US7239756B2 - Method for enhancing the quality of an image - Google Patents

Method for enhancing the quality of an image Download PDF

Info

Publication number
US7239756B2
US7239756B2 US10/283,728 US28372802A US7239756B2 US 7239756 B2 US7239756 B2 US 7239756B2 US 28372802 A US28372802 A US 28372802A US 7239756 B2 US7239756 B2 US 7239756B2
Authority
US
United States
Prior art keywords
input image
image
image data
derivatives
histogram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US10/283,728
Other versions
US20030081856A1 (en
Inventor
Piergiorgo Sartor
Peter Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Deutschland GmbH
Original Assignee
Sony Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Deutschland GmbH filed Critical Sony Deutschland GmbH
Assigned to SONY INTERNATIONAL (EUROPE) GMBH reassignment SONY INTERNATIONAL (EUROPE) GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SARTOR, PIERGIORGIO, WAGNER, PETER
Publication of US20030081856A1 publication Critical patent/US20030081856A1/en
Assigned to SONY DEUTSCHLAND GMBH reassignment SONY DEUTSCHLAND GMBH MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SONY INTERNATIONAL (EUROPE) GMBH
Application granted granted Critical
Publication of US7239756B2 publication Critical patent/US7239756B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction

Definitions

  • the invention relates to a method for enhancing the quality of an image, in particular with respect to its contrast properties.
  • histogram equalization Using this technique, it is possible to enhance the contrast of a given image according to the occurences of different intensity levels contained within the image. It is also common to use this technique with respect to other image parameters like the brightness. In addition, histogram equalization may serve as a basis for image data reduction.
  • U.S. Pat. No. 5,388,168 discloses for example a picture quality improving circuit for enhancing the quality of an input signal. First, a cumulative histogram is derived from the input signal. Then, according to the level of the input signal, specific histogram values are selected based on which the input signal gets interpolated, thereby obtaining a corrected output signal.
  • U.S. Pat. No. 5,450,502 Another example of a histogram equalization method is disclosed by U.S. Pat. No. 5,450,502.
  • An input image is divided into a number of segments, for each of which a local histogram signal is generated.
  • the local histogram signals are compared to a global histogram signal to obtain a comparison result.
  • the comparison result is then used to further process the image, in particular to calculate a tone-reproduction curve which is used to correct the input image.
  • the present invention provides a method for enhancing the quality of an image according to claim 1 . Preferred embodiments of this method are described in the subclaims 2 to 11 . Further, the present invention provides an apparatus for enhancing the quality of an image according to claim 12 . Finally, the present invention provides a computer program product according to claim 13 .
  • the method for enhancing the quality of an image comprises the steps of:
  • a central aspect of the present invention is that the histogram equalized image is not taken as the final output image, but is further merged/mixed/blended (in the following only referred to as merging) with the “original” image (the input image). This additional step allows to further improve the quality of the final output image and to suppress artifacts which are typically present in a histogram equalized image.
  • the input image data may consist of only one input image.
  • the input image data preferably comprises additional input images, e.g. following or preceding images of an input image stream, and/or other data like controlling information correlated to the input image.
  • step c) described above comprises the steps of:
  • Statistical properties may for example be intensity statistics, brightness statistics, colour statistics or the like. Accordingly, corresponding derivatives may for example be colour gradients or intensity gradients within the input image or between the input image and images belonging to the other input image data and being different from the input image.
  • a first part of the input image data is the input image itself.
  • a second part of the input image data may be used to calculate the histogram for the input image. This is preferably the content of the input image itself and therefore equal to the first part of the input image data.
  • steps a) and b) could be performed in dependency of the content of the input image and/or of other images relating to the input image.
  • a third part of the input image data may be used to weight the merging of the histogram equalized image and the input image, i.e. steps d) to f) could be performed on the basis of the third part of the input image data.
  • the first, the second, and the third part of the input image data are identical, i.e. the input image itself.
  • the input image and/or other images contained within the input image data are divided into at least two image parts, respectively, before statistical properties and/or derivatives are calculated for each image part. This enables a high “statistical resolution” which may serve as a basis for further improving the quality of the output image.
  • the process of dividing the input image into the image parts may be based on an image part detection process. That is, the shape/size of the respective image parts are determined by an image part detection process.
  • the calculated statistical properties and/or derivatives of different image parts may for example be compared with each other. If the statistical properties and derivatives of different image parts are similar, the corresponding image parts may be merged together to obtain respective merged image regions. Then, statistical properties and/or derivatives thereof are again calculated for each merged image region. Step f) may then be executed on the basis of the recalculated statistics and derivatives of the merged image regions. Thus, it is possible to identify areas with common properties in order to improve the overall quality of the process. Sometimes global information is not fitting locally.
  • a strategy of calculating the statistical properties and/or the derivatives may be performed in dependency of the content of the output image. If, for example, the content of the output image shows a good level of quality, it may be decided for future input images not to calculate specific kinds of statistical properties or derivatives in order to save computational resources.
