US7201756B2 - Device and method to assist in arthroscopic repair of detached connective tissue - Google Patents
Device and method to assist in arthroscopic repair of detached connective tissue Download PDFInfo
- Publication number
- US7201756B2 US7201756B2 US10/395,655 US39565503A US7201756B2 US 7201756 B2 US7201756 B2 US 7201756B2 US 39565503 A US39565503 A US 39565503A US 7201756 B2 US7201756 B2 US 7201756B2
- Authority
- US
- United States
- Prior art keywords
- guide
- target tool
- assist device
- glenoid
- sleeve guide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1714—Guides or aligning means for drills, mills, pins or wires for applying tendons or ligaments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1739—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
- A61B17/1778—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the shoulder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/16—Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1796—Guides or aligning means for drills, mills, pins or wires for holes for sutures or flexible wires
Definitions
- the present invention relates generally to the field of orthopedic devices and methods used for repairing detached connective tissue between a ball and socket of a joint, and more specifically a sighting device that can be used to assist a surgeon in locating re-attachment points of the glenoid labrum to the glenoid cavity, along the superior/posterior margin of a glenoid cavity of a shoulder joint.
- a human shoulder articulates about a loose fitting ball-and-socket joint that allows extremely free movement of the arm relative to the body's trunk.
- the ball is formed on the head of the humerus
- the socket is formed by a shallow laterally opening glenoid cavity of the scapula bone.
- the depth of the socket is increased by a circumferential ring of fibrocartilage, the glenoid labrum, to which the head of the humerus is attached by an encircling mass of connective tissue called the articular capsule.
- Such capsule includes, for example, ligaments and tendons.
- a shoulder can become unstable in any one direction, or it can become unstable in all directions i.e., a global instability.
- An instability can be created by an avulsion (or tearing away) of the glenoid labrum from the superior margins of the glenoid cavity of the glenohumeral joint. From an anterior to posterior direction this capsulolabral separation is known as a SLAP (superior labrum, anterior to posterior) lesion.
- a SLAP lesion is an avulsion of the cartilage rim from the superior region of the socket extending posteriorly and anteriorly.
- a Bankart lesion which is an avulsion of the glenoid labrum from the anterior and inferior margins of the glenoid cavity, and a rotator cuff lesion, which is an avulsion of the tendon from the humeral head are also common injuries associated with the shoulder joint, and can be a secondary result of superior shoulder instability.
- Arthroscopic surgery can be used to repair a number of gleno-humeral injuries. Repair of the superior glenoid labrum becomes one of the most challenging surgical procedures in all of shoulder surgery. The superior aspect of the glenoid is bounded superiorly by the rotator cuff, which must not be violated. Anteriorly, the biceps tendon conflicts with an anterior superior approach to the superior labrum, and secondary inflammatory reaction caused by an unstable labrum can interfere with the view through the arthroscope.
- Abrading the glenoid rim during arthroscopic surgery is essential to create a “healing bed” for the labrum.
- different and more invasive techniques for securing the labrum to the glenoid rim area are available.
- one or more staples are used to connect the glenoid labrum to the anterior side of the scapular neck medially of the glenoid cavity.
- the labrum is impaled with a rivet that is driven into the scapular neck.
- blind bores are drilled adjacent to the anterior glenoid rim for specially designed suture anchors.
- a hole is drilled through the scapular neck for pin or screw placement to which suture material can be attached, and which is then used to tie the glenoid labrum to the scapular neck.
- arthroscopic techniques are a great improvement over open shoulder surgery, there remains room for improvement.
- a problem in arthroscopic glenoid labrum re-attachment is positioning the drilling and securing devices in a fast and efficient manner with minimal trauma to the surrounding tissue.
- Significant tissue damage can occur from repeated unsuccessful attempts to blindly locate a proper or desired re-attachment site.
- This surgical site could be as much as four to eight inches (10.16 cm to 20.32 cm) deep from the skin surface depending upon the size and muscular development of the patient.
- Prior art instruments used to aid locating connective tissue re-attachment sites are known in the art, but are designed for the particular environment found in the knee for anterior and posterior cruciate ligament reconstruction. See generally, U.S. Pat. Nos.
- Habermeyer (U.S. Pat. No. 5,575,801) shows an apparatus for arthroscopic rotator cuff repair, but the Habermeyer device does not include a method or device suited for accurate site selection for the re-attachment of the glenoid labrum to the glenoid cavity.
- the device and method in accordance with the present invention improves accuracy, efficiency and therefore a reduction in operative time and tissue damage. This is accomplished by the elimination of “trial and error” placement of the implant formerly associated with surgical arthroscopic repair of a capsulo-labral separation, such as a SLAP (superior labrum, anterior to posterior) lesion, where a portion of the glenoid labrum has been avulsed from the glenoid cavity.
- SLAP superior labrum, anterior to posterior
- the present invention provides a method and device for accurate site selection and suture placement to re-attach the glenoid labrum to the shoulder's glenoid cavity.
- a surgical assist device for use in arthroscopic shoulder surgery includes an arcuate shaped bow arm, an angle guide attached to the bow arm at a predetermined location along the arc of the bow arm, a sleeve guide having a base end slidably attached to the bow arm and a tip end having at least one tooth.
- a target tool is releasably connected to the angle guide at a first end and includes a second end extending away from the bow arc and having an aperture.
- the tip end of the sleeve guide is configured to extend to intersect and pass through the aperture of the target tool irrespective of the position of the angle guide on the bow arm.
- the tooth on the tip of the sleeve guide is embedded in the glenoid bone to be repaired, positioning the sleeve guide in the desired location for surgery.
- a method for locating the target location for a glenoid labrum lesion repair in arthroscopic shoulder surgery using a surgical assist device comprises an arcuate shaped bow arm, an angle guide attached to the bow arm at a pre-selected location, and a sleeve guide attached to the bow arm.
- a target tool is attached to the angle guide at a first end and includes an aperture on a second end.
- the sleeve guide extends outward from the bow arm and has at least one tooth on the outward end and a longitudinally extending bore through its center.
- the method comprises the steps of inserting the second end of the target tool into the glenoid cavity of a shoulder requiring lesion repair; positioning the aperture of the target tool at a desired location; advancing the sleeve guide towards the glenoid labrum and through the aperture of the target tool until the at least one tooth on the sleeve guide contacts the glenoid bone and is embedded in the glenoid bone, firmly holding the sleeve guide in position.
- FIG. 1 illustrates a perspective view of a preferred embodiment of the present invention
- FIG. 2 illustrates a sectional view of a surgical assist device cut along line 2 — 2 in FIG. 1 ;
- FIG. 3 illustrates an enlarged view of the tip end of the sleeve guide of the present invention
- FIG. 4 illustrates an embodiment the target tool of the present invention
- FIG. 5 illustrates an embodiment of a target tool of the present invention having an angled sight locator
- FIG. 6A illustrates a front view of a target tool of the present invention and FIG. 6B is a section cut through 6 B— 6 B in FIG. 6A ;
- FIG. 7 illustrates the present invention positioned for use on a human shoulder
- FIG. 8 illustrates an implant screw with sutures after being inserted into tissue to be repaired.
- Surgical assist device 20 generally includes a sleeve guide 26 , an angle guide 24 , and an arcuate bow arm 22 .
- Sleeve guide 26 includes a longitudinally extending bore 52 for receiving, for example, a guide pin 82 (such as a suture passer known in the art).
- a guide pin 82 such as a suture passer known in the art.
- a handle or knob 35 At the top end of the sleeve guide 26 is a handle or knob 35 that includes an enlarged opening 36 to more easily receive surgical tools placed into bore 52 .
- Sleeve guide 26 also has a viewing hole 42 for an arthroscopy camera to view the position of whatever is placed into bore 52 .
- a conical shaped bottom end 48 of sleeve guide 26 has at least one tooth 40 used for gripping tissue during use and to assist in holding sleeve guide 26 in position.
- Angle guide 24 as illustrated in FIGS. 1 , 2 , and 4 includes a base 80 .
- Base 80 can have a hole 44 configured to receive the bow arm 22 , and a slide tab 64 .
- a threaded screw 46 is used to secure and release the angle guide 24 to and from bow 22 and lock the device at the appropriate angle. This is accomplished using frictional engagement between the base 80 and the bow arm 22 by screwing a threaded rod 30 on screw 46 into and through a threaded bore 32 until it is urged against the bow 22 .
- Other means known in the art to secure the position of the angle guide 24 along the bow 22 are possible.
- Base 80 also has a target tool bore 50 having a means to secure a target tool 28 , having a stem 27 and sight locator 70 .
