IEEE Computer Society Press, 0276-6547/92, pp. 535-538 (Oct. 11-14, 1992). |
Macchi, E., et al., "Localization Of Ventricular Ectopic Beats From Intracavitary Potential Distributions: An Inverse Model In Terms Of Sources," IEEE Engineering in Medicine & Biology Society 11th Annual International Conference, pp. 0191-0192 (1989). |
Macchi, E., et al., Intracavitary Mapping: An Improved Method For Locating The Site Of Origin Of Ectopic Ventricular Beats By Means Of A Mathematical Model, IEEE Engineering in Medicine & Biology Society 10th Annual International Conference, pp. 0187-0188 (1988). |
Masse, S., et al., "A Three-Dimensional Display For Cardiac Activation Mapping," PACE, vol. 14, Part I, pp. 538-545 (Apr. 1991). |
Moshage, W., et al., "Biomagnetic Localization Of Ventricular Arrhythmias," Radiology, vol. 180, No. 3, pp. 685-692 (Sep. 1991). |
Moura, L., et al., "A Microcomputer-Based Cardiac Mapping System For Recurrent Ventricular Tachycardia Surgery," Computers in Cardiology IEEE Computer Society Press, 0276-6547/92, pp. 431-434 (Oct. 11-14, 1992). |
P. Mendler et al., "Multichannel Recording Of Cardiac Potentials," Medical And Biological Engineering And Computing, vol. 18, No. 5, Sep. 1980, pp. 617-624. |
Pagé, P., et al., "Surgical Treatment Of Ventricular Tachycardia: Regional Cryoablation Guided By Computerized Epicardial And Endocardial Mapping," Circulation, vol. 80 (Suppl. I), No. 3, pp. I-124-I-134 (Sep. 1989). |
Patrick Donahoe Wolf, "Development and Evaluation of an Algorithm to Determine Boundary Geometry and Electrode Location from Impedance Measurements," Department of Biomedical Engineering in the Graduate School of Duke University, 1992, pp. i-viii and 1-86. |
Pilkington, T., et al., "Feasibility Of Estimating Endocardial Potentials From Cavity Potentials," IEEE Ninth Annual Conference of the Engineering in Medicine and Biology Society, IEEE, pp. 1875-1876 (1987). |
Pogwizd, S. and Corr, P., "Reentrant And Nonreentrant Mechanisms Contribute To Arrhythmogenesis During Early Myocardial Ischemia: Results Using Three-Dimensional Mapping," Circulation Research, vol. 61, No. 3, pp. 352-371 (Sep. 1987). |
Pollack, S., et al., "Intraoperative Identification Of A Radiofrequency Lesion Allowing Validation Of Catheter Mapping Of Ventricular Tachycardia With A Computerized Balloon Mapping System," PACE, vol. 15, pp. 854-858 (Jun. 1992). |
Potratz, J., et al., "Echocardiographic Guiding Of Catheter-Electrode During Endocardial Mapping To Determine Location Of Late Fractionated Potentials In Patients With Acute Myocardial Infarction," European Heart Journal, vol. 12, Abstract Supplement p. 235, abstract 1242 (Aug. 1991). |
Rudy, Y. and Plonsey, R., "Annotations: A Note On 'The Brody-Effect'," J. Electrocardiology, vol. 11, No. 1, pp. 87-90 (1978). |
Rudy, Y. and Plonsey, R., "The Eccentric Spheres Model As The Basis For A Study Of The Rule Of Geometry And Inhomogeneities In Electrocardiography," IEEE Transactions on Biomedical Engineering, vol. BME-26, No. 7, pp. 392-399 (Jul. 1979). |
Rudy, Y. et al., "Inverse Reconstruction Of Epicardial And Endocardial Potentials: The Use Of Temporal Information," IEEE, pp. 2006-2008 (1992). |
Rudy, Y., et al., "The Effects Of Variations In Conductivity And Geometrical Parameters On The Electrocardiogram, Using An Eccentric Spheres Model," Circulation Research, vol. 44, No. 1, pp. 104-111 (Jan. 1979). |
Simpson, E., et al., "Three-Dimensional Visualization Of Electrical Variables In The Ventricular Wall Of The Heart," IEEE, TH0311-1/90, pp. 190-194, (1990). |
Smith, W. and Ideker, R., "Computer Techniques For Epicardial And Endocardial Mapping," Progress in Cardiovascular Diseases, vol. 26, No. 1, pp. 15-32 (Jul./Aug. 1983). |
Smith, W., et al., "A Computer System for the Intraoperative Mapping of Ventricular Arrhythmias," Computers and Biomedical Research, an International Journal, vol. 13, No. 1, pp. 61-72 (Feb. 1980). |
Spach, M. and Barr R., "Analysis Of Ventricular Activation And Repolarization From Intramural And Epicardial Potential Distributions For Ectopic Beats In The Intact Dog," Circulation Research, vol. 37, pp. 830-843 (Dec. 1975). |
Stellbrink, C., et al., "Potential Of Intracardiac Ultrasonography As An Adjunct For Mapping And Ablation," American Heart Journal, vol. 127, No. 4, Part 2 , pp. 1095-1101 (Apr. 1994). |
Taccardi, B., et al., "A New Intracavitary Probe For Detecting The Site Of Origin Of Ectopic Ventricular Beats During One Cardiac Cycle," Circulation, vol. 75, No. 1, pp. 272-281 (Jan. 1987). |
Taccardi, B., et al., "Potential Distributions And Excitation Time Maps Recorded With High Spatial Resolution From The Entire Ventricular Surface Of Exposed Dog Hearts," Computers in Cardiology, IEEE Computer Society Press, 0276-6547/92, pp. 1-4 (Oct. 11-14, 1992). |
Tanigawa, M., et al., "Prolonged And Fractionated Right Atrial Electrograms During Sinus Rhythm In Patients With Paroxysmal Atrial Fibrillation And Sick Sinus Node Syndrome," Journal of the American College of Cardiology, vol. 17, No. 2, pp. 403-408 (Feb. 1991). |
Tweddell, J., et al., "Potential Mapping In Septal Tachycardia: Evaluation Of A New Intraoperative Mapping Technique," Circulation, vol. 80 (Suppl. I), No. 3, pp. I-97-I-108 (Sep. 1989). |
Witkowski, F. and Corr P., "An Automated Simultaneous Transmural Cardiac Mapping System," American Journal of Physiology, vol. 247, pp. H661-H668 (1984). |
Young, M., et al., "A Real-Time Data Acquisition System For The Display Of Three Dimensional Cardiac Activation Maps," Computers in Cardiology, IEEE Computer Society Press, 0276-6547/92, pp. 331-334 (Oct. 11-14, 1992). |
Yuan, S., et al., "Localization Of Cardiac Arrhythmias: Conventional Noninvasive Methods," International Journal of Cardiac Imaging, vol. 7, pp. 193-205 (1991). |
Cited By (909)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9956049B2 (en) | 1999-05-18 | 2018-05-01 | Mediguide Ltd. | Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors |
US10856769B2 (en) | 1999-05-18 | 2020-12-08 | St. Jude Medical International Holding S.àr.l. | Method and system for superimposing virtual anatomical landmarks on an image |
US8332013B2 (en) | 1999-05-18 | 2012-12-11 | MediGuide, Ltd. | System and method for delivering a stent to a selected position within a lumen |
US9572519B2 (en) | 1999-05-18 | 2017-02-21 | Mediguide Ltd. | Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors |
US20110054308A1 (en) * | 1999-05-18 | 2011-03-03 | Amit Cohen | Method and system for superimposing virtual anatomical landmarks on an image |
US20060058647A1 (en) * | 1999-05-18 | 2006-03-16 | Mediguide Ltd. | Method and system for delivering a medical device to a selected position within a lumen |
US9833167B2 (en) | 1999-05-18 | 2017-12-05 | Mediguide Ltd. | Method and system for superimposing virtual anatomical landmarks on an image |
US10251712B2 (en) | 1999-05-18 | 2019-04-09 | Mediguide Ltd. | Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors |
US8442618B2 (en) | 1999-05-18 | 2013-05-14 | Mediguide Ltd. | Method and system for delivering a medical device to a selected position within a lumen |
US20090182224A1 (en) * | 1999-05-18 | 2009-07-16 | Mediguide Ltd. | Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors |
US20100331950A1 (en) * | 1999-05-18 | 2010-12-30 | Gera Strommer | System and method for delivering a stent to a selected position within a lumen |
US10363017B2 (en) | 2001-09-07 | 2019-07-30 | St. Jude Medical International Holding S.À R.L. | System and method for delivering a stent to a selected position within a lumen |
US9707034B2 (en) | 2002-07-01 | 2017-07-18 | Recor Medical, Inc. | Intraluminal method and apparatus for ablating nerve tissue |
US9700372B2 (en) | 2002-07-01 | 2017-07-11 | Recor Medical, Inc. | Intraluminal methods of ablating nerve tissue |
US9504398B2 (en) | 2002-08-24 | 2016-11-29 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Methods and apparatus for locating the fossa ovalis and performing transseptal puncture |
US20090204113A1 (en) * | 2004-05-17 | 2009-08-13 | C.R. Bard Inc. | High Density Atrial Fibrillatrion Cycle Length (AFCL) Detection and Mapping System |
US8903478B2 (en) | 2004-05-17 | 2014-12-02 | Boston Scientific Scimed, Inc. | High density atrial fibrillation cycle length (AFCL) detection and mapping system |
US10863945B2 (en) | 2004-05-28 | 2020-12-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system with contact sensing feature |
US9566119B2 (en) | 2004-05-28 | 2017-02-14 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for automated therapy delivery |
US10258285B2 (en) | 2004-05-28 | 2019-04-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic surgical system and method for automated creation of ablation lesions |
US10035000B2 (en) | 2004-12-28 | 2018-07-31 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Fixed dimensional and bi-directional steerable catheter control handle |
US10183149B2 (en) | 2004-12-28 | 2019-01-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Five degree of freedom ultrasound catheter and catheter control handle |
US10960181B2 (en) | 2004-12-28 | 2021-03-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Fixed dimensional and bi-directional steerable catheter control handle |
US9132258B2 (en) | 2004-12-28 | 2015-09-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Fixed dimensional and bi-directional steerable catheter control handle |
US8858495B2 (en) | 2004-12-28 | 2014-10-14 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Five degree of freedom ultrasound catheter and catheter control handle |
US9332893B2 (en) | 2005-02-02 | 2016-05-10 | Intuitive Surgical Operations, Inc. | Delivery of biological compounds to ischemic and/or infarcted tissue |
US11406250B2 (en) | 2005-02-02 | 2022-08-09 | Intuitive Surgical Operations, Inc. | Methods and apparatus for treatment of atrial fibrillation |
US10278588B2 (en) | 2005-02-02 | 2019-05-07 | Intuitive Surgical Operations, Inc. | Electrophysiology mapping and visualization system |
US20060184048A1 (en) * | 2005-02-02 | 2006-08-17 | Vahid Saadat | Tissue visualization and manipulation system |
US11889982B2 (en) | 2005-02-02 | 2024-02-06 | Intuitive Surgical Operations, Inc. | Electrophysiology mapping and visualization system |
US10772492B2 (en) | 2005-02-02 | 2020-09-15 | Intuitive Surgical Operations, Inc. | Methods and apparatus for efficient purging |
US8050746B2 (en) | 2005-02-02 | 2011-11-01 | Voyage Medical, Inc. | Tissue visualization device and method variations |
US8417321B2 (en) | 2005-02-02 | 2013-04-09 | Voyage Medical, Inc | Flow reduction hood systems |
US10463237B2 (en) | 2005-02-02 | 2019-11-05 | Intuitive Surgical Operations, Inc. | Delivery of biological compounds to ischemic and/or infarcted tissue |
US10064540B2 (en) | 2005-02-02 | 2018-09-04 | Intuitive Surgical Operations, Inc. | Visualization apparatus for transseptal access |
US9526401B2 (en) | 2005-02-02 | 2016-12-27 | Intuitive Surgical Operations, Inc. | Flow reduction hood systems |
US10368729B2 (en) | 2005-02-02 | 2019-08-06 | Intuitive Surgical Operations, Inc. | Methods and apparatus for efficient purging |
US8934962B2 (en) | 2005-02-02 | 2015-01-13 | Intuitive Surgical Operations, Inc. | Electrophysiology mapping and visualization system |
US7930016B1 (en) | 2005-02-02 | 2011-04-19 | Voyage Medical, Inc. | Tissue closure system |
US8814845B2 (en) | 2005-02-02 | 2014-08-26 | Intuitive Surgical Operations, Inc. | Delivery of biological compounds to ischemic and/or infarcted tissue |
US7918787B2 (en) | 2005-02-02 | 2011-04-05 | Voyage Medical, Inc. | Tissue visualization and manipulation systems |
US11478152B2 (en) | 2005-02-02 | 2022-10-25 | Intuitive Surgical Operations, Inc. | Electrophysiology mapping and visualization system |
US11819190B2 (en) | 2005-02-02 | 2023-11-21 | Intuitive Surgical Operations, Inc. | Methods and apparatus for efficient purging |
US7860555B2 (en) | 2005-02-02 | 2010-12-28 | Voyage Medical, Inc. | Tissue visualization and manipulation system |
US8419613B2 (en) | 2005-02-02 | 2013-04-16 | Voyage Medical, Inc. | Tissue visualization device |
US7860556B2 (en) | 2005-02-02 | 2010-12-28 | Voyage Medical, Inc. | Tissue imaging and extraction systems |
US20090292181A1 (en) * | 2005-07-15 | 2009-11-26 | General Electric Company | Integrated physiology and imaging workstation |
US20070016034A1 (en) * | 2005-07-15 | 2007-01-18 | Brenda Donaldson | Integrated physiology and imaging workstation |
US20070016028A1 (en) * | 2005-07-15 | 2007-01-18 | General Electric Company | Integrated physiology and imaging workstation |
US7572223B2 (en) | 2005-07-15 | 2009-08-11 | General Electric Company | Integrated physiology and imaging workstation |
US7569015B2 (en) | 2005-07-15 | 2009-08-04 | General Electric Company | Integrated physiology and imaging workstation |
US20070016029A1 (en) * | 2005-07-15 | 2007-01-18 | General Electric Company | Physiology workstation with real-time fluoroscopy and ultrasound imaging |
US8583220B2 (en) | 2005-08-02 | 2013-11-12 | Biosense Webster, Inc. | Standardization of catheter-based treatment for atrial fibrillation |
US20070032826A1 (en) * | 2005-08-02 | 2007-02-08 | Yitzhack Schwartz | Standardization of catheter-based treatment for atrial fibrillation |
US7877128B2 (en) * | 2005-08-02 | 2011-01-25 | Biosense Webster, Inc. | Simulation of invasive procedures |
US20070043285A1 (en) * | 2005-08-02 | 2007-02-22 | Yitzhack Schwartz | Simulation of invasive procedures |
US8221310B2 (en) | 2005-10-25 | 2012-07-17 | Voyage Medical, Inc. | Tissue visualization device and method variations |
US8078266B2 (en) | 2005-10-25 | 2011-12-13 | Voyage Medical, Inc. | Flow reduction hood systems |
US9192287B2 (en) | 2005-10-25 | 2015-11-24 | Intuitive Surgical Operations, Inc. | Tissue visualization device and method variations |
US9510732B2 (en) | 2005-10-25 | 2016-12-06 | Intuitive Surgical Operations, Inc. | Methods and apparatus for efficient purging |
US8137333B2 (en) | 2005-10-25 | 2012-03-20 | Voyage Medical, Inc. | Delivery of biological compounds to ischemic and/or infarcted tissue |
US9283025B2 (en) | 2005-12-06 | 2016-03-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US10201388B2 (en) | 2005-12-06 | 2019-02-12 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Graphical user interface for real-time RF lesion depth display |
US11517372B2 (en) | 2005-12-06 | 2022-12-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing lesions in tissue |
US20100168735A1 (en) * | 2005-12-06 | 2010-07-01 | Don Curtis Deno | System and method for assessing coupling between an electrode and tissue |
US9492226B2 (en) | 2005-12-06 | 2016-11-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Graphical user interface for real-time RF lesion depth display |
US8998890B2 (en) | 2005-12-06 | 2015-04-07 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US20090163904A1 (en) * | 2005-12-06 | 2009-06-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and Method for Assessing Coupling Between an Electrode and Tissue |
US9271782B2 (en) | 2005-12-06 | 2016-03-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling of tissue ablation |
US9173586B2 (en) | 2005-12-06 | 2015-11-03 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing coupling between an electrode and tissue |
US9339325B2 (en) | 2005-12-06 | 2016-05-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing lesions in tissue |
US10362959B2 (en) | 2005-12-06 | 2019-07-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing the proximity of an electrode to tissue in a body |
US20110118727A1 (en) * | 2005-12-06 | 2011-05-19 | Fish Jeffrey M | System and method for assessing the formation of a lesion in tissue |
US20100228247A1 (en) * | 2005-12-06 | 2010-09-09 | Saurav Paul | Assessment of electrode coupling of tissue ablation |
US9283026B2 (en) | 2005-12-06 | 2016-03-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US8603084B2 (en) | 2005-12-06 | 2013-12-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing the formation of a lesion in tissue |
US8406866B2 (en) | 2005-12-06 | 2013-03-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing coupling between an electrode and tissue |
US9610119B2 (en) | 2005-12-06 | 2017-04-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing the formation of a lesion in tissue |
US8449535B2 (en) * | 2005-12-06 | 2013-05-28 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing coupling between an electrode and tissue |
US20090275827A1 (en) * | 2005-12-06 | 2009-11-05 | Aiken Robert D | System and method for assessing the proximity of an electrode to tissue in a body |
US9254163B2 (en) | 2005-12-06 | 2016-02-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US8755860B2 (en) | 2005-12-06 | 2014-06-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method for displaying catheter electrode-tissue contact in electro-anatomic mapping and navigation system |
US10182860B2 (en) | 2005-12-06 | 2019-01-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US20100234730A1 (en) * | 2006-03-31 | 2010-09-16 | National University Corporation Kyoto Institute Of Technology | Image processing device, ultrasonic imaging apparatus including the same, and image processing method |
US20130103064A1 (en) * | 2006-05-12 | 2013-04-25 | Vytronus, Inc. | Integrated ablation and mapping system |
US7505810B2 (en) | 2006-06-13 | 2009-03-17 | Rhythmia Medical, Inc. | Non-contact cardiac mapping, including preprocessing |
US20080249424A1 (en) * | 2006-06-13 | 2008-10-09 | Rhythmia Medical, Inc. A Delaware Corporation | Non-Contact Cardiac Mapping, Including Moving Catheter and Multi-Beat Integration |
US7957791B2 (en) | 2006-06-13 | 2011-06-07 | Rhythmin Medical, Inc. | Multi-beat integration for cardiac mapping |
US7957792B2 (en) | 2006-06-13 | 2011-06-07 | Rhythmia Medical, Inc. | Spatial resolution determination for cardiac mapping |