  • the processing of the calculated statistical properties and/or derivatives (step f)) may be performed in dependency of the content of the output image for the same reasons.
  • “feedback” can be given, which makes it for example possible to always reduce the calculation effort to a minimum while at the same time keeping a fixed quality of output image.
  • Feedback can also be used to “adapt” a statistical engine, i.e. to use one statistical calculation or another according to a comparison with a feedback value.
  • the processing of the calculated statistical properties and/or the derivatives may include the use of a variance look-up table or a sophisticated Kalman filter, for example.
  • the input image may be preprocessed before merging it with the histogram equalized image. Accordingly, the input image may be preprocessed before being equalized on the basis of the calculated histogram or before a histogram is derived from the preprocessed input image.
  • the output image may be preprocessed before supplying it or a result of a quality control of the output image via a feedback path back to the process of calculating respective statistical properties and derivatives in order to influence the future strategy of calculating the statistical properties and/or the derivatives.
  • the preprocessing may for example include filtering steps or data reduction steps.
  • an apparatus for enhancing the quality of an image is provided which is adapted to carry out any step of the method described in the foregoing description.
  • the present invention finally provides a computer program product comprising computer program means adapted to perform all steps described in the foregoing description, when the computer program product is executed on a computer, a digital signal processor, or the like.
  • FIG. 1 shows a schematic drawing of a first preferred embodiment of the method according to the present invention
  • FIG. 2 shows a schematic drawing of a second preferred embodiment of the method according to the present invention
  • FIG. 3 shows an example of a merging process of different image parts to obtain respective merged image regions
  • FIG. 4 shows a schematic drawing illustrating how to obtain a derivative of a statistic property of an input image.
  • a first step S 1 input image data comprising an input image is read from an input image data stream into a buffer where the input image data is delayed in a second step S 2 .
  • the input image of the delayed input image data is duplicated and the duplicated input image data sets are separately preprocessed in a third step S 3 and in a fourth step S 4 , respectively, wherein the ways of processing the input image data sets may be different from each other.
  • the preprocessed input image data is histogram equalized in a fifth step S 5 to obtain a histogram equalized image.
  • the histogram equalized image and the preprocessed input image of the third step S 3 are mixed/merged/blended in a sixth step S 6 to obtain an output image.
  • the output image is stored in a buffer, where it is delayed in a seventh step S 7 .
  • the input image data read from the input image data stream is analyzed and processed in an eighth step S 8 .
  • the eighth step S 8 includes a ninth to eleventh step S 9 to S 11 .
  • the ninth step S 9 the input image and/or other images contained within the input image data are divided into at least two image parts, respectively, and statistical properties and/or derivatives thereof are calculated for each image part.
  • image parts showing similar statistical properties or derivatives are merged to obtain respective image regions.
  • an eleventh step S 11 statistical properties and derivatives are recalculated for each merged image region, respectively.
  • the resulting calculated statistical properties and derivatives are processed in a twelfth step S 12 in order to calculate a weight between the histogram equalized image and the preprocessed input image being used when mixing/merging/blending them together in the sixth step S 6 .
  • the recalculated statistical properties and derivatives may also have an influence upon the step of equalizing the input image on the basis of the calculated histogram (fifth step S 5 ). For example, it may be decided to calculate the histogram only on a part of the input image or to calculate the histogram on different parts of the input image in different ways, depending on the recalculated statistical properties and/or derivatives.
  • the content of the output image delayed in the seventh step S 7 may be preprocessed in a thirteenth step S 13 , the result thereof being taken into account by the analyzing and processing process represented by the eighth step S 8 and/or the twelfth step S 12 .
  • This can be regarded as a kind of feedback path in order to verify the content of the output image with the content of the incoming input image data. This can be also useful in the case of dealing with transmission lines.
  • the preprocessing steps S 3 , S 4 , and S 13 may for example include picture filtering, frequency filtering and image scaling.
  • the embodiment disclosed in FIG. 2 differs from that of FIG. 1 only by a further preprocessing step S 15 .
  • the segmentation process is more flexible. That is, in the fifteenth step S 15 the sizes/shapes of the image parts are not fix, but determined in a flexible manner. For example, a low pass/high pass filter may be used to identify the areas of the input images having low frequency only and the areas with high frequency only. Then, a mapping of these areas may be performed.
  • the preprocessing of the fifteenth step S 15 alternatively may be included into the ninth step S 9 .
  • An input image 1 is divided into a first to sixteenth image part 11 to 116 .
  • the values within each image part represent for example the intensity of the respective image part.
  • a new image 2 is obtained showing first to third merged image regions 21 to 23 .
  • respective statistical properties and derivatives are recalculated, which corresponds to the eleventh step S 11 of FIG. 1 / 2 .
  • a first input image 3 is divided into a first to fourth image part 31 to 34 .
  • a second input image 4 is divided into a corresponding first to fourth image part 41 to 44 .
  • the third image part 33 of the first input image 3 is compared with the third image part 43 of the second input image 4 .
  • a gradient 5 as a derivative may be calculated.
  • an intensity gradient is calculated.
  • the calculated statistics and/or derivatives may be of arbitrary dimension.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Image Processing (AREA)

