US7208509B2 - Non-nucleoside reverse transcriptase inhibitors - Google Patents

Non-nucleoside reverse transcriptase inhibitors Download PDF

Info

Publication number
US7208509B2
US7208509B2 US10/807,766 US80776604A US7208509B2 US 7208509 B2 US7208509 B2 US 7208509B2 US 80776604 A US80776604 A US 80776604A US 7208509 B2 US7208509 B2 US 7208509B2
Authority
US
United States
Prior art keywords
group
hydrogen
compound according
alkyl
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US10/807,766
Other languages
English (en)
Other versions
US20040192704A1 (en
Inventor
James Patrick Dunn
Steven Swallow
Zachary Kevin Sweeney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Palo Alto LLC
Original Assignee
Roche Palo Alto LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roche Palo Alto LLC filed Critical Roche Palo Alto LLC
Priority to US10/807,766 priority Critical patent/US7208509B2/en
Publication of US20040192704A1 publication Critical patent/US20040192704A1/en
Priority to US11/701,881 priority patent/US7348345B2/en
Application granted granted Critical
Publication of US7208509B2 publication Critical patent/US7208509B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D271/00Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
    • C07D271/02Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D271/101,3,4-Oxadiazoles; Hydrogenated 1,3,4-oxadiazoles
    • C07D271/1131,3,4-Oxadiazoles; Hydrogenated 1,3,4-oxadiazoles with oxygen, sulfur or nitrogen atoms, directly attached to ring carbon atoms, the nitrogen atoms not forming part of a nitro radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41961,2,4-Triazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D249/12Oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D285/00Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
    • C07D285/01Five-membered rings
    • C07D285/02Thiadiazoles; Hydrogenated thiadiazoles
    • C07D285/04Thiadiazoles; Hydrogenated thiadiazoles not condensed with other rings
    • C07D285/121,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles
    • C07D285/1251,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles with oxygen, sulfur or nitrogen atoms, directly attached to ring carbon atoms, the nitrogen atoms not forming part of a nitro radical
    • C07D285/13Oxygen atoms