US9730602B2 (en) | 2006-06-13 | 2017-08-15 | Boston Scientific Scimed Inc. | Cardiac mapping |
US20070299351A1 (en) * | 2006-06-13 | 2007-12-27 | Doron Harlev | Non-contact cardiac mapping, including resolution map |
US7937136B2 (en) | 2006-06-13 | 2011-05-03 | Rhythmia Medical, Inc. | Cardiac mapping, including resolution map |
US7930018B2 (en) | 2006-06-13 | 2011-04-19 | Rhythmia Medical, Inc. | Cardiac mapping, including moving catheter and multi-beat integration |
US8948853B2 (en) | 2006-06-13 | 2015-02-03 | Rhythmia Medical, Inc. | Cardiac mapping with catheter shape information |
US20110160574A1 (en) * | 2006-06-13 | 2011-06-30 | Rhythmia Medical, Inc. | Cardiac mapping with catheter shape information |
US7729752B2 (en) | 2006-06-13 | 2010-06-01 | Rhythmia Medical, Inc. | Non-contact cardiac mapping, including resolution map |
US7953475B2 (en) | 2006-06-13 | 2011-05-31 | Rhythmia Medical, Inc. | Preprocessing for cardiac mapping |
US20110190625A1 (en) * | 2006-06-13 | 2011-08-04 | Rhythmia Medical, Inc. | Cardiac mapping |
US9526434B2 (en) | 2006-06-13 | 2016-12-27 | Rhythmia Medical, Inc. | Cardiac mapping with catheter shape information |
US7515954B2 (en) | 2006-06-13 | 2009-04-07 | Rhythmia Medical, Inc. | Non-contact cardiac mapping, including moving catheter and multi-beat integration |
US20070299353A1 (en) * | 2006-06-13 | 2007-12-27 | Doron Harlev | Non-contact cardiac mapping, including preprocessing |
US20100305433A1 (en) * | 2006-06-13 | 2010-12-02 | Rhythmia Medical, Inc. | Non-contact cardiac mapping, including resolution map |
US8433394B2 (en) | 2006-06-13 | 2013-04-30 | Rhythmia Medical, Inc. | Cardiac mapping |
US20070299352A1 (en) * | 2006-06-13 | 2007-12-27 | Doron Harlev | Non-contact cardiac mapping, including moving catheter and multi-beat integration |
US8989851B2 (en) | 2006-06-13 | 2015-03-24 | Rhythmia Medical, Inc. | Cardiac mapping |
US20090177072A1 (en) * | 2006-06-13 | 2009-07-09 | Rhythmia Medical, Inc. | Non-Contact Cardiac Mapping, Including Moving Catheter and Multi-Beat Integration |
US9055906B2 (en) | 2006-06-14 | 2015-06-16 | Intuitive Surgical Operations, Inc. | In-vivo visualization systems |
US11882996B2 (en) | 2006-06-14 | 2024-01-30 | Intuitive Surgical Operations, Inc. | In-vivo visualization systems |
US10470643B2 (en) | 2006-06-14 | 2019-11-12 | Intuitive Surgical Operations, Inc. | In-vivo visualization systems |
US7899273B2 (en) * | 2006-07-21 | 2011-03-01 | Sony Corporation | Image processing apparatus, image processing method, and computer program |
US8170378B2 (en) | 2006-07-21 | 2012-05-01 | Sony Corporation | Image processing apparatus, image processing method, and computer program |
US20080107357A1 (en) * | 2006-07-21 | 2008-05-08 | Yasushi Saito | Image Processing Apparatus, Image Processing Method, and Computer Program |
US20110075948A1 (en) * | 2006-07-21 | 2011-03-31 | Sony Corporation | Image processing apparatus, image processing method, and computer program |
US11013444B2 (en) | 2006-08-03 | 2021-05-25 | Christoph Scharf | Method and device for determining and presenting surface charge and dipole densities on cardiac walls |
US10413206B2 (en) | 2006-08-03 | 2019-09-17 | Christoph Scharf | Method and device for determining and presenting surface charge and dipole densities on cardiac walls |
US11779195B2 (en) | 2006-09-01 | 2023-10-10 | Intuitive Surgical Operations, Inc. | Precision control systems for tissue visualization and manipulation assemblies |
US11337594B2 (en) | 2006-09-01 | 2022-05-24 | Intuitive Surgical Operations, Inc. | Coronary sinus cannulation |
US10070772B2 (en) | 2006-09-01 | 2018-09-11 | Intuitive Surgical Operations, Inc. | Precision control systems for tissue visualization and manipulation assemblies |
US10004388B2 (en) | 2006-09-01 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Coronary sinus cannulation |
US20090315402A1 (en) * | 2006-10-04 | 2009-12-24 | The Tokyo Electric Power Company, Incorporated | Ac-dc conversion device |
US10335131B2 (en) | 2006-10-23 | 2019-07-02 | Intuitive Surgical Operations, Inc. | Methods for preventing tissue migration |
US11369356B2 (en) | 2006-10-23 | 2022-06-28 | Intuitive Surgical Operations, Inc. | Methods and apparatus for preventing tissue migration |
US20100069921A1 (en) * | 2006-12-06 | 2010-03-18 | Miller Stephan P | System and method for assessing lesions in tissue |
US8403925B2 (en) | 2006-12-06 | 2013-03-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing lesions in tissue |
US10441136B2 (en) | 2006-12-18 | 2019-10-15 | Intuitive Surgical Operations, Inc. | Systems and methods for unobstructed visualization and ablation |
US11559188B2 (en) | 2006-12-21 | 2023-01-24 | Intuitive Surgical Operations, Inc. | Off-axis visualization systems |
US8131350B2 (en) | 2006-12-21 | 2012-03-06 | Voyage Medical, Inc. | Stabilization of visualization catheters |
US8758229B2 (en) | 2006-12-21 | 2014-06-24 | Intuitive Surgical Operations, Inc. | Axial visualization systems |
US9226648B2 (en) | 2006-12-21 | 2016-01-05 | Intuitive Surgical Operations, Inc. | Off-axis visualization systems |
US10390685B2 (en) | 2006-12-21 | 2019-08-27 | Intuitive Surgical Operations, Inc. | Off-axis visualization systems |
US20090093857A1 (en) * | 2006-12-28 | 2009-04-09 | Markowitz H Toby | System and method to evaluate electrode position and spacing |
US7941213B2 (en) | 2006-12-28 | 2011-05-10 | Medtronic, Inc. | System and method to evaluate electrode position and spacing |
US9198601B2 (en) | 2006-12-29 | 2015-12-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Contact sensor and sheath exit sensor |
US8615287B2 (en) | 2007-02-08 | 2013-12-24 | Rhythmia Medical, Inc. | Catheter tracking and endocardium representation generation |
US20100324414A1 (en) * | 2007-02-08 | 2010-12-23 | Rhythmia Medical, Inc., A Delaware Corporation | Catheter tracking and endocardium representation generation |
US20080190438A1 (en) * | 2007-02-08 | 2008-08-14 | Doron Harlev | Impedance registration and catheter tracking |
WO2008097767A3 (en) * | 2007-02-08 | 2008-10-16 | Rhythmia Medical Inc | Impedance registeration and catheter tracking |
US10433929B2 (en) | 2007-03-09 | 2019-10-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for local deformable registration of a catheter navigation system to image data or a model |
US9591990B2 (en) | 2007-03-09 | 2017-03-14 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Automated catalog and system for correction of inhomogeneous fields |
US9549689B2 (en) | 2007-03-09 | 2017-01-24 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for correction of inhomogeneous fields |
US10945633B2 (en) | 2007-03-09 | 2021-03-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Automated catalog and system for correction of inhomogeneous fields |
US10512419B2 (en) | 2007-03-09 | 2019-12-24 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Respiratory-based control of medical procedure |
US11596470B2 (en) | 2007-04-04 | 2023-03-07 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigated catheter |
US10576244B2 (en) | 2007-04-04 | 2020-03-03 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Flexible tip catheter with extended fluid lumen |
US8979837B2 (en) | 2007-04-04 | 2015-03-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Flexible tip catheter with extended fluid lumen |
US9962224B2 (en) | 2007-04-04 | 2018-05-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigated catheter with improved fluid flow |
US20100152731A1 (en) * | 2007-04-04 | 2010-06-17 | Irvine Biomedical, Inc. | Flexible tip catheter with extended fluid lumen |
US11559658B2 (en) | 2007-04-04 | 2023-01-24 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Flexible tip catheter with extended fluid lumen |
US10433903B2 (en) | 2007-04-04 | 2019-10-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigated catheter |
US9724492B2 (en) | 2007-04-04 | 2017-08-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Flexible tip catheter with extended fluid lumen |
US8135467B2 (en) | 2007-04-18 | 2012-03-13 | Medtronic, Inc. | Chronically-implantable active fixation medical electrical leads and related methods for non-fluoroscopic implantation |
US9155452B2 (en) | 2007-04-27 | 2015-10-13 | Intuitive Surgical Operations, Inc. | Complex shape steerable tissue visualization and manipulation catheter |
US8657805B2 (en) | 2007-05-08 | 2014-02-25 | Intuitive Surgical Operations, Inc. | Complex shape steerable tissue visualization and manipulation catheter |
US10092172B2 (en) | 2007-05-08 | 2018-10-09 | Intuitive Surgical Operations, Inc. | Complex shape steerable tissue visualization and manipulation catheter |
US9155587B2 (en) | 2007-05-11 | 2015-10-13 | Intuitive Surgical Operations, Inc. | Visual electrode ablation systems |
US8709008B2 (en) | 2007-05-11 | 2014-04-29 | Intuitive Surgical Operations, Inc. | Visual electrode ablation systems |
US10624695B2 (en) | 2007-05-11 | 2020-04-21 | Intuitive Surgical Operations, Inc. | Visual electrode ablation systems |
US20080287783A1 (en) * | 2007-05-16 | 2008-11-20 | General Electric Company | System and method of tracking delivery of an imaging probe |
US8989842B2 (en) | 2007-05-16 | 2015-03-24 | General Electric Company | System and method to register a tracking system with intracardiac echocardiography (ICE) imaging system |
US8527032B2 (en) | 2007-05-16 | 2013-09-03 | General Electric Company | Imaging system and method of delivery of an instrument to an imaged subject |
US8428690B2 (en) | 2007-05-16 | 2013-04-23 | General Electric Company | Intracardiac echocardiography image reconstruction in combination with position tracking system |
US20080287777A1 (en) * | 2007-05-16 | 2008-11-20 | General Electric Company | System and method to register a tracking system with an intracardiac echocardiography (ice) imaging system |
US20080287803A1 (en) * | 2007-05-16 | 2008-11-20 | General Electric Company | Intracardiac echocardiography image reconstruction in combination with position tracking system |
US8364242B2 (en) | 2007-05-17 | 2013-01-29 | General Electric Company | System and method of combining ultrasound image acquisition with fluoroscopic image acquisition |
US20080283771A1 (en) * | 2007-05-17 | 2008-11-20 | General Electric Company | System and method of combining ultrasound image acquisition with fluoroscopic image acquisition |
US20080319297A1 (en) * | 2007-06-20 | 2008-12-25 | Kenneth Danehorn | Electrode catheter positioning system |
US8311613B2 (en) * | 2007-06-20 | 2012-11-13 | Siemens Aktiengesellschaft | Electrode catheter positioning system |
US8235985B2 (en) | 2007-08-31 | 2012-08-07 | Voyage Medical, Inc. | Visualization and ablation system variations |
US8825134B2 (en) * | 2007-09-14 | 2014-09-02 | Siemens Aktiengesellschaft | Catheter localization system |
US20090076483A1 (en) * | 2007-09-14 | 2009-03-19 | Kenneth Danehorn | Catheter localization system |
US10758238B2 (en) | 2007-11-21 | 2020-09-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and systems for occluding vessels during cardiac ablation including optional electroanatomical guidance |
CN102793563B (en) * | 2007-11-29 | 2015-09-16 | 韦伯斯特生物官能公司 | The flash of light figure of anatomical structure |
US20090143677A1 (en) * | 2007-11-29 | 2009-06-04 | Assaf Govari | Flashlight view of an anatomical structure |
CN102793563A (en) * | 2007-11-29 | 2012-11-28 | 韦伯斯特生物官能公司 | Flashlight view of an anatomical structure |
US10299753B2 (en) * | 2007-11-29 | 2019-05-28 | Biosense Webster, Inc. | Flashlight view of an anatomical structure |
US20090163801A1 (en) * | 2007-12-19 | 2009-06-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System for displaying data relating to energy emitting treatment devices together with electrophysiological mapping data |
US20090171338A1 (en) * | 2007-12-28 | 2009-07-02 | Olson Eric S | System and method for preventing collateral damage with interventional medical procedures |
US20090171345A1 (en) * | 2007-12-28 | 2009-07-02 | Miller Stephan P | System and method for measurement of an impedance using a catheter such as an ablation catheter |
US10555685B2 (en) | 2007-12-28 | 2020-02-11 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for determining tissue morphology based on phase angle |
US20090171235A1 (en) * | 2007-12-28 | 2009-07-02 | Clint Schneider | Method and apparatus for complex impedance compensation and for determining tissue morphology based on phase angle |
US8290578B2 (en) | 2007-12-28 | 2012-10-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for complex impedance compensation |
US9320570B2 (en) * | 2007-12-28 | 2016-04-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for preventing collateral damage with interventional medical procedures |
US11272886B2 (en) | 2007-12-28 | 2022-03-15 | Boston Scientific Scimed, Inc. | Cardiac mapping catheter |
US8253725B2 (en) | 2007-12-28 | 2012-08-28 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and system for generating surface models of geometric structures |
US10660690B2 (en) | 2007-12-28 | 2020-05-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for measurement of an impedance using a catheter such as an ablation catheter |
US11896284B2 (en) | 2007-12-28 | 2024-02-13 | St. Jude Medical, Atrial Fibrillation Division, Inc | System and method for measurement of an impedance using a catheter such as an ablation catheter |
US20090167755A1 (en) * | 2007-12-28 | 2009-07-02 | Voth Eric J | Method and system for generating surface models of geometric structures |
US10034637B2 (en) | 2007-12-28 | 2018-07-31 | Boston Scientific Scimed, Inc. | Cardiac mapping catheter |
US9445772B2 (en) | 2007-12-31 | 2016-09-20 | St. Jude Medical, Atrial Fibrillatin Division, Inc. | Reduced radiation fluoroscopic system |
US9592100B2 (en) | 2007-12-31 | 2017-03-14 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for encoding catheters with markers for identifying with imaging systems |
US11116438B2 (en) | 2008-01-17 | 2021-09-14 | Christoph Scharf | Device and method for the geometric determination of electrical dipole densities on the cardiac wall |
US10463267B2 (en) | 2008-01-17 | 2019-11-05 | Christoph Scharf | Device and method for the geometric determination of electrical dipole densities on the cardiac wall |
US11241325B2 (en) | 2008-02-07 | 2022-02-08 | Intuitive Surgical Operations, Inc. | Stent delivery under direct visualization |
US11986409B2 (en) | 2008-02-07 | 2024-05-21 | Intuitive Surgical Operations, Inc. | Stent delivery under direct visualization |
US10278849B2 (en) | 2008-02-07 | 2019-05-07 | Intuitive Surgical Operations, Inc. | Stent delivery under direct visualization |
US8858609B2 (en) | 2008-02-07 | 2014-10-14 | Intuitive Surgical Operations, Inc. | Stent delivery under direct visualization |
WO2009105720A2 (en) | 2008-02-20 | 2009-08-27 | Guided Delivery Systems, Inc. | Electrophysiology catheter system |
US9314310B2 (en) | 2008-03-27 | 2016-04-19 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system input device |
US11717356B2 (en) | 2008-03-27 | 2023-08-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method of automatic detection of obstructions for a robotic catheter system |
US9301810B2 (en) | 2008-03-27 | 2016-04-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method of automatic detection of obstructions for a robotic catheter system |
US9241768B2 (en) | 2008-03-27 | 2016-01-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Intelligent input device controller for a robotic catheter system |
US10426557B2 (en) | 2008-03-27 | 2019-10-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method of automatic detection of obstructions for a robotic catheter system |
US8684962B2 (en) | 2008-03-27 | 2014-04-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter device cartridge |
US8690821B2 (en) | 2008-03-27 | 2014-04-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter rotatable device cartridge |
US20100256558A1 (en) * | 2008-03-27 | 2010-10-07 | Olson Eric S | Robotic catheter system |
US20110021984A1 (en) * | 2008-03-27 | 2011-01-27 | Kirschenman Mark B | Robotic catheter system with dynamic response |
US9161817B2 (en) | 2008-03-27 | 2015-10-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system |
US8641664B2 (en) | 2008-03-27 | 2014-02-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system with dynamic response |
US9314594B2 (en) | 2008-03-27 | 2016-04-19 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter manipulator assembly |
US8641663B2 (en) | 2008-03-27 | 2014-02-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system input device |
US20110015569A1 (en) * | 2008-03-27 | 2011-01-20 | Kirschenman Mark B | Robotic catheter system input device |
US20110144806A1 (en) * | 2008-03-27 | 2011-06-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Intelligent input device controller for a robotic catheter system |
WO2009120948A2 (en) | 2008-03-27 | 2009-10-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Model catheter input device |
EP3378390A1 (en) | 2008-03-27 | 2018-09-26 | St. Jude Medical Atrial Fibrillation Division Inc. | Robotic catheter system |
US9795447B2 (en) | 2008-03-27 | 2017-10-24 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter device cartridge |
US10231788B2 (en) | 2008-03-27 | 2019-03-19 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system |
US9295527B2 (en) | 2008-03-27 | 2016-03-29 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system with dynamic response |
US9014793B2 (en) | 2008-04-02 | 2015-04-21 | Rhythmia Medical, Inc. | Intracardiac tracking system |
US8725240B2 (en) | 2008-04-02 | 2014-05-13 | Rhythmia Medical, Inc. | Intracardiac tracking system |
US8538509B2 (en) | 2008-04-02 | 2013-09-17 | Rhythmia Medical, Inc. | Intracardiac tracking system |