Abstract

A method for enhancing the quality of an image, in particular with respect to its contrast properties, comprises the step of calculating a histogram for an input image (S5), equalizing the input image on the basis of the calculated histogram to obtain a corresponding histogram equalized image (S5), wherein the histogram equalized image and the input image are merged/mixed/blended (S6) to obtain an output image, wherein merging/mixing/blending is weighted (S12) in dependency of the content of the input image and/or of other input image data relating to the input image. This makes it possible to further improve the quality of histogram equalized images.

Description

The invention relates to a method for enhancing the quality of an image, in particular with respect to its contrast properties.
BACKGROUND OF THE INVENTION
Among the many methods for enhancing the quality of an image, a very widely known one is histogram equalization. Using this technique, it is possible to enhance the contrast of a given image according to the occurences of different intensity levels contained within the image. It is also common to use this technique with respect to other image parameters like the brightness. In addition, histogram equalization may serve as a basis for image data reduction.
U.S. Pat. No. 5,388,168 discloses for example a picture quality improving circuit for enhancing the quality of an input signal. First, a cumulative histogram is derived from the input signal. Then, according to the level of the input signal, specific histogram values are selected based on which the input signal gets interpolated, thereby obtaining a corrected output signal.
Another example of a histogram equalization method is disclosed by U.S. Pat. No. 5,450,502. An input image is divided into a number of segments, for each of which a local histogram signal is generated. The local histogram signals are compared to a global histogram signal to obtain a comparison result. The comparison result is then used to further process the image, in particular to calculate a tone-reproduction curve which is used to correct the input image.
BRIEF SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method for enhancing the quality of an image, in particular with respect to its contrast properties which shows improved enhancement results, while at the same time avoiding artifacts typical of this technique.
To solve this object, the present invention provides a method for enhancing the quality of an image according to claim 1. Preferred embodiments of this method are described in the subclaims 2 to 11. Further, the present invention provides an apparatus for enhancing the quality of an image according to claim 12. Finally, the present invention provides a computer program product according to claim 13.
According to the present invention, the method for enhancing the quality of an image comprises the steps of:
  • a) calculating a histogram for an input image,
  • b) equalizing the input image on the basis of the calculated histogram to obtain a corresponding histogram equalized image, and is characterized by the step of
  • c) merging the histogram equalized image and the input image to obtain an output image, wherein the merging is weighted in dependency of the content of the input image and/or of other input image data relating to the input image.
A central aspect of the present invention is that the histogram equalized image is not taken as the final output image, but is further merged/mixed/blended (in the following only referred to as merging) with the “original” image (the input image). This additional step allows to further improve the quality of the final output image and to suppress artifacts which are typically present in a histogram equalized image.
The input image data may consist of only one input image. However, the input image data preferably comprises additional input images, e.g. following or preceding images of an input image stream, and/or other data like controlling information correlated to the input image.
Preferably, step c) described above comprises the steps of:
  • d) analyzing the content of the input image and/or the other input image data,
  • e) calculating respective statistical properties and/or derivatives thereof on the basis of the analyzed image data content, and
  • f) processing the calculated statistical properties and/or the derivatives, wherein the merging is performed in dependency of a result of the processed calculated statistical properties and/or the derivatives.
Statistical properties may for example be intensity statistics, brightness statistics, colour statistics or the like. Accordingly, corresponding derivatives may for example be colour gradients or intensity gradients within the input image or between the input image and images belonging to the other input image data and being different from the input image.
Three different parts of the input image data may be taken into account before finally obtaining the output image: A first part of the input image data is the input image itself. A second part of the input image data may be used to calculate the histogram for the input image. This is preferably the content of the input image itself and therefore equal to the first part of the input image data. However, it is also possible to derive the histogram from other images, if such are contained within the other input image data. That is, steps a) and b) could be performed in dependency of the content of the input image and/or of other images relating to the input image. A third part of the input image data may be used to weight the merging of the histogram equalized image and the input image, i.e. steps d) to f) could be performed on the basis of the third part of the input image data. Preferably, however, the first, the second, and the third part of the input image data are identical, i.e. the input image itself.
To further improve the quality of the output image, the input image and/or other images contained within the input image data are divided into at least two image parts, respectively, before statistical properties and/or derivatives are calculated for each image part. This enables a high “statistical resolution” which may serve as a basis for further improving the quality of the output image.
The process of dividing the input image into the image parts may be based on an image part detection process. That is, the shape/size of the respective image parts are determined by an image part detection process.
The calculated statistical properties and/or derivatives of different image parts may for example be compared with each other. If the statistical properties and derivatives of different image parts are similar, the corresponding image parts may be merged together to obtain respective merged image regions. Then, statistical properties and/or derivatives thereof are again calculated for each merged image region. Step f) may then be executed on the basis of the recalculated statistics and derivatives of the merged image regions. Thus, it is possible to identify areas with common properties in order to improve the overall quality of the process. Sometimes global information is not fitting locally.
To improve the flexibility, a strategy of calculating the statistical properties and/or the derivatives may be performed in dependency of the content of the output image. If, for example, the content of the output image shows a good level of quality, it may be decided for future input images not to calculate specific kinds of statistical properties or derivatives in order to save computational resources. The processing of the calculated statistical properties and/or derivatives (step f)) may be performed in dependency of the content of the output image for the same reasons. Thus, “feedback” can be given, which makes it for example possible to always reduce the calculation effort to a minimum while at the same time keeping a fixed quality of output image. Feedback can also be used to “adapt” a statistical engine, i.e. to use one statistical calculation or another according to a comparison with a feedback value.
The processing of the calculated statistical properties and/or the derivatives (step f)) may include the use of a variance look-up table or a sophisticated Kalman filter, for example.