- Target tool 28 may also include an insertion pin 54 and a circumferential edge 56 on an end opposite sight locator 70 .
- the means to secure the target tool 28 includes a pair of spring loaded locking tabs 58 known in the art connected to angle guide 24 that can releasably hold circumferential edge 56 of the target tool 28 within the target tool bore 50 .
- FIGS. 4 , 5 and 6 show more detail of a possible target tool 28 of the present invention.
- the target tool 28 is releasably attached to base 80 through the locking tabs 58 that engage and hold the circumferential edge 56 and insertion pin 54 within the target tool bore 50 .
- arthroscopic shoulder surgery requires the use of cannulas.
- target tool 28 must be adapted to fit within a cannula.
- target tool 28 is generally configured to be straight and narrow and adapted to be insertable through a cannula six to nine mm in diameter.
- Sight locator 70 is located on a second opposite end and includes an angled aperture 72 .
- sight locator 70 as illustrated is generally curved having an inside floor 74 with outwardly angled curved walls 76 .
- Curved walls 76 provide a domed shape that allow sight locator 70 to rest on the glenoid for the labrum to be repaired.
- Angled aperture 72 is positioned on the inside floor 74 to receive the conical shaped bottom end 48 of the sleeve guide 26 .
- the at least one tooth 40 extends just beyond the angled walls of sight locator 70 in any position the angle guide 24 takes along the bow arm 22 .
- One skilled in the art could develop many other types of target tool 28 having different shaped sight locator 70 and different foot angles (i.e angle of sight locator 70 in relation to stem 27 ). For example, as shown in FIG.
- a target tool 28 is illustrated with sight locator 70 at an angle relative to stem 27 .
- Sight locator 70 may also include a tooth or protrusion 75 to aid in holding sight locator 70 in the proper location as shown in the embodiment in FIG. 5 .
- Target tool 28 may also be constructed using many different types of materials including an inexpensive sterile material that would allow it to be disposable. Target tool 28 may also be made of standard surgical steel.
- bow arm 22 is arcuate shaped and can include a plurality of angle markings (not shown), and a recessed channel 38 along its length. Channel 38 slidably receives slide tab 64 of angle guide 24 . Bow arm 22 fits within slide hole 44 to allow angle guide 24 to slide along bow arm 22 to a desired location.
- Sleeve guide 26 is slidably and releasably attached to bow arm 22 with a sleeve guide bracket 60 on bottom portion 62 of bow arm 22 .
- Bracket 60 includes a bracket bore 66 to which sleeve guide 26 is attached.
- the bracket bore 66 is configured to allow the sleeve guide 26 to slide longitudinally and perpendicular to bow arm 22 .
- a spring loaded release mechanism 68 can be used in conjunction with bracket 60 to secure sleeve guide 26 in the desired longitudinal location within bore 66 .
- This mechanism 68 can have a spring 84 , a lever 86 , and a pivot point 88 configured to allow the spring 84 to urge the lever 86 against the sleeve guide 26 portion located within the bracket bore 66 .
- a simple “set” screw type mechanism known in the art may be used to lock sleeve guide 26 into position.
- the surgical assist device 20 has target tool 28 attached to angle guide 24 , and positioned at a predetermined location along bow arm 22 such that a desired angle is achieved between target tool 28 and sleeve guide 26 based on desired suture placement location during surgery.
- the angle guide 24 and sleeve guide 26 are mounted to the bow arm 22 to point inwardly and perpendicular to the arc of the bow arm 22 .
- the angle guide 24 and the sleeve guide 26 are also configured so that the at least one tooth 40 of the conical shaped bottom end 48 of sleeve guide 26 is at a center or intersection point 78 of the bow arm 22 arc.
- FIG. 1 shows the surgical assist device 20 with an optional spearing tool 90 inserted through sleeve guide 26
- FIG. 2 shows optional guide pin 82 inserted through sleeve guide 26 .
- the device of the present invention can be used in the following method. First, an appropriate target tool 28 is chosen and is inserted into target tool bore 50 of angle guide 24 where it is held in position by the attachment described above. Angle guide 24 is then slid along bow arm 22 with slide tab 64 sliding within recessed channel 38 , to the position corresponding to the selected angle. Angle guide 24 is then locked into position on bow arm 22 by tightening screw 46 .
- the curved sight locator 70 of target tool 28 is then inserted into the patient's glenoid cavity 93 as shown in FIG. 7 to the desired location (e.g., site of tissue reattachment).
- Sleeve guide 26 is then positioned longitudinally within bracket bore 66 of bracket 60 and is extended through aperture 72 of target tool 28 towards the glenoid labrum 95 until the at least one tooth 40 of conical bottom end 48 are embedded in the glenoid bone 94 and firmly holds the sleeve guide 26 in place.
- the lever 86 is depressed against the spring 84 to prevent it from pressing against the sleeve guide 26 .
- Sleeve guide 26 is next locked into position by releasing lever 86 (or in alternate embodiments tightening a set-screw as described above).
- the sleeve guide 26 has an open channel 36 to pass various tools to the tissue site needing repair.
- guide pin 82 (such as a suture passer) can then be inserted into bore 52 of sleeve guide 26 .
- Guide pin 82 is extended through bore 52 and through aperture 72 of target tool 28 until it contacts the glenoid bone 94 .
- the operator can watch the progress of the guide pin 82 by pointing an arthroscopic camera (not shown) towards the viewing hole 42 .
- Sleeve guide 26 can then be removed, leaving guide pin 82 , in position.
- a guide pin 82 may include a tap drill to drill a hole to receive a screw followed by placement of a screw having sutures attached thereto.
- the screw 96 may be made of biodegradable material or titanium and can penetrate and attach to the glenoid bone 94 .
- the screw 96 typically has an eyelet 98 through which a strong suture is pre-threaded.
- the surgical assist device 20 of the present invention is the use of the at least one tooth 40 to hold the sleeve guide 26 in place, thus firmly holding the sleeve guide 26 in the correct position.
- the bow arm 22 ensures that guide pin 82 and aperture 72 will always intersect to allow the at least one tooth 40 to be placed in the proper position, irrespective of where angle guide 24 is positioned along bow 22 .
- the target tool 28 allows the surgeon to quickly and efficiently locate where to place the sleeve guide 26 by removing guesswork, trial and error, and tissue damage formerly associated with this type of shoulder surgery.
- the angled aperture 72 allows sutures to be brought to position to allow the surgeon to tie them off.
- the curved edge of the curved sight locator 70 allows for easier placement of the sleeve guide 26 during use.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Rheumatology (AREA)
- Surgical Instruments (AREA)
Abstract
A surgical assist device and method that can be used to assist a surgeon in site selection and suture placement to re-attach the glenoid labrum to the shoulder's glenoid bone. The device and method includes an arcuate shaped bow arm, an angle guide attached to the bow arm at a selected location along the bow arm, a sleeve guide, and a target tool releasably connected to the angle guide. A tip end of the sleeve guide is extended in surgery and is configured to intersect and pass through an aperture of the target tool. The tip end of the sleeve guide includes at least one tooth that embeds in the glenoid bone and holds the sleeve guide in position. A guide pin such as a suture carrier is extended through the sleeve guide. The sleeve guide is then removed leaving the sutures in the correct repair location.
Description
The present invention relates generally to the field of orthopedic devices and methods used for repairing detached connective tissue between a ball and socket of a joint, and more specifically a sighting device that can be used to assist a surgeon in locating re-attachment points of the glenoid labrum to the glenoid cavity, along the superior/posterior margin of a glenoid cavity of a shoulder joint.
A human shoulder articulates about a loose fitting ball-and-socket joint that allows extremely free movement of the arm relative to the body's trunk. The ball is formed on the head of the humerus, and the socket is formed by a shallow laterally opening glenoid cavity of the scapula bone. The depth of the socket is increased by a circumferential ring of fibrocartilage, the glenoid labrum, to which the head of the humerus is attached by an encircling mass of connective tissue called the articular capsule. Such capsule includes, for example, ligaments and tendons.
There is little area of contact between the ball of the humerus and the glenoid cavity. Nevertheless, there is always a considerable part of the ball of the humerus in contact with the articular capsule. The loose fitting ball-and-socket connection allows the articulating surfaces of the bones to be substantially separated. Since this joint is so loosely constructed, it is frequently dislocated in contact sports. Furthermore, recent studies reveal that athletes who engage in throwing or racquet sports can chronically develop shoulder instability by creating a gradual separation between the cartilage labrum and bony glenoid.