US9474467B2 (en) | 2008-04-02 | 2016-10-25 | Rhythmia Medical, Inc. | Intracardiac tracking system |
US8463368B2 (en) | 2008-04-02 | 2013-06-11 | Rhythmia Medical, Inc. | Intra-cardiac tracking system |
US20090253976A1 (en) * | 2008-04-02 | 2009-10-08 | Rhythmia Medical, Inc. | Intracardiac Tracking System |
US8208991B2 (en) | 2008-04-18 | 2012-06-26 | Medtronic, Inc. | Determining a material flow characteristic in a structure |
US8457371B2 (en) | 2008-04-18 | 2013-06-04 | Regents Of The University Of Minnesota | Method and apparatus for mapping a structure |
US8768434B2 (en) | 2008-04-18 | 2014-07-01 | Medtronic, Inc. | Determining and illustrating a structure |
US8532734B2 (en) | 2008-04-18 | 2013-09-10 | Regents Of The University Of Minnesota | Method and apparatus for mapping a structure |
US8831701B2 (en) | 2008-04-18 | 2014-09-09 | Medtronic, Inc. | Uni-polar and bi-polar switchable tracking system between |
US8560042B2 (en) | 2008-04-18 | 2013-10-15 | Medtronic, Inc. | Locating an indicator |
US8214018B2 (en) | 2008-04-18 | 2012-07-03 | Medtronic, Inc. | Determining a flow characteristic of a material in a structure |
US8185192B2 (en) | 2008-04-18 | 2012-05-22 | Regents Of The University Of Minnesota | Correcting for distortion in a tracking system |
US8843189B2 (en) | 2008-04-18 | 2014-09-23 | Medtronic, Inc. | Interference blocking and frequency selection |
US8839798B2 (en) | 2008-04-18 | 2014-09-23 | Medtronic, Inc. | System and method for determining sheath location |
US9179860B2 (en) | 2008-04-18 | 2015-11-10 | Medtronic, Inc. | Determining a location of a member |
US8663120B2 (en) | 2008-04-18 | 2014-03-04 | Regents Of The University Of Minnesota | Method and apparatus for mapping a structure |
US8494608B2 (en) | 2008-04-18 | 2013-07-23 | Medtronic, Inc. | Method and apparatus for mapping a structure |
US8106905B2 (en) | 2008-04-18 | 2012-01-31 | Medtronic, Inc. | Illustrating a three-dimensional nature of a data set on a two-dimensional display |
US8260395B2 (en) | 2008-04-18 | 2012-09-04 | Medtronic, Inc. | Method and apparatus for mapping a structure |
US8391965B2 (en) | 2008-04-18 | 2013-03-05 | Regents Of The University Of Minnesota | Determining the position of an electrode relative to an insulative cover |
US8660640B2 (en) | 2008-04-18 | 2014-02-25 | Medtronic, Inc. | Determining a size of a representation of a tracked member |
US20090262980A1 (en) * | 2008-04-18 | 2009-10-22 | Markowitz H Toby | Method and Apparatus for Determining Tracking a Virtual Point Defined Relative to a Tracked Member |
US9662041B2 (en) | 2008-04-18 | 2017-05-30 | Medtronic, Inc. | Method and apparatus for mapping a structure |
US20090264740A1 (en) * | 2008-04-18 | 2009-10-22 | Markowitz H Toby | Locating an Introducer |
US9101285B2 (en) | 2008-04-18 | 2015-08-11 | Medtronic, Inc. | Reference structure for a tracking system |
US10426377B2 (en) | 2008-04-18 | 2019-10-01 | Medtronic, Inc. | Determining a location of a member |
US8340751B2 (en) | 2008-04-18 | 2012-12-25 | Medtronic, Inc. | Method and apparatus for determining tracking a virtual point defined relative to a tracked member |
US9332928B2 (en) | 2008-04-18 | 2016-05-10 | Medtronic, Inc. | Method and apparatus to synchronize a location determination in a structure with a characteristic of the structure |
US8887736B2 (en) | 2008-04-18 | 2014-11-18 | Medtronic, Inc. | Tracking a guide member |
US9131872B2 (en) | 2008-04-18 | 2015-09-15 | Medtronic, Inc. | Multiple sensor input for structure identification |
US8345067B2 (en) | 2008-04-18 | 2013-01-01 | Regents Of The University Of Minnesota | Volumetrically illustrating a structure |
US8364252B2 (en) | 2008-04-18 | 2013-01-29 | Medtronic, Inc. | Identifying a structure for cannulation |
US8442625B2 (en) | 2008-04-18 | 2013-05-14 | Regents Of The University Of Minnesota | Determining and illustrating tracking system members |
US8421799B2 (en) | 2008-04-18 | 2013-04-16 | Regents Of The University Of Minnesota | Illustrating a three-dimensional nature of a data set on a two-dimensional display |
US8424536B2 (en) | 2008-04-18 | 2013-04-23 | Regents Of The University Of Minnesota | Locating a member in a structure |
US8676303B2 (en) | 2008-05-13 | 2014-03-18 | The Regents Of The University Of California | Methods and systems for treating heart instability |
US20090299424A1 (en) * | 2008-05-13 | 2009-12-03 | Narayan Sanjiv M | Methods and systems for treating heart instability |
US9393425B2 (en) | 2008-05-13 | 2016-07-19 | The Regents Of The University Of California | Methods and systems for detecting and treating heart instability |
US10136860B2 (en) | 2008-05-13 | 2018-11-27 | The Regents Of The University Of California | System for detecting and treating heart instability |
US20090306655A1 (en) * | 2008-06-09 | 2009-12-10 | Stangenes Todd R | Catheter assembly with front-loaded tip and multi-contact connector |
US8206385B2 (en) | 2008-06-09 | 2012-06-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter assembly with front-loaded tip and multi-contact connector |
US9101735B2 (en) | 2008-07-07 | 2015-08-11 | Intuitive Surgical Operations, Inc. | Catheter control systems |
US11350815B2 (en) | 2008-07-07 | 2022-06-07 | Intuitive Surgical Operations, Inc. | Catheter control systems |
US20100063400A1 (en) * | 2008-09-05 | 2010-03-11 | Anne Lindsay Hall | Method and apparatus for catheter guidance using a combination of ultrasound and x-ray imaging |
US9468413B2 (en) | 2008-09-05 | 2016-10-18 | General Electric Company | Method and apparatus for catheter guidance using a combination of ultrasound and X-ray imaging |
US8390438B2 (en) | 2008-09-24 | 2013-03-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system including haptic feedback |
US9380950B2 (en) | 2008-10-09 | 2016-07-05 | The Regents Of The University Of California | Methods for detecting biological rhythm disorders |
US8838223B2 (en) | 2008-10-09 | 2014-09-16 | The Regents Of The University Of California | Method for analysis of complex rhythm disorders |
US9375156B2 (en) | 2008-10-09 | 2016-06-28 | The Regents Of The University Of California | System for analysis of complex rhythm disorders |
US9439573B2 (en) | 2008-10-09 | 2016-09-13 | The Regents Of The University Of California | Method for analysis of complex rhythm disorders |
US9955879B2 (en) | 2008-10-09 | 2018-05-01 | The Regents Of The University Of California | System for analysis of complex rhythm disorders |
US8521266B2 (en) | 2008-10-09 | 2013-08-27 | The Regents Of The University Of California | Methods for the detection and/or diagnosis of biological rhythm disorders |
US8838222B2 (en) | 2008-10-09 | 2014-09-16 | The Regents Of The University Of California | Method for treating complex rhythm disorders |
EP3395243A1 (en) | 2008-10-09 | 2018-10-31 | The Regents of the University of California | Machine for the automatic localization of sources of biological rhythm disorders |
US10092196B2 (en) | 2008-10-09 | 2018-10-09 | The Regents Of The University Of California | Method for analysis of complex rhythm disorders |
US11147462B2 (en) | 2008-10-09 | 2021-10-19 | The Regents Of The University Of California | Method for analysis of complex rhythm disorders |
US20100094274A1 (en) * | 2008-10-09 | 2010-04-15 | Sanjiv Narayan | Methods, system and appartus for the detection, diagnosis and treatment of biological rhythm disorders |
US11950838B2 (en) | 2008-10-10 | 2024-04-09 | Intuitive Surgical Operations, Inc. | Integral electrode placement and connection systems |
US10111705B2 (en) | 2008-10-10 | 2018-10-30 | Intuitive Surgical Operations, Inc. | Integral electrode placement and connection systems |
US8333012B2 (en) | 2008-10-10 | 2012-12-18 | Voyage Medical, Inc. | Method of forming electrode placement and connection systems |
US9808178B2 (en) | 2008-10-27 | 2017-11-07 | Boston Scientific Scimed Inc. | Tracking system using field mapping |
US8167876B2 (en) | 2008-10-27 | 2012-05-01 | Rhythmia Medical, Inc. | Tracking system using field mapping |
US8137343B2 (en) | 2008-10-27 | 2012-03-20 | Rhythmia Medical, Inc. | Tracking system using field mapping |
US20100106154A1 (en) * | 2008-10-27 | 2010-04-29 | Rhythmia Medical, Inc. | Tracking System Using Field Mapping |
US20100106009A1 (en) * | 2008-10-27 | 2010-04-29 | Rhythmia Medical, Inc. | Tracking System Using Field Mapping |
US8568406B2 (en) | 2008-10-27 | 2013-10-29 | Rhythmia Medical, Inc. | Tracking system using field mapping |
US9468364B2 (en) | 2008-11-14 | 2016-10-18 | Intuitive Surgical Operations, Inc. | Intravascular catheter with hood and image processing systems |
US11622689B2 (en) | 2008-11-14 | 2023-04-11 | Intuitive Surgical Operations, Inc. | Mapping and real-time imaging a plurality of ablation lesions with registered ablation parameters received from treatment device |
US8175681B2 (en) | 2008-12-16 | 2012-05-08 | Medtronic Navigation Inc. | Combination of electromagnetic and electropotential localization |
US8731641B2 (en) | 2008-12-16 | 2014-05-20 | Medtronic Navigation, Inc. | Combination of electromagnetic and electropotential localization |
US10206652B2 (en) | 2008-12-30 | 2019-02-19 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Intracardiac imaging system utilizing a multipurpose catheter |
US20100168557A1 (en) * | 2008-12-30 | 2010-07-01 | Deno D Curtis | Multi-electrode ablation sensing catheter and system |
US20110160593A1 (en) * | 2008-12-30 | 2011-06-30 | Deno D Curtis | Intracardiac imaging system utilizing a multipurpose catheter |
US20100168568A1 (en) * | 2008-12-30 | 2010-07-01 | St. Jude Medical, Atrial Fibrillation Division Inc. | Combined Diagnostic and Therapeutic Device Using Aligned Energy Beams |
US8900150B2 (en) | 2008-12-30 | 2014-12-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Intracardiac imaging system utilizing a multipurpose catheter |
US20100168729A1 (en) * | 2008-12-31 | 2010-07-01 | Huisun Wang | Irrigated ablation electrode assembly having off-center irrigation passageway |
US20100168550A1 (en) * | 2008-12-31 | 2010-07-01 | Byrd Israel A | Multiple shell construction to emulate chamber contraction with a mapping system |
US10105177B2 (en) | 2008-12-31 | 2018-10-23 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigated ablation electrode assembly having off-center irrigation passageway |
US10335574B2 (en) | 2008-12-31 | 2019-07-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Accelerometer-based contact sensing assembly and system |
US8556850B2 (en) | 2008-12-31 | 2013-10-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Shaft and handle for a catheter with independently-deflectable segments |
US9610118B2 (en) | 2008-12-31 | 2017-04-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for the cancellation of motion artifacts in medical interventional navigation |
US20100168558A1 (en) * | 2008-12-31 | 2010-07-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for the cancellation of motion artifacts in medical interventional navigation |
US9861787B2 (en) | 2008-12-31 | 2018-01-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Shaft and handle for a catheter with independently-deflectable segments |
US8369921B2 (en) | 2008-12-31 | 2013-02-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Accelerometer-based contact sensing assembly and system |
EP2204120A1 (en) | 2008-12-31 | 2010-07-07 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multiple shell construction to emulate chamber contraction with a mapping system |
US9307931B2 (en) | 2008-12-31 | 2016-04-12 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multiple shell construction to emulate chamber contraction with a mapping system |
US9814860B2 (en) | 2008-12-31 | 2017-11-14 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Accelerometer-based contact sensing assembly and system |
US12082874B2 (en) | 2008-12-31 | 2024-09-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigated ablation electrode assembly having off-center irrigation passageway |
US10898685B2 (en) | 2008-12-31 | 2021-01-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Shaft and handle for a catheter with independently-deflectable segments |
US10653481B2 (en) | 2008-12-31 | 2020-05-19 | St. Jude Medical, Atrial Fibrillation Divison, Inc. | Irrigated ablation electrode assembly having off-center irrigation passageway |
US20100168559A1 (en) * | 2008-12-31 | 2010-07-01 | Tegg Troy T | Accelerometer-based contact sensing assembly and system |
US20110238010A1 (en) * | 2008-12-31 | 2011-09-29 | Kirschenman Mark B | Robotic catheter system input device |
US8974445B2 (en) | 2009-01-09 | 2015-03-10 | Recor Medical, Inc. | Methods and apparatus for treatment of cardiac valve insufficiency |
US20100274238A1 (en) * | 2009-04-22 | 2010-10-28 | Klimovitch Gleb V | Method and apparatus for radiofrequency ablation with increased depth and/or decreased volume of ablated tissue |
US9566107B2 (en) | 2009-04-22 | 2017-02-14 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for radiofrequency ablation with increased depth and/or decreased volume of ablated tissue |
US8401625B2 (en) | 2009-04-23 | 2013-03-19 | Rhythmia Medical, Inc. | Multi-electrode mapping system |
US10201288B2 (en) | 2009-04-23 | 2019-02-12 | Boston Scientific Scimed, Inc. | Multi-electrode mapping system |
US20100274150A1 (en) * | 2009-04-23 | 2010-10-28 | Rhythmia Medical, Inc. | Multi-Electrode Mapping System |
US9398862B2 (en) | 2009-04-23 | 2016-07-26 | Rhythmia Medical, Inc. | Multi-electrode mapping system |
US20100286684A1 (en) * | 2009-05-07 | 2010-11-11 | Cary Hata | Irrigated ablation catheter with multiple segmented ablation electrodes |
US11395694B2 (en) | 2009-05-07 | 2022-07-26 | St. Jude Medical, Llc | Irrigated ablation catheter with multiple segmented ablation electrodes |
US20100286551A1 (en) * | 2009-05-08 | 2010-11-11 | Rhythmia Medical, Inc. | Impedance Based Anatomy Generation |
US9510769B2 (en) | 2009-05-08 | 2016-12-06 | Rhythmia Medical, Inc. | Impedance based anatomy generation |
US20100286550A1 (en) * | 2009-05-08 | 2010-11-11 | Rhythmia Medical, Inc. | Impedance Based Anatomy Generation |
US8571647B2 (en) * | 2009-05-08 | 2013-10-29 | Rhythmia Medical, Inc. | Impedance based anatomy generation |
US8744566B2 (en) | 2009-05-08 | 2014-06-03 | Rhythmia Medical, Inc. | Impedance based anatomy generation |
US10405771B2 (en) | 2009-05-08 | 2019-09-10 | Rhythmia Medical Inc. | Impedance based anatomy generation |
US8103338B2 (en) * | 2009-05-08 | 2012-01-24 | Rhythmia Medical, Inc. | Impedance based anatomy generation |
US9936922B2 (en) | 2009-05-08 | 2018-04-10 | Boston Scientific Scimed, Inc. | Impedance based anatomy generation |
US9113809B2 (en) | 2009-05-08 | 2015-08-25 | Rhythmia Medical, Inc. | Impedance based anatomy generation |
US9204927B2 (en) | 2009-05-13 | 2015-12-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for presenting information representative of lesion formation in tissue during an ablation procedure |
US10675086B2 (en) | 2009-05-13 | 2020-06-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for presenting information representative of lesion formation in tissue during an ablation procedure |
US9259290B2 (en) | 2009-06-08 | 2016-02-16 | MRI Interventions, Inc. | MRI-guided surgical systems with proximity alerts |
US9439735B2 (en) | 2009-06-08 | 2016-09-13 | MRI Interventions, Inc. | MRI-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time |
US8825133B2 (en) | 2009-06-16 | 2014-09-02 | MRI Interventions, Inc. | MRI-guided catheters |
US8369930B2 (en) | 2009-06-16 | 2013-02-05 | MRI Interventions, Inc. | MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time |
US8396532B2 (en) | 2009-06-16 | 2013-03-12 | MRI Interventions, Inc. | MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time |
US8886288B2 (en) | 2009-06-16 | 2014-11-11 | MRI Interventions, Inc. | MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time |
US8768433B2 (en) | 2009-06-16 | 2014-07-01 | MRI Interventions, Inc. | MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time |
US10357322B2 (en) | 2009-07-22 | 2019-07-23 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for controlling a remote medical device guidance system in three-dimensions using gestures |
US9439736B2 (en) | 2009-07-22 | 2016-09-13 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for controlling a remote medical device guidance system in three-dimensions using gestures |
US8494614B2 (en) | 2009-08-31 | 2013-07-23 | Regents Of The University Of Minnesota | Combination localization system |
US8494613B2 (en) | 2009-08-31 | 2013-07-23 | Medtronic, Inc. | Combination localization system |
US10434319B2 (en) | 2009-10-09 | 2019-10-08 | The Regents Of The University Of California | System and method of identifying sources associated with biological rhythm disorders |
US20110087091A1 (en) * | 2009-10-14 | 2011-04-14 | Olson Eric S | Method and apparatus for collection of cardiac geometry based on optical or magnetic tracking |
US8409098B2 (en) | 2009-10-14 | 2013-04-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for collection of cardiac geometry based on optical or magnetic tracking |
US8355774B2 (en) | 2009-10-30 | 2013-01-15 | Medtronic, Inc. | System and method to evaluate electrode position and spacing |
US8454589B2 (en) | 2009-11-20 | 2013-06-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing effective delivery of ablation therapy |
US9173611B2 (en) | 2009-11-20 | 2015-11-03 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing effective delivery of ablation therapy |
US10130419B2 (en) | 2009-11-20 | 2018-11-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing effective delivery of ablation therapy |
US11324550B2 (en) | 2009-11-20 | 2022-05-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing effective delivery of ablation therapy |