The input image may be preprocessed before merging it with the histogram equalized image. Accordingly, the input image may be preprocessed before being equalized on the basis of the calculated histogram or before a histogram is derived from the preprocessed input image. In addition, the output image may be preprocessed before supplying it or a result of a quality control of the output image via a feedback path back to the process of calculating respective statistical properties and derivatives in order to influence the future strategy of calculating the statistical properties and/or the derivatives. The preprocessing may for example include filtering steps or data reduction steps.
According to the present invention, an apparatus for enhancing the quality of an image is provided which is adapted to carry out any step of the method described in the foregoing description.
The present invention finally provides a computer program product comprising computer program means adapted to perform all steps described in the foregoing description, when the computer program product is executed on a computer, a digital signal processor, or the like.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
Further features and advantages of the present invention will become apparent from the following detailed description of preferred embodiments thereof taken in conjunction with the accompanying drawings, wherein:
FIG. 1 shows a schematic drawing of a first preferred embodiment of the method according to the present invention;
FIG. 2 shows a schematic drawing of a second preferred embodiment of the method according to the present invention;
FIG. 3 shows an example of a merging process of different image parts to obtain respective merged image regions;
FIG. 4 shows a schematic drawing illustrating how to obtain a derivative of a statistic property of an input image.
DETAILED DESCRIPTION OF THE INVENTION
In the following description, making reference to FIG. 1, a preferred embodiment of the method according to the present invention will be explained.
In a first step S1, input image data comprising an input image is read from an input image data stream into a buffer where the input image data is delayed in a second step S2. The input image of the delayed input image data is duplicated and the duplicated input image data sets are separately preprocessed in a third step S3 and in a fourth step S4, respectively, wherein the ways of processing the input image data sets may be different from each other.
After having preprocessed the input image in the fourth step S4, the preprocessed input image data is histogram equalized in a fifth step S5 to obtain a histogram equalized image. The histogram equalized image and the preprocessed input image of the third step S3 are mixed/merged/blended in a sixth step S6 to obtain an output image. The output image is stored in a buffer, where it is delayed in a seventh step S7.
Preferably at the same time when the input image is preprocessed in the third and the fourth step S3 and S4, the input image data read from the input image data stream is analyzed and processed in an eighth step S8. The eighth step S8 includes a ninth to eleventh step S9 to S11. In the ninth step S9 the input image and/or other images contained within the input image data are divided into at least two image parts, respectively, and statistical properties and/or derivatives thereof are calculated for each image part. Then, in the tenth step S10, image parts showing similar statistical properties or derivatives are merged to obtain respective image regions. Then, in an eleventh step S11, statistical properties and derivatives are recalculated for each merged image region, respectively.
The resulting calculated statistical properties and derivatives are processed in a twelfth step S12 in order to calculate a weight between the histogram equalized image and the preprocessed input image being used when mixing/merging/blending them together in the sixth step S6. The recalculated statistical properties and derivatives may also have an influence upon the step of equalizing the input image on the basis of the calculated histogram (fifth step S5). For example, it may be decided to calculate the histogram only on a part of the input image or to calculate the histogram on different parts of the input image in different ways, depending on the recalculated statistical properties and/or derivatives.
The content of the output image delayed in the seventh step S7 may be preprocessed in a thirteenth step S13, the result thereof being taken into account by the analyzing and processing process represented by the eighth step S8 and/or the twelfth step S12. This can be regarded as a kind of feedback path in order to verify the content of the output image with the content of the incoming input image data. This can be also useful in the case of dealing with transmission lines.
The preprocessing steps S3, S4, and S13 may for example include picture filtering, frequency filtering and image scaling.
Finally, the output image delayed in the seventh step S7 is outputted in a fourteenth step S14.
According to the present invention, it is possible by taking just one decision (in the twelfth step S12) to influence the output image so that it may be identical to the input image or completely different thereto in corresponding completely to the histogram equalized image. Of course, due to the mix/merge/blend in the sixth step S6 all intermediate results may also be possible.
In the following description, making reference to FIG. 2, a second preferred embodiment of the method according to the present invention will be explained.
The embodiment disclosed in FIG. 2 differs from that of FIG. 1 only by a further preprocessing step S15. In contrast to the embodiment of FIG. 1, where the picture segmentation being performed in the ninth step S9 always produces a set of image parts having the same amount of image parts and image part sizes/shapes, in this embodiment the segmentation process is more flexible. That is, in the fifteenth step S15 the sizes/shapes of the image parts are not fix, but determined in a flexible manner. For example, a low pass/high pass filter may be used to identify the areas of the input images having low frequency only and the areas with high frequency only. Then, a mapping of these areas may be performed. Another possibility would be to use a moving average filter, which would give the local average level of the input images and enable the system to derive areas of segmentation/image parts by using this information. The preprocessing of the fifteenth step S15 alternatively may be included into the ninth step S9.
In the following description, making reference to FIG. 3, an example is given how the ninth to eleventh step S9 to S11 are performed in the embodiment represented by FIGS. 1 and 2.
An input image 1 is divided into a first to sixteenth image part 11 to 116. The values within each image part represent for example the intensity of the respective image part.
After having merged the image parts 11 to 116 having a similar intensity, a new image 2 is obtained showing first to third merged image regions 21 to 23. On each merged image region 21 to 23, respective statistical properties and derivatives are recalculated, which corresponds to the eleventh step S11 of FIG. 1/2.
In the following description, making reference to FIG. 4, an example is given about how to calculate a derivative on the basis of two input images.
A first input image 3 is divided into a first to fourth image part 31 to 34. A second input image 4 is divided into a corresponding first to fourth image part 41 to 44. Now, for example, the third image part 33 of the first input image 3 is compared with the third image part 43 of the second input image 4. From the difference of respective statistics calculated for the two image parts 33, 43, a gradient 5 as a derivative may be calculated. For example, an intensity gradient is calculated. The calculated statistics and/or derivatives may be of arbitrary dimension.
The use of two different input images in this example makes it clear that the invention considers temporal relations between different correlated input images, too.