Definitions

  • the invention relates to the field of antiviral therapy and, in particular, to non-nucleoside reverse transcriptase inhibitors for treating Human Immunodeficiency Virus (HIV) mediated diseases.
  • HIV Human Immunodeficiency Virus
  • the invention provides novel heterocyclic compounds, pharmaceutical compositions comprising these compounds, methods for treatment or prophylaxis of HIV mediated diseases employing said compounds in monotherapy or in combination therapy, and a process for preparing novel heterocyclic compounds.
  • the human immunodeficiency virus HIV is the causative agent of acquired immunodeficiency syndrome (AIDS), a disease characterized by the destruction of the immune system, particularly of the CD4 + T-cell, with attendant susceptibility to opportunistic infections. HIV infection is also associated with a precursor AIDS—related complex (ARC), a syndrome characterized by symptoms such as persistent generalized lymphadenopathy, fever and weight loss.
  • AIDS acquired immunodeficiency syndrome
  • ARC AIDS—related complex
  • the HIV genome encodes protein precursors known as gag and gag-pol which are processed by the viral protease to afford the protease, reverse transcriptase (RT), endonuclease/integrase and mature structural proteins of the virus core. Interruption of this processing prevents the production of normally infectious virus. Considerable efforts have been directed towards the control of HIV by inhibition of virally encoded enzymes.
  • NRTIs typically are 2′,3′-dideoxynucleoside (ddN) analogs which must be phosphorylated prior to interacting with viral RT.
  • the corresponding triphosphates function as competitive inhibitors or alternative substrates for viral RT.
  • the nucleoside analogs terminate the chain elongation process.
  • HIV reverse transcriptase has DNA editing capabilities which enable resistant strains to overcome the blockade by cleaving the nucleoside analog and continuing the elongation.
  • NRTIs include zidovudine (AZT), didanosine (ddI), zalcitabine (ddC), stavudine (d4T), lamivudine (3TC) and tenofovir (PMPA).
  • NNRTIs were first discovered in 1989. NNRTI are allosteric inhibitors which bind reversibly at a nonsubstrate binding site on the HIV reverse transcriptase thereby altering the shape of the active site or blocking polymerase activity.
  • R. W. Buckheit, Jr. Non - nucleoside reverse transcriptase inhibitors: perspectives for novel therapeutic compounds and strategies for treatment of HIV infection, Expert Opin. Investig. Drugs 2001 10(8)1423–1442; E. De Clercq The role of non 0- nuceloside reverse transcriptase inhibitors ( NNRTIs ) in the therapy of HIV -1 infection, Antiviral Res. 1998 38:153–179; G.
  • NNRTIs Non - Nucleoside Reverse Transcriptase Inhibitors in Antiviral Therapy, Drugs 2001 61(1):19–26
  • efavirenz efavirenz
  • nevirapine efavirenz
  • delavirdine efavirenz
  • in vitro and in vivo studies quickly revealed the NNRTIs presented a low barrier to the emergence of drug resistant HIV strains and class-specific toxicity. Drug resistance frequently develops with only a single point mutation in the RT.
  • Benzyl-pyridazinone compounds have been extensively investigated as thyroxin analogs which can decrease plasma cholesterol without stimulating cardiac activity (A. H. Underwood et al. A thyromimetic that decreases plasma cholesterol without increasing cardiovascular activity Nature 1986 324(6096):425–429; P. D. Leeson et al. Selective thyromimetics. Cardiac - sparing thyroid hormone analogs containing 3′- arylmethyl substituents J. Med Chem 1989 32(2):320–326; P. D. Leeson et al. EP 0188351). WO9624343 (D. J.
  • WO 9702023 discloses oxo-pyridazinylmethyl substituted tyrosines are selective antagonists for the haematopoietic phosphatase SH2 domain which may render them useful to increase erythropoiesis and haematopoiesis.
  • WO 9702023 discloses these compounds are specific inhibitors of the human Stat 6 SH2 domain and may be useful for treating asthma, allergic rhinitis and anemia.
  • WO2001085670 discloses related malonamide derivatives useful for treating circulatory diseases.
  • EP 810218 discloses oxo-pyridazinylmethyl substituted tyrosines are selective antagonists for the haematopoietic phosphatase SH2 domain which may render them useful to increase erythropoiesis and haematopoiesis.
  • WO 9702023 discloses oxo-pyridazinylmethyl substituted tyrosines are selective antagonists for the haematop
  • Allen et al. discloses benzoyl substituted benzyl-pyridazinone compounds which are cyclooxygenase inhibitors and potential antiinflammatory or analgesic compounds. None of the references teaches therapy for HIV infections or inhibition of HIV reverse transcriptase.
  • the present invention relates to a compounds according to formula I, methods for treating diseases mediated by human immunodeficieny virus by administration of a compound according to formula I, pharmaceutical compositions for treating diseases mediated by human immunodeficieny virus containing a compound according to formula I, and processes to prepare a compound according to formula I
  • the invention also relates to a process for preparing a compound according to formula I wherein X 1 is OR 5 or SR 5 , R 5 is an optionally substituted aryl and R 1 —R 4 , R 1 and X 2 are as defined hereinabove.
  • X 1 , X 2 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 are as defined hereinabove, and hydrates, solvates, clathrates and acid addition salts thereof.
  • X 1 is OR 5 or SR 5 ;
  • R 3 is hydrogen or fluoro;
  • R 4 is selected from the group consisting of hydrogen, chloro, fluoro and methyl;
  • R 5 is optionally substituted phenyl; and, R 1 , R 2 , R 7 , X 2 and n are as defined hereinabove.
  • X 1 is OR 5 or SR 5 ;
  • R 1 is methyl, ethyl, trifluoromethyl or halogen;
  • R 3 is hydrogen or fluoro;
  • R 4 is selected from the group consisting of hydrogen, chloro, fluoro and methyl;
  • R 5 is optionally substituted phenyl; and,
  • R 2 , R 7 , X 2 and n are as defined hereinabove.
  • X 1 is OR 5 or SR 5 ;
  • R 1 is methyl, ethyl, trifluoromethyl or halogen;
  • R 3 is hydrogen or fluoro;
  • R 4 is selected from the group consisting of hydrogen, chloro, fluoro and methyl;
  • R 5 is monosubstituted phenyl; and,
  • R 2 , R 7 , X 2 and n are as defined hereinabove.
  • X 1 is OR 5 or SR 5 ;
  • R 1 is methyl, ethyl, trifluoromethyl or halogen;
  • R 3 is hydrogen or fluoro;
  • R 4 is selected from the group consisting of hydrogen, chloro, fluoro and methyl;
  • R 5 is 2,5-disubstituted phenyl; and,
  • R 2 , R 7 , X 2 and n are as defined hereinabove.
  • X 1 is OR 5 or SR 5 ;
  • R 1 is methyl, ethyl, trifluoromethyl or halogen;
  • R 3 is hydrogen or fluoro;
  • R 4 is selected from the group consisting of hydrogen, chloro, fluoro and methyl;
  • R 5 is 3,5-disubstituted phenyl; and,
  • R 2 , R 7 , X 2 and n are as defined hereinabove.
  • X 1 is OR 5 or SR 5 ;
  • R 1 is methyl, ethyl, trifluoromethyl or halogen;
  • R 3 is hydrogen or fluoro;
  • R 4 is selected from the group consisting of hydrogen, chloro, fluoro and methyl,
  • R 5 is 2,4-disubstituted phenyl; and
  • R 2 , R 7 , X 2 and n are as defined hereinabove.
  • X 1 is OR 5 or SR 5 ;
  • R 1 is methyl, ethyl, trifluoromethyl or halogen;
  • R 3 is hydrogen or fluoro;
  • R 4 is selected from the group consisting of hydrogen, chloro, fluoro and methyl;
  • R 5 is 2,6-disubstituted phenyl; and,
  • R 2 , R 7 , X 2 and n are as defined hereinabove.
  • X 1 is OR 5 or SR 5 ;
  • R 1 and R 2 are independently hydrogen, C 1-6 alkyl, C 1-6 haloalkyl, C 3-8 cycloalkyl, C 1-6 alkoxy, C 1-6 alkylthio, C 1-6 alkylsulfinyl, C 1-6 alkylsulfonyl, C 1-6 haloalkoxy, C 1-6 haloalkylthio, halogen, amino, alkylamino, dialkylamino, aminoacyl, nitro and cyano;
  • R 3 is hydrogen or fluoro; and,
  • R 4 , R 5 , R 7 , X 2 and n are as defined hereinabove.
  • X 1 is OR 5 ;
  • R 1 is methyl, ethyl, trifluoromethyl or halogen;
  • R 2 and R 4 are independently hydrogen, fluoro, chloro, methyl or ethyl;
  • R 3 is hydrogen or fluoro;
  • R 5 is optionally substituted phenyl;
  • n is 0 to 2; and
  • R 7 and X 2 are as defined hereinabove.
  • X 1 is OR 5 ;
  • R 1 is methyl, ethyl, trifluoromethyl or halogen;
  • R 2 and R 4 are independently hydrogen, fluoro, chloro, methyl or ethyl;
  • R 3 is hydrogen or fluoro;
  • R 5 is monosubstituted phenyl;
  • n is 0 to 2; and
  • R 7 and X 2 are as defined hereinabove.
  • X 1 is OR 5 ;
  • R 1 is methyl, ethyl, trifluoromethyl or halogen;
  • R 2 and R 4 are independently hydrogen, fluoro, chloro, methyl or ethyl;
  • R 3 is hydrogen or fluoro;
  • R 5 is monosubstituted phenyl and the substituent is selected from the group consisting of halogen, cyano, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy, C 1-6 alkylthio and C 1-6 haloalkoxy; and, R 4 , R 7 , X 2 and n are as defined hereinabove.
  • X 1 is OR 5 ;
  • R 1 is methyl, ethyl, trifluoromethyl or halogen;
  • R 2 and R 4 are independently hydrogen, fluoro, chloro, methyl or ethyl;
  • R 3 is hydrogen or fluoro;
  • R 5 is 2,5-disubstituted phenyl;
  • n is 0 to 2; and
  • R 1 and X 2 are as defined hereinabove.
  • X 1 is OR 5 ;
  • R 1 is methyl, ethyl, trifluoromethyl or halogen;
  • R 2 and R 4 are independently hydrogen, fluoro, chloro, methyl or ethyl;
  • R 3 is hydrogen or fluoro;
  • R 5 is 2,5-disubstituted phenyl and the substituents are independently selected from the group consisting of halogen, cyano, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy, C 1-6 alkylthio and C 1-6 haloalkoxy; and, R 4 , R 7 , X 2 and n are as define hereinabove.
  • X 1 is OR 5 ;
  • R 1 is methyl, ethyl, trifluoromethyl or halogen;
  • R 2 and R 4 are independently hydrogen, fluoro, chloro, methyl or ethyl;
  • R 3 is hydrogen or fluoro;
  • R 5 is 3,5-disubstituted phenyl;
  • n is 0 to 2; and
  • R 7 and X 2 are as defined hereinabove.
  • X 1 is OR 5 ;
  • R 1 is methyl, ethyl, trifluoromethyl or halogen;
  • R 2 and R 4 are independently hydrogen, fluoro, chloro, methyl or ethyl;
  • R 3 is hydrogen or fluoro;
  • R 5 is 3,5-disubstituted phenyl and the substituents are independently selected from the group consisting of halogen, cyano, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy, C 1-6 alkylthio and C 1-6 haloalkoxy; and, R 4 , R 7 , X 2 and n are as defined hereinabove.
  • X 1 is OR 5 ;
  • R 1 is methyl, ethyl, trifluoromethyl or halogen;
  • R 2 and R 4 are independently hydrogen, fluoro, chloro, methyl or ethyl;
  • R 3 is hydrogen or fluoro;
  • R 5 is 2,4-disubstituted phenyl;
  • n is 0 to 2; and
  • R 7 and X 2 are as defined hereinabove.
  • X 1 is OR 5 ;
  • R 1 is methyl, ethyl, trifluoromethyl or halogen;
  • R 2 and R 4 are independently hydrogen, fluoro, chloro, methyl or ethyl;
  • R 3 is hydrogen or fluoro;
  • R 5 is 2,4-disubstituted phenyl and the substituents are independently selected from the group consisting of halogen, cyano, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy, C 1-6 alkylthio and C 1-6 haloalkoxy; and, R 4 , R 7 , X 2 and n are as defined hereinabove.
  • X 1 is OR 5 ;
  • R 1 is methyl, ethyl, trifluoromethyl or halogen;
  • R 2 and R 4 are independently hydrogen, fluoro, chloro, methyl or ethyl;
  • R 3 is hydrogen or fluoro;
  • R 5 is 2,6-disubstituted phenyl;
  • n is 0 to 2; and
  • R 7 and X 2 are as defined hereinabove.
  • X 1 is OR 5 ;
  • R 1 is methyl, ethyl, trifluoromethyl or halogen;
  • R 2 and R 4 are independently hydrogen, fluoro, chloro, methyl or ethyl;
  • R 3 is hydrogen or fluoro;
  • R 5 is 2,6-disubstituted phenyl and the substituents are independently selected from the group consisting of halogen, cyano, C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 alkoxy, C 1-6 alkylthio and C 1-6 haloalkoxy; and, R 4 , R 7 , X 2 and n are as defined hereinabove.
  • a compound according to formula I wherein X 1 is OR 5 or SR 5 ; R 3 and R 4 are independently hydrogen, chloro, fluoro or methyl; R 5 is optionally substituted pyridinyl, pyridinyl N-oxide, indolyl, indolyl N-oxide, quinolinyl, quinolinyl N-oxide, pyrimidinyl, pyrazinyl and pyrrolyl; and, X 2 , R 1 , R 2 , R 3 , R 7 and n are as defined hereinabove.
  • X 1 is OR 5 or SR 5 ; R 1 and R 2 along with the carbon atoms to which they are attached form a phenyl, dihydropyran, dihydrofuran or furan ring; R 3 is hydrogen, R 4 is hydrogen or fluoro; R 5 is optionally substituted phenyl; and, X 2 , R 7 and n are as defined hereinabove.
  • a method for treating an HIV infection, or preventing an HIV infection, or treating AIDS or ARC comprising administering to a host in need thereof a therapeutically effective amount of a compound of formula I
  • X 1 , X 2 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and n are as defined hereinabove, and hydrates, solvates, clathrates and acid addition salts thereof.