US20110144657A1 (en) * | 2009-12-11 | 2011-06-16 | Fish Jeffrey M | Systems and methods for determining the likelihood of endocardial barotrauma in tissue during ablation |
US9095349B2 (en) | 2009-12-11 | 2015-08-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Systems and methods for determining the likelihood of endocardial barotrauma in tissue during ablation |
EP2514379A4 (en) * | 2009-12-15 | 2013-06-12 | Sichuan Jinjiang Electronic And Technology Co Ltd | Method and apparatus for location determination of cardiac catheter |
EP2514379A1 (en) * | 2009-12-15 | 2012-10-24 | Sichuan Jinjiang Electronic And Technology Co., Ltd. | Method and apparatus for location determination of cardiac catheter |
WO2011072507A1 (en) | 2009-12-15 | 2011-06-23 | 四川锦江电子科技有限公司 | Method and apparatus for location determination of cardiac catheter |
US9445745B2 (en) | 2009-12-31 | 2016-09-20 | Mediguide Ltd. | Tool shape estimation |
US8600480B2 (en) | 2009-12-31 | 2013-12-03 | Mediguide Ltd. | System and method for assessing interference to a signal caused by a magnetic field |
US20110160571A1 (en) * | 2009-12-31 | 2011-06-30 | Amit Cohen | Tool shape estimation |
US20110160569A1 (en) * | 2009-12-31 | 2011-06-30 | Amit Cohen | system and method for real-time surface and volume mapping of anatomical structures |
US20110156700A1 (en) * | 2009-12-31 | 2011-06-30 | Itay Kariv | System and method for assessing interference to a signal caused by a magnetic field |
US8974454B2 (en) | 2009-12-31 | 2015-03-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Kit for non-invasive electrophysiology procedures and method of its use |
US8694071B2 (en) | 2010-02-12 | 2014-04-08 | Intuitive Surgical Operations, Inc. | Image stabilization techniques and methods |
US20110213260A1 (en) * | 2010-02-26 | 2011-09-01 | Pacesetter, Inc. | Crt lead placement based on optimal branch selection and optimal site selection |
US9888973B2 (en) | 2010-03-31 | 2018-02-13 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Intuitive user interface control for remote catheter navigation and 3D mapping and visualization systems |
WO2011123669A1 (en) | 2010-03-31 | 2011-10-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Intuitive user interface control for remote catheter navigation and 3d mapping and visualization systems |
US9814522B2 (en) | 2010-04-06 | 2017-11-14 | Intuitive Surgical Operations, Inc. | Apparatus and methods for ablation efficacy |
US8868169B2 (en) | 2010-04-08 | 2014-10-21 | The Regents Of The University Of California | Method and system for detection of biological rhythm disorders |
WO2011127211A2 (en) | 2010-04-08 | 2011-10-13 | The Regents Of The University Of California | Methods, system and apparatus for the detection, diagnosis and treatment of biological rhythm disorders |
US9241667B2 (en) | 2010-04-08 | 2016-01-26 | The Regents Of The University Of California | System and method for reconstructing cardiac signals associated with a complex rhythm disorder |
WO2011127209A1 (en) | 2010-04-08 | 2011-10-13 | The Regents Of The University Of California | Methods, system and apparatus for the detection, diagnosis and treatment of biological rhythm disorders |
US9089269B2 (en) | 2010-04-08 | 2015-07-28 | The Regents Of The University Of California | System and method for reconstructing cardiac signals associated with a complex rhythm disorder |
US10856760B2 (en) | 2010-04-08 | 2020-12-08 | The Regents Of The University Of California | Method and system for detection of biological rhythm disorders |
US9717436B2 (en) | 2010-04-08 | 2017-08-01 | The Regents Of The University Of California | Method and system for detection of biological rhythm disorders |
US9549684B2 (en) | 2010-04-08 | 2017-01-24 | The Regents Of The University Of California | System and method for reconstructing cardiac signals associated with a complex rhythm disorder |
US11839424B2 (en) | 2010-05-05 | 2023-12-12 | St. Jude Medical, Atrial Fibrillation Division, Inc | Monitoring, managing and/or protecting system and method for non-targeted tissue |
US9918787B2 (en) | 2010-05-05 | 2018-03-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Monitoring, managing and/or protecting system and method for non-targeted tissue |
US9289147B2 (en) | 2010-05-11 | 2016-03-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-directional flexible wire harness for medical devices |
US9131869B2 (en) | 2010-05-11 | 2015-09-15 | Rhythmia Medical, Inc. | Tracking using field mapping |
US8676290B2 (en) | 2010-05-11 | 2014-03-18 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-directional catheter control handle |
US8942786B2 (en) | 2010-05-11 | 2015-01-27 | Rhythmia Medical, Inc. | Tracking using field mapping |
US8694074B2 (en) | 2010-05-11 | 2014-04-08 | Rhythmia Medical, Inc. | Electrode displacement determination |
US9764115B2 (en) | 2010-05-11 | 2017-09-19 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-directional catheter control handle |
US10118015B2 (en) | 2010-06-16 | 2018-11-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter having flexible tip with multiple flexible segments |
US11419675B2 (en) | 2010-06-16 | 2022-08-23 | St. Jude Medical, Llc | Ablation catheter having flexible tip with multiple flexible electrode segments |
US11457974B2 (en) | 2010-06-16 | 2022-10-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter having flexible tip with multiple flexible segments |
US10220187B2 (en) | 2010-06-16 | 2019-03-05 | St. Jude Medical, Llc | Ablation catheter having flexible tip with multiple flexible electrode segments |
WO2011159955A1 (en) | 2010-06-16 | 2011-12-22 | St. Jude Medical, Inc. | Catheter having flexible tip with multiple flexible segments |
EP2407118A2 (en) | 2010-07-13 | 2012-01-18 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Methods and systems for filtering respiration noise from localization data |
US8603004B2 (en) | 2010-07-13 | 2013-12-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Methods and systems for filtering respiration noise from localization data |
US9532830B2 (en) | 2010-07-30 | 2017-01-03 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter with a mechanism for omni-directional deflection of catheter shaft |
US8696620B2 (en) | 2010-07-30 | 2014-04-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter with a mechanism for omni-directional deflection of a catheter shaft |
US10265505B2 (en) | 2010-07-30 | 2019-04-23 | St. Jude Medical, Atrial Fibrilation Division, Inc. | Catheter with a mechanism for omni-directional deflection of a catheter shaft |
US8715280B2 (en) | 2010-08-04 | 2014-05-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Magnetically guided catheters |
WO2012018439A1 (en) | 2010-08-04 | 2012-02-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Magnetically guided catheters |
US8876819B2 (en) | 2010-08-04 | 2014-11-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Magnetically guided catheters |
US9023033B2 (en) | 2010-08-04 | 2015-05-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Magnetically guided catheters |
US10052152B2 (en) | 2010-08-04 | 2018-08-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter electrode assembly |
US8945118B2 (en) | 2010-08-04 | 2015-02-03 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter with flexible tether and introducer for a catheter |
US9545498B2 (en) | 2010-08-04 | 2017-01-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Magnetically guided catheters |
US11000684B2 (en) | 2010-09-02 | 2021-05-11 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter systems |
US9289606B2 (en) | 2010-09-02 | 2016-03-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System for electroporation therapy |
EP2425871A2 (en) | 2010-09-02 | 2012-03-07 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter systems |
US10688300B2 (en) | 2010-09-02 | 2020-06-23 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter systems |
WO2012071087A1 (en) | 2010-11-23 | 2012-05-31 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Medical devices having an electroanatomical system imaging element mounted thereon |
EP3603724A1 (en) | 2010-12-02 | 2020-02-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter electrode assemblies and methods of construction therefor |
US10219861B2 (en) | 2010-12-02 | 2019-03-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter electrode assemblies and methods of construction thereof |
EP4029553A1 (en) | 2010-12-02 | 2022-07-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter electrode assemblies and methods of construction therefor |
US9037264B2 (en) | 2010-12-02 | 2015-05-19 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter electrode assemblies and methods for construction therefor |
US11065052B2 (en) | 2010-12-02 | 2021-07-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter electrode assemblies and methods of construction therefor |
US8560086B2 (en) | 2010-12-02 | 2013-10-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter electrode assemblies and methods of construction therefor |
US9687297B2 (en) | 2010-12-02 | 2017-06-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter electrode assemblies and methods of construction thereof |
US9825455B2 (en) | 2010-12-16 | 2017-11-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method of automatic detection and prevention of motor runaway |
US8736212B2 (en) | 2010-12-16 | 2014-05-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method of automatic detection and prevention of motor runaway |
WO2012082200A1 (en) | 2010-12-17 | 2012-06-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Navigation reference dislodgement detection method and system |
US9901397B2 (en) | 2010-12-17 | 2018-02-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigated ablation electrode assemblies |
US8814857B2 (en) | 2010-12-17 | 2014-08-26 | St. Jude Medical, Atrial Filbrillation Division, Inc. | Irrigated ablation electrode assemblies |
US10987162B2 (en) | 2010-12-17 | 2021-04-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigated ablation electrode assemblies |
US8979840B2 (en) | 2010-12-17 | 2015-03-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigant distribution system for flexible electrodes |
WO2012082249A1 (en) | 2010-12-17 | 2012-06-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigated ablation electrode assemblies |
US8948476B2 (en) | 2010-12-20 | 2015-02-03 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Determination of cardiac geometry responsive to doppler based imaging of blood flow characteristics |
US9717478B2 (en) | 2010-12-27 | 2017-08-01 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Refinement of an anatomical model using ultrasound |
US12089890B2 (en) | 2010-12-28 | 2024-09-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-rate fluid flow and variable power delivery for ablation electrode assemblies used in catheter ablation procedures |
WO2012091793A1 (en) | 2010-12-28 | 2012-07-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ablation electrode assemblies and methods for using same |
US9855094B2 (en) | 2010-12-28 | 2018-01-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-rate fluid flow and variable power delivery for ablation electrode assemblies used in catheter ablation procedures |
US9788891B2 (en) | 2010-12-28 | 2017-10-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ablation electrode assemblies and methods for using same |
US11399889B2 (en) | 2010-12-28 | 2022-08-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ablation electrode assemblies and methods for using same |
US10973571B2 (en) | 2010-12-28 | 2021-04-13 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-rate fluid flow and variable power delivery for ablation electrode assemblies used in catheter ablation procedures |
EP3207895A1 (en) | 2010-12-28 | 2017-08-23 | St. Jude Medical Atrial Fibrillation Division Inc. | Ablation electrode assemblies and methods for using same |
EP3205306A1 (en) | 2010-12-28 | 2017-08-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ablation electrode assemblies and methods for using same |
US20160262655A1 (en) * | 2010-12-29 | 2016-09-15 | Biosense Webster (Israel) Ltd. | Respiratory effect reduction in catheter position sensing |
US20120172712A1 (en) * | 2010-12-29 | 2012-07-05 | Bar-Tal Meir | Respiratory effect reduction in catheter position sensing |
US10524692B2 (en) * | 2010-12-29 | 2020-01-07 | Biosense Webster (Israel) Ltd. | Respiratory effect reduction in catheter position sensing |
US9398866B2 (en) | 2010-12-29 | 2016-07-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System for determining the position of a medical device within a body |
US9113807B2 (en) * | 2010-12-29 | 2015-08-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Dynamic adaptive respiration compensation with automatic gain control |
US8517031B2 (en) | 2010-12-29 | 2013-08-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System for determining the position of a medical device within a body |
US9572620B2 (en) | 2010-12-29 | 2017-02-21 | Kyungmoo Ryu | System and method for treating arrhythmias in the heart using information obtained from heart wall motion |
US9414770B2 (en) * | 2010-12-29 | 2016-08-16 | Biosense Webster (Israel) Ltd. | Respiratory effect reduction in catheter position sensing |
US20120172702A1 (en) * | 2010-12-29 | 2012-07-05 | Koyrakh Lev A | Dynamic adaptive respiration compensation with automatic gain control |
US10561371B2 (en) | 2010-12-29 | 2020-02-18 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Dynamic adaptive respiration compensation with automatic gain control |
US10441187B2 (en) | 2010-12-30 | 2019-10-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for diagnosing arrhythmias and directing catheter therapies |
US8708902B2 (en) | 2010-12-30 | 2014-04-29 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter configuration interface and related system |
US9218687B2 (en) | 2010-12-30 | 2015-12-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Display of medical device position information in a volumetric rendering |
US9675266B2 (en) | 2010-12-30 | 2017-06-13 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for diagnosing arrhythmias and directing catheter therapies |
WO2012091784A1 (en) | 2010-12-31 | 2012-07-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Automatic identification of intracardiac devices and structures in an intracardiac echo catheter image |
US9547752B2 (en) | 2010-12-31 | 2017-01-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Automated catheter guidance system |
US9216070B2 (en) | 2010-12-31 | 2015-12-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Intuitive user guided configuration routine |
US9888862B2 (en) | 2011-01-13 | 2018-02-13 | Boston Scientific Scimed, Inc. | Electroanatomical mapping |
US9277872B2 (en) | 2011-01-13 | 2016-03-08 | Rhythmia Medical, Inc. | Electroanatomical mapping |
US10335051B2 (en) | 2011-01-13 | 2019-07-02 | Rhythmia Medical, Inc. | Beat alignment and selection for cardiac mapping |
US9002442B2 (en) | 2011-01-13 | 2015-04-07 | Rhythmia Medical, Inc. | Beat alignment and selection for cardiac mapping |
US9289148B2 (en) | 2011-01-13 | 2016-03-22 | Rhythmia Medical, Inc. | Electroanatomical mapping |
US9498146B2 (en) | 2011-01-13 | 2016-11-22 | Rhythmia Medical, Inc. | Electroanatomical mapping |
US9113824B2 (en) * | 2011-01-31 | 2015-08-25 | Biosense Webster (Israel), Ltd. | Compensation for respiratory motion |
US20120197111A1 (en) * | 2011-01-31 | 2012-08-02 | Bar-Tal Meir | Compensation for respiratory motion |
US10314497B2 (en) | 2011-03-10 | 2019-06-11 | Acutus Medical Inc. | Device and method for the geometric determination of electrical dipole densities on the cardiac wall |
US11278209B2 (en) | 2011-03-10 | 2022-03-22 | Acutus Medical, Inc. | Device and method for the geometric determination of electrical dipole densities on the cardiac wall |
US12102417B2 (en) | 2011-03-10 | 2024-10-01 | Acutus Medical, Inc. | Device and method for the geometric determination of electrical dipole densities on the cardiac wall |
US10362963B2 (en) | 2011-04-14 | 2019-07-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Correction of shift and drift in impedance-based medical device navigation using magnetic field information |
US9901303B2 (en) | 2011-04-14 | 2018-02-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for registration of multiple navigation systems to a common coordinate frame |
US9655535B2 (en) | 2011-05-02 | 2017-05-23 | The Regents Of The University Of California | System and method for targeting heart rhythm disorders using shaped ablation |
US10271786B2 (en) | 2011-05-02 | 2019-04-30 | The Regents Of The University Of California | System and method for reconstructing cardiac activation information |
US9055878B2 (en) | 2011-05-02 | 2015-06-16 | The Regents Of The University Of California | System and method for reconstructing cardiac activation information |
US9055877B2 (en) | 2011-05-02 | 2015-06-16 | The Regents Of The University Of California | System and method for reconstructing cardiac activation information |
US9055876B2 (en) | 2011-05-02 | 2015-06-16 | The Regents Of The University Of California | System and method for reconstructing cardiac activation information |
US9668666B2 (en) | 2011-05-02 | 2017-06-06 | The Regents Of The University Of California | System and method for reconstructing cardiac activation information |
US8594777B2 (en) | 2011-05-02 | 2013-11-26 | The Reagents Of The University Of California | System and method for reconstructing cardiac activation information |
EP3330894A1 (en) | 2011-05-02 | 2018-06-06 | Topera, Inc. | System and method for targeting heart rhythm disorders using shaped ablation |
US9050006B2 (en) | 2011-05-02 | 2015-06-09 | The Regents Of The University Of California | System and method for reconstructing cardiac activation information |