Claims (16)

1. A method of enhancing the contrast properties of an input image included in input image data, comprising:
analyzing the content of the input image or of another input image included in the image data and relating to the input image;
calculating respective statistical properties or derivatives of the content of the input image relating to the input image;
processing the calculated statistical properties or the derivatives;
duplicating the input image data for receiving first and second duplicated input image data;
calculating a histogram for the input image included in the first duplicated input image data;
equalizing the input image included in the first duplicated input image data on the basis of the calculated histogram to obtain a corresponding histogram equalized image; and
merging in dependency of a result of the processed calculated statistical properties or the derivatives the histogram equalized image and the input image included in the second duplicated input image data to obtain an output image; wherein the calculation of the statistical properties or the derivatives is performed in accordance with the content of the output image.
2. The method according to claim 1, wherein the input image or the other image are spatially separated into at least two image parts, respectively, before calculating the statistical properties or derivatives for each image part.
3. The method according to claim 2, wherein said image parts are determined by an image part detection unit.
4. The method according to claim 3, wherein if the calculated statistical properties or derivatives of different image parts are similar, merging the corresponding image parts together to obtain respective merged image regions, and again calculating statistical properties or derivatives thereof for each merged image region.
5. The method according to claim 1, wherein the input image data include another image and wherein the histogram calculation and equalization of the input image are performed in accordance with the content of the input image or of the other image relating to the input image.
6. The method according to claim 1, wherein the input image data include another image and wherein the histogram calculation and equalization of the input image are performed in accordance with the content of the input image and of the other image relating to the input image.
7. The method according to claim 1, wherein the processing of the calculated statistical properties or derivatives is performed in accordance with the content of the output image.
8. The method according to claim 1, further comprising:
preprocessing the input image comprised in the second duplicated input image data before merging it with the histogram equalized image.
9. The method according to claim 1, further comprising:
preprocessing the input image comprised in the first duplicated input image data before equalizing the input image on the basis of the calculated histogram.
10. The method according to claim 9, wherein the preprocessing of the input image includes a filtering process or a data reduction process.
11. A method of enhancing the contrast properties of an input image included in input image data, comprising:
analyzing the content of the input image and of another input image included in the image data and relating to the input image;
calculating respective statistical properties or derivatives of the content of the input image relating to the input image;
processing the calculated statistical properties or the derivatives;
duplicating the input image data for receiving first and second duplicated input image data;
calculating a histogram for the input image included in the first duplicated input image data;
equalizing the input image included in the first duplicated input image data on the basis of the calculated histogram to obtain a corresponding histogram equalized image; and
merging in dependency of a result of the processed calculated statistical properties or the derivatives the histogram equalized image and the input image included in the second duplicated input image data to obtain an output image; wherein the calculation of the statistical properties or the derivatives is performed in accordance with the content of the output image.
12. The method according to claim 11, wherein the input image and the other image are spatially separated into at least two image parts, respectively, before calculating the statistical properties or derivatives for each image part.
13. An apparatus for enhancing the contrast properties of an input image included in input image data, comprising:
a duplication unit configured to duplicate the input image data for receiving first and second input image data;
a calculation unit configured to calculate a histogram for the input image included in the first duplicated input image data;
an equalizing unit configured to equalize the input image on the basis of the calculated histogram to obtain a corresponding histogram equalized image; and
a processor configured to analyze the content of the input image or of another input image included in the image data and relating to the input image, to calculate respective statistical properties or derivatives of the content of the input image or of the other input image, to process the calculated statistical properties or the derivatives, and to merge, in dependency of a result of the processed calculated statistical properties or the derivatives the histogram equalized image and the input image included in the second duplicated image data to obtain an output image; wherein the calculation of the statistical properties or the derivatives is performed in accordance with the content of the output image.