A shoulder can become unstable in any one direction, or it can become unstable in all directions i.e., a global instability. There is greater superior (upper) and posterior (rearward) support for the shoulder joint. Therefore, frequent dislocations occur in an anterior (forward) and inferior (downward) direction. In fact, these dislocations account for ninety percent of shoulder instabilities. An instability can be created by an avulsion (or tearing away) of the glenoid labrum from the superior margins of the glenoid cavity of the glenohumeral joint. From an anterior to posterior direction this capsulolabral separation is known as a SLAP (superior labrum, anterior to posterior) lesion. In other words, a SLAP lesion is an avulsion of the cartilage rim from the superior region of the socket extending posteriorly and anteriorly. A Bankart lesion, which is an avulsion of the glenoid labrum from the anterior and inferior margins of the glenoid cavity, and a rotator cuff lesion, which is an avulsion of the tendon from the humeral head are also common injuries associated with the shoulder joint, and can be a secondary result of superior shoulder instability.
As a result of the anterior shoulder injuries described above, surgical repair of the glenoid labrum is usually required to regain shoulder stability. The standard of care known in the art for many years has been by open shoulder surgery methods and typically involved spreading the muscles overlying the anterior side of the joint and severing some of the connective tissue to provide access to the anterior glenoid rim. In one technique, intersecting holes are drilled in the anterior and lateral faces of the glenoid cavity adjacent to the rim for attaching sutures that secure the detached labrum firmly to the glenoid rim at two or three locations. Over time the labrum re-attaches. Unfortunately, as with most open surgery techniques, morbidity of the repair site can and does frequently occur, resulting in a prolonged healing process.
Arthroscopic surgery can be used to repair a number of gleno-humeral injuries. Repair of the superior glenoid labrum becomes one of the most challenging surgical procedures in all of shoulder surgery. The superior aspect of the glenoid is bounded superiorly by the rotator cuff, which must not be violated. Anteriorly, the biceps tendon conflicts with an anterior superior approach to the superior labrum, and secondary inflammatory reaction caused by an unstable labrum can interfere with the view through the arthroscope.
Abrading the glenoid rim during arthroscopic surgery is essential to create a “healing bed” for the labrum. Nevertheless, different and more invasive techniques for securing the labrum to the glenoid rim area are available. In one technique, one or more staples are used to connect the glenoid labrum to the anterior side of the scapular neck medially of the glenoid cavity. In another technique, the labrum is impaled with a rivet that is driven into the scapular neck. In another technique, blind bores are drilled adjacent to the anterior glenoid rim for specially designed suture anchors. In yet another technique, a hole is drilled through the scapular neck for pin or screw placement to which suture material can be attached, and which is then used to tie the glenoid labrum to the scapular neck.
Although arthroscopic techniques are a great improvement over open shoulder surgery, there remains room for improvement. For example, a problem in arthroscopic glenoid labrum re-attachment is positioning the drilling and securing devices in a fast and efficient manner with minimal trauma to the surrounding tissue. Significant tissue damage can occur from repeated unsuccessful attempts to blindly locate a proper or desired re-attachment site. This surgical site could be as much as four to eight inches (10.16 cm to 20.32 cm) deep from the skin surface depending upon the size and muscular development of the patient. Prior art instruments used to aid locating connective tissue re-attachment sites are known in the art, but are designed for the particular environment found in the knee for anterior and posterior cruciate ligament reconstruction. See generally, U.S. Pat. Nos. 5,269,786; 5,112,337; and 4,920,958. Habermeyer (U.S. Pat. No. 5,575,801) shows an apparatus for arthroscopic rotator cuff repair, but the Habermeyer device does not include a method or device suited for accurate site selection for the re-attachment of the glenoid labrum to the glenoid cavity.
Thus, there is a desire and a need for a device and method to improve site selection and suture placement as required in the repair of lesions of the glenoid labrum to the glenoid cavity in a shoulder, specifically a SLAP lesion repair.
Accordingly, the device and method in accordance with the present invention improves accuracy, efficiency and therefore a reduction in operative time and tissue damage. This is accomplished by the elimination of “trial and error” placement of the implant formerly associated with surgical arthroscopic repair of a capsulo-labral separation, such as a SLAP (superior labrum, anterior to posterior) lesion, where a portion of the glenoid labrum has been avulsed from the glenoid cavity.
The present invention provides a method and device for accurate site selection and suture placement to re-attach the glenoid labrum to the shoulder's glenoid cavity.
In one embodiment of the present invention, a surgical assist device for use in arthroscopic shoulder surgery includes an arcuate shaped bow arm, an angle guide attached to the bow arm at a predetermined location along the arc of the bow arm, a sleeve guide having a base end slidably attached to the bow arm and a tip end having at least one tooth. A target tool is releasably connected to the angle guide at a first end and includes a second end extending away from the bow arc and having an aperture. The tip end of the sleeve guide is configured to extend to intersect and pass through the aperture of the target tool irrespective of the position of the angle guide on the bow arm. The tooth on the tip of the sleeve guide is embedded in the glenoid bone to be repaired, positioning the sleeve guide in the desired location for surgery.
In another embodiment of the present invention, a method for locating the target location for a glenoid labrum lesion repair in arthroscopic shoulder surgery using a surgical assist device is provided. The surgical assist device comprises an arcuate shaped bow arm, an angle guide attached to the bow arm at a pre-selected location, and a sleeve guide attached to the bow arm. A target tool is attached to the angle guide at a first end and includes an aperture on a second end. The sleeve guide extends outward from the bow arm and has at least one tooth on the outward end and a longitudinally extending bore through its center. The method comprises the steps of inserting the second end of the target tool into the glenoid cavity of a shoulder requiring lesion repair; positioning the aperture of the target tool at a desired location; advancing the sleeve guide towards the glenoid labrum and through the aperture of the target tool until the at least one tooth on the sleeve guide contacts the glenoid bone and is embedded in the glenoid bone, firmly holding the sleeve guide in position.
Other advantages of the present invention will become more apparent to persons having ordinary skill in the art to which the present invention pertains from the following description taken in conjunction with the accompanying figures.
The advantages and features will become apparent with reference to the description and drawings below, in which like numerals represent like elements, and in which:
Many of the advantages and features of this invention will become more readily appreciated by reference to the following detailed description, when taken in conjunction with the accompanying drawings. The device of the present invention aids in the placement of a surgical sleeve guide and is generally indicated as a surgical assist device at 20 in FIGS. 1 and 2 . Surgical assist device 20 generally includes a sleeve guide 26, an angle guide 24, and an arcuate bow arm 22.
As shown in FIGS. 1 and 2 , bow arm 22 is arcuate shaped and can include a plurality of angle markings (not shown), and a recessed channel 38 along its length. Channel 38 slidably receives slide tab 64 of angle guide 24. Bow arm 22 fits within slide hole 44 to allow angle guide 24 to slide along bow arm 22 to a desired location.
As a unit, the surgical assist device 20 has target tool 28 attached to angle guide 24, and positioned at a predetermined location along bow arm 22 such that a desired angle is achieved between target tool 28 and sleeve guide 26 based on desired suture placement location during surgery. To achieve this, the angle guide 24 and sleeve guide 26 are mounted to the bow arm 22 to point inwardly and perpendicular to the arc of the bow arm 22. The angle guide 24 and the sleeve guide 26 are also configured so that the at least one tooth 40 of the conical shaped bottom end 48 of sleeve guide 26 is at a center or intersection point 78 of the bow arm 22 arc. This is achieved by shape, configuration, and location of the angled aperture 72 and the conical shaped bottom end 48. In use, this allows the at least one tooth 40 to contact the labrum to be repaired (such as the glenoid labrum 95 shown in FIG. 7 ) during surgery and allow insertion of guide pins, suture placement and the like. FIG. 1 shows the surgical assist device 20 with an optional spearing tool 90 inserted through sleeve guide 26, while FIG. 2 shows optional guide pin 82 inserted through sleeve guide 26.
The device of the present invention can be used in the following method. First, an appropriate target tool 28 is chosen and is inserted into target tool bore 50 of angle guide 24 where it is held in position by the attachment described above. Angle guide 24 is then slid along bow arm 22 with slide tab 64 sliding within recessed channel 38, to the position corresponding to the selected angle. Angle guide 24 is then locked into position on bow arm 22 by tightening screw 46.
The curved sight locator 70 of target tool 28 is then inserted into the patient's glenoid cavity 93 as shown in FIG. 7 to the desired location (e.g., site of tissue reattachment). Sleeve guide 26 is then positioned longitudinally within bracket bore 66 of bracket 60 and is extended through aperture 72 of target tool 28 towards the glenoid labrum 95 until the at least one tooth 40 of conical bottom end 48 are embedded in the glenoid bone 94 and firmly holds the sleeve guide 26 in place. During positioning of sleeve guide 26, the lever 86 is depressed against the spring 84 to prevent it from pressing against the sleeve guide 26. Sleeve guide 26 is next locked into position by releasing lever 86 (or in alternate embodiments tightening a set-screw as described above).
At this point, the sleeve guide 26 has an open channel 36 to pass various tools to the tissue site needing repair. For example, guide pin 82 (such as a suture passer) can then be inserted into bore 52 of sleeve guide 26. Guide pin 82 is extended through bore 52 and through aperture 72 of target tool 28 until it contacts the glenoid bone 94. The operator can watch the progress of the guide pin 82 by pointing an arthroscopic camera (not shown) towards the viewing hole 42. Sleeve guide 26 can then be removed, leaving guide pin 82, in position.
In one procedure, a guide pin 82 may include a tap drill to drill a hole to receive a screw followed by placement of a screw having sutures attached thereto. The screw 96, may be made of biodegradable material or titanium and can penetrate and attach to the glenoid bone 94. The screw 96 typically has an eyelet 98 through which a strong suture is pre-threaded. Once the screw is in place and the sleeve guide 26 and guide pin 82 are removed, the sutures remain hanging through aperture 72. As the target tool 28 is next removed, the sutures can be pulled through the glenoid labrum 95 and exit the patient at the site of entry of the target tool. This process aids the surgeon in tying the sutures to secure damaged tissue back to the bone. As shown in FIG. 7 , once the surgeon has tied-off the suture ends, the suture securely holds the labrum 95 to the glenoid bone 94. This process can be repeated for each site of attachment needed for the patient.
Some clear advantages of the surgical assist device 20 of the present invention is the use of the at least one tooth 40 to hold the sleeve guide 26 in place, thus firmly holding the sleeve guide 26 in the correct position. The bow arm 22 ensures that guide pin 82 and aperture 72 will always intersect to allow the at least one tooth 40 to be placed in the proper position, irrespective of where angle guide 24 is positioned along bow 22. When used with an arthroscopic camera, the target tool 28 allows the surgeon to quickly and efficiently locate where to place the sleeve guide 26 by removing guesswork, trial and error, and tissue damage formerly associated with this type of shoulder surgery. The angled aperture 72 allows sutures to be brought to position to allow the surgeon to tie them off. The curved edge of the curved sight locator 70 allows for easier placement of the sleeve guide 26 during use.
Various alterations and changes can be made to the illustrated embodiment of the present invention without departing from the spirit and broader aspects of the invention as set forth in the appended claims, which are to be interpreted in accordance with the principles of patent law, including the doctrine of equivalence.
Claims (18)
1. An arthroscopic shoulder surgical assist device, comprising:
an arcuate shaped bow arm;
an angle guide releasably attached to the bow arm at selected locations along the arc of the bow arm;
a sleeve guide having a base end slidably attached to the bow arm and a tip end having at least one tissue gripping tooth, the sleeve guide further having a longitudinally extending bore;
a target tool releasably, fitting within a cannula; connected to the angle guide at a first end and including a second end extending away from the bow arc having an aperture, wherein the tip end of the sleeve guide extending to intersect and pass through the aperture positioned on the inside of a domed shape sight locator, of the target tool irrespective of the position of the angle guide on the bow arm; and
wherein the at least one of said tooth on the tip end of the sleeve guide is adapted to be embedded in a glenoid bone of a shoulder.
2. The surgical assist device as defined in claim 1 , wherein the at least one tooth includes a plurality of teeth.
3. The surgical assist device as defined in claim 1 , wherein the releasable attachment of the angle guide includes a threaded screw extending through the angle guide and engaging the bow arm.
4. The surgical assist device as defined in claim 1 , wherein the second end includes curved walls and a floor, wherein the aperture is located on the floor.
5. The surgical assist device as defined in claim 1 , wherein the first end includes a pin.
6. The surgical assist device as defined in claim 5 , wherein the pin is inserted into a hole in the angle guide to attach the target tool to the angle guide.
7. The surgical assist device as defined in claim 1 , wherein the target tool is made of a disposable material.
8. The surgical assist device as defined in claim 1 , wherein the target tool is made of surgical steel.
9. The surgical assist device as defined in claim 1 , wherein the target tool includes a stem portion connecting the first and second end and the second end is angled in relation to the stem.
10. The surgical assist device as defined in claim 1 , wherein the angle guide includes a viewing hole.
11. The surgical assist device as defined in claim 1 , wherein the second end further includes a protrusion extending outward toward the glenoid bone.
12. A method for locating a target location for a glenoid labrum lesion repair in arthroscopic shoulder surgery using a surgical assist device, the surgical assist device comprising an arcuate shaped bow arm, an angle guide releasably attached to the bow arm at selected locations, a sleeve guide attached to the bow arm, a target tool, configured to fit within a cannula used for arthroscopic shoulder surgery, attached to the angle guide at a first end of the target tool and including a second end having an aperture, and the sleeve guide extending outward from the bow arm and having at least one tooth on the second end and a longitudinally extending bore, the method comprising the steps of:
inserting the second end of the target tool into a glenoid cavity of a shoulder requiring lesion repair;
positioning the aperture of the target tool at a desired location; and
advancing the sleeve guide towards the glenoid labrum and through the aperture of the target tool until the at least one tooth on the sleeve guide contacts a glenoid bone and is embedded in the glenoid bone, firmly holding the sleeve guide in position.
13. The method of claim 12 further including the step of positioning the angle guide at a select location such that a desired angle is achieved between the target tool and the sleeve guide.
14. The method of claim 12 further including the step of inserting a guide pin through the longitudinally extending bore of the sleeve guide and into the glenoid bone.
15. The method of claim 14 , wherein the guide pin includes a screw and sutures and wherein the screw is inserted through the glenoid bone, and the sutures are connected to the screw and have ends that hang therefrom and through the aperture of the target tool.
16. The method of claim 15 further including the step of removing the target tool from the glenoid cavity, thereby pulling the ends of the sutures out through the glenoid labrum, exposing and providing access to the ends of the sutures.