US10070927B2 (en) | 2011-05-02 | 2018-09-11 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Sensor assembly tethered within catheter wall |
US9282910B2 (en) | 2011-05-02 | 2016-03-15 | The Regents Of The University Of California | System and method for targeting heart rhythm disorders using shaped ablation |
US9107600B2 (en) | 2011-05-02 | 2015-08-18 | The Regents Of The University Of California | System and method for reconstructing cardiac activation information |
US10149622B2 (en) | 2011-05-02 | 2018-12-11 | The Regents Of The University Of California | System and method for reconstructing cardiac activation information |
US10485438B2 (en) | 2011-05-02 | 2019-11-26 | The Regents Of The University Of California | System and method for targeting heart rhythm disorders using shaped ablation |
US9398883B2 (en) | 2011-05-02 | 2016-07-26 | The Regents Of The University Of California | System and method for reconstructing cardiac activation information |
US9220427B2 (en) | 2011-05-02 | 2015-12-29 | The Regents Of The University Of California | System and method for reconstructing cardiac activation information |
US9468387B2 (en) | 2011-05-02 | 2016-10-18 | The Regents Of The University Of California | System and method for reconstructing cardiac activation information |
US9913615B2 (en) | 2011-05-02 | 2018-03-13 | The Regents Of The University Of California | System and method for reconstructing cardiac activation information |
USD726905S1 (en) | 2011-05-11 | 2015-04-14 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Control handle for a medical device |
USD762851S1 (en) | 2011-05-11 | 2016-08-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Control handle for a medical device |
WO2012154235A1 (en) | 2011-05-11 | 2012-11-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-directional catheter control handle |
WO2012158263A1 (en) | 2011-05-13 | 2012-11-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Five degree of freedom ultrasound catheter and catheter control handle |
WO2012166216A1 (en) | 2011-06-02 | 2012-12-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-rate fluid flow and variable power delivery for ablation electrode assemblies used in catheter ablation procedures |
US10506948B2 (en) | 2011-07-05 | 2019-12-17 | Cardioinsight Technologies, Inc. | Localization for electrocardiographic mapping |
US9330497B2 (en) | 2011-08-12 | 2016-05-03 | St. Jude Medical, Atrial Fibrillation Division, Inc. | User interface devices for electrophysiology lab diagnostic and therapeutic equipment |
US10918307B2 (en) | 2011-09-13 | 2021-02-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter navigation using impedance and magnetic field measurements |
US9282915B2 (en) | 2011-11-29 | 2016-03-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and system for generating and/or repairing a surface model of a geometric structure |
US10058262B2 (en) | 2011-12-09 | 2018-08-28 | The Regents Of The University Of California | System and method of identifying sources for biological rhythms |
US9724009B2 (en) | 2011-12-09 | 2017-08-08 | The Regents Of The University Of California | System and method of identifying sources for biological rhythms |
US9392948B2 (en) | 2011-12-09 | 2016-07-19 | The Regents Of The University Of California | System and method of identifying sources for biological rhythms |
US9408536B2 (en) | 2011-12-09 | 2016-08-09 | The Regents Of The University Of California | System and method of identifying sources for biological rhythms |
US8920368B2 (en) | 2011-12-22 | 2014-12-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-user touch-based control of a remote catheter guidance system (RCGS) |
US9320573B2 (en) | 2011-12-22 | 2016-04-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-user touch-based control of a remote catheter guidance system (RCGS) |
US11205300B2 (en) | 2011-12-28 | 2021-12-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and system for generating a multi-dimensional surface model of a geometric structure |
US11636651B2 (en) | 2011-12-28 | 2023-04-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and system for generating a multidimensional surface model of a geometric structure |
US9159162B2 (en) | 2011-12-28 | 2015-10-13 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and system for generating a multi-dimensional surface model of a geometric structure |
US9402555B2 (en) | 2011-12-29 | 2016-08-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Drive assembly for use in a robotic control and guidance system |
US9125573B2 (en) | 2011-12-29 | 2015-09-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Electrically transparent introducer sheath |
US8909502B2 (en) | 2011-12-29 | 2014-12-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and system for constructing an electrophysiology map |
US10595937B2 (en) | 2011-12-29 | 2020-03-24 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System for optimized coupling of ablation catheters to body tissues and evaluation of lesions formed by the catheters |
WO2013101269A1 (en) | 2011-12-29 | 2013-07-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Drive assembly for use in a robotic control and guidance system |
US10905494B2 (en) | 2011-12-29 | 2021-02-02 | St. Jude Medical, Atrial Fibrillation Division, Inc | Flexible conductive polymer based conformable device and method to create linear endocardial lesions |
EP3412238A1 (en) | 2011-12-30 | 2018-12-12 | St. Jude Medical Atrial Fibrillation Division Inc. | Catheter with atraumatic tip |
US8945025B2 (en) | 2011-12-30 | 2015-02-03 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter with atraumatic tip |
US9114232B2 (en) | 2011-12-30 | 2015-08-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter for manual and remote manipulation |
WO2013101258A1 (en) | 2011-12-30 | 2013-07-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter with atraumatic tip |
US9949793B2 (en) | 2011-12-30 | 2018-04-24 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter with atraumatic tip |
US9649155B2 (en) | 2011-12-30 | 2017-05-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter with atraumatic tip |
US11331137B2 (en) | 2011-12-30 | 2022-05-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter with atraumatic tip |
WO2013101273A1 (en) | 2011-12-30 | 2013-07-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for detection and avoidance of collisions of robotically-controlled medical devices |
US10194885B2 (en) | 2011-12-30 | 2019-02-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Automatic monitoring for and detection of tissue pop |
US9510772B2 (en) | 2012-04-10 | 2016-12-06 | Cardionxt, Inc. | System and method for localizing medical instruments during cardiovascular medical procedures |
US10433761B2 (en) | 2012-04-10 | 2019-10-08 | Cardionxt, Inc. | Methods for localizing medical instruments during cardiovascular medical procedures |
US10610127B2 (en) | 2012-04-23 | 2020-04-07 | St. Jude Medical, Atrial Fibrilation Division, Inc. | Electrophysiology laboratory system for use with magnetic resonance imaging systems |
US10448995B2 (en) | 2012-05-04 | 2019-10-22 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for controlling delivery of ablation energy to tissue |
WO2013165584A1 (en) | 2012-05-04 | 2013-11-07 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for controlling delivery of ablation energy to tissue |
US9597148B2 (en) | 2012-05-04 | 2017-03-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for controlling delivery of ablation energy to tissue |
US10052153B2 (en) | 2012-05-04 | 2018-08-21 | St. Jude Medical, Atrial Fibrillation Division | System and method for controlling delivery of ablation energy to tissue |
US9179972B2 (en) | 2012-05-04 | 2015-11-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for controlling delivery of ablation energy to tissue |
US20130310673A1 (en) * | 2012-05-17 | 2013-11-21 | Assaf Govari | Guide wire with position sensing electrodes |
US10667753B2 (en) | 2012-08-31 | 2020-06-02 | Acutus Medical, Inc. | Catheter system and methods of medical uses of same, including diagnostic and treatment uses for the heart |
USD954970S1 (en) | 2012-08-31 | 2022-06-14 | Acutus Medical, Inc. | Set of transducer-electrode pairs for a catheter |
US10082395B2 (en) | 2012-10-03 | 2018-09-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Scaling of electrical impedance-based navigation space using inter-electrode spacing |
US9918788B2 (en) | 2012-10-31 | 2018-03-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Electrogram-based ablation control |
US9610027B2 (en) | 2012-11-30 | 2017-04-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Correction of shift and drift in impedance-based medical device navigation using measured impedances at external patch electrodes |
EP3692910A1 (en) | 2012-11-30 | 2020-08-12 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Correction of shift and drift in impedance-based medical device navigation using measured impedances at external patch electrodes |
US8849393B2 (en) | 2012-11-30 | 2014-09-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Correction of shift and drift in impedance-based medical device navigation using measured impedances at external patch electrodes |
WO2014085256A1 (en) * | 2012-11-30 | 2014-06-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Correction of shift and drift in impedance-based medical device navigation using measured impedances at external patch electrodes |
US9066725B2 (en) | 2012-12-06 | 2015-06-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigant distribution system for electrodes |
US10070919B2 (en) | 2012-12-06 | 2018-09-11 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Irrigant distribution system for electrodes |
WO2014093134A1 (en) | 2012-12-11 | 2014-06-19 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter having reduced force concentration at tissue contact site |
WO2014107299A1 (en) | 2013-01-03 | 2014-07-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Cointegration filter for a catheter navigation system |
US9820677B2 (en) | 2013-01-03 | 2017-11-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Cointegration filter for a catheter navigation system |
CN105263405A (en) * | 2013-01-17 | 2016-01-20 | 科迪影技术股份有限公司 | Multi-parameter physiological mapping |
US9179971B2 (en) | 2013-02-11 | 2015-11-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Printed electrode catheter |
US11559236B2 (en) | 2013-02-11 | 2023-01-24 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Printed electrode catheter |
US10178960B2 (en) | 2013-02-11 | 2019-01-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Printed electrode catheter |
US10238348B2 (en) | 2013-02-22 | 2019-03-26 | St Jude Medical International Holding S.À R.L. | Representative emulation of organ behavior |
WO2014128637A1 (en) | 2013-02-22 | 2014-08-28 | MediGuide, Ltd. | Representative emulation of organ behavior |
US10278614B2 (en) | 2013-03-05 | 2019-05-07 | St. Jude Medical, Cardiology Division, Inc. | System and method for detecting sheathing and unsheathing of localization elements |
US9392973B2 (en) | 2013-03-05 | 2016-07-19 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for detecting sheathing and unsheathing of localization elements |
WO2014137897A1 (en) | 2013-03-05 | 2014-09-12 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for detecting sheathing and unsheathing of localization elements |
US9026196B2 (en) | 2013-03-05 | 2015-05-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for detecting sheathing and unsheathing of localization elements |
US10188314B2 (en) | 2013-03-05 | 2019-01-29 | St. Jude Medical, Cardiology Division, Inc. | System and method for detecting sheathing and unsheathing of localization elements |
EP3243477A1 (en) | 2013-03-08 | 2017-11-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Medical device positioner for remote catheter guidance systems |
US9827056B2 (en) | 2013-03-08 | 2017-11-28 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Medical device positioner for remote catheter guidance systems |
US10231637B2 (en) | 2013-03-12 | 2019-03-19 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Non-contact mapping system and method |
CN105188524B (en) * | 2013-03-12 | 2018-09-28 | 圣犹达医疗用品电生理部门有限公司 | Non-contact Mapping System and method |
US9402976B2 (en) | 2013-03-12 | 2016-08-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Tri-curve elongate medical device |
US10368943B2 (en) | 2013-03-12 | 2019-08-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Tri-curve elongate medical device |
CN105188524A (en) * | 2013-03-12 | 2015-12-23 | 圣犹达医疗用品电生理部门有限公司 | Non-contact mapping system and method |
WO2014164681A1 (en) | 2013-03-12 | 2014-10-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Tri-curve elongate medical device |
WO2014163899A1 (en) | 2013-03-12 | 2014-10-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Active detection of sensor transition from covered to exposed |
US9724014B2 (en) | 2013-03-12 | 2017-08-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Active detection of sensor transition from covered to exposed |
US10383542B2 (en) | 2013-03-14 | 2019-08-20 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Device, system, and method for intracardiac diagnosis or therapy with localization |
US9332915B2 (en) | 2013-03-15 | 2016-05-10 | The Regents Of The University Of California | System and method to identify sources associated with biological rhythm disorders |
WO2014149472A1 (en) | 2013-03-15 | 2014-09-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System for detecting catheter electrodes entering into and exiting from an introducer |
US9724166B2 (en) | 2013-03-15 | 2017-08-08 | Mediguide Ltd. | Medical device navigation system |
US10939964B2 (en) | 2013-03-15 | 2021-03-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System for detecting catheter electrodes entering into and exiting from an introducer |
US10085655B2 (en) | 2013-03-15 | 2018-10-02 | The Regents Of The University Of California | System and method to define drivers of sources associated with biological rhythm disorders |
WO2014152344A2 (en) | 2013-03-15 | 2014-09-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Device for intravascular therapy and/or diagnosis |
WO2014150014A1 (en) | 2013-03-15 | 2014-09-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Regularization schemes for non-contact mapping with a medical device |
US11013561B2 (en) | 2013-03-15 | 2021-05-25 | St. Jude Medical International Holding S.À R.L. | Medical device navigation system |
US9398860B2 (en) | 2013-03-15 | 2016-07-26 | Topera, Inc. | System and method to define a rotational source associated with a biological rhythm disorder |
US10070795B2 (en) | 2013-03-15 | 2018-09-11 | Topera, Inc. | System and method to define a rotational source associated with a biological rhythm disorder |
US11179193B2 (en) | 2013-03-15 | 2021-11-23 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Device for intravascular therapy and/or diagnosis |
US10271744B2 (en) | 2013-03-15 | 2019-04-30 | The Regents Of The University Of California | System and method to identify sources associated with biological rhythm disorders |
US8715199B1 (en) | 2013-03-15 | 2014-05-06 | Topera, Inc. | System and method to define a rotational source associated with a biological rhythm disorder |
US11723725B2 (en) | 2013-03-15 | 2023-08-15 | St Jude Medical, Atrial Fibrillation Division Inc. | System for detecting catheter electrodes entering into and exiting from an introducer |
US9693820B2 (en) | 2013-03-15 | 2017-07-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System for detecting catheter electrodes entering into and exiting from an introducer |
US10098560B2 (en) | 2013-03-15 | 2018-10-16 | The Regents Of The University Of California | System and method to identify sources associated with biological rhythm disorders |
US10049771B2 (en) | 2013-03-15 | 2018-08-14 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Laplacian and Tikhonov regularization for voltage mapping with a medical device |
US10398326B2 (en) | 2013-03-15 | 2019-09-03 | The Regents Of The University Of California | System and method of identifying sources associated with biological rhythm disorders |
US11446506B2 (en) | 2013-03-15 | 2022-09-20 | The Regents Of The University Of California | System and method of identifying sources associated with biological rhythm disorders |
US9326702B2 (en) | 2013-03-15 | 2016-05-03 | Mediguide Ltd. | Medical device navigation system |
WO2014172524A1 (en) | 2013-04-18 | 2014-10-23 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Systems and methods for visualizing and analyzing cardiac arrhythmias using 2-d planar projection and partially unfolded surface mapping processes |
US20140330270A1 (en) * | 2013-05-03 | 2014-11-06 | William J. Anderson | Method of ablating scar tissue to orient electrical current flow |
US9636032B2 (en) | 2013-05-06 | 2017-05-02 | Boston Scientific Scimed Inc. | Persistent display of nearest beat characteristics during real-time or play-back electrophysiology data visualization |
EP3733060A1 (en) | 2013-05-07 | 2020-11-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Utilization of electrode spatial arrangements for characterizing cardiac conduction conditions |
US9808171B2 (en) | 2013-05-07 | 2017-11-07 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Utilization of electrode spatial arrangements for characterizing cardiac conduction conditions |
WO2014182822A1 (en) | 2013-05-07 | 2014-11-13 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Utilization of electrode spatial arrangements for characterizing cardiac conduction conditions |