14. An apparatus for enhancing the contrast properties of an input image included in input image data, comprising:
a duplication unit configured to duplicate the input image data for receiving first and second input image data;
a calculation unit configured to calculate a histogram for the input image included in the first duplicated input image data;
an equalizing unit configured to equalize the input image on the basis of the calculated histogram to obtain a corresponding histogram equalized image; and
a processor configured to analyze the content of the input image and of another input image included in the image data and relating to the input image, to calculate respective statistical properties or derivatives of the content of the input image or of the other input image, to process the calculated statistical properties or the derivatives, and to merge, in dependency of a result of the processed calculated statistical properties or the derivatives the histogram equalized image and the input image included in the second duplicated image data to obtain an output image; wherein the calculation of the statistical properties or the derivatives is performed in accordance with the content of the output image.
15. A computer-readable medium, storing computer program instructions for causing a computer to implement a method of enhancing the contrast properties of an input image included in input image data, comprising:
analyzing the content of the input image or of another input image included in the image data and relating to the input image;
calculating respective statistical properties or derivatives of the content of the input image data relating to the input image;
processing the calculated statistical properties or the derivatives;
duplicating input image data including an input image for receiving first and second duplicated image data;
calculating a histogram for the input image included in the first duplicated input image data;
equalizing the input image on the basis of the calculated histogram to obtain a corresponding histogram equalized image; and
merging in dependency of a result of the processed calculated statistical properties or the derivatives the histogram equalized image and the input image included in the second duplicated input image data to obtain an output image; wherein the calculation of the statistical properties or the derivatives is performed in accordance with the content of the output image.
16. A computer-readable medium, storing computer program instructions for causing a computer to implement a method of enhancing the contrast properties of an input image included in input image data, comprising:
analyzing the content of the input image and of another input image included in the image data and relating to the input image;
calculating respective statistical properties or derivatives of the content of the input image data relating to the input image;
processing the calculated statistical properties or the derivatives;
duplicating input image data including an input image for receiving first and second duplicated image data;
calculating a histogram for the input image included in the first duplicated input image data;
equalizing the input image on the basis of the calculated histogram to obtain a corresponding histogram equalized image; and
merging in dependency of a result of the processed calculated statistical properties or the derivatives the histogram equalized image and the input image included in the second duplicated input image data to obtain an output image; wherein the calculation of the statistical properties or the derivatives is performed in accordance with the content of the output image.
US10/283,728 2001-10-31 2002-10-30 Method for enhancing the quality of an image Expired - Fee Related US7239756B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP01126028.8 2001-10-31
EP01126028A EP1308891B1 (en) 2001-10-31 2001-10-31 Method for enhancing the quality of an image

Publications (2)

Publication Number Publication Date
US20030081856A1 US20030081856A1 (en) 2003-05-01
US7239756B2 true US7239756B2 (en) 2007-07-03

Family

ID=8179140

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/283,728 Expired - Fee Related US7239756B2 (en) 2001-10-31 2002-10-30 Method for enhancing the quality of an image

Country Status (4)

Country Link
US (1) US7239756B2 (en)
EP (1) EP1308891B1 (en)
JP (1) JP2003203233A (en)
DE (1) DE60137514D1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050031201A1 (en) * 2003-06-27 2005-02-10 Stmicroelectronics Asia Pacific Pte Ltd. Method and system for contrast enhancement of digital video
US7675524B1 (en) 2007-05-17 2010-03-09 Adobe Systems, Incorporated Image processing using enclosed block convolution
US7889923B1 (en) 2007-05-31 2011-02-15 Adobe Systems Incorporated System and method for sparse histogram merging
US7920741B2 (en) 2007-05-31 2011-04-05 Adobe Systems Incorporated System and method for image processing using integral histogram convolution
US8315473B1 (en) 2008-08-22 2012-11-20 Adobe Systems Incorporated Variably fast and continuous bilateral approximation filtering using histogram manipulations
US8594445B2 (en) 2005-11-29 2013-11-26 Adobe Systems Incorporated Fast bilateral filtering using rectangular regions
US8655097B2 (en) 2008-08-22 2014-02-18 Adobe Systems Incorporated Adaptive bilateral blur brush tool
US20140056517A1 (en) * 2012-08-22 2014-02-27 Sony Corporation Method, system and apparatus for applying histogram equalization to an image