  • a method for treating an HIV infection, or preventing an HIV infection, or treating AIDS or ARC comprising administering to a host in need thereof a therapeutically effective amount of a compound of formula I wherein: X 1 is OR 5 ; R 1 is methyl, ethyl, trifluoromethyl or halogen; R 2 and R 4 are independently hydrogen, fluoro, chloro, methyl or ethyl; R 3 is hydrogen or fluoro; R 5 is optionally substituted phenyl; and, X 2 , R 7 and n are as defined hereinabove.
  • a method for treating an HIV infection, or preventing an HIV infection, or treating AIDS or ARC comprising co-administering to a host in need thereof a therapeutically effective amount of a compound of formula I wherein, X 1 , X 2 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and n are as defined hereinabove, and hydrates, solvates, clathrates and acid addition salts thereof, and at least one compound selected from the group consisting of HIV protease inhibitors, nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, CCR5 inhibitors and viral fusion inhibitors.
  • a method for treating an HIV infection, or preventing an HIV infection, or treating AIDS or ARC comprising co-administering to a host in need thereof a therapeutically effective amount of a compound of formula I wherein, X 1 , X 2 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and n are as defined hereinabove, and hydrates, solvates, clathrates and acid addition salts thereof, and at least one compound selected from the group consisting of zidovudine, lamivudine, didanosine, zalcitabine, stavudine, rescriptor, sustiva, viramune efavirenz, nevirapine and delavirdine and/or the group consisting of saquinavir, ritonavir, nelfinavir, indinavir, amprenavir and lopinavir.
  • a method for inhibiting a retrovirus reverse transcriptase comprising administering a compound of formula I wherein, X 1 , X 2 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and n are as defined hereinabove, and hydrates, solvates, clathrates and acid addition salts thereof.
  • a method for inhibiting a retrovirus reverse transcriptase having at least one mutation with respect to wild type virus comprising administering to a host in need thereof, a therapeutically effective amount of a compound of formula I wherein, X 1 , X 2 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and n are as defined hereinabove; and, hydrates, solvates, clathrates; and, acid addition salts thereof.
  • a method treating an HIV infection, or preventing an HIV infection, or treating AIDS or ARC, wherein the host is infected with a strain of HIV which exhibits reduced susceptibility to efavirenz, nevirapine or delavirdine comprising administering to a host in need thereof a therapeutically effective amount of a compound of formula I wherein, X 1 , X 2 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and n are as defined hereinabove; and, hydrates, solvates, clathrates and acid addition salts thereof.
  • a pharmaceutical composition comprising a therapeutically effective quantity of a compound of formula I wherein, wherein, X 1 , X 2 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and n are as defined hereinabove, and hydrates, solvates, clathrates and acid addition salts thereof with the proviso that if X 2 is ortho-phenylene, R 5 can not unsubstituted phenyl, in admixture with at least one pharmaceutically acceptable carrier or diluent sufficient upon administration in a single or multiple dose regimen for treating diseases mediated by human immunodeficieny virus inhibit HIV.
  • X 1 is OR 5 or OCH 2 R 5 and R 5 is an optionally substituted aryl, or heteroaryl moiety;
  • X 2 is O, S, or NR 7 and R 1 –R 4 and R 7 are as defined hereinabove,
  • X 4 is a methoxythiadiazoline according to formula (III), and (c) with aqueous acid to hydrolyze said methoxythiadiazoline and produce a compound of formula I wherein X 2 is S.
  • a process as described above for preparing a triazolone compound of formula I by treating a compound of formula IIb wherein X 1 is OR 5 or —OCH 2 R 5 , R 5 is optionally substituted aryl, X 4 is C( ⁇ O)NHNH 2 sequentially with methyl isocyanate or ethyl isocyanate and methanolic sodium hydroxide.
  • a process as described above for preparing a thiadiazolone compound of formula I by treating a compound of formula IIb wherein X 1 is OR 5 or —OCH 2 R 5 , R 5 is optionally substituted aryl, X 4 is C( ⁇ NH 2 + ) Cl ⁇ sequentially with hydrazinecarbothioic acid O-methyl ester and aqueous acid.
  • a or “an” entity refers to one or more of that entity; for example, a compound refers to one or more compounds or at least one compound.
  • a compound refers to one or more compounds or at least one compound.
  • the terms “a” (or “an”), “one or more”, and “at least one” can be used interchangeably herein.
  • C 1-6 alkyl denotes an unbranched or branched chain, saturated, monovalent hydrocarbon residue containing 1 to 6 carbon atoms.
  • alkyl groups include, but are not limited to, lower alkyl groups include methyl, ethyl, propyl, i-propyl, n-butyl, i-butyl, t-butyl or pentyl, isopentyl, neopentyl, hexyl.
  • haloalkyl denotes an unbranched or branched chain alkyl group as defined above wherein 1, 2, 3 or more hydrogen atoms are substituted by a halogen.
  • Examples are 1-fluoromethyl, 1-chloromethyl, 1-bromomethyl, 1-iodomethyl, trifluoromethyl, trichloromethyl, tribromomethyl, triiodomethyl, 1-fluoroethyl, 1-chloroethyl, 1-bromoethyl, 1-iodoethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2-dichloroethyl, 3-bromopropyl or 2,2,2-trifluoroethyl.
  • cycloalkyl denotes a saturated carbocyclic ring containing 3 to 8 carbon atoms, i.e. cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl.
  • aryl as used herein means a monocyclic or polycyclic-aromatic group comprising carbon and hydrogen atoms.
  • suitable aryl groups include, but are not limited to, phenyl, tolyl, indenyl, and 1- or 2-naphthyl, as well as benzo-fused carbocyclic moieties such as 5,6,7,8-tetrahydronaphthyl.
  • An aryl group can be unsubstituted or substituted with one or more suitable substituents which substituents include C 1-6 alkyl, C 1-6 haloalkyl, C 3-8 cycloalkyl, C 1-6 alkoxy, C 1-6 alkylthio, C 1-6 alkylsulfinyl, C 1-6 alkylsulfonyl, C 1-6 haloalkoxy, C 1-6 haloalkylthio, halogen, amino, alkylamino, dialkylamino, aminoacyl, acyl, alkoxycarbonyl, carbamoyl, N-alkylcarbamoyl, N,N-dialkylcarbamoyl, nitro and cyano.
  • heteroaryl group or “heteroaromatic”as used herein means a monocyclic- or polycyclic aromatic ring comprising 15 carbon atoms, hydrogen atoms, and one or more heteroatoms, preferably, 1 to 3 heteroatoms, independently selected from nitrogen, oxygen, and sulfur.
  • heteroaryl rings have less aromatic character than their all-carbon counter parts.
  • a heteroaryl group need only have some degree of aromatic character.
  • heteroaryl groups include, but are not limited to, pyridinyl, pyridazinyl, pyrimidyl, pyrazyl, triazinyl, pyrrolyl, pyrazolyl, imidazolyl, (1,2,3,)- and (1,2,4)-triazolyl, pyrazinyl, pyrimidinyl, tetrazolyl, furyl, thienyl, isoxazolyl, thiazolyl, thienyl, isoxazolyl, indolyl, quinolinyl, and oxazolyl.
  • a heteroaryl group can be unsubstituted or substituted with one or more suitable substituents selected from hydroxy, oxo, cyano, alkyl, alkoxy, haloalkoxy, alkylthio, halo, haloalkyl, nitro, alkoxycarbonyl, amino, alkylamino, dialkylamino, aminoacyl, alkylsulfonyl, arylsulfinyl, alkoxycarbonyl, carbamoyl, N-alkylcarbamoyl, N,N-dialkylcarbamoyl, acyl unless otherwise indicated.
  • a nitrogen atom in the heteroaryl ring can optionally be an N-oxide.
  • heterocyclyl means the monovalent saturated cyclic radical, consisting of one or more rings, preferably one to two rings, of three to eight atoms per ring, incorporating one or more ring heteroatoms (chosen from N,O or S(O) 0-2 ), and which can optionally be substituted with one or more, preferably one to three substituents selected from hydroxy, oxo, cyano, alkyl, alkoxy, haloalkoxy, alkylthio, halo, haloalkyl, nitro, alkoxycarbonyl, amino, alkylamino, dialkylamino, aminoacyl, alkylsulfonyl, arylsulfinyl, alkoxycarbonyl, carbamoyl, N-alkylcarbamoyl, N,N-dialkylcarbamoyl, acyl unless otherwise indicated.
  • heterocyclic radicals include, but are not limited to, furanyl,
  • alkoxy group as used herein means an —O-alkyl group, wherein alkyl is as defined above such as methoxy, ethoxy, n-propyloxy, i-propyloxy, n-butyloxy, i-butyloxy, t-butyloxy, pentyloxy, hexyloxy, heptyloxy including their isomers.
  • alkylthio group as used herein means an —S-alkyl group, wherein alkyl is as defined above such as meththio, eththio, n-propylthio, i-propylthio, n-butylthio, i-butylthio, t-butylthio, pentylthio including their isomers.
  • haloalkoxy group as used herein means an —O-haloalkyl group, wherein haloalkyl is as defined above.
  • haloalkoxy groups include, but are not limited to, 2,2,2-trifluoroethoxy, difluoromethoxy and 1,1,1,3,3,3-hexafluoro-iso-propoxy.
  • haloalkthio group as used herein means an —S-haloalkyl group, wherein haloalkyl is as defined above.
  • An example of haloalkthio groups includes, but are not limited to, 2,2,2-trifluoroeththanthiol.
  • aryloxy group as used herein means an O-aryl group wherein aryl is as defined above.
  • An aryloxy group can be unsubstituted or substituted with one or more suitable substituents.
  • the aryl ring of an aryloxy group is a monocyclic ring, wherein the ring comprises 6 carbon atoms, referred to herein as “(C 6 ) aryloxy”.
  • aryloxy means the aryl or group may be substituted with one to three groups selected from the group consisting of C 1-6 alkyl, C 1-6 haloalkyl, C 3-8 cycloalkyl, C 1-6 alkoxy, C 1-6 alkylthio, C 1-6 alkylsulfinyl, C 1-6 alkylsulfonyl, C 1-6 haloalkoxy, C 1-6 haloalkylthio, halogen, amino, alkylamino, dialkylamino, aminoacyl, acyl, alkoxycarbonyl, carbamoyl, N-alkylcarbamoyl, N,N-dialkylcarbamoyl, nitro and cyano.
  • heteroaryloxy group as used herein means an O-heteroaryl group, wherein heteroaryl is as defined above.
  • the heteroaryl ring of a heteroaryloxy group can be unsubstituted or substituted with one or more suitable substituents.
  • suitable substituents include, but are not limited to, 2-pyridyloxy, 3-pyrrolyloxy, 3-pyrazolyloxy, 2-imidazolyloxy, 3-pyrazinyloxy, and 4-pyrimidyloxy.
  • acyl or “alkylcarbonyl” as used herein denotes a radical of formula C( ⁇ O)R wherein R is hydrogen, unbranched or branched alkyl containing 1 to 6 carbon atoms or a phenyl group.
  • alkoxycarbonyl denotes a radical of formula C( ⁇ O)OR wherein R is, unbranched or branched alkyl as described above.
  • acylamino denotes a radical of formula —NH-(acyl) where acyl is as defined herein.
  • arylboronic acid denotes a radical of formula ArB(OH) 2 wherein Ar is an optionally substituted aryl group as described above.
  • alkylene denotes a divalent linear or branched saturated hydrocarbon radical, having from one to six carbons inclusive, unless otherwise indicated.
  • alkylene radicals include, but are not limited to, methylene, ethylene, propylene, 2-methyl-propylene, butylene, 2-ethylbutylene.
  • arylalkyl or “aralkyl” as used herein denotes the radical R′R′′—, wherein R′ is an aryl radical as defined herein, and R′′ is an alkylene radical as defined herein and the arylalkyl group is attached through the alkylene radical.
  • arylalkyl radicals include, but are not limited to, benzyl, phenylethyl, 3-phenylpropyl.
  • halogen as used herein means fluorine, chlorine, bromine, or iodine.
  • halo encompasses fluoro, chloro, bromo, and iodo.
  • hydrohalic acid refers to an acid comprised of hydrogen and a halogen.
  • alkylsulfinyl as used herein means the radical —S(O)R′, wherein R′ is alkyl as defined herein.
  • alkylaminosulfonyl include, but are not limited to methylsulfinyl and iso-propylsulfinyl.
  • alkylsulfonyl as used herein means the radical —S(O) 2 R′, wherein R′ is alkyl as defined herein.
  • alkylaminosulfonyl include, but are not limited to methylsulfonyl and iso-propylsulfonyl.
  • amino refers to —NH 2 , —NHR and —NR 2 respectively and R is alkyl as defined above.
  • R is alkyl as defined above.
  • the two alkyl groups attached to a nitrogen in a dialkyl moiety can be the same or different.
  • aminoalkyl refers to NH 2 (CH 2 )n-, RHN(CH 2 )n-, and R 2 N(CH 2 )n- respectively wherein n is 1 to 6 and R is alkyl as defined above
  • the prefix “carbamoyl” as used herein means the radical —CONH 2 .
  • the prefix “N-alkylcabamoyl” and “N,N-dialkylcarbamoyl” means a radical CONHR′ or CONR′R′′ respectively wherein the R′ and R′′ groups are independently alkyl as defined herein.
  • conjugate base means the chemical species produced when an acid (including here a carbon acid) gives up its proton.
  • Tautomeric compounds can exist as two or more interconvertable species.
  • Prototropic tautomers result from the migration of a covalently bonded hydrogen atom between two atoms.