US10499826B2 (en) | 2013-05-07 | 2019-12-10 | St. Jude Medical , Atrial Fibrillation Division, Inc. | Utilization of electrode spatial arrangements for characterizing cardiac conduction conditions |
US9918649B2 (en) | 2013-05-14 | 2018-03-20 | Boston Scientific Scimed Inc. | Representation and identification of activity patterns during electro-physiology mapping using vector fields |
US10555680B2 (en) | 2013-05-14 | 2020-02-11 | Boston Scientific Scimed Inc. | Representation and identification of activity patterns during electro-physiology mapping using vector fields |
US10368760B2 (en) | 2013-06-11 | 2019-08-06 | St. Jude Medical, Atrial Fibrillation Divison, Inc. | Multi-electrode impedance sensing |
US11642060B2 (en) | 2013-06-11 | 2023-05-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-electrode impedance sensing |
US12048544B2 (en) | 2013-06-11 | 2024-07-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-electrode impedance sensing |
WO2014201113A1 (en) | 2013-06-11 | 2014-12-18 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Multi-electrode impedance sensing |
US20150057507A1 (en) * | 2013-08-20 | 2015-02-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and Method for Generating Electrophysiology Maps |
WO2015026733A1 (en) | 2013-08-20 | 2015-02-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for generating electrophysiology maps |
US9498143B2 (en) | 2013-08-22 | 2016-11-22 | Aftx, Inc. | Methods, systems, and apparatus for identification and characterization of rotors associated with atrial fibrillation |
US10588532B2 (en) | 2013-08-22 | 2020-03-17 | Aftx, Inc. | Methods, systems, and apparatus for identification and characterization of rotors associated with atrial fibrillation |
US9955893B2 (en) | 2013-08-22 | 2018-05-01 | Aftx, Inc. | Methods, systems, and apparatus for identification and characterization of rotors associated with atrial fibrillation |
US9220435B2 (en) | 2013-10-09 | 2015-12-29 | St. Jude Medical, Cardiology Division, Inc. | System and method for generating electrophysiology maps |
WO2015054048A1 (en) | 2013-10-09 | 2015-04-16 | St. Jude Medical, Cardiology Division, Inc. | System and method for generating electrophysiology maps |
US9687166B2 (en) | 2013-10-14 | 2017-06-27 | Boston Scientific Scimed, Inc. | High resolution cardiac mapping electrode array catheter |
EP4331517A2 (en) | 2013-10-28 | 2024-03-06 | St. Jude Medical, Cardiology Division, Inc. | Ablation catheter designs and methods with enhanced diagnostic capabilities |
EP3892222A1 (en) | 2013-10-28 | 2021-10-13 | St. Jude Medical, Cardiology Division, Inc. | Ablation catheter designs and methods with enhanced diagnostic capabilities |
EP3417821A1 (en) | 2013-10-28 | 2018-12-26 | St. Jude Medical, Cardiology Division, Inc. | Ablation catheter designs and methods with enhanced diagnostic capabilities |
WO2015065966A2 (en) | 2013-10-28 | 2015-05-07 | St. Jude Medical, Cardiology Division, Inc. | Ablation catheter designs and methods with enhanced diagnostic capabilities |
US11839423B2 (en) | 2013-10-28 | 2023-12-12 | St. Jude Medical, Cardiology Division, Inc. | Ablation catheter designs and methods with enhanced diagnostic capabilities |
WO2015066112A1 (en) | 2013-10-30 | 2015-05-07 | St. Jude Medical, Cardiology Division, Inc. | Cardiac mapping system and method for voltage-based evaluation of electrograms |
WO2015066113A1 (en) | 2013-10-30 | 2015-05-07 | St. Jude Medical, Cardiology Division, Inc. | Cardiac mapping system and method for bi-directional activation detection of electrograms |
US9901271B2 (en) | 2013-10-31 | 2018-02-27 | St. Jude Medical, Cardiology Division, Inc. | System and method for analyzing biological signals and generating electrophysiology maps |
US9717429B2 (en) | 2013-10-31 | 2017-08-01 | St. Jude Medical, Cardiology Division, Inc. | System and method for analyzing biological signals and generating electrophyisology maps |
WO2015065648A1 (en) | 2013-10-31 | 2015-05-07 | St. Jude Medical, Cardiology Division, Inc. | System and method for generating electrophysiology maps |
US11051877B2 (en) | 2013-11-07 | 2021-07-06 | St. Jude Medical, Cardiology Division, Inc. | Medical device with contact force sensing tip |
WO2015069887A1 (en) | 2013-11-07 | 2015-05-14 | St. Jude Medical, Cardiology Division, Inc. | Medical device with contact force sensing tip |
US9314191B2 (en) | 2013-11-19 | 2016-04-19 | Pacesetter, Inc. | Method and system to measure cardiac motion using a cardiovascular navigation system |
US9301713B2 (en) | 2013-11-19 | 2016-04-05 | Pacesetter, Inc. | Method and system to assess mechanical dyssynchrony based on motion data collected by a navigation system |
US9814406B2 (en) | 2013-11-19 | 2017-11-14 | Pacesetter, Inc. | Method and system to identify motion data associated with consistent electrical and mechanical behavior for a region of interest |
EP3581136A1 (en) | 2013-12-12 | 2019-12-18 | St. Jude Medical, Cardiology Division, Inc. | Medical device with contact force sensing tip |
WO2015089173A1 (en) | 2013-12-12 | 2015-06-18 | St. Jude Medical, Cardiology Division, Inc. | Medical device with contact force sensing tip |
EP3354219A1 (en) | 2013-12-12 | 2018-08-01 | St. Jude Medical, Cardiology Division, Inc. | Medical device with contact force sensing tip |
US9265434B2 (en) * | 2013-12-18 | 2016-02-23 | Biosense Webster (Israel) Ltd. | Dynamic feature rich anatomical reconstruction from a point cloud |
EP3498156A1 (en) | 2013-12-20 | 2019-06-19 | St. Jude Medical, Cardiology Division, Inc. | Coaxial electrode catheters for extracting electrophysiologic parameters |
EP3199103A1 (en) | 2014-01-28 | 2017-08-02 | St. Jude Medical, Cardiology Division, Inc. | Medical device with a packaged electronic subassembly and method for fabricating the same |
WO2015116692A1 (en) | 2014-01-28 | 2015-08-06 | St. Jude Medical, Cardiology Division, Inc. | Catheter shaft with electrically-conductive traces |
EP3476287A2 (en) | 2014-01-28 | 2019-05-01 | St. Jude Medical, Cardiology Division, Inc. | Catheter shaft with electrically-conductive traces |
WO2015116562A1 (en) | 2014-01-28 | 2015-08-06 | St. Jude Medical, Cardiology Division, Inc. | Medical device with a packaged electronic subassembly and method for fabricating the same |
US10548671B2 (en) | 2014-01-28 | 2020-02-04 | St. Jude Medical International Holding S.á r.l. | Medical device with a packaged electronic subassembly and method for fabricating the same |
US11116449B2 (en) | 2014-01-28 | 2021-09-14 | St. Jude Medical, Cardiology Division, Inc. | Catheter shaft with electrically-conductive traces |
WO2015116687A1 (en) | 2014-01-28 | 2015-08-06 | St. Jude Medical, Cardiology Division, Inc. | Elongate medical devices incorporating a flexible substrate, a sensor, and electrically-conductive traces |
US11051878B2 (en) | 2014-02-06 | 2021-07-06 | St. Jude Medical, Cardiology Division, Inc. | Elongate medical device including chamfered ring electrode and variable shaft |
EP3492035A2 (en) | 2014-02-06 | 2019-06-05 | St. Jude Medical, Cardiology Division, Inc. | Elongate medical device including chamfered ring electrode and variable shaft |
US11690670B2 (en) | 2014-02-06 | 2023-07-04 | St. Jude Medical, Cardiology Division, Inc. | Elongate medical device including chamfered ring electrode and variable shaft |
WO2015119946A1 (en) | 2014-02-06 | 2015-08-13 | St. Jude Medical, Cardiology Division, Inc. | Elongate medical device including chamfered ring electrode and variable shaft |
US10582882B2 (en) | 2014-02-07 | 2020-03-10 | St. Jude Medical, Cardiology Division, Inc. | System and method for assessing dimensions and eccentricity of valve annulus for trans-catheter valve implantation |
US9867556B2 (en) | 2014-02-07 | 2018-01-16 | St. Jude Medical, Cardiology Division, Inc. | System and method for assessing dimensions and eccentricity of valve annulus for trans-catheter valve implantation |
US10470682B2 (en) | 2014-02-25 | 2019-11-12 | St. Jude Medical, Cardiology Division, Inc. | System and method for local electrophysiological characterization of cardiac substrate using multi-electrode catheters |
WO2015130829A1 (en) | 2014-02-25 | 2015-09-03 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for using electrophysiology properties for classifying arrhythmia sources |
US10136829B2 (en) | 2014-02-25 | 2018-11-27 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for using electrophysiology properties for classifying arrhythmia sources |
US12109031B2 (en) | 2014-02-25 | 2024-10-08 | St. Jude Medical, Cardiology Division, Inc. | System and method for local electrophysiological characterization of cardiac substrate using multi-electrode catheter |
WO2015130824A1 (en) | 2014-02-25 | 2015-09-03 | St. Jude Medical, Cardiology Division, Inc. | System and method for local electrophysiological characterization of cardiac substrate using multi-electrode catheters |
EP3721796A1 (en) | 2014-02-25 | 2020-10-14 | St. Jude Medical, Cardiology Division, Inc. | System for local electrophysiological characterization of cardiac substrate using multi-electrode catheters |
WO2015142445A1 (en) | 2014-03-21 | 2015-09-24 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for generating a multi-dimensional surface model of a geometric structure |
US9865086B2 (en) * | 2014-03-21 | 2018-01-09 | St. Jude Medical, Cardiololgy Division, Inc. | Methods and systems for generating a multi-dimensional surface model of a geometric structure |
US20150269775A1 (en) * | 2014-03-21 | 2015-09-24 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for generating a multi-dimensional surface model of a geometric structure |
US11931157B2 (en) | 2014-03-25 | 2024-03-19 | Acutus Medical, Inc. | Cardiac analysis user interface system and method |
WO2015164667A1 (en) | 2014-04-23 | 2015-10-29 | St. Jude Medical, Cardiology Division, Inc. | System and method for displaying cardiac mechanical activation patterns |
US9380940B2 (en) | 2014-05-05 | 2016-07-05 | Pacesetter, Inc. | Method and system for displaying a three dimensional visualization of cardiac motion |
US9763591B2 (en) | 2014-05-05 | 2017-09-19 | Pacesetter, Inc. | Method and system to subdivide a mapping area for mechanical activation analysis |
US9302099B2 (en) | 2014-05-05 | 2016-04-05 | Pacesetter, Inc. | System and method for evaluating lead stability of an implantable medical device |
US9861823B2 (en) | 2014-05-05 | 2018-01-09 | Pacesetter, Inc. | Cardiac resynchronization system and method |
US9895076B2 (en) | 2014-05-05 | 2018-02-20 | Pacesetter, Inc. | Method and system to determine cardiac cycle length in connection with cardiac mapping |
WO2015171393A1 (en) | 2014-05-05 | 2015-11-12 | St. Jude Medical, Cardiology Division, Inc. | System and method for rendering a motion model of a beating heart |
US9700233B2 (en) | 2014-05-05 | 2017-07-11 | Pacesetter, Inc. | Method and system to equalizing cardiac cycle length between map points |
US10271794B2 (en) | 2014-05-05 | 2019-04-30 | St. Jude Medical, Cardiology Division, Inc. | System and method for rendering a motion model of a beating heart |
US9585588B2 (en) | 2014-06-03 | 2017-03-07 | Boston Scientific Scimed, Inc. | Electrode assembly having an atraumatic distal tip |
US9848795B2 (en) | 2014-06-04 | 2017-12-26 | Boston Scientific Scimed Inc. | Electrode assembly |
US9788751B2 (en) | 2014-10-15 | 2017-10-17 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for generating integrated substrate maps for cardiac arrhythmias |
US11375916B2 (en) | 2014-10-15 | 2022-07-05 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for generating integrated substrate maps for cardiac arrhythmias |
US9872653B2 (en) | 2014-10-15 | 2018-01-23 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for mapping local conduction velocity |
WO2016061387A1 (en) | 2014-10-15 | 2016-04-21 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for generating integrated substrate maps for cardiac arrhythmias |
US10624557B2 (en) | 2014-10-15 | 2020-04-21 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for generating integrated substrate maps for cardiac arrhythmias |
US11179112B2 (en) | 2014-10-15 | 2021-11-23 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for mapping local conduction velocity |
US10512435B2 (en) | 2014-10-15 | 2019-12-24 | St. Jude Medical, Cardiology Division, Inc. | Systems for mapping local conduction velocity |
US9474491B2 (en) | 2014-10-15 | 2016-10-25 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for mapping local conduction velocity |
WO2016061384A1 (en) | 2014-10-15 | 2016-04-21 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for mapping local conduction velocity |
US9947142B2 (en) | 2014-11-18 | 2018-04-17 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for generating a patch surface model of a geometric structure |
US10227708B2 (en) | 2014-11-18 | 2019-03-12 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for cleaning medical device electrodes |
US10861246B2 (en) | 2014-11-18 | 2020-12-08 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for generating a patch surface model of a geometric structure |
WO2016081130A1 (en) | 2014-11-18 | 2016-05-26 | St. Jude Medical, Cardiology Division, Inc. | Method and system for generating a patch surface model of a geometric structure |
US10631913B2 (en) | 2014-12-31 | 2020-04-28 | St. Jude Medical, Cardiology Division, Inc. | Filter circuit for electrophysiology system |
US11564611B2 (en) | 2015-01-07 | 2023-01-31 | St. Jude Medical, Cardiology Division, Inc. | System, method, and apparatus for visualizing cardiac timing information using animations |
US10888235B2 (en) | 2015-01-07 | 2021-01-12 | St. Jude Medical, Cardiology Division, Inc. | System, method, and apparatus for visualizing cardiac timing information using animations |
US11950917B2 (en) | 2015-01-07 | 2024-04-09 | St. Jude Medical, Cardiology Division, Inc. | System, method, and apparatus for visualizing cardiac timing information using animations |
US10105107B2 (en) | 2015-01-08 | 2018-10-23 | St. Jude Medical International Holding S.À R.L. | Medical system having combined and synergized data output from multiple independent inputs |
WO2016128839A1 (en) | 2015-02-13 | 2016-08-18 | St. Jude Medical International Holding S.A.R.L. | Tracking-based 3d model enhancement |
US10163204B2 (en) | 2015-02-13 | 2018-12-25 | St. Jude Medical International Holding S.À R.L. | Tracking-based 3D model enhancement |
US11419674B2 (en) | 2015-03-31 | 2022-08-23 | St. Jude Medical, Cardiology Division, Inc. | Methods and devices for delivering pulsed RF energy during catheter ablation |
US11350986B2 (en) | 2015-03-31 | 2022-06-07 | St. Jude Medical, Cardiology Division, Inc. | High-thermal-sensitivity ablation catheters and catheter tips |
US10716672B2 (en) | 2015-04-07 | 2020-07-21 | St. Jude Medical, Cardiology Division, Inc. | System and method for intraprocedural assessment of geometry and compliance of valve annulus for trans-catheter valve implantation |
US10799148B2 (en) | 2015-05-07 | 2020-10-13 | St. Jude Medical, Cardiology Division, Inc. | System and method for detecting sheathing and unsheathing of localization elements |
US10238350B2 (en) | 2015-05-08 | 2019-03-26 | St. Jude Medical, Cardiology Division, Inc. | System and method for real-time electrophysiological mapping |
US10799188B2 (en) | 2015-05-08 | 2020-10-13 | St. Jude Medical, Cardiology Division, Inc. | System and method for real-time electrophysiological mapping |
US11826108B2 (en) | 2015-05-12 | 2023-11-28 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for orientation independent sensing |
US10593234B2 (en) | 2015-05-12 | 2020-03-17 | Acutus Medical, Inc. | Cardiac virtualization test tank and testing system and method |
EP3711662A1 (en) | 2015-05-12 | 2020-09-23 | St. Jude Medical, Cardiology Division, Inc. | System for orientation independent sensing |
US10194994B2 (en) | 2015-05-12 | 2019-02-05 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for orientation independent sensing |
US10980602B2 (en) | 2015-05-12 | 2021-04-20 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for orientation independent sensing |
US11298175B2 (en) | 2015-05-12 | 2022-04-12 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Asymmetric balanced waveform for AC cardiac irreversible electroporation |
US11344366B2 (en) | 2015-05-12 | 2022-05-31 | Acutus Medical, Inc. | Ultrasound sequencing system and method |
US10653318B2 (en) | 2015-05-13 | 2020-05-19 | Acutus Medical, Inc. | Localization system and method useful in the acquisition and analysis of cardiac information |
US12053258B2 (en) | 2015-05-13 | 2024-08-06 | Acutus Medical, Inc. | Localization system and method useful in the acquisition and analysis of cardiac information |
US11179199B2 (en) | 2015-06-03 | 2021-11-23 | St. Jude Medical, Cardiology Division, Inc. | Aligning a cardiac model |
WO2016196047A1 (en) | 2015-06-03 | 2016-12-08 | St. Jude Medical, Cardiology Division, Inc. | Aligning a cardiac model |
US20160367168A1 (en) | 2015-06-19 | 2016-12-22 | St. Jude Medical, Cardiology Division, Inc. | Electromagnetic dynamic registration for device navigation |
US11712171B2 (en) | 2015-06-19 | 2023-08-01 | St. Jude Medical, Cardiology Division, Inc. | Electromagnetic dynamic registration for device navigation |
US11944389B2 (en) | 2015-06-19 | 2024-04-02 | St. Jude Medical, Cardiology Division, Inc. | Impedance shift and drift detection and correction |
US11154364B2 (en) | 2015-07-30 | 2021-10-26 | St. Jude Medical Ineternational Holding S.à r.l. | Roll-sensing sensor assembly |
WO2017017659A1 (en) | 2015-07-30 | 2017-02-02 | St. Jude Medical International Holding S.A R.L. | Roll-sensing sensor assembly |
US10758144B2 (en) | 2015-08-20 | 2020-09-01 | Boston Scientific Scimed Inc. | Flexible electrode for cardiac sensing and method for making |