17. The method of claim 15 , wherein the screw is made of biodegradable material.
18. The method of claim 15 , wherein the screw is made of titanium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/395,655 US7201756B2 (en) | 2003-03-24 | 2003-03-24 | Device and method to assist in arthroscopic repair of detached connective tissue |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/395,655 US7201756B2 (en) | 2003-03-24 | 2003-03-24 | Device and method to assist in arthroscopic repair of detached connective tissue |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040193172A1 US20040193172A1 (en) | 2004-09-30 |
US7201756B2 true US7201756B2 (en) | 2007-04-10 |
Family
ID=32988623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/395,655 Expired - Fee Related US7201756B2 (en) | 2003-03-24 | 2003-03-24 | Device and method to assist in arthroscopic repair of detached connective tissue |
Country Status (1)
Country | Link |
---|---|
US (1) | US7201756B2 (en) |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090143784A1 (en) * | 2007-11-23 | 2009-06-04 | Wolf Petersen | Tibial Aiming Device For The Double Channel Technique |
US20090163766A1 (en) * | 2007-12-21 | 2009-06-25 | Smith & Nephew, Inc. | Multiple Portal Guide |
WO2009107121A3 (en) * | 2008-02-28 | 2010-03-04 | T.A.G. Medical Products Corportion Ltd. | Medical apparatus and method for attaching a suture to a bone |
US20100121447A1 (en) * | 2008-10-10 | 2010-05-13 | Marcus Troger | Method for replacing a ligament in a knee |
US20100121337A1 (en) * | 2008-11-13 | 2010-05-13 | Pandya Rajiv D | Device for drilling angled osteal tunnels |
US20100185223A1 (en) * | 2008-11-14 | 2010-07-22 | Rogerson John S | Switching stick with hooded blade |
US20100241106A1 (en) * | 2007-12-21 | 2010-09-23 | Smith & Nephew, Inc. | Multiple Portal Guide |
US20100264394A1 (en) * | 2009-04-16 | 2010-10-21 | Sony Corporation | Semiconductor memory and method of manufacturing the same |
US20100312179A1 (en) * | 2009-03-17 | 2010-12-09 | Julian Nikolchev | Method and apparatus for distracting a joint, including the provision and use of a novel joint-spacing balloon catheter and a novel inflatable perineal post |
US20110166579A1 (en) * | 2008-06-13 | 2011-07-07 | Mark Deem | Devices and methods for minimally invasive access into a joint |
US20130253544A1 (en) * | 2012-03-20 | 2013-09-26 | S. Charles Marshall, Jr. | System, method, and apparatus for an anterior portal guide for partial thickness rotator cuff repair |
US8636745B2 (en) | 2011-03-09 | 2014-01-28 | Mutlaq Almutairi | Orthopedic surgical pin positioning device |
US8721649B2 (en) | 2009-12-04 | 2014-05-13 | Pivot Medical, Inc. | Hip joint access using a circumferential wire and balloon |
US20140255084A9 (en) * | 2007-11-01 | 2014-09-11 | Stephen B. Murphy | Adapter for acetabular component positioning |
US8956365B2 (en) | 2009-03-17 | 2015-02-17 | Pivot Medical, Inc. | Method and apparatus for distracting a joint |
US8986311B2 (en) | 2008-06-13 | 2015-03-24 | Pivot Medical, Inc. | Methods and apparatus for joint distraction |
US9131937B2 (en) | 2011-11-16 | 2015-09-15 | VentureMD Innovations, LLC | Suture anchor |
US9161764B2 (en) * | 2011-01-28 | 2015-10-20 | Smith & Nephew, Inc. | Surgical aiming device |
US9186181B2 (en) | 2009-03-17 | 2015-11-17 | Pivot Medical, Inc. | Method and apparatus for distracting a joint |
US9198676B2 (en) | 2011-07-26 | 2015-12-01 | Howmedica Osteonics Corp. | PCL guides for drilling tibial and femoral tunnels |
USD761960S1 (en) | 2014-11-07 | 2016-07-19 | Karl Storz Gmbh & Co. Kg | Aiming device |
US9687221B2 (en) | 2013-02-13 | 2017-06-27 | Venture MD Innovations, LLC | Method of anchoring a suture |
US9782165B2 (en) | 2011-11-11 | 2017-10-10 | VentureMD Innovations, LLC | Transosseous attachment |
US9888936B2 (en) | 2010-09-27 | 2018-02-13 | Smith & Nephew, Inc. | Device and methods for use during arthroscopic surgery |
US9925010B2 (en) * | 2016-02-19 | 2018-03-27 | Rajiv D. Pandya | System and technique for accessing extra articular lesions or abnormalities or intra osseous lesions or bone marrow lesions |
US9962174B2 (en) | 2015-07-17 | 2018-05-08 | Kator, Llc | Transosseous method |
US10010333B2 (en) | 2014-09-30 | 2018-07-03 | Medos International Sàrl | Side-loading carriage for use in surgical guide |
US10045789B2 (en) | 2014-09-30 | 2018-08-14 | Medos International Sàrl | Universal surgical guide systems and methods |
US10064633B2 (en) | 2016-02-19 | 2018-09-04 | Rajiv D. Pandya | System and technique for accessing extra articular lesions or abnormalities or intra osseous lesions or bone marrow lesions |
US10098646B2 (en) | 2014-09-30 | 2018-10-16 | Medos International Sàrl | Surgical guide for use in ligament repair procedures |
US10143462B2 (en) | 2015-08-04 | 2018-12-04 | Kator, Llc | Transosseous suture anchor method |
US10154868B2 (en) | 2015-07-17 | 2018-12-18 | Kator, Llc | Transosseous method |
US10219812B2 (en) | 2010-11-03 | 2019-03-05 | Smith & Nephew, Inc. | Drill guide |
US10251760B1 (en) | 2007-11-01 | 2019-04-09 | Stephen B. Murphy | Acetabular template component and method of using same during hip arthrosplasty |
US10307173B2 (en) | 2014-09-30 | 2019-06-04 | Medos International Sàrl | Gage for limiting distal travel of drill pin |
US10335236B1 (en) | 2007-11-01 | 2019-07-02 | Stephen B. Murphy | Surgical system using a registration device |
US10426453B2 (en) | 2009-03-17 | 2019-10-01 | Pivot Medical, Inc. | Method and apparatus for distracting a joint |
US10470756B2 (en) | 2011-11-16 | 2019-11-12 | VentureMD Innovations, LLC | Suture anchor and method |
US10548585B2 (en) | 2011-11-16 | 2020-02-04 | VentureMD Innovations, LLC | Soft tissue attachment |
US10675014B2 (en) | 2011-11-16 | 2020-06-09 | Crossroads Extremity Systems, Llc | Knotless soft tissue attachment |
US11141176B2 (en) * | 2017-09-27 | 2021-10-12 | Tearflow Care Ltd. | Tools and methods for dacryocystorhinostomy |
US11376079B2 (en) | 2016-02-19 | 2022-07-05 | Rajiv D. Pandya | System and technique for accessing extra articular lesions or abnormalities or intra osseous lesions or bone marrow lesions |
US11419684B2 (en) | 2016-02-19 | 2022-08-23 | Rajiv D. Pandya | System and technique for accessing extra articular lesions or abnormalities or intra osseous lesions or bone marrow lesions |
US11504140B2 (en) | 2015-07-17 | 2022-11-22 | Crossroads Extremity Systems, Llc | Transosseous guide and method |
US11805973B2 (en) * | 2011-09-23 | 2023-11-07 | DePuy Synthes Products, Inc. | Glenoid anchor guide |
US11963688B2 (en) | 2021-11-20 | 2024-04-23 | Panorthopaedics, Inc. | Device adapted for lateral engagement of an elongated member |
US11992271B2 (en) | 2007-11-01 | 2024-05-28 | Stephen B. Murphy | Surgical system using a registration device |
US12035902B2 (en) | 2009-03-17 | 2024-07-16 | Stryker Corporation | Method and apparatus for distracting a joint |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7896883B2 (en) | 2000-05-01 | 2011-03-01 | Arthrosurface, Inc. | Bone resurfacing system and method |
US6610067B2 (en) | 2000-05-01 | 2003-08-26 | Arthrosurface, Incorporated | System and method for joint resurface repair |
US8177841B2 (en) | 2000-05-01 | 2012-05-15 | Arthrosurface Inc. | System and method for joint resurface repair |
EP2314257B9 (en) | 2000-05-01 | 2013-02-27 | ArthroSurface, Inc. | System for joint resurface repair |
US7163541B2 (en) | 2002-12-03 | 2007-01-16 | Arthrosurface Incorporated | Tibial resurfacing system |
US7678151B2 (en) | 2000-05-01 | 2010-03-16 | Ek Steven W | System and method for joint resurface repair |
US7901408B2 (en) | 2002-12-03 | 2011-03-08 | Arthrosurface, Inc. | System and method for retrograde procedure |
US8388624B2 (en) | 2003-02-24 | 2013-03-05 | Arthrosurface Incorporated | Trochlear resurfacing system and method |
WO2006074321A2 (en) | 2003-11-20 | 2006-07-13 | Arthrosurface, Inc. | System and method for retrograde procedure |
AU2004293042A1 (en) | 2003-11-20 | 2005-06-09 | Arthrosurface, Inc. | Retrograde delivery of resurfacing devices |
US20050261701A1 (en) * | 2004-05-11 | 2005-11-24 | Mcguire David A | Surgical device for a anterolateral reconstruction |
US20070239166A1 (en) * | 2004-05-11 | 2007-10-11 | Mcguire David A | Surgical Device for Anterolateral and Posterolateral Reconstruction |
AU2005260590A1 (en) | 2004-06-28 | 2006-01-12 | Arthrosurface, Inc. | System for articular surface replacement |
DE102004048042B4 (en) * | 2004-09-29 | 2011-12-01 | Karl Storz Gmbh & Co.Kg | Device for guiding a drilling tool |
US7828853B2 (en) | 2004-11-22 | 2010-11-09 | Arthrosurface, Inc. | Articular surface implant and delivery system |
US20060241658A1 (en) * | 2005-04-20 | 2006-10-26 | Daniel Cerundolo | Method and apparatus for suture placement |
DE102005046299B4 (en) * | 2005-09-27 | 2013-03-14 | Reinhard Feinmechanik Gmbh | Device for positioning a target tube on a target device intended for reconstructive surgery |
US7736364B2 (en) * | 2006-02-02 | 2010-06-15 | Biomet Sports Medicine, Llc | Method and apparatus for performing ACL reconstruction |
DE102006035579A1 (en) * | 2006-07-27 | 2008-01-31 | Karl Storz Gmbh & Co. Kg | A partial aiming device for targeting an arthroscopic surgical site for a medical procedure |
US9358029B2 (en) | 2006-12-11 | 2016-06-07 | Arthrosurface Incorporated | Retrograde resection apparatus and method |
FR2918554B1 (en) * | 2007-07-09 | 2010-06-18 | Amplitude | VIEWPER OR DRILLING GUIDE FOR LIGAMENTOPLASTY. |
US20090149858A1 (en) * | 2007-12-05 | 2009-06-11 | Biomet Sports Medicine, Inc. | Method And Apparatus For Forming A Bone Tunnel |
US10945743B2 (en) | 2009-04-17 | 2021-03-16 | Arthrosurface Incorporated | Glenoid repair system and methods of use thereof |
WO2010121250A1 (en) | 2009-04-17 | 2010-10-21 | Arthrosurface Incorporated | Glenoid resurfacing system and method |
US9283076B2 (en) | 2009-04-17 | 2016-03-15 | Arthrosurface Incorporated | Glenoid resurfacing system and method |
EP2542165A4 (en) * | 2010-03-05 | 2015-10-07 | Arthrosurface Inc | Tibial resurfacing system and method |
US9066716B2 (en) | 2011-03-30 | 2015-06-30 | Arthrosurface Incorporated | Suture coil and suture sheath for tissue repair |
EP2804565B1 (en) | 2011-12-22 | 2018-03-07 | Arthrosurface Incorporated | System for bone fixation |
CA3072704C (en) * | 2012-03-28 | 2022-03-22 | Orthosoft Ulc | Glenoid implant surgery using patient specific instrumentation |
DE112013003358T5 (en) | 2012-07-03 | 2015-03-19 | Arthrosurface, Inc. | System and procedure for joint surface replacement and repair |
US9474538B2 (en) * | 2012-07-18 | 2016-10-25 | Warsaw Orthopedic, Inc. | Systems and methods for guiding anchors for facet fixation |
US9492200B2 (en) | 2013-04-16 | 2016-11-15 | Arthrosurface Incorporated | Suture system and method |
US11607319B2 (en) | 2014-03-07 | 2023-03-21 | Arthrosurface Incorporated | System and method for repairing articular surfaces |
US20150250472A1 (en) | 2014-03-07 | 2015-09-10 | Arthrosurface Incorporated | Delivery System for Articular Surface Implant |
US10624748B2 (en) | 2014-03-07 | 2020-04-21 | Arthrosurface Incorporated | System and method for repairing articular surfaces |
US11058442B2 (en) * | 2016-08-15 | 2021-07-13 | University Of Rochester | Distal biceps tendon repair device |
US11298143B2 (en) * | 2017-04-12 | 2022-04-12 | Smith & Nephew, Inc. | Surgical drill guide systems and methods of use thereof |
USD877903S1 (en) * | 2017-06-16 | 2020-03-10 | Karl Storz Se & Co. Kg | Target apparatus |
USD840031S1 (en) * | 2017-06-16 | 2019-02-05 | Karl Storz Se & Co. Kg | Femoral target guide |
CN107174324B (en) * | 2017-06-26 | 2023-10-31 | 吴宇峰 | Minimally invasive repairing device for dislocation of acromioclavicular joint |
WO2019028344A1 (en) | 2017-08-04 | 2019-02-07 | Arthrosurface Incorporated | Multicomponent articular surface implant |
GB2616360B (en) | 2019-03-12 | 2023-11-29 | Arthrosurface Inc | Humeral and glenoid articular surface implant systems and methods |
CN114680969A (en) * | 2020-12-28 | 2022-07-01 | 张强 | Anterior cruciate ligament prosthetic devices |
CN112957118B (en) * | 2021-01-29 | 2022-09-23 | 北京大学第三医院(北京大学第三临床医学院) | Nail placing guider |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5112337A (en) | 1991-02-05 | 1992-05-12 | Depuy Du Pont Orthopaedics | Variable angle, selective length tibial drill guide |
US5163940A (en) * | 1991-03-04 | 1992-11-17 | American Cyanamid Company | Surgical drill guide for tibia |
US5269786A (en) | 1992-02-20 | 1993-12-14 | Arthrex Inc. | PCL oriented placement tibial guide method |
US5330468A (en) * | 1993-10-12 | 1994-07-19 | Burkhart Stephen S | Drill guide device for arthroscopic surgery |
US5350383A (en) * | 1992-02-20 | 1994-09-27 | Arthrex, Inc. | Adjustable drill guide with interchangeable marking hooks |
US5562664A (en) * | 1992-02-20 | 1996-10-08 | Arthrex Inc. | Drill guide with target PCL-oriented marking hook |
US5575801A (en) | 1994-02-17 | 1996-11-19 | Arthrex, Inc. | Method and apparatus for arthroscopic rotator cuff repair |
US5584839A (en) | 1994-12-12 | 1996-12-17 | Gieringer; Robert E. | Intraarticular drill guide and arthroscopic methods |
US5601562A (en) * | 1995-02-14 | 1997-02-11 | Arthrex, Inc. | Forked insertion tool and metnod of arthroscopic surgery using the same |
US5624446A (en) | 1992-09-11 | 1997-04-29 | University Of Washington | System for repair of capsulo-labral separations |
US5951559A (en) | 1996-07-25 | 1999-09-14 | Arthrex, Inc. | Method for installing a threaded suture anchor with a cannulated suture anchor drill guide |
US6120511A (en) * | 1997-11-18 | 2000-09-19 | Chan; Kwan-Ho | Drill guide assembly and method for producing a bone tunnel |
US6254606B1 (en) * | 1999-10-13 | 2001-07-03 | William P. Carney | Laser aiming device for performing anterior cruciate ligament reconstruction surgery and method for using same |
US6537319B2 (en) * | 1997-02-12 | 2003-03-25 | Arthrex, Inc. | Method of loading tendons into the knee |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1569710A (en) * | 1924-08-29 | 1926-01-12 | Arthur G Burt | Dog mat |
US2032248A (en) * | 1935-03-04 | 1936-02-25 | John G Bins | Dog bed or the like |
US2775222A (en) * | 1954-11-09 | 1956-12-25 | Kruck Eugene | Dog bed |
USD295455S (en) * | 1985-07-08 | 1988-05-03 | Paul Han | Burger bun or similar article |
USD316464S (en) * | 1988-09-13 | 1991-04-23 | Kelley Peggy E | Pet cushion |
USD319271S (en) * | 1988-10-20 | 1991-08-20 | Senitt Catherine M | Toy turtle shell |
US5010843A (en) * | 1989-11-16 | 1991-04-30 | Beth Henry | Pet bed |
USD323850S (en) * | 1990-05-29 | 1992-02-11 | Seikosha Co., Ltd. | Printer for a computer |
USD330139S (en) * | 1990-07-11 | 1992-10-13 | Pockets Of Learning | Portable infant's play mat |
USD331475S (en) * | 1991-09-11 | 1992-12-01 | Sineath James V | Pet travel bed |
US5261352A (en) * | 1991-10-28 | 1993-11-16 | Joseph Stammelman | Heated place for animals |
USD346246S (en) * | 1992-12-02 | 1994-04-19 | Barreto Aurelio F | Pet bed |
US5357901A (en) * | 1993-08-25 | 1994-10-25 | Batts Doris B | Pet comforter |
US5588393A (en) * | 1995-06-19 | 1996-12-31 | Heilborn; Eric W. | Collapsible pet bed |
US5765502A (en) * | 1996-04-18 | 1998-06-16 | Flexi-Mat Corporation | Pet bed with removable bolster |
USD395144S (en) * | 1996-12-24 | 1998-06-16 | Univier Corp. | Cushion for pets |
US6024046A (en) * | 1998-03-04 | 2000-02-15 | Geiger; Colleen A. | Doggie sleeping hole |
USD406923S (en) * | 1998-04-01 | 1999-03-16 | Simpkins Angela M | Small animal shelter |
USD415919S (en) * | 1998-08-03 | 1999-11-02 | Porter Kathleen L | Infant cuddle mattress |
-
2003
- 2003-03-24 US US10/395,655 patent/US7201756B2/en not_active Expired - Fee Related
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5112337A (en) | 1991-02-05 | 1992-05-12 | Depuy Du Pont Orthopaedics | Variable angle, selective length tibial drill guide |
US5163940A (en) * | 1991-03-04 | 1992-11-17 | American Cyanamid Company | Surgical drill guide for tibia |
US5269786A (en) | 1992-02-20 | 1993-12-14 | Arthrex Inc. | PCL oriented placement tibial guide method |
US5350383A (en) * | 1992-02-20 | 1994-09-27 | Arthrex, Inc. | Adjustable drill guide with interchangeable marking hooks |
US5562664A (en) * | 1992-02-20 | 1996-10-08 | Arthrex Inc. | Drill guide with target PCL-oriented marking hook |
US5700266A (en) | 1992-09-11 | 1997-12-23 | The University Of Washington | System for repair of capsulo-labral separations |
US5624446A (en) | 1992-09-11 | 1997-04-29 | University Of Washington | System for repair of capsulo-labral separations |
US5330468A (en) * | 1993-10-12 | 1994-07-19 | Burkhart Stephen S | Drill guide device for arthroscopic surgery |
US5575801A (en) | 1994-02-17 | 1996-11-19 | Arthrex, Inc. | Method and apparatus for arthroscopic rotator cuff repair |
US5584839A (en) | 1994-12-12 | 1996-12-17 | Gieringer; Robert E. | Intraarticular drill guide and arthroscopic methods |
US5601562A (en) * | 1995-02-14 | 1997-02-11 | Arthrex, Inc. | Forked insertion tool and metnod of arthroscopic surgery using the same |
US5951559A (en) | 1996-07-25 | 1999-09-14 | Arthrex, Inc. | Method for installing a threaded suture anchor with a cannulated suture anchor drill guide |
US5993451A (en) | 1996-07-25 | 1999-11-30 | Arthrex, Inc. | Cannulated suture anchor drill guide |
US6537319B2 (en) * | 1997-02-12 | 2003-03-25 | Arthrex, Inc. | Method of loading tendons into the knee |
US6120511A (en) * | 1997-11-18 | 2000-09-19 | Chan; Kwan-Ho | Drill guide assembly and method for producing a bone tunnel |
US6254606B1 (en) * | 1999-10-13 | 2001-07-03 | William P. Carney | Laser aiming device for performing anterior cruciate ligament reconstruction surgery and method for using same |
Cited By (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10004752B2 (en) * | 2007-11-01 | 2018-06-26 | Stephen B. Murphy | Adapter for acetabular component positioning |
US11992271B2 (en) | 2007-11-01 | 2024-05-28 | Stephen B. Murphy | Surgical system using a registration device |
US20140255084A9 (en) * | 2007-11-01 | 2014-09-11 | Stephen B. Murphy | Adapter for acetabular component positioning |
US10299807B2 (en) | 2007-11-01 | 2019-05-28 | Stephen B. Murphy | Method and apparatus for determining acetabular component positioning |
US10335236B1 (en) | 2007-11-01 | 2019-07-02 | Stephen B. Murphy | Surgical system using a registration device |
US10398455B2 (en) | 2007-11-01 | 2019-09-03 | Stephen B. Murphy | Method and apparatus for determining acetabular component positioning |
US10251760B1 (en) | 2007-11-01 | 2019-04-09 | Stephen B. Murphy | Acetabular template component and method of using same during hip arthrosplasty |
US11490832B2 (en) | 2007-11-01 | 2022-11-08 | Stephen B. Murphy | Method and apparatus for determining acetabular component positioning |
US11045329B1 (en) | 2007-11-01 | 2021-06-29 | Stephen B. Murphy | Acetabular template component and method of using same during hip arthrosplasty |
US20090143784A1 (en) * | 2007-11-23 | 2009-06-04 | Wolf Petersen | Tibial Aiming Device For The Double Channel Technique |
US9913636B2 (en) | 2007-12-21 | 2018-03-13 | Smith & Nephew, Inc. | Multiple portal guide |
US20100241106A1 (en) * | 2007-12-21 | 2010-09-23 | Smith & Nephew, Inc. | Multiple Portal Guide |
US9826992B2 (en) | 2007-12-21 | 2017-11-28 | Smith & Nephew, Inc. | Multiple portal guide |
US20090163766A1 (en) * | 2007-12-21 | 2009-06-25 | Smith & Nephew, Inc. | Multiple Portal Guide |
AU2008341062B2 (en) * | 2007-12-21 | 2014-12-18 | Smith & Nephew, Inc. | Multiple portal guide |
US8956278B2 (en) * | 2007-12-21 | 2015-02-17 | Smith & Nephew, Inc. | Multiple portal guide |
US20110009867A1 (en) * | 2008-02-28 | 2011-01-13 | T.A.G. Medical Products Corporation Ltd. | Medical apparatus and method for attaching a suture to a bone |
US11298121B2 (en) | 2008-02-28 | 2022-04-12 | T.A.G. Medical Devices—Agriculture Cooperative Ltd. | Medical apparatus and method for attaching a suture to a bone |
RU2480177C2 (en) * | 2008-02-28 | 2013-04-27 | Т.А.Г. Медикал Девайсес - Агрикалче Кооперайтив Лтд. | Medical device and method of suture fixation to bone |
US10478173B2 (en) | 2008-02-28 | 2019-11-19 | T.A.G. Medical Devices—Agriculture Cooperative Ltd. | Medical apparatus and method for attaching a suture to a bone |
US11559296B2 (en) | 2008-02-28 | 2023-01-24 | T.A.G. Medical Products Corporation Ltd. | Medical apparatus and method for attaching a suture to a bone |
WO2009107121A3 (en) * | 2008-02-28 | 2010-03-04 | T.A.G. Medical Products Corportion Ltd. | Medical apparatus and method for attaching a suture to a bone |
US9033992B2 (en) | 2008-06-13 | 2015-05-19 | Pivot Medical, Inc. | Methods and apparatus for joint distraction |
US9526486B2 (en) | 2008-06-13 | 2016-12-27 | Pivot Medical, Inc. | Methods and apparatus for joint distraction |
US8986311B2 (en) | 2008-06-13 | 2015-03-24 | Pivot Medical, Inc. | Methods and apparatus for joint distraction |
US10470754B2 (en) | 2008-06-13 | 2019-11-12 | Pivot Medical, Inc. | Methods and apparatus for joint distraction |
US9532864B2 (en) | 2008-06-13 | 2017-01-03 | Pivot Medical, Inc. | Devices and methods for minimally invasive access into a joint |
US11272913B2 (en) | 2008-06-13 | 2022-03-15 | Stryker Corporation | Methods and apparatus for joint distraction |
US9179904B2 (en) | 2008-06-13 | 2015-11-10 | Pivot Medical, Inc. | Methods and apparatus for joint distraction |
US8974462B2 (en) | 2008-06-13 | 2015-03-10 | Pivot Medical, Inc. | Devices and methods for minimally invasive access into a joint |
US20110166579A1 (en) * | 2008-06-13 | 2011-07-07 | Mark Deem | Devices and methods for minimally invasive access into a joint |
US20100121447A1 (en) * | 2008-10-10 | 2010-05-13 | Marcus Troger | Method for replacing a ligament in a knee |
US8317862B2 (en) | 2008-10-10 | 2012-11-27 | Marcus Troger | Method for replacing a ligament in a knee |
US20100121338A1 (en) * | 2008-11-13 | 2010-05-13 | Pandya Rajiv D | Method for drilling angled osteal tunnels |
US8579974B2 (en) * | 2008-11-13 | 2013-11-12 | Rajiv D. Pandya | Method for drilling angled osteal tunnels |
US20100121337A1 (en) * | 2008-11-13 | 2010-05-13 | Pandya Rajiv D | Device for drilling angled osteal tunnels |
US20100185223A1 (en) * | 2008-11-14 | 2010-07-22 | Rogerson John S | Switching stick with hooded blade |
US9186181B2 (en) | 2009-03-17 | 2015-11-17 | Pivot Medical, Inc. | Method and apparatus for distracting a joint |
US12035902B2 (en) | 2009-03-17 | 2024-07-16 | Stryker Corporation | Method and apparatus for distracting a joint |
US9492152B2 (en) | 2009-03-17 | 2016-11-15 | Pivot Medical, Inc. | Method and apparatus for distracting a joint |
US10016191B2 (en) | 2009-03-17 | 2018-07-10 | Pivot Medical, Inc. | Method and apparatus for distracting a joint |
US20100312179A1 (en) * | 2009-03-17 | 2010-12-09 | Julian Nikolchev | Method and apparatus for distracting a joint, including the provision and use of a novel joint-spacing balloon catheter and a novel inflatable perineal post |
US8900243B2 (en) | 2009-03-17 | 2014-12-02 | Pivot Medical, Inc. | Method and apparatus for distracting a joint, including the provision and use of a novel joint-spacing balloon catheter and a novel inflatable perineal post |
US8956365B2 (en) | 2009-03-17 | 2015-02-17 | Pivot Medical, Inc. | Method and apparatus for distracting a joint |
US10426453B2 (en) | 2009-03-17 | 2019-10-01 | Pivot Medical, Inc. | Method and apparatus for distracting a joint |
US20100264394A1 (en) * | 2009-04-16 | 2010-10-21 | Sony Corporation | Semiconductor memory and method of manufacturing the same |
US8721649B2 (en) | 2009-12-04 | 2014-05-13 | Pivot Medical, Inc. | Hip joint access using a circumferential wire and balloon |
US9888936B2 (en) | 2010-09-27 | 2018-02-13 | Smith & Nephew, Inc. | Device and methods for use during arthroscopic surgery |
US10219812B2 (en) | 2010-11-03 | 2019-03-05 | Smith & Nephew, Inc. | Drill guide |
US9161764B2 (en) * | 2011-01-28 | 2015-10-20 | Smith & Nephew, Inc. | Surgical aiming device |
US8636745B2 (en) | 2011-03-09 | 2014-01-28 | Mutlaq Almutairi | Orthopedic surgical pin positioning device |
US9198676B2 (en) | 2011-07-26 | 2015-12-01 | Howmedica Osteonics Corp. | PCL guides for drilling tibial and femoral tunnels |
US11805973B2 (en) * | 2011-09-23 | 2023-11-07 | DePuy Synthes Products, Inc. | Glenoid anchor guide |
US9782165B2 (en) | 2011-11-11 | 2017-10-10 | VentureMD Innovations, LLC | Transosseous attachment |
US10548585B2 (en) | 2011-11-16 | 2020-02-04 | VentureMD Innovations, LLC | Soft tissue attachment |
US10470756B2 (en) | 2011-11-16 | 2019-11-12 | VentureMD Innovations, LLC | Suture anchor and method |
US10194898B2 (en) | 2011-11-16 | 2019-02-05 | VentureMD Innovations, LLC | Suture anchor |
US9131937B2 (en) | 2011-11-16 | 2015-09-15 | VentureMD Innovations, LLC | Suture anchor |
US11701101B2 (en) | 2011-11-16 | 2023-07-18 | Crossroads Extremity Systems, Llc | Suture anchor and method |
US11684355B2 (en) | 2011-11-16 | 2023-06-27 | Crossroads Extremity Systems, Llc | Suture anchor |
US10136883B2 (en) | 2011-11-16 | 2018-11-27 | VentureMD Innovations, LLC | Method of anchoring a suture |
US10675014B2 (en) | 2011-11-16 | 2020-06-09 | Crossroads Extremity Systems, Llc | Knotless soft tissue attachment |
US20130253544A1 (en) * | 2012-03-20 | 2013-09-26 | S. Charles Marshall, Jr. | System, method, and apparatus for an anterior portal guide for partial thickness rotator cuff repair |
US9687221B2 (en) | 2013-02-13 | 2017-06-27 | Venture MD Innovations, LLC | Method of anchoring a suture |
US11141175B2 (en) | 2014-09-30 | 2021-10-12 | Medos International Saárl | Gage for limiting distal travel of drill pin |
US10993730B2 (en) | 2014-09-30 | 2021-05-04 | Medos International Sàrl | Universal surgical guide systems and methods |
US10010333B2 (en) | 2014-09-30 | 2018-07-03 | Medos International Sàrl | Side-loading carriage for use in surgical guide |
US10098646B2 (en) | 2014-09-30 | 2018-10-16 | Medos International Sàrl | Surgical guide for use in ligament repair procedures |
US10307173B2 (en) | 2014-09-30 | 2019-06-04 | Medos International Sàrl | Gage for limiting distal travel of drill pin |
US10905442B2 (en) | 2014-09-30 | 2021-02-02 | Medos International Sàrl | Side-loading carriage for use in surgical guide |
US10905441B2 (en) | 2014-09-30 | 2021-02-02 | Medos International Sàrl | Surgical guide for use in ligament repair procedures |
US11918234B2 (en) | 2014-09-30 | 2024-03-05 | Medos International Sarl | Surgical guide for use in ligament repair procedures |
US10045789B2 (en) | 2014-09-30 | 2018-08-14 | Medos International Sàrl | Universal surgical guide systems and methods |
USD761960S1 (en) | 2014-11-07 | 2016-07-19 | Karl Storz Gmbh & Co. Kg | Aiming device |
US11504140B2 (en) | 2015-07-17 | 2022-11-22 | Crossroads Extremity Systems, Llc | Transosseous guide and method |
US10258401B2 (en) | 2015-07-17 | 2019-04-16 | Kator, Llc | Transosseous guide |
US10154868B2 (en) | 2015-07-17 | 2018-12-18 | Kator, Llc | Transosseous method |
US9962174B2 (en) | 2015-07-17 | 2018-05-08 | Kator, Llc | Transosseous method |
US10226243B2 (en) | 2015-08-04 | 2019-03-12 | Kator, Llc | Transosseous suture anchor |
US10143462B2 (en) | 2015-08-04 | 2018-12-04 | Kator, Llc | Transosseous suture anchor method |
US11298194B2 (en) | 2016-02-19 | 2022-04-12 | Rajiv D. Pandya | System and technique for accessing extra articular lesions or abnormalities or intra osseous lesions or bone marrow lesions |
US9925010B2 (en) * | 2016-02-19 | 2018-03-27 | Rajiv D. Pandya | System and technique for accessing extra articular lesions or abnormalities or intra osseous lesions or bone marrow lesions |
US11419684B2 (en) | 2016-02-19 | 2022-08-23 | Rajiv D. Pandya | System and technique for accessing extra articular lesions or abnormalities or intra osseous lesions or bone marrow lesions |
US10441368B2 (en) | 2016-02-19 | 2019-10-15 | Rajiv D. Pandya | System and technique for accessing extra articular lesions or abnormalities or intra osseous lesions or bone marrow lesions |
US11376079B2 (en) | 2016-02-19 | 2022-07-05 | Rajiv D. Pandya | System and technique for accessing extra articular lesions or abnormalities or intra osseous lesions or bone marrow lesions |
US10064632B2 (en) | 2016-02-19 | 2018-09-04 | Rajiv D. Pandya | System and technique for accessing extra articular lesions or abnormalities or intra osseous lesions or bone marrow lesions |
US10799301B2 (en) | 2016-02-19 | 2020-10-13 | Rajiv D. Pandya | System and technique for accessing extra articular lesions or abnormalities or intra osseous lesions or bone marrow lesions |
US10064633B2 (en) | 2016-02-19 | 2018-09-04 | Rajiv D. Pandya | System and technique for accessing extra articular lesions or abnormalities or intra osseous lesions or bone marrow lesions |
US20220022896A1 (en) * | 2017-09-27 | 2022-01-27 | Tearflow Care Ltd. | Tools and methods for dacryocystorhinostomy |
US11141176B2 (en) * | 2017-09-27 | 2021-10-12 | Tearflow Care Ltd. | Tools and methods for dacryocystorhinostomy |
US11963688B2 (en) | 2021-11-20 | 2024-04-23 | Panorthopaedics, Inc. | Device adapted for lateral engagement of an elongated member |
Also Published As
Publication number | Publication date |
---|---|
US20040193172A1 (en) | 2004-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7201756B2 (en) | Device and method to assist in arthroscopic repair of detached connective tissue | |
US5700266A (en) | System for repair of capsulo-labral separations | |
US8814935B2 (en) | Interference screw driver assembly and method of use | |
US8784423B2 (en) | Tibial cross-pin fixation techniques and instrumentation | |
US9072509B2 (en) | Toggle bolt suture anchor kit | |
US10034674B2 (en) | Universal anterior cruciate ligament repair and reconstruction system | |
US5342369A (en) | System for repair of bankart lesions | |
US7896901B2 (en) | Tissue fixation device | |
US8317862B2 (en) | Method for replacing a ligament in a knee | |
US5840078A (en) | Method and apparatus for mechanical attachment of soft tissue to bone tissue | |
US9445910B2 (en) | Method of minimally invasive shoulder replacement surgery | |
JP3537142B2 (en) | Drill guide device | |
US20040267270A1 (en) | Implant stabilizing instrument, kit and method | |
US9381021B2 (en) | Method and apparatus for forming a hole in bone during a surgical procedure | |
US20240180323A1 (en) | Single-use plantar plate graft augmentation kit for repairing plantar plate tears through graft augmentation | |
US9265495B2 (en) | Flipp tack pusher | |
EP1550418B1 (en) | Implant systems with fastener for mounting on an articulation surface of an orthopedic joint | |
AU2009200864A1 (en) | Method and apparatus for articular scapholunate reconstruction | |
JP2023162360A (en) | Implantable glenoid components | |
US20230115148A1 (en) | Soft tissue implant systems, instruments, and related methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Expired due to failure to pay maintenance fee |
Effective date: 20150410 |