  • Tautomers generally exist in equilibrium and attempts to isolate an individual tautomers usually produce a mixture whose chemical and physical properties are consistent with a mixture of compounds. The position of the equilibrium is dependent on chemical features within the molecule. For example, in many aliphatic aldehydes and ketones, such as acetaldehyde, the keto form predominates while; in phenols, the enol form predominates.
  • Common prototropic tautomers include keto/enol (—C( ⁇ O)—CH— ⁇ —C(—OH) ⁇ CH—), amide/imidic acid (—( ⁇ O)—NH— ⁇ —C(—OH) ⁇ N—) and amidine (—C( ⁇ NR)—NH— ⁇ —C(—NHR) ⁇ N—) tautomers.
  • keto/enol —C( ⁇ O)—CH— ⁇ —C(—OH) ⁇ CH—
  • amide/imidic acid —( ⁇ O)—NH— ⁇ —C(—OH) ⁇ N—
  • amidine —C( ⁇ NR)—NH— ⁇ —C(—NHR) ⁇ N—
  • Compounds of formula I which are basic can form pharmaceutically acceptable acid addition salts with inorganic acids such as hydrohalic acids (e.g. hydrochloric acid and hydrobromic acid), sulphuric acid, nitric acid and phosphoric acid, and the like, and with organic acids (e.g. with acetic acid, tartaric acid, succinic acid, fumaric acid, maleic acid, malic acid, salicylic acid, citric acid, methanesulphonic acid and p-toluenesulfonic acid, and the like).
  • hydrohalic acids e.g. hydrochloric acid and hydrobromic acid
  • sulphuric acid e.g. hydrochloric acid and hydrobromic acid
  • solvate as used herein means a compound of the invention or a salt, thereof, that further includes a stoichiometric or non-stoichiometric amount of a solvent bound by non-covalent intermolecular forces.
  • Preferred solvents are volatile, non-toxic, and/or acceptable for administration to humans in trace amounts.
  • hydrate as used herein means a compound of the invention or a salt thereof, that further includes a stoichiometric or non-stoichiometric amount of water bound by non-covalent intermolecular forces.
  • clathrate as used herein means a compound of the invention or a salt thereof in the form of a crystal lattice that contains spaces (e. g., channels) that have a guest molecule (e. g., a solvent or water) trapped within.
  • spaces e. g., channels
  • guest molecule e. g., a solvent or water
  • NRTI nucleoside and nucleotide reverse transcriptase inhibitors
  • Typical suitable NRTIs include zidovudine (AZT) available under the RETROVIR tradename; didanosine (ddl) available under the VIDEX tradename.; zalcitabine (ddC) available under the HIVID tradename; stavudine (d4T) available under the ZERIT trademark.; lamivudine (3TC) available under the EPIVIR tradename; abacavir (1592U89) disclosed in WO96/30025 and available under the ZIAGEN trademark; adefovir dipivoxil [bis(POM)-PMEA] available under the PREVON tradename; lobucavir (BMS-180194), a nucleoside reverse transcriptase inhibitor disclosed in EP-0358154 and EP-0736533 and under development by Bristol-Myers Squibb; BCH-10652, a reverse transcriptase inhibitor (in the form of a racemic mixture of BCH-10618 and BCH-10619) under development by Biochem Pharma; emit
  • beta-L-FD4 also called beta-L-D4C and named beta-L-2′,3′-dicleoxy-5-fluoro-cytidene
  • DAPD the purine nucleoside, ( ⁇ )-beta-D-2,6,-diamino-purine dioxolane disclosed in EP-0656778 and licensed to Triangle Pharmaceuticals
  • NRTI non-nucleoside reverse transcriptase inhibitors
  • NNRTIs include nevirapine (BI-RG-587) available under the VIRAMUNE tradename; delaviradine (BHAP, U-90152) available under the RESCRIPTOR tradename; efavirenz (DMP-266) a benzoxazin-2-one disclosed in WO94/03440 and available under the SUSTIVA tradename; PNU-142721, a furopyridine-thio-pyrimide; AG-1549 (formerly Shionogi # S-1153); 5-(3,5-dichlorophenyl)-thio-4-isopropyl-1-(4-pyridyl)methyl-1H-imidazol-2-ylmethyl carbonate disclosed in WO 96/10019; MKC-442 (1-(ethoxy-methyl)-5-(1-methylethyl)-6-(phenylmethyl)-(2,4(1H,3H)-pyrimidinedione); and (+)-calanolide A (NSC-675451) and
  • protease inhibitor means inhibitors of the HIV-1 protease, an enzyme required for the proteolytic cleavage of viral polyprotein precursors (e.g., viral GAG and GAG Pol polyproteins), into the individual functional proteins found in infectious HIV-1.
  • HIV protease inhibitors include compounds having a peptidomimetic structure, high molecular weight (7600 daltons) and substantial peptide character, e.g. CRIXIVAN as well as nonpeptide protease inhibitors e.g., VIRACEPT.
  • Typical suitable PIs include saquinavir available in hard gel capsules under the INVIRASE tradename and as soft gel capsules under the FORTOVASE tradename; ritonavir (ABT-538) available under the NORVIR tradename; indinavir (MK-639) available under the CRIXIVAN tradename; nelfnavir (AG-1343) available under the VIRACEPT; amprenavir (141W94), tradename AGENERASE, a non-peptide protease inhibitor; lasinavir (BMS-234475; originally discovered by Novartis, Basel, Switzerland (CGP-61755); DMP-450, a cyclic urea discovered by Dupont; BMS-2322623, an azapeptide under development by Bristol-Myers Squibb, as a 2nd-generation HIV-1 PI; ABT-378; AG-1549 an orally active imidazole carbamate.
  • antiviral agents include hydroxyurea, ribavirin, IL-2, IL-1 2, pentafuside and Yissum Project No. 11607.
  • Hydroxyurea Droxia
  • IL-2 a ribonucleoside triphosphate reductase inhibitor
  • IL-2 is disclosed in Ajinomoto EP-0142268, Takeda EP-0176299, and Chiron U.S. Pat. Nos.
  • IL-12 is disclosed in WO96/25171 and is available as a dose of about 0.5 microgram/kg/day to about 10 microgram/kg/day, sc is preferred.
  • Pentafuside (DP-178, T-20) a 36-amino acid synthetic peptide, disclosed in U.S. Pat. No. 5,464,933 and available under the FUZEON tradename; pentafuside acts by inhibiting fusion of HIV-1 to target membranes. Pentafuside (3-100 mg/day) is given as a continuous sc infusion or injection together with efavirenz and 2 PI's to HIV-1 positive patients refractory to a triple combination therapy; use of 100 mg/day is preferred. Yissum Project No. 11607, a synthetic protein based on the HIV-1 Vif protein. Ribavirin, 1-.beta.-D-ribofuranosyl-1H-1,2,4-triazole-3-carboxamide, is described in U.S. Pat. No. 4,211,771.
  • anti-HIV-1 therapy means any anti-HIV-1 drug found useful for treating HIV-1infections in man alone, or as part of multidrug combination therapies, especially the HAART triple and quadruple combination therapies.
  • Typical suitable known anti-HIV-1 therapies include, but are not limited to multidrug combination therapies such as (i) at least three anti-HIV-1 drugs selected from two NRTIs, one PI, a second PI, and one NNRTI; and (ii) at least two anti-HIV-1 drugs selected from NNRTIs and PIs.
  • Typical suitable HAART—multidrug combination therapies include:
  • triple combination therapies such as two NRTIs and one PI; or (b) two NRTIs and one NNRTI; and (c) quadruple combination therapies such as two NRTIs, one PI and a second PI or one NNRTI.
  • triple combination therapies such as two NRTIs and one PI
  • two NRTIs and one NNRTI two NRTIs and one NNRTI
  • quadruple combination therapies such as two NRTIs, one PI and a second PI or one NNRTI.
  • Drug compliance is essential.
  • the CD4.sup.+ and HIV-1-RNA plasma levels should be monitored every 3–6 months. Should viral load plateau, a fourth drug, e.g., one PI or one NNRTI could be added.
  • wild type refers to the HIV virus strain which possesses the dominant genotype which naturally occurs in the normal population which has not been exposed to reverse transcriptase inhibitors.
  • wild type reverse transcriptase used herein has refers to the reverse transcriptase expressed by the wild type strain which has been sequenced and deposited in the SwissProt database with an accession number P03366.
  • reduced susceptibility refers to about a 10 fold, or greater, change in sensitivity of a particular viral isolate compared to the sensitivity exhibited by the wild type virus in the same experimental system.
  • the heterocyclic compounds of the present invention are prepared by a two-stage process (Scheme 1) comprising construction of an appropriately substituted aryl ring 2 and subsequently introducing the heterocyclic ring 3.
  • stages can be accomplished in any order, the heterocyclic ring is generally introduced after the modifications of the aryl ring are completed.
  • Substituted alkyl m-hydroxyphenylacetate 1a or m-hydroxyphenylacetonitrile 1b derivatives are convenient starting materials. They are often commercially available or readily prepared from commercially available precursors.
  • the aryl ring may be substituted with a methyl 1c or carboxylic acid ester Id substituent which is subsequently converted to 1b (for example, see schemes 4 and 5).
  • substituents can altered after introduction of the heterocyclic ring.
  • Ethyl 3-hydroxy-4-methylphenylacetate was prepared from ethyl 3-methoxy-4-hydroxy-phenylacetate as shown in Scheme 2.
  • the phenol was converted to the triflate ester 4b which was subjected to displacement with Me 2 Zn, DIBAL-H and PdCl 2 (dppf) (E.-i. Negishi in Metal - catalyzed Cross - Coupling Reactions , F. Diederich and P. J. Stang (eds.), Wiley-VCH, Mannheim 1998, chap. 1; E. Erdik, Tetrahedron 1992 48:9577–9648) to afford the 4c. Boron tribromide demethylation afforded 5a.
  • Ethyl 3-hydroxy-4-ethylphenylacetate 5b was prepared by Friedel-Crafts acylation of 4d which afforded ethyl 4-acetyl-3-methoxyphenylacetate (4e). Reduction of the ketone with triethylsilane and TFA produced the corresponding 4-ethyl substituted derivative 4f which was demethylated with BBr 3 to afford 5b.
  • Ethyl 3-hydroxy-4-iso-propylphenylacetate (5c) was prepared by Wittig olefination of 4e and subsequent catalytic hydrogenation of the 2-propenyl substituent to yield 4h. Demethylation with boron tribromide produced 5c.
  • Ethyl 3,4-dimethyl-5-hydroxyphenylacetate (8) was prepared by formylation of 6a and esterification of the resulting carboxylic acid 6b to produce ethyl 3-formyl-4-hydroxy-5-methoxyphenyl acetate (7a). Reduction of the aldehyde and hydrogenolysis the resulting benzyl alcohol afforded 7b.
  • the second methyl substituent was introduced by sequential treatment of 7b with triflic anhydride which yielded 7c and displacement with Me 2 Zn, PdCl 2 (dppf) and DIBAL-H (supra) to produce 7c. Boron tribromide mediated demethylation afforded 8. (Scheme 3).
  • Ethyl 4-chloro-3-hydroxyphenyl acetate (10) was prepared from 4-chloro-3-methoxytoluene by sequential free radical bromination (9b), nucleophilic displacement of the bromine atom with cyanide (9c) and a two-step hydrolysis of the nitrile to the amidine hydrochloride 9d and subsequently to the ethyl ester 9e. Boron tribromide mediated demethylation as described previously afforded 10. (Scheme 4)
  • 6-Methyl derivatives were prepared from 3-hydroxy-2-methylbenzoic acid (11) which was chlorinated (NaOCl/NaOH) and esterified to afford 13. Cupric acetate mediated coupling (infra) of benzeneboronic acid provided the diaryl ether 14. The nitrile was introduced by sequential reduction, mesylation and cyanide displacement to afford 17. The mesylate underwent an in situ displacement by chloride during the mesylation reaction.
  • 6-fluoro- and chloro-derivatives were available from 6-chloro-2-fluoro-3-methylphenol (18) and 3-bromo-2,4-dichlorotoluene (19), respectively (Scheme 6).
  • the base-catalyzed reaction of 18 and p-fluoro-nitrobenzene yielded dairyl ether 20.
  • Conversion of the nitro substiuent to the corresponding amine followed by diazotization and reduction produced 4-chloro-2-fluoro-3-phenoxytoluene (22).
  • amino-substituted aryl groups affords the possibility to replace the amino substiuent with a variety of other substituents utilizing the Sandmeyer reaction.
  • Cupric chloride-mediated coupling (see infra) of 19 afforded the corresponding 2,4-dichloro-3-phenoxytoluene (23).
  • Benzofuran 31 and dihydrobenzofuran 29 derivatives were prepared from dihydrobenzofuran (26).
  • Acylation with ethyl chloro oxalate produced the a-ketoester 27 which was reduced to the corresponding phenylacetic acid derivative 28a under Wolff-Kischner conditions.
  • the preparation of 29 by a Wilgerodt reaction also has been reported (J. Dunn et al. J. Med Chem 1986 29:2326).
  • Freidel-Crafts acylation with acetyl chloride afforded the acetyl derivative 28b which was converted to the acetate 28c under Baeyer-Villiger conditions and subsequently hydrolyzed to 29.
  • the corresponding benzofuran analogs were prepared by benzylic bromination and concomitant dehydrohalogention to yield 31.
  • diaryl ethers The preparation of diaryl ethers has been reviewed (J. S. Sawyer, Recent Advances in Diaryl Ether Synthesis, Tetrahedron 2000 56:5045–5065).
  • the diaryl ethers required herein were prepared by three different methods (Scheme 8): (i) Cu(OAc) 2 catalyzed condensation of substituted benzene boronic acids and phenols (D. A. Evans et al., Synthesis of Diaryl Ethers through the Copper - Promoted Arylation of Phenols with Aryl Boronic Acids. An Expedient Synthesis of Thyroxine, Tetrahedron Lett., 1998 39:2937–2940 and D. M. T.
  • Substituted m-cresol derivatives are also suitable substrates for coupling using these procedures. After introduction of the meta substituent the intermediate can be converted to the corresponding phenylacetonitrile derivative by bromination and cyanide displacement (Scheme 9).
  • Aralkyl aryl ethers were prepared using Mitsunobu conditions (Scheme 11; O. Mitsunobu, Synthesis 1981 1–28).
  • aralkyl ethers can be prepared via a classical Williamson ether synthesis (J. March, Advanced Organic Chemistry; 4 th Edition; Wiley & Sons: New York, 1992;pp. 386–87) or utilizing palladium-catalyzed coupling (M. Palucki et al., Palladium - catalyzed Intermolecular Carbon - Oxygen Bond Formation: A New Synthesis of Aryl Ethers, J. Am. Chem. Soc. 1997 119:3395–96).
  • Diphenylamine compounds with in the scope of the present invention can be prepared by palladium-catalyzed coupling reactions as described by Hartwig ( Transition Metal Catalyzed Synthesis of Aryl Amines and Aryl Ethers from Aryl Halides and Triflates: Scope and Mechanism, Angew. Chem. Int. Ed. Eng. 1998 37:2046–67)
  • Diphenylmethane compounds of the present invention can be prepared by reduction of the corresponding benzoyl derivatives 42. While reductions are conveniently carried out with triethylsilylhydride and trifluoroacetic acid, a variety of other procedures to effect this transformation are well known within the art.
  • the oxadiazolone, thiadiazolone and triazolone compounds of the present invention can be prepared by cyclization of a diacyl hydrazone derivative according to formula V.
  • the oxadiazolones can be prepared by treating an acylhydrazone IV with the appropriate acyl derivative and cyclizing the resulting diacyl compound.
  • IV is an ambident nucleophile and initial reaction could be at either the carbonyl oxygen or the nitrogen and subsequent ring closure of either produces the same product
  • 2-Oxo-2,3-dihydro-1,3,4-oxadiazoles 49 can be prepared by cyclization of an acyl hydrazide 46b with phosgene (or equivalents such as carbonyl diimidazole, alkyl chloroformates and the like) to directly produce the desired oxadiazole.
  • phosgene or equivalents such as carbonyl diimidazole, alkyl chloroformates and the like
  • 2-Oxo-2,3-dihydro-1,3,4-thiadiazoles 53 are prepared by condensation of an O-alkyl imidate 51 and methoxythiocarbonyl hydrazide which produce a 2-methoxy-3,4-thidiazole derivative 52 which was hydrolyzed to the corresponding 2-oxo-2,3-dihydro-1,3,4-thiadiazole 53 under acidic conditions (H. Kristinsson et al., Synthesis of Heterocycles. V.
  • Triazolones 48 were prepared by carbamoylation of an acyl hydrazide 46d with ethyl isocyanate to yield an N-acyl-N-carbamoylhydrazide 47 cyclized to the triazolone 48 upon treatment with methanolic potassium hydroxide.
  • the compounds of the present invention may be formulated in a wide variety of oral administration dosage forms and carriers.
  • Oral administration can be in the form of tablets, coated tablets, dragees, hard and soft gelatine capsules, solutions, emulsions, syrups, or suspensions.
  • Compounds of the present invention are efficacious when administered by other routes of administration including continuous (intravenous drip) topical parenteral, intramuscular, intravenous, subcutaneous, transdermal (which may include a penetration enhancement agent), buccal, nasal, inhalation and suppository administration, among other routes of administration.
  • the preferred manner of administration is generally oral using a convenient daily dosing regimen which can be adjusted according to the degree of affliction and the patient's response to the active ingredient.
  • a compound or compounds of the present invention, as well as their pharmaceutically useable salts, together with one or more conventional excipients, carriers, or diluents, may be placed into the form of pharmaceutical compositions and unit dosages.
  • the pharmaceutical compositions and unit dosage forms may be comprised of conventional ingredients in conventional proportions, with or without additional active compounds or principles, and the unit dosage forms may contain any suitable effective amount of the active ingredient commensurate with the intended daily dosage range to be employed.
  • compositions may be employed as solids, such as tablets or filled capsules, semisolids, powders, sustained release formulations, or liquids such as solutions, suspensions, emulsions, elixirs, or filled capsules for oral use; or in the form of suppositories for rectal or vaginal administration; or in the form of sterile injectable solutions for parenteral use.
  • a typical preparation will contain from about 5% to about 95% active compound or compounds (w/w).
  • preparation or “dosage form” is intended to include both solid and liquid formulations of the active compound and one skilled in the art will appreciate that an active ingredient can exist in different preparations depending on the target organ or tissue and on the desired dose and pharmacokinetic parameters.
  • excipient refers to a compound that is useful in preparing a pharmaceutical composition, generally safe, non-toxic and neither biologically nor otherwise undesirable, and includes excipients that are acceptable for veterinary use as well as human pharmaceutical use.
  • excipient as used herein includes both one and more than one such excipient.
  • Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules.
  • a solid carrier may be one or more substances which may also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material.
  • the carrier In powders, the carrier generally is a finely divided solid which is a mixture with the finely divided active component.
  • the active component In tablets, the active component generally is mixed with the carrier having the necessary binding capacity in suitable proportions and compacted in the shape and size desired.
  • Suitable carriers include but are not limited to magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like.
  • Solid form preparations may contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.
  • Liquid formulations also are suitable for oral administration include liquid formulation including emulsions, syrups, elixirs, aqueous solutions, aqueous suspensions. These include solid form preparations which are intended to be converted to liquid form preparations shortly before use. Emulsions may be prepared in solutions, for example, in aqueous propylene glycol solutions or may contain emulsifying agents such as lecithin, sorbitan monooleate, or acacia. Aqueous solutions can be prepared by dissolving the active component in water and adding suitable colorants, flavors, stabilizing, and thickening agents. Aqueous suspensions can be prepared by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, and other well known suspending agents.
  • viscous material such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, and other well known suspending agents.
  • the compounds of the present invention may be formulated for parenteral administration (e.g., by injection, for example bolus injection or continuous infusion) and may be presented in unit dose form in ampoules, pre-filled syringes, small volume infusion or in multi-dose containers with an added preservative.
  • the compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, for example solutions in aqueous polyethylene glycol.
  • oily or nonaqueous carriers, diluents, solvents or vehicles examples include propylene glycol, polyethylene glycol, vegetable oils (e.g., olive oil), and injectable organic esters (e.g., ethyl oleate), and may contain formulatory agents such as preserving, wetting, emulsifying or suspending, stabilizing and/or dispersing agents.
  • the active ingredient may be in powder form, obtained by aseptic isolation of sterile solid or by lyophilisation from solution for constitution before use with a suitable vehicle, e.g., sterile, pyrogen-free water.
  • the compounds of the present invention may be formulated for topical administration to the epidermis as ointments, creams or lotions, or as a transdermal patch.
  • Ointments and creams may, for example, be formulated with an aqueous or oily base with the addition of suitable thickening and/or gelling agents.
  • Lotions may be formulated with an aqueous or oily base and will in general also containing one or more emulsifying agents, stabilizing agents, dispersing agents, suspending agents, thickening agents, or coloring agents.
  • Formulations suitable for topical administration in the mouth include lozenges comprising active agents in a flavored base, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert base such as gelatin and glycerin or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.
  • the compounds of the present invention may be formulated for administration as suppositories.
  • a low melting wax such as a mixture of fatty acid glycerides or cocoa butter is first melted and the active component is dispersed homogeneously, for example, by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool, and to solidify.
  • the compounds of the present invention may be formulated for vaginal administration. Pessaries, tampons, creams, gels, pastes, foams or sprays containing in addition to the active ingredient such carriers as are known in the art to be appropriate.
  • the compounds of the present invention may be formulated for nasal administration.
  • the solutions or suspensions are applied directly to the nasal cavity by conventional means, for example, with a dropper, pipette or spray.
  • the formulations may be provided in a single or multidose form. In the latter case of a dropper or pipette, this may be achieved by the patient administering an appropriate, predetermined volume of the solution or suspension. In the case of a spray, this may be achieved for example by means of a metering atomizing spray pump.
  • the compounds of the present invention may be formulated for aerosol administration, particularly to the respiratory tract and including intranasal administration.
  • the compound will generally have a small particle size for example of the order of five (5) microns or less. Such a particle size may be obtained by means known in the art, for example by micronization.
  • the active ingredient is provided in a pressurized pack with a suitable propellant such as a chlorofluorocarbon (CFC), for example, dichlorodifluoromethane, trichlorofluoromethane, or dichlorotetrafluoroethane, or carbon dioxide or other suitable gas.
  • CFC chlorofluorocarbon
  • the aerosol may conveniently also contain a surfactant such as lecithin.
  • the dose of drug may be controlled by a metered valve.
  • the active ingredients may be provided in a form of a dry powder, for example a powder mix of the compound in a suitable powder base such as lactose, starch, starch derivatives such as hydroxypropylmethyl cellulose and polyvinylpyrrolidine (PVP).
  • a suitable powder base such as lactose, starch, starch derivatives such as hydroxypropylmethyl cellulose and polyvinylpyrrolidine (PVP).
  • the powder carrier will form a gel in the nasal cavity.
  • the powder composition may be presented in unit dose form for example in capsules or cartridges of e.g., gelatin or blister packs from which the powder may be administered by means of an inhaler.
  • formulations can be prepared with enteric coatings adapted for sustained or controlled release administration of the active ingredient.
  • the compounds of the present invention can be formulated in transdermal or subcutaneous drug delivery devices. These delivery systems are advantageous when sustained release of the compound is necessary and when patient compliance with a treatment regimen is crucial.
  • Compounds in transdermal delivery systems are frequently attached to an skin-adhesive solid support.
  • the compound of interest can also be combined with a penetration enhancer, e.g., Azone (1-dodecylaza-cycloheptan-2-one).
  • Sustained release delivery systems are inserted subcutaneously into to the subdermal layer by surgery or injection.
  • the subdermal implants encapsulate the compound in a lipid soluble membrane, e.g., silicone rubber, or a biodegradable polymer, e.g., polyactic acid.
  • Suitable formulations along with pharmaceutical carriers, diluents and excipients are described in Remington: The Science and Practice of Pharmacy 1995, edited by E. W. Martin, Mack Publishing Company, 19th edition, Easton, Pa. A skilled formulation scientist may modify the formulations within the teachings of the specification to provide numerous formulations for a particular route of administration without rendering the compositions of the present invention unstable or compromising their therapeutic activity.
  • the modification of the present compounds to render them more soluble in water or other vehicle may be easily accomplished by minor modifications (salt formulation, esterification, etc.), which are well within the ordinary skill in the art. It is also well within the ordinary skill of the art to modify the route of administration and dosage regimen of a particular compound in order to manage the pharmacokinetics of the present compounds for maximum beneficial effect in patients.
  • terapéuticaally effective amount means an amount required to reduce symptoms of the disease in an individual.
  • the dose will be adjusted to the individual requirements in each particular case. That dosage can vary within wide limits depending upon numerous factors such as the severity of the disease to be treated, the age and general health condition of the patient, other medicaments with which the patient is being treated, the route and form of administration and the preferences and experience of the medical practitioner involved.
  • a daily dosage of between about 0.01 and about 100 mg/kg body weight per day should be appropriate in monotherapy and/or in combination therapy.
  • a preferred daily dosage is between about 0.1 and about 500 mg/kg body weight, more preferred 0.1 and about 100 mg/kg body weight and most preferred 1.0 and about 10 mg/kg body weight per day.
  • the dosage range would be about 7 mg to 0.7 g per day.
  • the daily dosage can be administered as a single dosage or in divided dosages, typically between 1 and 5 dosages per day. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect for the individual patient is reached.
  • One of ordinary skill in treating diseases described herein will be able, without undue experimentation and in reliance on personal knowledge, experience and the disclosures of this application, to ascertain a therapeutically effective amount of the compounds of the present invention for a given disease and patient.
  • the active compound or a salt can be administered in combination with another antiviral agent, such as a nucleoside reverse transcriptase inhibitor, another nonnucleoside reverse transcriptase inhibitor or HIV protease inhibitor.
  • another antiviral agent such as a nucleoside reverse transcriptase inhibitor, another nonnucleoside reverse transcriptase inhibitor or HIV protease inhibitor.
  • the active compound or its derivative or salt are administered in combination with another antiviral agent the activity may be increased over the parent compound.
  • the treatment is combination therapy, such administration may be concurrent or sequential with respect to that of the nucleoside derivatives.
  • Concurrent administration as used herein thus includes administration of the agents at the same time or at different times. Administration of two or more agents at the same time can be achieved by a single formulation containing two or more active ingredients or by substantially simultaneous administration of two or more dosage forms with a single active agent.
  • references herein to treatment extend to prophylaxis as well as to the treatment of existing conditions, and that the treatment of animals includes the treatment of humans as well as other animals.
  • treatment of a HIV infection also includes treatment or prophylaxis of a disease or a condition associated with or mediated by HIV infection, or the clinical symptoms thereof.
  • the pharmaceutical preparations are preferably in unit dosage forms.
  • the preparation is subdivided into unit doses containing appropriate quantities of the active component.
  • the unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules.
  • the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.
  • Example 23 The pharmaceutical compositions in Example 23 are given to enable those skilled in the art to more clearly understand and to practice the present invention. They should not be considered as limiting the scope of the invention, but merely as being illustrative and representative thereof.
  • the compounds of formula I may be prepared by various methods known in the art of organic chemistry.
  • the starting materials for the syntheses are either readily available from commercial sources or are known or may themselves be prepared by techniques known in the art.
  • the following examples (infra) are given to enable those skilled in the art to more clearly understand and to practice the present invention. They should not be considered as limiting the scope of the invention, but merely as being illustrative and representative thereof.
  • the starting materials and the intermediates of the synthetic reaction schemes can be isolated and purified if desired using conventional techniques, including but not limited to, filtration, distillation, crystallization, chromatography, and the like. Such materials can be characterized using conventional means, including physical constants and spectral data.
  • the reactions described herein preferably are conducted under an inert atmosphere at atmospheric pressure at a reaction temperature range of from about ⁇ 78° C. to about 150° C., more preferably from about 0° C. to about 125° C., and most preferably and conveniently at about room (or ambient) temperature, e.g., about 20° C.
  • reaction conditions are exemplary and alternative conditions are well known. The reaction sequences in the following examples are not meant to limit the scope of the invention as set forth in the claims.
  • the reaction mixture was diluted with hexane filtered through a pad of CELITE® and the solids wash with hexane:Et 2 O (5:1 v/v; 60 mL).
  • the combined organic layers were washed with water (50 mL) and brine (50 mL), dried (Na 2 SO 4 ), filtered and evaporated to yield a yellow oil.
  • the product was purified by silica gel chromatography and eluted with CH 2 Cl 2 :hexane (1:1 ⁇ 2:1) to yield 9.1 g of 4g.
  • the benzyl chloride 16 (0.220 g; 0.82 mmol) was dissolved in EtOH (1 mL) and KCN (0.107 g; 1.64 mmol and 1 mL of water. The mixture was heated to reflux and CH 3 CN (0.3 mL) was added to produce a homogenous solution which was allow to reflux overnight. The reaction mixture was concentrated in vacuo and partitioned between water and CH 2 Cl 2 . The organic phase was washed twice with brine, dried (MgSO 4 ), filtered and evaporated to yield 17 (0.210 g) sufficiently pure for further processing.
  • reaction mixture was cooled to ambient temperature, filtered through a bed of CELITE® and the filter cake washed thoroughly with EtOAc. The filtrate was washed sequentially with dilute HCl, dilute NaOH, water and brine. The organic extract was dried (Na 2 SO 4 ), filtered and evaporated. The residue was chromatographed on silica gel and eluted with hexane:Et 2 O which yielded 1.8 g (32%) of 37c as a colorless oil.
  • the crude bromomethyl compound 81a from the previous step was dissolved in 73 mL of 90% aq. EtOH and 2.5 g of NaCN (49.01 mmol) was added. The reaction mixture was stirred overnight at rt. The solid material was filtered through a pad of CELITE® and the filtrate was evaporated. The crude product purified by silica gel chromatography and eluted with 30% EtOAc:hexane to yield the nitrile 81b (2.4 g; 54%).
  • ester 46a To a solution of ester 46a (517 mg, 2.03 mmol) dissolved in EtOH (10 mL) was added hydrazine hydrate (1.3 mL of an 85% solution) was and the mixture was heated to reflux overnight. The volatile materials were removed, and the residual material was dissolved in EtOAc (50 mL). The solution was washed with brine (20 mL) and dried (MgSO 4 ), filtered, and the volatile materials were evaporated to provide the desired acyl hydrazine 46b (460 mg, 82%) as a white solid. An oven dried 100 mL flask was charged with the 46b (152 mg, 0.55 mmol) and flushed with nitrogen.
  • the heterogeneous reaction mixture was stirred at rt for 4 h, and then heated to reflux overnight. The reaction was then cooled to rt, and the solvent was removed by evaporation. Chilled water (20 mL) was added, and the mixture was thrice extracted CH 2 Cl 2 (20 mL). The organic layer was washed with water (20 mL), brine (20 mL), and dried over sodium sulfate. The solution was filtered, and the solvent was evaporated. Purification of the remaining material by flash chromatography (eluent: 25% to 50% ethyl acetate: hexanes) provided the desired methoxythiadiazole 52.
  • ester 46c (219 mg, 0.67 mmol) and EtOH (10 mL) was added hydrazine hydrate (1.2 mL; 85% aqueous solution) and the solution was heated to reflux for 4 h. The volatile materials were removed, and the remaining material was dissolved in EtOAc (50 mL). The solution was washed with water (20 mL), brine (20 mL), and dried (MgSO 4 ). The solution was filtered, and the volatile materials were evaporated to provide acyl hydrazine 46d (200 mg, 96%) as a white solid.
  • HIV-1 RT assay was carried out in 96-well Millipore MultiScreen MADVNOB50 plates using purified recombinant enzyme and a poly(rA)/oligo(dT) 16 template-primer in a total volume of 50 ⁇ L.
  • the assay constituents were 50 mM Tris/HCl, 50 mM NaCl, 1 mM EDTA, 6 mM MgCl 2 , 5 ⁇ M dTTP, 0.15 ⁇ Ci [ 3 H] dTTP, 5 ⁇ g/ml poly (rA) pre annealed to 2.5 ⁇ g/ml oligo (dT) 16 and a range of inhibitor concentrations in a final concentration of 10% DMSO.
  • Reactions were initiated by adding 4 nM HIV-1 RT and after incubation at 37° C. for 30 min, they were stopped by the addition of 50 ⁇ l ice cold 20% TCA and allowed to precipitate at 4° C. for 30 min. The precipitates were collected by applying vacuum to the plate and sequentially washing with 3 ⁇ 200 ⁇ l of 10% TCA and 2 ⁇ 200 ⁇ l 70% ethanol. Finally, the plates were dried and radioactivity counted in a Packard TopCounter after the addition of 25 ⁇ l scintillation fluid per well. IC 50's were calculated by plotting % inhibition versus log 10 inhibitor concentrations.
  • composition for Oral Administration Ingredient % wt./wt. Active ingredient 20.0% Lactose 79.5% Magnesium stearate 0.5%
  • the ingredients are mixed and dispensed into capsules containing about 100 mg each; one capsule would approximate a total daily dosage.
  • composition for Oral Administration Ingredient % wt./wt. Active ingredient 20.0% Magnesium stearate 0.5% Crosscarmellose sodium 2.0% Lactose 76.5% PVP (polyvinylpyrrolidine) 1.0%
  • the ingredients are combined and granulated using a solvent such as methanol.
  • the formulation is then dried and formed into tablets (containing about 20 mg of active compound) with an appropriate tablet machine.
  • composition for Oral Administration Ingredient Amount Active compound 1.0 g Fumaric acid 0.5 g Sodium chloride 2.0 g Methyl paraben 0.15 g Propyl paraben 0.05 g Granulated sugar 25.5 g Sorbitol (70% solution) 12.85 g Veegum K (Vanderbilt Co.) 1.0 g Flavoring 0.035 ml Colorings 0.5 mg Distilled water q.s. to 100 ml
  • the ingredients are mixed to form a suspension for oral administration.
  • Parenteral Formulation (IV) Ingredient % wt./wt. Active ingredient 0.25 g Sodium Chloride qs to make isotonic Water for injection to 100 ml
  • the active ingredient is dissolved in a portion of the water for injection. A sufficient quantity of sodium chloride is then added with stirring to make the solution isotonic. The solution is made up to weight with the remainder of the water for injection, filtered through a 0.2 micron membrane filter and packaged under sterile conditions.
  • Suppository Formulation Ingredient % wt./wt. Active ingredient 1.0% Polyethylene glycol 1000 74.5% Polyethylene glycol 4000 24.5%
  • the ingredients are melted together and mixed on a steam bath, and poured into molds containing 2.5 g total weight.
  • Topical Formulation Ingredients grams Active compound 0.2–2 Span 60 2 Tween 60 2 Mineral oil 5 Petrolatum 10 Methyl paraben 0.15 Propyl paraben 0.05 BHA (butylated hydroxy anisole) 0.01 Water q.s. 100
  • nasal spray formulations Several aqueous suspensions containing from about 0.025–0.5 percent active compound are prepared as nasal spray formulations.
  • the formulations optionally contain inactive ingredients such as, for example, microcrystalline cellulose, sodium carboxymethylcellulose, dextrose, and the like. Hydrochloric acid may be added to adjust pH.
  • the nasal spray formulations may be delivered via a nasal spray metered pump typically delivering about 50–100 microliters of formulation per actuation. A typical dosing schedule is 2–4 sprays every 4–12 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • AIDS & HIV (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pyridine Compounds (AREA)
  • Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
US10/807,766 2003-03-24 2004-03-23 Non-nucleoside reverse transcriptase inhibitors Active 2025-08-05 US7208509B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/807,766 US7208509B2 (en) 2003-03-24 2004-03-23 Non-nucleoside reverse transcriptase inhibitors
US11/701,881 US7348345B2 (en) 2003-03-24 2007-02-02 Nonnucleoside reverse transcriptase inhibitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US45713003P 2003-03-24 2003-03-24
US10/807,766 US7208509B2 (en) 2003-03-24 2004-03-23 Non-nucleoside reverse transcriptase inhibitors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/701,881 Division US7348345B2 (en) 2003-03-24 2007-02-02 Nonnucleoside reverse transcriptase inhibitors

Publications (2)

Publication Number Publication Date
US20040192704A1 US20040192704A1 (en) 2004-09-30
US7208509B2 true US7208509B2 (en) 2007-04-24

Family

ID=33098199

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/807,766 Active 2025-08-05 US7208509B2 (en) 2003-03-24 2004-03-23 Non-nucleoside reverse transcriptase inhibitors
US11/701,881 Expired - Lifetime US7348345B2 (en) 2003-03-24 2007-02-02 Nonnucleoside reverse transcriptase inhibitors

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/701,881 Expired - Lifetime US7348345B2 (en) 2003-03-24 2007-02-02 Nonnucleoside reverse transcriptase inhibitors

Country Status (20)

Country Link
US (2) US7208509B2 (pt)
EP (1) EP1608633B1 (pt)
JP (1) JP4708329B2 (pt)
KR (1) KR101122456B1 (pt)
CN (1) CN100588650C (pt)
AR (1) AR043673A1 (pt)
AU (1) AU2004224153B2 (pt)
BR (2) BR122016023941B1 (pt)
CA (1) CA2518437C (pt)
CL (1) CL2004000590A1 (pt)
CO (1) CO5601029A2 (pt)
ES (1) ES2574580T3 (pt)
HR (1) HRP20050830A2 (pt)
IL (1) IL170343A (pt)
MX (1) MXPA05010210A (pt)
NO (1) NO334095B1 (pt)
NZ (1) NZ541829A (pt)
RU (1) RU2342367C2 (pt)
TW (1) TW200505441A (pt)
WO (1) WO2004085411A1 (pt)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060025462A1 (en) * 2004-07-27 2006-02-02 Roche Palo Alto Llc Heterocyclic antiviral compounds
US20070021442A1 (en) * 2005-07-22 2007-01-25 Saggar Sandeep A HIV reverse transcriptase inhibitors
US20070060626A1 (en) * 2004-04-01 2007-03-15 Aventis Pharmaceuticals Inc. 1,3,4-oxadiazol-2-ones as ppar delta modulators and their use thereof
US20080020981A1 (en) * 2006-07-21 2008-01-24 Roche Palo Alto Llc Non-nucleoside reverse transcriptase inhibitors
US20080045511A1 (en) * 2006-08-16 2008-02-21 Roche Palo Alto Llc Non-nucleoside reverse transcriptase inhibitors
US20080275097A1 (en) * 2006-12-13 2008-11-06 Anthony Neville J Non-nucleoside reverse transcriptase inhibitors
US20090012304A1 (en) * 2007-05-30 2009-01-08 Roche Palo Alto Llc Process for preparing triazolones
US20090012034A1 (en) * 2007-06-22 2009-01-08 Roche Palo Alto Llc Non-Nucleoside reverse transcriptase inhibitors
WO2009005811A1 (en) * 2007-07-03 2009-01-08 Yale University Novel azoles and related derivatives as non-nucleoside reverse transcriptase inhibitors (nnrtis) in antiviral therapy (hiv)
US20090170856A1 (en) * 2007-12-21 2009-07-02 Roland Joseph Billedeau Heterocyclic antiviral compounds
US8026362B2 (en) 2007-05-30 2011-09-27 Roche Palo Alto Llc Non-nucleoside reverse transcriptase inhibitors

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293778B2 (en) 2004-07-27 2012-10-23 Roche Palo Alto Llc Heterocyclic antiviral compounds
WO2006099978A1 (en) * 2005-03-24 2006-09-28 F.Hoffmann-La Roche Ag 1,2,4-triazole-5-one compounds as heterocyclic reverse transcriptase inhibitors
BRPI0617205A2 (pt) * 2005-09-30 2011-07-19 Hoffmann La Roche inibidores de nnrt
AU2006303368B2 (en) 2005-10-19 2011-05-26 F. Hoffmann-La Roche Ag Non-Nucleoside Reverse Transcriptase Inhibitors
ATE545637T1 (de) * 2005-12-15 2012-03-15 Astrazeneca Ab Substituierte diphenylether, -amine, -sulfide und methane zur behandlung von atemwegserkrankungen
ES2546378T3 (es) 2006-07-07 2015-09-23 Gilead Sciences, Inc. Moduladores de propiedades farmacocinéticas de agentes terapéuticos
LT3150586T (lt) * 2007-02-23 2020-03-10 Gilead Sciences, Inc. Terapinių agentų farmakokinetinių savybių moduliatoriai
CA2683046A1 (en) * 2007-04-09 2008-10-16 F. Hoffmann-La Roche Ag Non-nucleoside reverse transcriptase inhibitors
WO2008157330A1 (en) * 2007-06-14 2008-12-24 Smithkline Beecham Corporation Chemical compounds
WO2008157273A1 (en) * 2007-06-14 2008-12-24 Smithkline Beecham Corporation Chemical compounds
JP5281718B2 (ja) * 2010-03-30 2013-09-04 メルク カナダ インコーポレイテッド 非ヌクレオシド逆転写酵素阻害剤
CU23896B1 (es) * 2010-04-01 2013-05-31 Ct De Ingeniería Genética Y Biotecnología Método para inhibir la replicación del vih en células de mamíferos
JO3470B1 (ar) 2012-10-08 2020-07-05 Merck Sharp & Dohme مشتقات 5- فينوكسي-3h-بيريميدين-4-أون واستخدامها كمثبطات ناسخ عكسي ل hiv
CN104230929B (zh) * 2013-06-19 2015-11-18 华东师范大学 一种非核苷类hiv-1反转录酶抑制剂
JP6342011B2 (ja) 2014-04-01 2018-06-13 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. Hiv逆転写酵素阻害剤のプロドラッグ

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3274185A (en) 1963-10-08 1966-09-20 S E Massengill Company Phthalazine derivatives
US3813384A (en) 1972-01-17 1974-05-28 Asta Werke Ag Chem Fab Basically substituted benzyl phthalazone derivatives,acid salts thereof and process for the production thereof
US4826990A (en) 1987-09-30 1989-05-02 American Home Products Corporation 2-aryl substituted heterocyclic compounds as antiallergic and antiinflammatory agents
US4942236A (en) 1987-09-30 1990-07-17 American Home Products Corporation 2-aryl substituted pyridyl-containing phenyl sulfonamido compounds as antiallergic and antiinflammatory agents
US5103014A (en) 1987-09-30 1992-04-07 American Home Products Corporation Certain 3,3'-[[[(2-phenyl-4-thiazolyl)methoxy]phenyl]methylene]dithiobis-propanoic acid derivatives
US5331002A (en) 1990-04-19 1994-07-19 Merrell Dow Pharmaceuticals Inc. 5-aryl-4-alkyl-3H-1,2,4-triazole-3-thiones useful as memory enhancers
EP0435177B1 (en) 1989-12-20 1994-11-02 Merrell Dow Pharmaceuticals Inc. 4-Benzyl-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-ones and their use as anticonvulsants
EP0273309B1 (en) 1986-12-19 1995-01-11 Merrell Dow Pharmaceuticals Inc. 5-Aryl-3H-1,2,4-triazol-3-ones and their use in the treatment of neurodegenerative disorders
EP0273310B1 (en) 1986-12-19 1995-06-21 Merrell Pharmaceuticals Inc. 5-Aryl-3H-1,2,4-triazol-3-ones and their use as anticonvulsants
US5436252A (en) 1986-12-19 1995-07-25 Merrell Dow Pharmaceuticals Inc. 5-aryl-3H-1,2,4-triazol-3-ones and their use in the treatment of neurodegenerative disorders
WO1996013264A1 (en) 1994-11-01 1996-05-09 Eli Lilly And Company Oral hypoglycemic agents
WO1997040017A2 (en) 1996-04-19 1997-10-30 Novo Nordisk A/S Modulators of molecules with phosphotyrosine recognition units
WO1998004135A1 (en) 1996-07-31 1998-02-05 Bristol-Myers Squibb Company Diphenyl heterocycles as potassium channel modulators
US6248769B1 (en) 1994-06-24 2001-06-19 Euro-Celtique S.A. Phenyl-triazole compounds for PDE-IV inhibition
WO2002036576A1 (en) 2000-10-30 2002-05-10 Kudos Pharmaceuticals Limited Phthalazinone derivatives
WO2002038553A2 (en) 2000-11-10 2002-05-16 Eli Lilly And Company Triazole derivatives and their use as peroxisome proliferator activated receptor alpha agonists

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275165A (ja) * 2001-01-12 2002-09-25 Sumitomo Pharmaceut Co Ltd トリアゾール誘導体

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3274185A (en) 1963-10-08 1966-09-20 S E Massengill Company Phthalazine derivatives
US3813384A (en) 1972-01-17 1974-05-28 Asta Werke Ag Chem Fab Basically substituted benzyl phthalazone derivatives,acid salts thereof and process for the production thereof
EP0273309B1 (en) 1986-12-19 1995-01-11 Merrell Dow Pharmaceuticals Inc. 5-Aryl-3H-1,2,4-triazol-3-ones and their use in the treatment of neurodegenerative disorders
US5436252A (en) 1986-12-19 1995-07-25 Merrell Dow Pharmaceuticals Inc. 5-aryl-3H-1,2,4-triazol-3-ones and their use in the treatment of neurodegenerative disorders
EP0273310B1 (en) 1986-12-19 1995-06-21 Merrell Pharmaceuticals Inc. 5-Aryl-3H-1,2,4-triazol-3-ones and their use as anticonvulsants
US5103014A (en) 1987-09-30 1992-04-07 American Home Products Corporation Certain 3,3'-[[[(2-phenyl-4-thiazolyl)methoxy]phenyl]methylene]dithiobis-propanoic acid derivatives
US4942236A (en) 1987-09-30 1990-07-17 American Home Products Corporation 2-aryl substituted pyridyl-containing phenyl sulfonamido compounds as antiallergic and antiinflammatory agents
US4826990A (en) 1987-09-30 1989-05-02 American Home Products Corporation 2-aryl substituted heterocyclic compounds as antiallergic and antiinflammatory agents
EP0435177B1 (en) 1989-12-20 1994-11-02 Merrell Dow Pharmaceuticals Inc. 4-Benzyl-5-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-ones and their use as anticonvulsants
US5331002A (en) 1990-04-19 1994-07-19 Merrell Dow Pharmaceuticals Inc. 5-aryl-4-alkyl-3H-1,2,4-triazole-3-thiones useful as memory enhancers
US6248769B1 (en) 1994-06-24 2001-06-19 Euro-Celtique S.A. Phenyl-triazole compounds for PDE-IV inhibition
WO1996013264A1 (en) 1994-11-01 1996-05-09 Eli Lilly And Company Oral hypoglycemic agents
WO1997040017A2 (en) 1996-04-19 1997-10-30 Novo Nordisk A/S Modulators of molecules with phosphotyrosine recognition units
WO1998004135A1 (en) 1996-07-31 1998-02-05 Bristol-Myers Squibb Company Diphenyl heterocycles as potassium channel modulators
WO2002036576A1 (en) 2000-10-30 2002-05-10 Kudos Pharmaceuticals Limited Phthalazinone derivatives
WO2002038553A2 (en) 2000-11-10 2002-05-16 Eli Lilly And Company Triazole derivatives and their use as peroxisome proliferator activated receptor alpha agonists

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
Buckheit, Jr., Robert W., Non-nucleoside reverse transcriptase inhibitors: perspectives on novel therapeutic compounds and strategies for the treatment of HIV infection, Expert Opinion, Investigative Drugs, Ashley Publications, Ltd., 2001, pp. 1423-1442, vol. 10, No. 8.
De Clercq, Erik, "New Developments in Anti-HIV Chemotherapy," Current Medicinal Chemistry, 2001, pp. 1543-1572, vol. 8, No. 13, Bentham Science Publishers Ltd.
Del Elmo, Esther, et al., "Anti-Trypanosoma Activity of Some Natural Stilbenoids and Synthetic Related Heterocyclic Compounds", Bioorganic & Medicinal Chemistry Letters, 2001, pp. 2755-2757, No. 11.
Del elmo, Esther, et al., "Leishmanicidal Activity of Some Stilbenoids and Related Heterocyclic Compounds," Bioorganic & Medicinal Chemistry Letters, 2001, pp. 2123-2126, No. 11.
Rosen, Gerald M., et al., "2-Benzyl-1,3,4-oxadiazolin-5-one and Related Compounds," Notes, Dept. of Chemistry, Clarkson College of Technology, Potsdam, NY, Aug. 1971, pp. 659-662.
Ulrich; Crystallization,k Chapter 4, Kirk-Othmer Encyclopedia of Chemical Technology (Aug. 2002). *
Vipagunta et al.; Advanced Drug Delivery Reviews 48 (2001) 3-26. *
West; Solid State Chemistry and its Applications (1988), pp. 358 & 365. *
Wilder Smith, A. E. "Preparation of some New 4-Substituted Derivatives of p-Amino-o-hydroxy-phenyl-1,3,4-oxadizolone-5 and Study of their Mycobacteriostatic properties", Arzneim. Forschung 1967 67(17):768-772.
Yüksek, H. et al. "Synthesis and Antibacterial Activities of some 4,5-Dihydro-1H-1,2,4-triazol-5-ones", Arzneim. Forschung 1997 47(4):405-409.

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070060626A1 (en) * 2004-04-01 2007-03-15 Aventis Pharmaceuticals Inc. 1,3,4-oxadiazol-2-ones as ppar delta modulators and their use thereof
US7576109B2 (en) * 2004-04-01 2009-08-18 Aventis Pharmaceuticals Inc. 1,3,4-oxadiazol-2-ones as PPAR delta modulators and their use thereof
US7666891B2 (en) * 2004-07-27 2010-02-23 Roche Palo Alto Llc Heterocyclic antiviral compounds
US20060025462A1 (en) * 2004-07-27 2006-02-02 Roche Palo Alto Llc Heterocyclic antiviral compounds
US20070021442A1 (en) * 2005-07-22 2007-01-25 Saggar Sandeep A HIV reverse transcriptase inhibitors
US7807684B2 (en) 2005-07-22 2010-10-05 Merck Sharp & Dohme Corp. HIV reverse transcriptase inhibitors
US20080020981A1 (en) * 2006-07-21 2008-01-24 Roche Palo Alto Llc Non-nucleoside reverse transcriptase inhibitors
US20080045511A1 (en) * 2006-08-16 2008-02-21 Roche Palo Alto Llc Non-nucleoside reverse transcriptase inhibitors
US8063064B2 (en) 2006-08-16 2011-11-22 Roche Palo Alto Llc Non-nucleoside reverse transcriptase inhibitors
US20110059975A1 (en) * 2006-08-16 2011-03-10 Joshua Kennedy-Smith Non-nucleoside reverse transcriptase inhibitors
US7713974B2 (en) 2006-08-16 2010-05-11 Roche Palo Alto Llc Non-nucleoside reverse transcriptase inhibitors
US20100286192A1 (en) * 2006-12-13 2010-11-11 Anthony Neville J Non-nucleoside reverse transcriptase inhibitors
US20080275097A1 (en) * 2006-12-13 2008-11-06 Anthony Neville J Non-nucleoside reverse transcriptase inhibitors
US7781454B2 (en) 2006-12-13 2010-08-24 Merck Sharp & Dohme Corp. Non-nucleoside reverse transcriptase inhibitors
US7893276B2 (en) 2007-05-30 2011-02-22 Roche Palo Alto Llc Process for preparing triazolones
US7745634B2 (en) 2007-05-30 2010-06-29 Roche Palo Alto Llc Process for preparing triazolones
US8026362B2 (en) 2007-05-30 2011-09-27 Roche Palo Alto Llc Non-nucleoside reverse transcriptase inhibitors
US20100280256A1 (en) * 2007-05-30 2010-11-04 Lee Gary M Process for preparing triazolones
US20090012304A1 (en) * 2007-05-30 2009-01-08 Roche Palo Alto Llc Process for preparing triazolones
US20090012034A1 (en) * 2007-06-22 2009-01-08 Roche Palo Alto Llc Non-Nucleoside reverse transcriptase inhibitors
US7947709B2 (en) 2007-06-22 2011-05-24 Roche Palo Alto Llc Non-nucleoside reverse transcriptase inhibitors
WO2009005811A1 (en) * 2007-07-03 2009-01-08 Yale University Novel azoles and related derivatives as non-nucleoside reverse transcriptase inhibitors (nnrtis) in antiviral therapy (hiv)
US20100168190A1 (en) * 2007-07-03 2010-07-01 Yale University Novel azoles and related derivatives as non-nucleoside reverse transcriptase inhibitors (nnrtis) in antiviral therapy (hiv)
US8492415B2 (en) 2007-07-03 2013-07-23 Yale University Azoles and related derivatives as non-nucleoside reverse transcriptase inhibitors (NNRTIs) in antiviral therapy (HIV)
US20090170856A1 (en) * 2007-12-21 2009-07-02 Roland Joseph Billedeau Heterocyclic antiviral compounds
US8063028B2 (en) 2007-12-21 2011-11-22 Roche Palo Alto Llc Heterocyclic antiviral compounds

Also Published As

Publication number Publication date
ES2574580T3 (es) 2016-06-20
AR043673A1 (es) 2005-08-03
MXPA05010210A (es) 2005-11-23
RU2005132632A (ru) 2006-06-10
NO334095B1 (no) 2013-12-09
CA2518437A1 (en) 2004-10-07
EP1608633B1 (en) 2016-04-20
BR122016023941B1 (pt) 2021-10-13
US20040192704A1 (en) 2004-09-30
BRPI0408767B8 (pt) 2021-05-25
JP4708329B2 (ja) 2011-06-22
KR101122456B1 (ko) 2012-04-26
CL2004000590A1 (es) 2005-02-04
EP1608633A1 (en) 2005-12-28
IL170343A (en) 2014-03-31
BRPI0408767A (pt) 2006-03-28
US20070179157A1 (en) 2007-08-02
HRP20050830A2 (en) 2006-09-30
US7348345B2 (en) 2008-03-25
AU2004224153A1 (en) 2004-10-07
WO2004085411A1 (en) 2004-10-07
KR20050115294A (ko) 2005-12-07
NO20054264D0 (no) 2005-09-15
CN1759104A (zh) 2006-04-12
CN100588650C (zh) 2010-02-10
CA2518437C (en) 2012-07-10
NZ541829A (en) 2008-11-28
NO20054264L (no) 2005-10-14
CO5601029A2 (es) 2006-01-31
BRPI0408767B1 (pt) 2017-10-31
TW200505441A (en) 2005-02-16
JP2006521319A (ja) 2006-09-21
AU2004224153B2 (en) 2009-04-02
RU2342367C2 (ru) 2008-12-27

Similar Documents

Publication Publication Date Title
US7348345B2 (en) Nonnucleoside reverse transcriptase inhibitors
JP4485520B2 (ja) 逆転写酵素阻害剤としてのベンジル−ピリダジノン類
EP1773790B1 (en) Benzyltriazolone compounds as non-nucleoside reverse transcriptase inhibitors
US7906540B2 (en) Non-nucleoside reverse transcriptase inhibitors
US7241794B2 (en) Nonnucleoside reverse transcriptase inhibitors
US20060223874A1 (en) Heterocyclic reverse transcriptase inhibitors
US7625897B2 (en) Non-nucleoside reverse transcriptase inhibitors
US20100056535A1 (en) Inhibitors of HIV-1 reverse transcriptase
US8293778B2 (en) Heterocyclic antiviral compounds
KR100803481B1 (ko) 비-뉴클레오사이드 역전사효소 억제제로서의벤질트라이아졸론 화합물

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12