WO2017040581A1 (en) | 2015-09-02 | 2017-03-09 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for identifying and mapping cardiac activation wavefronts |
US11672460B2 (en) | 2015-09-02 | 2023-06-13 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for identifying and mapping cardiac activation wavefronts |
US9888860B2 (en) | 2015-09-02 | 2018-02-13 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for identifying and mapping cardiac activation wavefronts |
US10687721B2 (en) | 2015-09-02 | 2020-06-23 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for identifying and mapping cardiac activation wavefronts |
US10201277B2 (en) | 2015-09-07 | 2019-02-12 | Ablacon Inc. | Systems, devices, components and methods for detecting the locations of sources of cardiac rhythm disorders in a patient's heart |
US10143374B2 (en) | 2015-09-07 | 2018-12-04 | Ablacon Inc. | Systems, devices, components and methods for detecting the locations of sources of cardiac rhythm disorders in a patient's heart |
US10271758B2 (en) | 2015-09-26 | 2019-04-30 | Boston Scientific Scimed, Inc. | Intracardiac EGM signals for beat matching and acceptance |
US10621790B2 (en) | 2015-09-26 | 2020-04-14 | Boston Scientific Scimed Inc. | Systems and methods for anatomical shell editing |
US11026618B2 (en) | 2015-09-26 | 2021-06-08 | Boston Scientific Scimed Inc. | Intracardiac EGM signals for beat matching and acceptance |
US10405766B2 (en) | 2015-09-26 | 2019-09-10 | Boston Scientific Scimed, Inc. | Method of exploring or mapping internal cardiac structures |
US10271757B2 (en) | 2015-09-26 | 2019-04-30 | Boston Scientific Scimed Inc. | Multiple rhythm template monitoring |
US10687727B2 (en) | 2015-10-06 | 2020-06-23 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for generating electrophysiological maps |
WO2017062250A1 (en) | 2015-10-06 | 2017-04-13 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for displaying electrophysiological lesions |
US10276267B2 (en) | 2015-10-06 | 2019-04-30 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for displaying electrophysiological lesions |
US10238308B2 (en) | 2015-10-06 | 2019-03-26 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for generating electrophysiological maps |
US10714218B2 (en) | 2015-10-06 | 2020-07-14 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for displaying electrophysiological lesions |
US10349856B2 (en) | 2015-10-07 | 2019-07-16 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for mapping cardiac restitution |
US11071491B2 (en) | 2015-10-07 | 2021-07-27 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for mapping cardiac repolarization |
US11141583B2 (en) | 2015-10-12 | 2021-10-12 | St. Jude Medical, Cardiology Division, Inc. | Multi-layer body surface electrodes |
WO2017087740A1 (en) | 2015-11-20 | 2017-05-26 | St. Jude Medical, Cardiology Division, Inc. | Multi-electrode ablator tip having dual-mode, omni-directional feedback capabilities |
US10980598B2 (en) | 2015-11-20 | 2021-04-20 | St. Jude Medical, Cardiology Division, Inc. | Multi-electrode ablator tip having dual-mode, omni-directional feedback capabilities |
US11229393B2 (en) | 2015-12-04 | 2022-01-25 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for statistically analyzing electrograms for local abnormal ventricular activities and mapping the same |
US10398331B2 (en) | 2015-12-04 | 2019-09-03 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for statistically analyzing electrograms for local abnormal ventricular activities and mapping the same |
US10772531B2 (en) | 2016-01-26 | 2020-09-15 | St. Jude Medical International Holding S.á r.l. | Magnetic field distortion detection and correction in a magnetic localization system |
WO2017130135A1 (en) | 2016-01-26 | 2017-08-03 | St. Jude Medical International Holding S.A R.L. | Magnetic field distortion detection and correction in a magnetic localization system |
US12042262B2 (en) | 2016-01-26 | 2024-07-23 | St Jude Medical International Holding, Sa.R.L. | Magnetic field distortion detection and correction in a magnetic localization system |
WO2017142850A1 (en) | 2016-02-16 | 2017-08-24 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for electrophysiology mapping using medical images |
US11931158B2 (en) | 2016-03-01 | 2024-03-19 | St. Jude Medical, Cardiology Division, Inc. St. | Methods and systems for mapping cardiac activity |
US10758147B2 (en) | 2016-03-01 | 2020-09-01 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for mapping cardiac activity |
US11883106B2 (en) | 2016-05-03 | 2024-01-30 | St. Jude Medical, Cardiology Division, Inc. | Lesion prediction based in part on tissue characterization |
WO2017192453A1 (en) | 2016-05-03 | 2017-11-09 | St. Jude Medical, Cardiology Division, Inc. | Lesion prediction based in part on tissue characterization |
US11399759B2 (en) | 2016-05-03 | 2022-08-02 | Acutus Medical, Inc. | Cardiac mapping system with efficiency algorithm |
US10750975B2 (en) | 2016-07-15 | 2020-08-25 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for generating smoothed images of an elongate medical device |
WO2018013341A1 (en) | 2016-07-15 | 2018-01-18 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for generating smoothed images of an elongate medical device |
WO2018037372A1 (en) | 2016-08-24 | 2018-03-01 | St. Jude Medical International Holding S.À R.L. | Composite planarity member with integrated tracking sensors |
US11246658B2 (en) | 2016-10-04 | 2022-02-15 | St. Jude Medical, Cardiology Division, Inc. | Ablation catheter tip |
US11045109B2 (en) | 2016-10-26 | 2021-06-29 | St. Jude Medical, Cardiology Division, Inc. | Navigational electrode with magnetic tracking coil |
US10561325B2 (en) | 2016-11-11 | 2020-02-18 | St. Jude Medical, Cardiology Division, Inc. | System and method for generating electrophysiology maps |
WO2018089172A1 (en) | 2016-11-11 | 2018-05-17 | St. Jude Medical, Cardiology Division, Inc. | System and method for generating electrophysiology maps |
WO2018094063A1 (en) | 2016-11-21 | 2018-05-24 | St. Jude Medical, Cardiology Division, Inc. | System and method for generating electrophysiology maps |
US11344236B2 (en) | 2016-11-21 | 2022-05-31 | St Jude Medical Cardiology Division, Inc. | System and method for generating electrophysiology maps |
US11779732B2 (en) | 2016-11-21 | 2023-10-10 | St Jude Medical International Holding S.À R.L. | Medical device sensor |
WO2018102376A1 (en) | 2016-11-29 | 2018-06-07 | St. Jude Medical, Cardiology Division, Inc. | Electroporation systems and catheters for electroporation systems |
US11717337B2 (en) | 2016-11-29 | 2023-08-08 | St. Jude Medical, Cardiology Division, Inc. | Electroporation systems and catheters for electroporation systems |
EP3884895A1 (en) | 2016-11-29 | 2021-09-29 | St. Jude Medical, Cardiology Division, Inc. | Electroporation systems and catheters for electroporation systems |
US10610120B2 (en) | 2017-01-13 | 2020-04-07 | St. Jude Medical, Cardiology Division, Inc. | System and method for generating premature ventricular contraction electrophysiology maps |
WO2018132543A1 (en) | 2017-01-13 | 2018-07-19 | St. Jude Medical, Cardiology Division, Inc. | System and method for generating premature ventricular contraction electrophysiology maps |
US10568702B2 (en) | 2017-01-19 | 2020-02-25 | St. Jude Medical, Cardiology Division, Inc. | System and method for re-registration of localization system after shift/drift |
WO2018136733A1 (en) | 2017-01-19 | 2018-07-26 | St. Jude Medical, Cardiology Division, Inc. | System and method for re-registration of localization system after shift/drift |
US10588531B2 (en) | 2017-02-10 | 2020-03-17 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for determining prevalence of cardiac phenomena |
WO2018148525A1 (en) | 2017-02-10 | 2018-08-16 | St. Jude Medical, Cardiology Division, Inc. | Determining ablation location using probabilistic decision-making |
WO2018148532A1 (en) | 2017-02-10 | 2018-08-16 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for determining prevalence of cardiac phenomena |
US10639100B2 (en) | 2017-02-10 | 2020-05-05 | St. Jude Medical, Cardiology Division, Inc. | Determining ablation location using probabilistic decision-making |
WO2018152136A1 (en) | 2017-02-14 | 2018-08-23 | St. Jude Medical, Cardiology Division, Inc. | System and apparatus for detecting catheters relative to introducers |
US12064228B2 (en) | 2017-02-14 | 2024-08-20 | St. Jude Medical, Cardiology Division, Inc. | System and apparatus for detecting catheters relative to introducers |
US11304622B2 (en) | 2017-02-14 | 2022-04-19 | St. Jude Medical, Cardiology Division, Inc. | System and apparatus for detecting catheters relative to introducers |
WO2018160631A1 (en) | 2017-03-02 | 2018-09-07 | St. Jude Medical, Cardiology Division, Inc. | System and method for differentiation of adipose tissue from scar tissue during electrophysiological mapping |
WO2018191113A1 (en) | 2017-04-10 | 2018-10-18 | St. Jude Medical, Cardiology Division, Inc. | Electroporation system and method of preconditioning tissue for electroporation therapy |
WO2018191149A1 (en) | 2017-04-10 | 2018-10-18 | St. Jude Medical, Cardiology Division, Inc. | Electroporation system and method of energizing a catheter |
EP4382160A2 (en) | 2017-04-10 | 2024-06-12 | St. Jude Medical, Cardiology Division, Inc. | Electroporation system and method of energizing a catheter |
US11406312B2 (en) | 2017-04-14 | 2022-08-09 | St. Jude Medical, Cardiology Division, Inc. | Orientation independent sensing, mapping, interface and analysis systems and methods |
WO2018191686A1 (en) | 2017-04-14 | 2018-10-18 | St. Jude Medical, Cardiology Division, Inc. | Orientation independent sensing, mapping, interface and analysis systems and methods |
EP3795079A1 (en) | 2017-04-14 | 2021-03-24 | St. Jude Medical, Cardiology Division, Inc. | Orientation independent sensing, mapping, interface and analysis systems and methods |
US10758137B2 (en) | 2017-04-14 | 2020-09-01 | St. Jude Medical, Cardiology Division, Inc. | Orientation independent sensing, mapping, interface and analysis systems and methods |
WO2018204375A1 (en) | 2017-05-04 | 2018-11-08 | St. Jude Medical, Cardiology Division, Inc. | System and method for determining ablation parameters |
US11984219B2 (en) * | 2017-05-09 | 2024-05-14 | Boston Scientific Scimed, Inc. | Operating room devices, methods, and systems |
US20210085425A1 (en) * | 2017-05-09 | 2021-03-25 | Boston Scientific Scimed, Inc. | Operating room devices, methods, and systems |
WO2018208795A1 (en) | 2017-05-12 | 2018-11-15 | St. Jude Medical, Cardiology Division, Inc. | Electroporation systems and catheters for electroporation systems |
US10398346B2 (en) * | 2017-05-15 | 2019-09-03 | Florida Atlantic University Board Of Trustees | Systems and methods for localizing signal resources using multi-pole sensors |
WO2018212996A1 (en) | 2017-05-17 | 2018-11-22 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping local activation times |
US11380029B2 (en) | 2017-05-17 | 2022-07-05 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping local activation times |
US11298066B2 (en) | 2017-07-07 | 2022-04-12 | St. Jude Medical, Cardiology Division, Inc. | System and method for electrophysiological mapping |
WO2019009967A1 (en) | 2017-07-07 | 2019-01-10 | St. Jude Medical, Cardiology Division, Inc. | System and method for electrophysiological mapping |
WO2019018182A1 (en) | 2017-07-19 | 2019-01-24 | St. Jude Medical, Cardiology Division, Inc. | System and method for electrophysiological mapping |
US11564606B2 (en) | 2017-07-19 | 2023-01-31 | St. Jude Medical, Cardiology Division, Inc. | System and method for electrophysiological mapping |
WO2019035071A1 (en) | 2017-08-18 | 2019-02-21 | St. Jude Medical, Cardiology Division, Inc. | Medical catheters, systems including medical catheters, and methods of positioning medical catheters |
EP3981348A1 (en) | 2017-08-18 | 2022-04-13 | St. Jude Medical, Cardiology Division, Inc. | Medical catheters and systems including medical catheters, and methods of positioning medical catheters |
US11464417B2 (en) | 2017-09-18 | 2022-10-11 | St. Jude Medical, Cardiology Division, Inc. | System and method for sorting electro-physiological signals from multi-dimensional catheters |
WO2019055115A1 (en) | 2017-09-18 | 2019-03-21 | St. Jude Medical, Cardiology Division, Inc. | System and method for sorting electrophysiological signals from multi-dimensional catheters |
US10398338B2 (en) | 2017-10-06 | 2019-09-03 | Florida Atlantic University Board Of Trustees | Systems and methods for guiding a multi-pole sensor catheter to locate cardiac arrhythmia sources |
EP3881788A1 (en) | 2017-10-24 | 2021-09-22 | St. Jude Medical, Cardiology Division, Inc. | System for measuring impedance between a plurality of electrodes of a medical device |
US10750974B2 (en) | 2017-10-24 | 2020-08-25 | St. Jude Medical, Cardiology Division, Inc. | System for measuring impedance between a plurality of electrodes of a medical device |
WO2019083999A1 (en) | 2017-10-24 | 2019-05-02 | St. Jude Medical, Cardiology Division, Inc. | System for measuring impedance between a plurality of electrodes of a medical device |
US11439319B2 (en) | 2017-10-24 | 2022-09-13 | St. Jude Medical, Cardiology Division, Inc. | System for measuring impedance between a plurality of electrodes of a medical device |
US12042264B2 (en) | 2017-10-24 | 2024-07-23 | St. Jude Medical, Cardiology Division, Inc. | System for measuring impedance between a plurality of electrodes of a medical device |
EP4327771A2 (en) | 2017-11-28 | 2024-02-28 | St. Jude Medical, Cardiology Division, Inc. | Lumen management catheter |
EP4241819A2 (en) | 2017-11-28 | 2023-09-13 | St. Jude Medical, Cardiology Division, Inc. | Controllable expandable catheter |
US11672947B2 (en) | 2017-11-28 | 2023-06-13 | St. Jude Medical, Cardiology Division, Inc. | Lumen management catheter |
EP4115936A1 (en) | 2017-11-28 | 2023-01-11 | St. Jude Medical, Cardiology Division, Inc. | Lumen management catheter |
US11813410B2 (en) | 2017-11-28 | 2023-11-14 | St. Jude Medical, Cardiology Division, Inc. | Controllable expandable catheter |
US11872027B2 (en) | 2017-12-05 | 2024-01-16 | St. Jude Medical International Holding S.á r.l. | Magnetic sensor for tracking the location of an object |
US11241165B2 (en) | 2017-12-05 | 2022-02-08 | St. Jude Medical International Holding S.À R.L. | Magnetic sensor for tracking the location of an object |
US11612335B2 (en) | 2017-12-19 | 2023-03-28 | St. Jude Medical, Cardiology Division, Inc. | Methods of assessing contact between an electrode and tissue using complex impedance measurements |
US11612334B2 (en) | 2017-12-19 | 2023-03-28 | St. Jude Medical, Cardiology Division, Inc. | Methods of assessing contact between an electrode and tissue using complex impedance measurements |
WO2019126260A1 (en) | 2017-12-19 | 2019-06-27 | St. Jude Medical, Cardiology Division, Inc. | Methods of assessing contact between an electrode and tissue using complex impedance measurements |
US11957903B2 (en) | 2018-01-02 | 2024-04-16 | St. Jude Medical, Cardiology Division, Inc. | Electroporation catheter including a distal hoop |
WO2019135884A1 (en) | 2018-01-02 | 2019-07-11 | St. Jude Medical, Cardiology Division, Inc. | Electroporation catheter including a distal hoop |
WO2019139884A1 (en) | 2018-01-09 | 2019-07-18 | St. Jude Medical, Cardiology Division, Inc. | System and method for sorting electrophysiological signals on virtual catheters |
US11291398B2 (en) | 2018-01-09 | 2022-04-05 | St Jude Medical, Cardiology Division, Inc. | System and method for sorting electrophysiological signals on virtual catheters |
WO2019152420A1 (en) | 2018-01-31 | 2019-08-08 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for resolving catheter rendering issues |
WO2019156755A1 (en) | 2018-02-12 | 2019-08-15 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping cardiac muscle fiber orientation |
US11399763B2 (en) | 2018-02-12 | 2022-08-02 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping cardiac muscle fiber orientation |
WO2019173309A1 (en) | 2018-03-06 | 2019-09-12 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for limiting arcing in electroporation systems |
WO2019173288A1 (en) | 2018-03-06 | 2019-09-12 | St. Jude Medical, Cardiology Division, Inc. | Methods and systems for transmural tissue mapping |
US11103177B2 (en) | 2018-04-18 | 2021-08-31 | St, Jude Medical, Cardiology Division, Inc. | System and method for mapping cardiac activity |
US11134879B2 (en) | 2018-04-26 | 2021-10-05 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping arrhythmic driver sites |
WO2019209626A1 (en) | 2018-04-26 | 2019-10-31 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping arrhythmic driver sites |
US11793442B2 (en) | 2018-04-26 | 2023-10-24 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping arrhythmic driver sites |
US11229391B2 (en) | 2018-05-09 | 2022-01-25 | Biosig Technologies, Inc. | Apparatus for processing biomedical signals for display |
US11896379B2 (en) | 2018-05-09 | 2024-02-13 | Biosig Technologies, Inc. | Systems and methods to display cardiac signals based on a signal pattern |
US10356001B1 (en) | 2018-05-09 | 2019-07-16 | Biosig Technologies, Inc. | Systems and methods to visually align signals using delay |
US10924424B2 (en) | 2018-05-09 | 2021-02-16 | Biosig Technologies, Inc. | Systems and methods to visually align signals using delay |
US10645017B2 (en) | 2018-05-09 | 2020-05-05 | Biosig Technologies, Inc. | Systems, apparatus, and methods for conveying biomedical signals between a patient and monitoring and treatment devices |
US10911365B2 (en) | 2018-05-09 | 2021-02-02 | Biosig Technologies, Inc. | Apparatus for processing biomedical signals for display |