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482447A1 (en) 2003-05-30 2004-12-01 Sony International (Europe) GmbH Method of and apparatus for image histogram equalization
JP5196731B2 (en) * 2006-04-20 2013-05-15 キヤノン株式会社 Image processing apparatus and image processing method
US20140348428A1 (en) * 2013-05-24 2014-11-27 Himax Media Solutions, Inc. Dynamic range-adjustment apparatuses and methods
US9165210B1 (en) * 2014-05-27 2015-10-20 Qualcomm Incorporated Systems and methods for localized contrast enhancement
JP2017040520A (en) * 2015-08-19 2017-02-23 株式会社島津製作所 Analysis data display processing device and display processing program

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5150421A (en) * 1990-01-09 1992-09-22 Hitachi, Ltd. System for automated transformation of gray level of image
US5357549A (en) * 1990-10-24 1994-10-18 U.S. Philips Corporation Method of dynamic range compression of an X-ray image and apparatus effectuating the method
US5388168A (en) 1990-11-19 1995-02-07 Matsushita Electric Industrial Co., Ltd. Picture quality improving circuit using a cumulative histogram
US5450502A (en) 1993-10-07 1995-09-12 Xerox Corporation Image-dependent luminance enhancement
US5550888A (en) * 1994-05-06 1996-08-27 U.S. Philips Corporation Method of displaying notably a digital X-ray image as a visible image, and device for carrying out the method
EP0809209A2 (en) 1996-05-21 1997-11-26 Samsung Electronics Co., Ltd. Image enhancing method using lowpass filtering and histogram equalization and a device therefor
US5835618A (en) * 1996-09-27 1998-11-10 Siemens Corporate Research, Inc. Uniform and non-uniform dynamic range remapping for optimum image display
US5946407A (en) * 1993-08-13 1999-08-31 Bamberger; Philippe System and method for scanning medical images using adjustable exposure time and brightness
US6075890A (en) * 1996-06-27 2000-06-13 Samsung Electronics Co., Ltd. Video-image histogram equalization circuit and method therefor
US6097849A (en) 1998-08-10 2000-08-01 The United States Of America As Represented By The Secretary Of The Navy Automated image enhancement for laser line scan data
US6219447B1 (en) * 1997-02-21 2001-04-17 Samsung Electronics Co., Ltd. Method and circuit for extracting histogram and cumulative distribution function for image enhancement apparatus
FR2803070A1 (en) 1999-12-28 2001-06-29 Ge Medical Syst Sa Dynamic range management system for radiological images has weighting and low pass filtering suits video screen
US6393148B1 (en) * 1999-05-13 2002-05-21 Hewlett-Packard Company Contrast enhancement of an image using luminance and RGB statistical metrics
US6650774B1 (en) * 1999-10-01 2003-11-18 Microsoft Corporation Locally adapted histogram equalization

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5150421A (en) * 1990-01-09 1992-09-22 Hitachi, Ltd. System for automated transformation of gray level of image
US5357549A (en) * 1990-10-24 1994-10-18 U.S. Philips Corporation Method of dynamic range compression of an X-ray image and apparatus effectuating the method
US5388168A (en) 1990-11-19 1995-02-07 Matsushita Electric Industrial Co., Ltd. Picture quality improving circuit using a cumulative histogram
US5946407A (en) * 1993-08-13 1999-08-31 Bamberger; Philippe System and method for scanning medical images using adjustable exposure time and brightness
US5450502A (en) 1993-10-07 1995-09-12 Xerox Corporation Image-dependent luminance enhancement
US5550888A (en) * 1994-05-06 1996-08-27 U.S. Philips Corporation Method of displaying notably a digital X-ray image as a visible image, and device for carrying out the method
US5995656A (en) * 1996-05-21 1999-11-30 Samsung Electronics Co., Ltd. Image enhancing method using lowpass filtering and histogram equalization and a device therefor
EP0809209A2 (en) 1996-05-21 1997-11-26 Samsung Electronics Co., Ltd. Image enhancing method using lowpass filtering and histogram equalization and a device therefor
US6075890A (en) * 1996-06-27 2000-06-13 Samsung Electronics Co., Ltd. Video-image histogram equalization circuit and method therefor
US5835618A (en) * 1996-09-27 1998-11-10 Siemens Corporate Research, Inc. Uniform and non-uniform dynamic range remapping for optimum image display
US6219447B1 (en) * 1997-02-21 2001-04-17 Samsung Electronics Co., Ltd. Method and circuit for extracting histogram and cumulative distribution function for image enhancement apparatus
US6097849A (en) 1998-08-10 2000-08-01 The United States Of America As Represented By The Secretary Of The Navy Automated image enhancement for laser line scan data
US6393148B1 (en) * 1999-05-13 2002-05-21 Hewlett-Packard Company Contrast enhancement of an image using luminance and RGB statistical metrics
US6650774B1 (en) * 1999-10-01 2003-11-18 Microsoft Corporation Locally adapted histogram equalization
FR2803070A1 (en) 1999-12-28 2001-06-29 Ge Medical Syst Sa Dynamic range management system for radiological images has weighting and low pass filtering suits video screen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Rafael Gonzalez, Paul Wintz, Section 4.2.2 Histogram Equalization, Digital Image Processing, Addison-Wesley Publishing Company, 1977. *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050031201A1 (en) * 2003-06-27 2005-02-10 Stmicroelectronics Asia Pacific Pte Ltd. Method and system for contrast enhancement of digital video
US7424148B2 (en) * 2003-06-27 2008-09-09 Stmicroelectronics Asia Pacific Pte. Ltd. Method and system for contrast enhancement of digital video
US8594445B2 (en) 2005-11-29 2013-11-26 Adobe Systems Incorporated Fast bilateral filtering using rectangular regions
US7675524B1 (en) 2007-05-17 2010-03-09 Adobe Systems, Incorporated Image processing using enclosed block convolution
US7889923B1 (en) 2007-05-31 2011-02-15 Adobe Systems Incorporated System and method for sparse histogram merging
US7920741B2 (en) 2007-05-31 2011-04-05 Adobe Systems Incorporated System and method for image processing using integral histogram convolution
US8315473B1 (en) 2008-08-22 2012-11-20 Adobe Systems Incorporated Variably fast and continuous bilateral approximation filtering using histogram manipulations
US8655097B2 (en) 2008-08-22 2014-02-18 Adobe Systems Incorporated Adaptive bilateral blur brush tool
US20140056517A1 (en) * 2012-08-22 2014-02-27 Sony Corporation Method, system and apparatus for applying histogram equalization to an image
US9111362B2 (en) * 2012-08-22 2015-08-18 Sony Corporation Method, system and apparatus for applying histogram equalization to an image

Also Published As

Publication number Publication date
US20030081856A1 (en) 2003-05-01
JP2003203233A (en) 2003-07-18
EP1308891A1 (en) 2003-05-07
EP1308891B1 (en) 2009-01-21
DE60137514D1 (en) 2009-03-12

Similar Documents

Publication Publication Date Title
US7239756B2 (en) Method for enhancing the quality of an image
CN106846270B (en) Image edge enhancement method and device
US8406547B2 (en) Visual processing device, visual processing method, program, display device, and integrated circuit
US6094511A (en) Image filtering method and apparatus with interpolation according to mapping function to produce final image
KR0176601B1 (en) Picture quality improving method & circuit using low-filtering and histogram equalization
US7936941B2 (en) Apparatus for clearing an image and method thereof
US6600517B1 (en) System and method for improving the sharpness of a video image
US7454081B2 (en) Method and system for video edge enhancement
IES20080497A2 (en) Image processing method and apparatus
JPH08279906A (en) Adaptive error diffusion method
JP2001014456A (en) Image processing device and program recording medium
JP2001113754A (en) Apparatus and method for processing image
US6175657B1 (en) Adaptive intrafield reducing of Gaussian noise by fuzzy logic processing
KR100949403B1 (en) Image noise reduction method and apparatus
US6480632B2 (en) Method and apparatus to interpolate video frames
US7433084B2 (en) Digital de-screening technique for scanned documents
US6847408B1 (en) Method and apparatus for reducing noise in an image sequence
JP2003528547A (en) N-dimensional filter and method for N-dimensionally filtering original image pixels
US20070070428A1 (en) Device and method for sharpening image signal
JPH04297962A (en) Method and apparatus for emphasizing image
CN109417616B (en) Method and apparatus for image processing
KR101634652B1 (en) Method and apparatus for intensificating contrast in image
Laihanen et al. Automatic colour correction
KR100580192B1 (en) Method for detecting pattern-like images and method for enhancing images while suppressing undesirable artifacts caused by pattern-like images
JP3675704B2 (en) Contour correction device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONY INTERNATIONAL (EUROPE) GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SARTOR, PIERGIORGIO;WAGNER, PETER;REEL/FRAME:013446/0475

Effective date: 20021007

AS Assignment

Owner name: SONY DEUTSCHLAND GMBH,GERMANY

Free format text: MERGER;ASSIGNOR:SONY INTERNATIONAL (EUROPE) GMBH;REEL/FRAME:017746/0583

Effective date: 20041122

Owner name: SONY DEUTSCHLAND GMBH, GERMANY

Free format text: MERGER;ASSIGNOR:SONY INTERNATIONAL (EUROPE) GMBH;REEL/FRAME:017746/0583

Effective date: 20041122

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20150703