US11737699B2 (en) | 2018-05-09 | 2023-08-29 | Biosig Technologies, Inc. | Systems and methods for performing electrophysiology (EP) signal processing |
US11045133B2 (en) | 2018-05-09 | 2021-06-29 | Biosig Technologies, Inc. | Systems and methods for performing electrophysiology (EP) signal processing |
US10986033B2 (en) | 2018-05-09 | 2021-04-20 | Biosig Technologies, Inc. | Systems and methods for signal acquisition and visualization |
US10708191B2 (en) | 2018-05-09 | 2020-07-07 | Biosig Technologies, Inc. | Systems and methods for performing electrophysiology (EP) signal processing |
US11617530B2 (en) | 2018-05-09 | 2023-04-04 | Biosig Technologies, Inc. | Apparatus and methods for removing a large-signal voltage offset from a biomedical signal |
US11617529B2 (en) | 2018-05-09 | 2023-04-04 | Biosig Technologies, Inc. | Apparatus and methods for removing a large-signal voltage offset from a biomedical signal |
US11324431B2 (en) | 2018-05-09 | 2022-05-10 | Biosig Technologies, Inc. | Systems and methods for performing electrophysiology (EP) signal processing |
US10485485B1 (en) | 2018-05-09 | 2019-11-26 | Biosig Technologies, Inc. | Systems and methods for signal acquisition and visualization |
US10686715B2 (en) | 2018-05-09 | 2020-06-16 | Biosig Technologies, Inc. | Apparatus and methods for removing a large-signal voltage offset from a biomedical signal |
US11123003B2 (en) | 2018-05-09 | 2021-09-21 | Biosig Technologies, Inc. | Apparatus and methods for removing a large-signal voltage offset from a biomedical signal |
US10841232B2 (en) | 2018-05-09 | 2020-11-17 | Biosig Technologies, Inc. | Apparatus and methods for removing a large- signal voltage offset from a biomedical signal |
WO2019232256A1 (en) | 2018-05-31 | 2019-12-05 | St. Jude Medical, Cardiology Division, Inc. | Catheter handle with compliant circuit |
US11071486B2 (en) | 2018-06-01 | 2021-07-27 | St. Jude Medical, Cardiology Division, Inc. | System and method for generating activation timing maps |
WO2019234687A2 (en) | 2018-06-07 | 2019-12-12 | St. Jude Medical, Cardiology Division, Inc. | Sensing, mapping, and therapy catheter with multiple catheterlets |
WO2019241079A1 (en) | 2018-06-14 | 2019-12-19 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping cardiac activity |
US11607526B2 (en) | 2018-06-28 | 2023-03-21 | St Jude Medical International Holdings S.À R.L. | Reliability determination of electrode location data |
US10967147B2 (en) | 2018-06-28 | 2021-04-06 | St. Jude Medical International Holding S.À R.L. | Reliability determination of electrode location data |
US11432740B2 (en) | 2018-06-28 | 2022-09-06 | St. Jude Medical, Cardiology Division, Inc. | Introducer sheath localization and visualization |
US11990225B2 (en) * | 2018-07-04 | 2024-05-21 | Navix International Limited | Systems and methods for reconstruction of medical images |
US20210174940A1 (en) * | 2018-07-04 | 2021-06-10 | Navix International Limited | Systems and methods for reconstruction of medical images |
WO2020037032A1 (en) | 2018-08-17 | 2020-02-20 | St. Jude Medical, Cardiology Division, Inc. | Optical balloon catheters and methods for mapping and ablation |
WO2020039392A2 (en) | 2018-08-23 | 2020-02-27 | St. Jude Medical, Cardiology Division, Inc. | Curved high density electrode mapping catheter |
US11642063B2 (en) | 2018-08-23 | 2023-05-09 | St. Jude Medical, Cardiology Division, Inc. | Curved high density electrode mapping catheter |
US20200069367A1 (en) * | 2018-09-02 | 2020-03-05 | EPQuant LLC | Systems and methods for cardiac mapping and vector ablation with a multifunction patch array |
US11369306B2 (en) | 2018-09-10 | 2022-06-28 | St. Jude Medical, Cardiology Division, Inc. | System and method for displaying electrophysiological signals from multi-dimensional catheters |
WO2020096689A1 (en) | 2018-09-10 | 2020-05-14 | St. Jude Medical, Cardiology Division, Inc. | System and method for displaying electrophysiological signals from multi-dimensional catheters |
WO2020053741A1 (en) | 2018-09-11 | 2020-03-19 | St. Jude Medical, Cardiology Division, Inc. | Unibody intravascular catheter shaft |
US11331452B2 (en) | 2018-09-11 | 2022-05-17 | St. Jude Medical, Cardiology Division, Inc. | Steerable intravascular catheter with releasable locking mechanism |
US11420019B2 (en) | 2018-09-11 | 2022-08-23 | St. Jude Medical, Cardiology Division, Inc. | Unibody intravascular catheter shaft |
WO2020065587A2 (en) | 2018-09-27 | 2020-04-02 | St. Jude Medical, Cardiology Division, Inc. | Uniform mapping balloon |
US12082936B2 (en) | 2018-09-27 | 2024-09-10 | St. Jude Medical, Cardiology Division, Inc. | Uniform mapping balloon |
WO2020065500A1 (en) | 2018-09-28 | 2020-04-02 | St. Jude Medical, Cardiology Division, Inc. | Intravascular catheter tip electrode assemblies |
WO2020096810A1 (en) | 2018-11-07 | 2020-05-14 | St. Jude Medical International Holding S.à.r.I. | Method for medical device localization based on magnetic and impedance sensors |
US11918334B2 (en) | 2018-11-07 | 2024-03-05 | St Jude Medical International Holding, Sa.R.L. | Impedance transformation model for estimating catheter locations |
US11547492B2 (en) | 2018-11-07 | 2023-01-10 | St Jude Medical International Holding, Sa.R.L. | Mechanical modules of catheters for sensor fusion processes |
WO2020095250A1 (en) | 2018-11-08 | 2020-05-14 | St. Jude Medical, Cardiology Division, Inc. | Printed sensor coil |
WO2020104679A2 (en) | 2018-11-22 | 2020-05-28 | Afreeze Gmbh | Ablation device with adjustable ablation applicator size, ablation system, and method of operating an ablation device |
WO2020142165A1 (en) | 2019-01-03 | 2020-07-09 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping cardiac activation wavefronts |
EP3693049A1 (en) | 2019-02-11 | 2020-08-12 | St. Jude Medical, Cardiology Division, Inc. | Catheter tip assembly for a catheter shaft |
WO2020172361A1 (en) | 2019-02-22 | 2020-08-27 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for modifying geometry surface models using electrophysiology measurements |
WO2020176731A1 (en) | 2019-02-28 | 2020-09-03 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for displaying ep maps using confidence metrics |
WO2020181006A1 (en) | 2019-03-05 | 2020-09-10 | St. Jude Medical, Cardiology Division, Inc. | Methods and system for correcting electrode positions of an elongated medical device |
WO2020185503A1 (en) | 2019-03-08 | 2020-09-17 | St Jude Medical, Cardiology Division, Inc. | High density electrode catheters |
WO2020185339A1 (en) | 2019-03-12 | 2020-09-17 | St. Jude Medical, Cardiology Division, Inc. | System and method for cardiac mapping |
US11969254B2 (en) | 2019-03-12 | 2024-04-30 | St. Jude Medical, Cardiology Division, Inc. | System and method for cardiac mapping |
WO2020183438A1 (en) | 2019-03-14 | 2020-09-17 | St. Jude Medical, Cardiology Division, Inc. | Splittable sheath |
EP4389185A2 (en) | 2019-03-14 | 2024-06-26 | St. Jude Medical, Cardiology Division, Inc. | Splittable sheath |
US11998287B1 (en) | 2019-03-18 | 2024-06-04 | Dopl Technologies Inc. | Platform for facilitating remote robotic medical procedures |
WO2020194212A1 (en) | 2019-03-26 | 2020-10-01 | St. Jude Medical International Holding S.À R.L. | Off-axis magnetic position sensor assembly |
US11806094B2 (en) | 2019-04-03 | 2023-11-07 | Biosense Webster (Israel) Ltd. | Catheter motion trace visualization |
EP3718496A1 (en) * | 2019-04-03 | 2020-10-07 | Biosense Webster (Israel) Ltd. | Catheter motion trace visualization |
WO2020205128A1 (en) | 2019-04-04 | 2020-10-08 | St. Jude Medical Cardiology Division, Inc. | System and method for cardiac mapping |
US12064252B2 (en) | 2019-04-18 | 2024-08-20 | St. Jude Medical, Cardiology Division, Inc. | System and method for cardiac mapping |
WO2020214439A1 (en) | 2019-04-18 | 2020-10-22 | St. Jude Medical, Cardiology Division, Inc. | System and method for cardiac mapping |
WO2020212918A1 (en) | 2019-04-19 | 2020-10-22 | St. Jude Medical, Cardiology Division, Inc. | Magnetic reference sensor with reduced sensitivity to magnetic distortions |
US12042263B2 (en) | 2019-04-19 | 2024-07-23 | St. Jude Medical, Cardiology Division, Inc. | Magnetic field distortion detection and correction in a magnetic localization system |
WO2020212916A1 (en) | 2019-04-19 | 2020-10-22 | St. Jude Medical, Cardiology Division, Inc. | Magnetic field distortion detection and correction in a magnetic localization system |
WO2020219513A1 (en) | 2019-04-24 | 2020-10-29 | St. Jude Medical, Cardiology Division, Inc. | System, method, and apparatus for visualizing cardiac activation |
WO2020227469A1 (en) | 2019-05-09 | 2020-11-12 | St. Jude Medical, Cardiology Division, Inc. | System and method for detection and mapping of near field conduction in scar tissue |
WO2020242940A1 (en) | 2019-05-24 | 2020-12-03 | St. Jude Medical, Cardiology Division, Inc. | System and method for cardiac mapping |
WO2020251857A1 (en) | 2019-06-13 | 2020-12-17 | St. Jude Medical, Cardiology Division, Inc. | Electrode basket having high-density circumferential band of electrodes |
WO2021001772A1 (en) | 2019-07-02 | 2021-01-07 | St. Jude Medical, Cardiology Division, Inc. | Reduced impedance electrode design |
EP4226882A1 (en) | 2019-07-02 | 2023-08-16 | St. Jude Medical, Cardiology Division, Inc. | Reduced impedance electrode design |
WO2021011685A1 (en) | 2019-07-18 | 2021-01-21 | St. Jude Medical, Cardiology Division, Inc. | System and method for noise tolerant cardiac localization, navigation and mapping |
US11559240B2 (en) | 2019-09-06 | 2023-01-24 | St Jude Medical Cardiology Division, Inc | Methods and tools to merge mapping data acquired from multiple catheters |
US11426235B2 (en) | 2019-09-19 | 2022-08-30 | St Jude Medical Cardiology Division, Inc | Electrode loop assembly including shaped support tube and method of assembling same |
WO2021055320A1 (en) | 2019-09-19 | 2021-03-25 | St. Jude Medical, Cardiology Division, Inc. | Electrode loop assembly including shaped support tube and method of assembling same |
WO2021062074A1 (en) | 2019-09-27 | 2021-04-01 | St. Jude Medical, Cardiology Division, Inc. | Irrigated catheter system including fluid degassing apparatus and methods of using same |
WO2021071692A1 (en) | 2019-10-07 | 2021-04-15 | St. Jude Medical, Cardiology Division, Inc. | Catheter including wire management cap and methods of assembling same |
WO2021086560A1 (en) | 2019-10-31 | 2021-05-06 | St. Jude Medical, Cardiology Division, Inc. | Catheter including deflectable shaft and methods of assembling same |
WO2021113463A1 (en) | 2019-12-03 | 2021-06-10 | St. Jude Medical, Cardiology Division, Inc. | Electroporation system and method |
WO2021156673A1 (en) | 2020-02-06 | 2021-08-12 | St. Jude Medical, Cardiology Division, Inc. | Hybrid approach to distortion detection |
US11950857B2 (en) | 2020-02-06 | 2024-04-09 | St Jude Medical International Holding S.À R.L. | Hybrid approach to distortion detection |
US11504189B2 (en) | 2020-02-06 | 2022-11-22 | St Jude Medical International Holding S.À R.L. | Hybrid approach to distortion detection |
WO2021161093A1 (en) | 2020-02-10 | 2021-08-19 | St. Jude Medical, Cardiology Division, Inc. | Respiration compensation |
WO2021188182A1 (en) | 2020-03-16 | 2021-09-23 | St. Jude Medical, Cardiology Division, Inc. | System, method, and apparatus for mapping local activation times |
WO2021216589A1 (en) | 2020-04-21 | 2021-10-28 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping cardiac activity |
WO2021214708A1 (en) | 2020-04-23 | 2021-10-28 | St. Jude Medical, Cardiology Division, Inc. | Determination of catheter shape |
WO2021221892A1 (en) | 2020-04-29 | 2021-11-04 | St. Jude Medical, Cardiology Division, Inc. | Amplifier interface for multi-electrode catheter |
WO2021225717A1 (en) | 2020-05-08 | 2021-11-11 | St. Jude Medical, Cardiology Division, Inc. | Methods for forming a spline using a flexible circuit assembly and electrode assemblies including same |
US11751794B2 (en) | 2020-05-19 | 2023-09-12 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping electrophysiological activation |
WO2021236310A1 (en) | 2020-05-19 | 2021-11-25 | St. Jude Medical, Cardiology Division, Inc. | System and method for mapping electrophysiological activation |
WO2021236341A1 (en) | 2020-05-20 | 2021-11-25 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for monitoring return patch impedances |
WO2021247738A1 (en) | 2020-06-03 | 2021-12-09 | St. Jude Medical, Cardiology Division, Inc. | System for irreversible electroporation |
WO2022038546A1 (en) | 2020-08-18 | 2022-02-24 | St. Jude Medical, Cardiology Division, Inc. | High-density electrode catheters with magnetic position tracking |
EP4364680A2 (en) | 2020-08-18 | 2024-05-08 | St. Jude Medical, Cardiology Division, Inc. | High-density electrode catheters with magnetic position tracking |
WO2022251163A1 (en) | 2021-05-25 | 2022-12-01 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for electroporation devices including basket and balloon configurations |
WO2022266043A1 (en) | 2021-06-14 | 2022-12-22 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for isolating wires in electroporation devices |
EP4134031A2 (en) | 2021-08-12 | 2023-02-15 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for electroporation using asymmetric waveforms and waveforms with reduced burst duration |
EP4371513A2 (en) | 2021-08-12 | 2024-05-22 | St. Jude Medical, Cardiology Division, Inc. | Systems for electroporation using asymmetric waveforms and waveforms with reduced burst duration |
WO2023028133A1 (en) | 2021-08-26 | 2023-03-02 | St. Jude Medical, Cardiology Division, Inc. | Method and system for generating respiration signals for use in electrophysiology procedures |
WO2023086778A1 (en) | 2021-11-12 | 2023-05-19 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for energizing electroporation catheters using quadripolar arrays |
WO2023086865A1 (en) | 2021-11-12 | 2023-05-19 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for energizing electroporation catheters |
WO2023114588A1 (en) | 2021-12-17 | 2023-06-22 | St. Jude Medical, Cardiology Division, Inc. | Method and system for visualizing ablation procedure data |
WO2023147319A1 (en) | 2022-01-28 | 2023-08-03 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for electroporation using waveforms that reduce electrical stimulation |
WO2023164001A1 (en) | 2022-02-23 | 2023-08-31 | St. Jude Medical, Cardiology Division, Inc. | High density catheter |
WO2023205577A1 (en) | 2022-04-19 | 2023-10-26 | St. Jude Medical, Cardiology Division, Inc. | Systems for electroporation using arbitrary electrode addressing |
WO2024044205A1 (en) | 2022-08-23 | 2024-02-29 | St. Jude Medical, Cardiology Division, Inc. | System and method to selectively display mapping data based on electrode orientation relative to adjacent tissue |
WO2024072900A1 (en) | 2022-09-28 | 2024-04-04 | St. Jude Medical, Cardiology Division, Inc. | High density paddle catheter with distal coupler and distal electrode |
WO2024086033A1 (en) | 2022-10-17 | 2024-04-25 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for monitoring pulsed field ablation generator output |
WO2024107387A1 (en) | 2022-11-18 | 2024-05-23 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for catheters having combined mapping and ablation capabilities |
WO2024182047A1 (en) | 2023-02-27 | 2024-09-06 | St. Jude Medical, Cardiology Division, Inc. | High density flat balloon catheter |
WO2024182595A1 (en) | 2023-03-02 | 2024-09-06 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for automatic detection of phrenic nerve stimulation |
Also Published As
Publication number | Publication date |
---|---|
US20040254437A1 (en) | 2004-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7263397B2 (en) | Method and apparatus for catheter navigation and location and mapping in the heart | |
EP2298165B1 (en) | System for three-dimensional mapping of electrophysiology information | |
US7774051B2 (en) | System and method for mapping electrophysiology information onto complex geometry | |
US8660640B2 (en) | Determining a size of a representation of a tracked member | |
EP2276402B1 (en) | Apparatus for mapping a structure | |
US7043292B2 (en) | Single or multi-mode cardiac activity data collection, processing and display obtained in a non-invasive manner | |
EP2204121B1 (en) | Apparatus for the cancellation of motion artifacts in medical interventional navigation | |
US20100168550A1 (en) | Multiple shell construction to emulate chamber contraction with a mapping system | |
IL137322A (en) | Vector mapping of three-dimensionally reconstructed intrabody organs and method of display | |
CN106725448B (en) | System and method for mapping electrophysiological information onto complex geometries | |
JP7442685B2 (en) | Systems and methods for mapping electrophysiological excitation | |
EP2407118B1 (en) | Systems for filtering respiration noise from localization data | |
CN112911999B (en) | Determination of catheter tip 3D position and orientation using fluoroscopy and impedance measurements | |
CN112911999A (en) | Determining 3D position and orientation of catheter tip using fluoroscopy and impedance measurements | |
IL293942A (en) | Improving mapping resolution of electrophysiological (ep) wave propagating on the surface of patient heart | |
Seger et al. | ECG mapping and imaging of cardiac electrical function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ENDOCARDIAL SOLUTIONS, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAUCK, JOHN A.;SCHWEITZER, JEFF A.;CRAVEN, MICHAEL;AND OTHERS;REEL/FRAME:015666/0569 Effective date: 20040422 |
|
AS | Assignment |
Owner name: ST. JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, IN Free format text: CHANGE OF NAME;ASSIGNOR:ENDOCARDIAL SOLUTIONS, INC.;REEL/FRAME:018512/0407 Effective date: 20051221 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |