US7120303B2 - Adaptive generation of Q-table2 for improved image quality - Google Patents
Adaptive generation of Q-table2 for improved image quality Download PDFInfo
- Publication number
- US7120303B2 US7120303B2 US10/183,386 US18338602A US7120303B2 US 7120303 B2 US7120303 B2 US 7120303B2 US 18338602 A US18338602 A US 18338602A US 7120303 B2 US7120303 B2 US 7120303B2
- Authority
- US
- United States
- Prior art keywords
- image data
- quantization table
- image
- values
- metric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 230000003044 adaptive effect Effects 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 48
- 238000013139 quantization Methods 0.000 claims abstract description 40
- 230000009467 reduction Effects 0.000 claims abstract description 23
- 238000007906 compression Methods 0.000 abstract description 27
- 230000006835 compression Effects 0.000 abstract description 27
- 238000012937 correction Methods 0.000 abstract description 6
- 230000007774 longterm Effects 0.000 abstract description 3
- 238000012545 processing Methods 0.000 description 16
- 238000013144 data compression Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 10
- 238000007781 pre-processing Methods 0.000 description 10
- 238000011161 development Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 6
- 230000006837 decompression Effects 0.000 description 5
- 238000005070 sampling Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000003467 diminishing effect Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000013481 data capture Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/85—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/124—Quantisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/136—Incoming video signal characteristics or properties
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/172—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/46—Embedding additional information in the video signal during the compression process
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/14—Picture signal circuitry for video frequency region
- H04N5/20—Circuitry for controlling amplitude response
Definitions
- the present invention generally relates to encoding and decoding of digital image data to and from a compressed form while applying corrections to enhance image quality and, more particularly, to the encoding and decoding of documents for extreme data compression to allow economically acceptable long-term storage in rapid access memory while adaptively determining an optimal correction to be applied to enhance image quality.
- Pictorial and graphics images contain extremely large amounts of data and, if digitized to allow transmission or processing by digital data processors, often requires many millions of bytes to represent respective pixels of the image or graphics with good fidelity.
- image compression is to represent images with less data in order to save storage costs or transmission time and costs. The most effective compression is achieved by approximating the original image, rather than reproducing it exactly.
- JPEG Joint Photographic Experts Group
- JPEG Still Image Data Compression Standard by Pennebaker and Mitchell, published by Van Nostrand Reinhold, 1993, which is hereby fully incorporated by reference, allows the interchange of images between diverse applications and opens up the capability to provide digital continuous-tone color images in multi-media applications.
- JPEG is primarily concerned with images that have two spatial dimensions, contain gray scale or color information, and possess no temporal dependence, as distinguished from the MPEG (Moving Picture Experts Group) standard.
- JPEG compression can reduce the storage requirements by more than an order of magnitude and improve system response time in the process.
- a primary goal of the JPEG standard is to provide the maximum image fidelity for a given volume of data and/or available transmission or processing time and any arbitrary degree of data compression is accommodated. It is often the case that data compression by a factor of twenty or more (and reduction of transmission time and storage size by a comparable factor) will not produce artifacts or image degradation which are noticeable to the average viewer.
- JPEG standard has been fully generalized to perform substantially equally regardless of image content and to accommodate a wide variety of data compression demands. Therefore, encoders and decoders employing the JPEG standard in one or more of several versions have come into relatively widespread use and allow wide access to images for a wide variety of purposes. Standardization has also allowed reduction of costs, particularly of decoders, to permit high quality image access to be widely available. Therefore, utilization of the JPEG standard is generally preferable to other data compression techniques even though some marginal increase of efficiency might be obtained thereby, especially for particular and well-defined classes of images.
- Another way to determine the storage cost versus image quality trade-off is to determine the maximum cost in storage that is acceptable and then determine, for a given amount of quality, how long the desired number of images can be saved in the available storage. This is a function of the compressed size of the images which generally relates directly to the complexity of the images and inversely with the desired reconstruction quality.
- the needed quality of the image data also changes over time in such an application. For example, within a few months of the date of the document or its processing, questions of authenticity often arise, requiring image quality sufficient to, for example, authenticate a signature, while at a much later date, it may only be necessary for the image quality to be sufficient to confirm basic information about the content of the document. Therefore, the image data may be additionally compressed for longer term storage when reduced image quality becomes more tolerable, particularly in comparison with the costs of storage.
- personal check images are immediately stored for archival purposes on write-once CD-ROM or other non-modifiable media and saved, for legal reasons, for seven years. The same data is available for only a few months in on-line, rapid-access storage.
- Personal checks in particular, present some image data compression complexities. For example, to guard against fraudulent transactions, a background pattern of greater or lesser complexity and having a range of image values is invariably provided. Some information will be printed in a highly contrasting ink, possibly of multiple colors, while other security information will be included at relatively low contrast. Decorations including a wide range of image values may be included. Additionally, hand-written or printed indicia (e.g. check amounts and signature) will be provided with image values which are not readily predictable.
- image data compression complexities For example, to guard against fraudulent transactions, a background pattern of greater or lesser complexity and having a range of image values is invariably provided. Some information will be printed in a highly contrasting ink, possibly of multiple colors, while other security information will be included at relatively low contrast. Decorations including a wide range of image values may be included. Additionally, hand-written or printed indicia (e.g. check amounts and signature) will be provided with image values which are not readily predictable.
- Even much simpler documents may include a variety of image values such as color and shadings in letterhead, high contrast print, a watermark on the paper and a plurality of signatures.
- This range of image values that may be included in a document may limit the degree to which image data may be compressed when accurate image reconstruction is necessary. Therefore that cost of storage in such a form from which image reconstruction is possible with high fidelity to the original document is relatively large and such costs limit the period for which such storage is economically feasible, regardless of the desirability of maintaining such storage and the possibility of rapid electronic access for longer periods.
- the invention disclosed in the above-incorporated U.S. patent application reduced the dynamic range of the data prior to encoding and compression using a first quantization table (referred to hereinafter as Q-table 1 ) and restores the dynamic range of the image by use of a different, second quantization table (referred to hereinafter as Q-table 2 ) for decompression which restores the dynamic range.
- Q-table 1 a first quantization table
- Q-table 2 a different, second quantization table
- Entropy encoding provides the use of fewer bits to encode relatively more common image values and relatively greater numbers of each of relatively fewer image values can thus yield extreme compression of the image data. Since the original dynamic range is known (and, for example, brightness range is specified in ANSI for personal checks, although not always followed in practice) the second quantization table used to restore the dynamic range can be derived analytically and refined empirically to yield exceptional performance as long as the original dynamic range is accurately captured.
- both brightness and contrast will be reduced in the image data captured predominantly due to two causes: 1. ) the original document is relatively dark or of reduced brightness such as may be due to paper quality, coloring or discoloring due to age or environmental damage, and/or 2. ) the scanner is not performing properly; having drifted out of calibration, having reduced illumination levels, accumulation of dirt, dust or other contaminants, reduced video gain and the like, some of which can even be spectrally selective. All of these effects will tend to reduce average brightness and, hence, dynamic range and contrast.
- the original brightness, dynamic range and constrast of image values is not, in fact, known and the optimum table of dequantization values cannot be a priori known or developed for a given combination of document and scanner.
- a method of compressing image data including steps of capturing image data, statistically measuring captured image data to develop an image data metric, quantizing and encoding the captured image data, and substituting a quantization table in accordance with the image data metric or data representing the image data metric into the encoded and compressed image data.
- an apparatus for compressing image data including a sensor for capturing image data, a data processor for statistically measuring captured image data to develop an image data metric, quantizing and encoding the captured image data to derive encoded and compressed image data, and substituting a quantization table in accordance with the image data metric or data representing the image data metric into the encoded and compressed image data, and an arrangement for storing and/or transmitting the encoded and compressed image data including the quantization table and the data representing the metric of the image data.
- FIG. 1 is a high-level schematic block diagram in accordance with the invention
- FIGS. 1A , 1 B and 1 C are details of alternate methods or processing arrangements suitable for implementation in element 160 of FIG. 1 ,
- FIG. 1D depicts a variation of the basic invention
- FIGS. 2A , 2 B and 2 C are images of a sample document as captured by a scanner at different average brightness
- FIG. 2D is a composite of histograms of image values of FIGS. 2A–2C .
- FIGS. 3A , 3 B and 3 C show images from decompressed and decoded data captured from the sample document and corresponding to FIGS. 2A–2C , respectively, using the same Q-table 2 ,
- FIGS. 4 and 4A , 4 B and 4 C illustrate development of a Q-table 2 to restore dynamic range after coding and compression following reduction of dynamic range
- FIGS. 5A and 5B illustrate the meritorious effects of the invention by decompression and decoding the images of FIGS. 2B and 2C using different dequantization tables based on analysis of image data in accordance with the invention.
- FIG. 1 there is shown a high-level block diagram of the apparatus and method of the invention.
- Real-time scanning and digitization of an image is generally performed as a pipelined process.
- the image camera 110 delivers analog image values of respective pixels in the order of a raster of arbitrary but preferably standardized pattern to a raw image buffer 120 where the pixel data is temporarily stored in digital form.
- This data is extracted, as needed, for image processing 130 , during which the dynamic range is preferably reduced by an empirically determined amount, depending on the nature of the document, as disclosed in the above-incorporated U.S.
- Patent and coding into a compressed digital form preferably in accordance with the JPEG standard, including a discrete cosine or other orthogonal transformation and quantization are performed.
- the result including blocks of orthogonal transform coefficients and a quantization table appropriate to the restoration of the original image (e.g. Q-table 2 , differing from Q-table 1 used for quantization) and containing values which restore the dynamic range, is output for transmission or storage, as depicted at 140 .
- the pipeline of elements 110 – 140 are representative of the compression system for documents disclosed in the above-incorporated U.S. Patent.
- DPCM differential pulse code modulation
- the processing of a parallel pipeline including collection of statistics concerning image data and development and/or selection of an appropriate Q-table 2 for image restoration and enhancement, is provided. It is preferred that the image content in terms of respective pixel values be measured by the development of a histogram of image values at full (e.g. 255 discrete values) or reduced resolution (e.g. 32 values) but other metrics and measurement techniques could also be applied (e.g. sample and hold the highest video value), as illustrated at 150 .
- Several parameters of the resulting histogram can then be directly evaluated and combined with other data such as the degree of dynamic range compression/reduction performed at 130 to derive a suitable Q-table 2 for image restoration and/or enhancement.
- the resulting Q-table 2 is then provided to element 140 of FIG. 1 for inclusion in the compressed image data and which will be available in the compressed data for image decoding and decompression by standard techniques and apparatus.
- FIGS. 2A–2C three images of the same sample document (an exemplary personal check form with hand-written indicia thereon) are shown as scanned by image camera 110 .
- FIG. 2A represents an image captured if image camera is freshly calibrated and maintained while FIGS. 2B and 2C represent image data captured by an image camera 110 in a condition reflecting differing periods of use subsequent to calibration and maintenance where the image captured is relatively darker.
- FIG. 2A has an average brightness of 72.4% (defined as the average of the brightest (e.g.; whitest) 90% of all pixels.
- FIGS. 2B and 2C are of 64.9% and 57.7% brightness respectively.
- a change in brightness also alters dynamic range and contrast represented in the image data.
- FIG. 2D The corresponding histograms of image values for the images of FIGS. 2A–2C are shown superimposed in FIG. 2D and are correspondingly labelled with reference characters 2 A– 20 .
- reference characters 2 A– 20 There are several characteristics of note which are common to these three histograms.
- all three histograms exhibit a peak (A 1 , A 2 , A 3 ) at the right-most extremity thereof representing a relatively large population the brightest pixels and corresponding to the lightest tone in the background.
- the image values of these peaks are shifted left with diminishing average brightness and thus also represent a reduction in dynamic range as well as reduced brightness of the lightest tones.
- All three histograms also exhibit a central peak (B 1 , B 2 , B 3 ) corresponding to the superposition of midrange indicia on darker background tones of the image. These peaks also shift to the left with diminishing average brightness of the image. Further, these peaks and portions thereof increase in both magnitude and breadth with diminishing average brightness indicating a loss of contrast and the capability to resolve small differences in image tone for a given quantization.
- the image processing depicted at 130 is optional although preferred for most applications and certainly preferably provided whether or not it is utilized for a given image.
- the optional block 130 has not been exercised in order to illustrate that an alternate Q-table 2 (different from Q-table 1 ) can be used to recover image brightness.
- FIGS. 3A–3C which are decoded and decompressed using a single Q-table 2 which is the same as Q-table 1 .
- FIG 3 A shows little difference from FIG. 2A , illustrating the normal presentation of image dynamic range using the same Q-table for decompression as is used for compression.
- using the same Q-table 2 on a darkened image such as FIG. 2B or FIG. 2C yields similar darkened images with substantial loss of detail and contrast as shown in FIGS. 3B and 3C , respectively.
- This result is much as would be expected from the progressive changes with diminished brightness of the histograms of FIG. 2D as discussed above.
- the detail and brightness of the image can be restored in the decoded and decompressed image if the Q-table 2 is well-matched to the coded and compressed image data and the dynamic range thereof, in particular.
- the preferred embodiment of the invention provides three preferred methodologies, usable singly or in any combination, for adaptively developing and/or selecting a particular Q-table 2 appropriate to the measured characteristics of the image data. It will be noted from FIG. 1 that element 160 corresponding to the function of generating/selecting a Q-table 2 receives inputs from element 150 which measures the captured data and, optionally, element 130 , corresponding to the function of image processing including dynamic range reduction.
- the selection and/or generation of a Q-table 2 is performed responsive, at least in part, to a measurement of captured data, whereby enhancements of the image may be provided to any desired standard or desired quality as well as providing full compensation for any degree of dynamic range compression used for the principal purpose of enhancing the degree of data compression possible.
- a preferred form of processing is shown in the flow chart of FIG. 4 .
- the following description is provided, for simplicity and clarity, in terms of a single component such as would represent a monochrome or grey-scale image but could be performed using additional components such as would be included to represent color information, as well. It should be understood that each component could, and probably would, have its own independent range reduction and expansion. Up to four quantization tables can be simultaneously active and four components can be interleaved after a start-of-scan (SOS) marker in compliance with the JPEG standard.
- SOS start-of-scan
- step 410 is directed to development of a histogram of the relative numbers or frequency of occurrence of image values and is optional for any given document but it is desirable to at least perform such an analysis for a document or a plurality of documents representative of at least a class of documents.
- the histogram thus developed may or may not be suitable for other classes of documents.
- many classes of documents may, in fact, share numerous similarities of such histograms and there is a substantial likelihood that different classes of documents having similar general appearances can be handled well, if not optimally, based on an analysis of a single class of documents.
- a document can be expected to have a histogram including one or more large peaks at or clustered about a given component value corresponding to a background and which may include a low-contrast pattern.
- One or more lesser histogram peaks will also generally be produced, corresponding to indicia having different image values (e.g. printed text, handwritten indicia, letterhead, security indicia and the like).
- the range of image values represented by these peaks represent the range of image values which may be of interest and, hence, the dynamic range of the image which may be expected to contain information of interest.
- FIG. 4A illustrates an exemplary histogram that might be expected to be derived from processing images of the front and/or rear of an executed and negotiated personal check (in general, the histograms will be substantially different between the front and back sides of a personal check; the back side generally presenting lower contrast features and hence more closely grouped peaks).
- connected peaks 181 comprising sub-peaks 182 and 183 generally represent background (and which may be common to the front and back sides of the check) while peak 184 may represent hand-written indicia, peak 185 may represent security indicia and peak 186 may represent high-contrast printing and machine readable indicia.
- the horizontal axis is indexed from 0 (black) to 255 (white) for a monochrome component. It should be noted that the histogram does not necessarily reach zero between peaks, representing both noise and variation in the values captured during scanning. It should also be noted that the peaks do not extend over the entire dynamic range but that non-zero image histogram values may exist over the entire dynamic range.
- Step 420 of FIG. 4 indicates optional preprocessing of the image data such as filtering, edge sharpening or signal-to-noise separation techniques which can be advantageously used to enhance image compression, reduce noise and improve image legibility. It should, however, be understood that the invention provides a substantial degree of such enhancements even in the absence of such preprocessing and a synergistic effect in regard to these meritorious effects when preprocessing is employed, as will become more clear from the discussion of the invention below.
- preprocessing in accordance with a histogram would be to remap all values of the background peak(s) that are more extreme than the peak back to approximately the central value of the peak(s). This has the effect of moving data between the peaks (e.g. in region 107 or 188 ) toward the peaks (e.g. 182 , 183 within 107 or 188 ) and increasing the definition of the peaks, as may be appreciated from a comparison of FIGS. 4A and 4B , while suppressing many image values which may represent noise. Similar processing can be performed in regard to any or all other peaks.
- the degree of compression is a function of the dynamic range which will be represented as values in the coded data as well as the quantization values used.
- Step 430 depicts setting of the dynamic range which will be used in the coding of the image.
- the reduction of dynamic range will generally be proportional to the degree of data compression to be achieved consistent with (e.g. limited by) maintaining desired image detail.
- the dynamic range can be freely chosen. It follows that since the number of image values expected to contain information are well-segregated and mapped into narrow ranges, the degree of data compression for documents or other data which can be coarsely quantized, can be substantial without loss of information of interest.
- the “new” range may be based on a histogram of each image, collected over a plurality of images or simply assumed, with or without preprocessing/remapping as discussed above. Once the “new” dynamic range is established, this dynamic range can be further reduced to minimize compressed image data file size consistent with legibility requirements.
- This changed dynamic range is then represented in a first quantization table (Q-table 1 ) from which a second quantization table (hereinafter Q-table 2 ) to recover or expand the dynamic range can be computed by linear or non-linear scaling, direct substitution of original or desired image values or other techniques, the details of which are not important to the successful practice of the invention.
- Q-table 1 a first quantization table
- Q-table 2 a second quantization table
- either dynamic range 189 or 189′′ can be expanded to substantially the full dynamic range of 0 to 255 and the values of Q-table 1 and Q-table 2 are, in substance, completely independent and decoupled although it is important that Q-table 2 provide the desired image reconstruction values for each quantization level in Q-table 1 .
- the remapped image data representing the original image are encoded using Q-table 1 as shown at 450 in the normal JPEG compliant manner, following which Q-table 2 is substituted for Q-table 1 in the coded data as shown at 460 and stored or transmitted as depicted at 470 .
- the latency in stages 110 – 140 of FIG. 1 may include the development of a histogram for purposes of enhanced compression. It is clear that collection of a histogram for purposes of measuring the captured data could be done within the same latency period. Moreover, even if preprocessing as described above is not performed, the compression in hardware can be performed while the histogram is still being collected, particularly since the development or selection of Q-table 1 is completely independent of the development and/or selection of Q-table 2 and the insertion of Q-table 2 into the encoded data can be performed as a final step of the encoding process.
- a Q-table 2 can be created in a straightforward manner to correspond to and compensate for a reduced dynamic range, however the reduced dynamic range is quantified or represented.
- the image brightness is computed.
- a preferred option is to compute the image brightness as the average video of 90% of the brightest pixels; the darker pixels having negligible effect on the image brightness so computed.
- the image brightness can be computed as the average video of 5% (or larger proportion) of the brightest pixels thus giving a mean value of the brightest region in the image.
- the Q-table 2 can be selected/generated as a function of the computed brightness and Q-table 1 .
- values in Q-table 2 can be a multiple of corresponding values in Q-table 1 with the multiplier being the ratio of intended/desired brightness and the measured brightness. More generally, the Q-table 2 should have values which increase brightness values approximately proportionally relative to a desired maximum brightness and captured image data of maximum brightness.
- a second method of selecting or developing a Q-table 2 in accordance with the invention also exploits introduction of information regarding reduction of the dynamic range for compression in combination with the first method described above.
- amplitude of the reduction of the dynamic range and the measure of image brightness is utilized to generate Q-table 2 to compensate for both effects/processes.
- a discrete multiplier used to generate Q-table 2 values can be the product of the gain to compensate for dynamic range reduction and a scaled function of brightness to compensate for image brightness.
- individual values of Q-table 2 or the values derived from the scaled function can be adjusted to assure that separation of close but distinct image tones can be differentiated.
- the combining effect can be achieved using products of values which may be obtained by any means that reflect the weighted sum of the effects to be compensated and the desired effects to be achieved.
- a third method, illustrated in FIG. 1C usable alone or readily combinable with either of the above processes (e.g. that of the first or second methods described above, illustrated in FIGS. 1A and 1B , or with the technique disclosed in the above-incorporated U.S. Patent is simply to determine the amount of darkening of the image of the originally captured data so as to provide a compensating offset in the DC orthogonal transform coefficients which would have the effect of providing a consistent brightening of the overall image.
- This technique also has the advantage that it can be easily and simply be implemented in software as an enhancement or perfecting feature of other implementations of the invention.
- the additional data may represent a metric derived from the statistical measurement and/or the dynamic range compression.
- the additional data may be in any form and may be the above-described histogram itself or any representative or relevant portion thereof.
- the additional data may be placed in a comment field or, preferably, following a registered application marker; both of which are provided under the JPEG standard and use thereof is detailed in chapter 7 of “JPEG Still Image Data Compression Standard by Pennebaker and Mitchell (VanNostrand Reinhold, 1993) which is hereby fully incorporated by reference. Therefore, it is possible to include data representing a metric derived from statistical measurement of the captured image data which may also include information corresponding to compression of dynamic range of the captured image data and or other incidents of darkening the image and/or compensating offsets.
- a quantization table suitable for providing compensation can be generated and/or manipulated at the will of an operator in the course of decoding and display of the image. Or at any other point in the system.
- This provides the option, for example, of readily allowing a user to manipulate enhancement of the image locally in order to be able to view, for example, obscure image features or to separate close tonal values, as illustrated in FIG. 1D .
- FIGS. 5A and 5B Regardless of the technique for selecting or deriving a more appropriate Q-table 2 when reduction of dynamic range is present in the originally captured data, the efficacy of doing so rather than using a single substituted corrective Q-table 2 is illustrated in FIGS. 5A and 5B .
- FIGS. 5A and 5B These Figures were produced identically to those of FIGS. 3D and 3C from data corresponding to FIGS. 2B and 2C , respectively.
- These images are brightened solely by the substitution of a Q-table 2 which was more appropriate to a darkened image of reduced dynamic range. The brightness is comparable to FIG. 3A and significant detail has been restored at the expense of only a slight increase in apparent graininess.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Image Processing (AREA)
- Compression Of Band Width Or Redundancy In Fax (AREA)
Abstract
Description
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/183,386 US7120303B2 (en) | 2002-06-28 | 2002-06-28 | Adaptive generation of Q-table2 for improved image quality |
US11/475,082 US7362908B2 (en) | 2002-06-28 | 2006-06-27 | Adaptive generation of Q-table2 for improved image quality |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/183,386 US7120303B2 (en) | 2002-06-28 | 2002-06-28 | Adaptive generation of Q-table2 for improved image quality |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/475,082 Continuation US7362908B2 (en) | 2002-06-28 | 2006-06-27 | Adaptive generation of Q-table2 for improved image quality |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040001637A1 US20040001637A1 (en) | 2004-01-01 |
US7120303B2 true US7120303B2 (en) | 2006-10-10 |
Family
ID=29779116
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/183,386 Expired - Lifetime US7120303B2 (en) | 2002-06-28 | 2002-06-28 | Adaptive generation of Q-table2 for improved image quality |
US11/475,082 Expired - Fee Related US7362908B2 (en) | 2002-06-28 | 2006-06-27 | Adaptive generation of Q-table2 for improved image quality |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/475,082 Expired - Fee Related US7362908B2 (en) | 2002-06-28 | 2006-06-27 | Adaptive generation of Q-table2 for improved image quality |
Country Status (1)
Country | Link |
---|---|
US (2) | US7120303B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030044076A1 (en) * | 2001-08-24 | 2003-03-06 | International Business Machines Corporation | Managing image storage size |
US20040136603A1 (en) * | 2002-07-18 | 2004-07-15 | Vitsnudel Iiia | Enhanced wide dynamic range in imaging |
US20040213478A1 (en) * | 2001-05-02 | 2004-10-28 | Vyacheslav Chesnokov | Image enhancement methods and apparatus therefor |
US20060039023A1 (en) * | 2004-08-23 | 2006-02-23 | Supra John R Jr | Method and system for commercial processing of digital image files |
US20060239567A1 (en) * | 2002-06-28 | 2006-10-26 | Mitchell Joan L | Adaptive generation of Q-table2 for improved image quality |
US20070036451A1 (en) * | 2003-03-13 | 2007-02-15 | Mitsubishi Denki Kabushiki Kaisha | Jpeg-compressed file creating method |
US8666148B2 (en) | 2010-06-03 | 2014-03-04 | Adobe Systems Incorporated | Image adjustment |
US8787659B2 (en) | 2011-09-02 | 2014-07-22 | Adobe Systems Incorporated | Automatic adaptation to image processing pipeline |
US9008415B2 (en) | 2011-09-02 | 2015-04-14 | Adobe Systems Incorporated | Automatic image adjustment parameter correction |
CN107534768A (en) * | 2015-03-02 | 2018-01-02 | 三星电子株式会社 | Method and apparatus for being compressed based on photographing information to image |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100492743B1 (en) * | 2003-04-08 | 2005-06-10 | 주식회사 마크애니 | Method for inserting and detecting watermark by a quantization of a characteristic value of a signal |
US7519714B2 (en) * | 2004-03-18 | 2009-04-14 | The Johns Hopkins University | Adaptive image format translation in an ad-hoc network |
JP4484579B2 (en) * | 2004-05-11 | 2010-06-16 | キヤノン株式会社 | Image processing apparatus and method, and program |
US7551776B2 (en) * | 2004-07-22 | 2009-06-23 | Seiko Epson Corporation | Histogram generation apparatus and method for operating the same |
US8824785B2 (en) | 2010-01-27 | 2014-09-02 | Dst Technologies, Inc. | Segregation of handwritten information from typographic information on a document |
US8533166B1 (en) * | 2010-08-20 | 2013-09-10 | Brevity Ventures LLC | Methods and systems for encoding/decoding files and transmission thereof |
KR102070622B1 (en) * | 2012-11-23 | 2020-01-29 | 삼성전자주식회사 | Method and apparatus for estimating a quantization table for a video image |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5144442A (en) | 1988-02-08 | 1992-09-01 | I Sight, Inc. | Wide dynamic range camera |
US5247366A (en) | 1989-08-02 | 1993-09-21 | I Sight Ltd. | Color wide dynamic range camera |
US5339368A (en) * | 1991-11-21 | 1994-08-16 | Unisys Corporation | Document image compression system and method |
US5426512A (en) | 1994-01-25 | 1995-06-20 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Image data compression having minimum perceptual error |
JPH0993438A (en) | 1995-09-26 | 1997-04-04 | Canon Inc | Image processor and its method |
US5850484A (en) | 1995-03-27 | 1998-12-15 | Hewlett-Packard Co. | Text and image sharpening of JPEG compressed images in the frequency domain |
EP0933924A2 (en) | 1998-01-28 | 1999-08-04 | Konica Corporation | Image processing apparatus |
US5959696A (en) | 1996-10-10 | 1999-09-28 | Samsung Electronics, Co., Ltd. | Dynamic range expanding apparatus of a video image |
US6005982A (en) | 1996-08-29 | 1999-12-21 | Asahi Kogaku Kogyo Kabushiki Kaisha | Image compression and expansion device |
US6047089A (en) | 1996-08-29 | 2000-04-04 | Asahi Kogaku Kogyo Kabushiki Kaisha | Image compression and expansion device |
WO2001063558A2 (en) | 2000-02-22 | 2001-08-30 | Visualgold.Com, Inc. | System and method for image processing |
EP1143705A2 (en) | 2000-03-24 | 2001-10-10 | E-Color, Inc. | Method and system for fast image correction |
US6539517B1 (en) * | 1999-11-09 | 2003-03-25 | Sony Corporation | Data transformation for explicit transmission of control information |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7120303B2 (en) * | 2002-06-28 | 2006-10-10 | International Business Machines Corporation | Adaptive generation of Q-table2 for improved image quality |
-
2002
- 2002-06-28 US US10/183,386 patent/US7120303B2/en not_active Expired - Lifetime
-
2006
- 2006-06-27 US US11/475,082 patent/US7362908B2/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5144442A (en) | 1988-02-08 | 1992-09-01 | I Sight, Inc. | Wide dynamic range camera |
US5247366A (en) | 1989-08-02 | 1993-09-21 | I Sight Ltd. | Color wide dynamic range camera |
US5339368A (en) * | 1991-11-21 | 1994-08-16 | Unisys Corporation | Document image compression system and method |
US5426512A (en) | 1994-01-25 | 1995-06-20 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Image data compression having minimum perceptual error |
US5850484A (en) | 1995-03-27 | 1998-12-15 | Hewlett-Packard Co. | Text and image sharpening of JPEG compressed images in the frequency domain |
JPH0993438A (en) | 1995-09-26 | 1997-04-04 | Canon Inc | Image processor and its method |
US6047089A (en) | 1996-08-29 | 2000-04-04 | Asahi Kogaku Kogyo Kabushiki Kaisha | Image compression and expansion device |
US6005982A (en) | 1996-08-29 | 1999-12-21 | Asahi Kogaku Kogyo Kabushiki Kaisha | Image compression and expansion device |
US5959696A (en) | 1996-10-10 | 1999-09-28 | Samsung Electronics, Co., Ltd. | Dynamic range expanding apparatus of a video image |
EP0933924A2 (en) | 1998-01-28 | 1999-08-04 | Konica Corporation | Image processing apparatus |
US6539517B1 (en) * | 1999-11-09 | 2003-03-25 | Sony Corporation | Data transformation for explicit transmission of control information |
WO2001063558A2 (en) | 2000-02-22 | 2001-08-30 | Visualgold.Com, Inc. | System and method for image processing |
EP1143705A2 (en) | 2000-03-24 | 2001-10-10 | E-Color, Inc. | Method and system for fast image correction |
Non-Patent Citations (1)
Title |
---|
"Automatic Image Brightness Scaling"; IBM Technical Disclosure Bulletin, vol. 23, No. 3; Aug. 1985. |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040213478A1 (en) * | 2001-05-02 | 2004-10-28 | Vyacheslav Chesnokov | Image enhancement methods and apparatus therefor |
US7302110B2 (en) * | 2001-05-02 | 2007-11-27 | Apical Ltd | Image enhancement methods and apparatus therefor |
US20030044076A1 (en) * | 2001-08-24 | 2003-03-06 | International Business Machines Corporation | Managing image storage size |
US8526751B2 (en) | 2001-08-24 | 2013-09-03 | International Business Machines Corporation | Managing image storage size |
US20060239567A1 (en) * | 2002-06-28 | 2006-10-26 | Mitchell Joan L | Adaptive generation of Q-table2 for improved image quality |
US7362908B2 (en) * | 2002-06-28 | 2008-04-22 | International Business Machines Corporation | Adaptive generation of Q-table2 for improved image quality |
US20040136603A1 (en) * | 2002-07-18 | 2004-07-15 | Vitsnudel Iiia | Enhanced wide dynamic range in imaging |
US7684645B2 (en) | 2002-07-18 | 2010-03-23 | Sightic Vista Ltd | Enhanced wide dynamic range in imaging |
US7409104B2 (en) * | 2002-07-18 | 2008-08-05 | .Sightic Vista Ltd | Enhanced wide dynamic range in imaging |
US20090040337A1 (en) * | 2002-07-18 | 2009-02-12 | Ilia Vitsnudel | Enhanced wide dynamic range in imaging |
US7599564B2 (en) * | 2003-03-13 | 2009-10-06 | Mitsubishi Electric Corporation | Jpeg-compressed file creating method |
US20070036451A1 (en) * | 2003-03-13 | 2007-02-15 | Mitsubishi Denki Kabushiki Kaisha | Jpeg-compressed file creating method |
US20060039023A1 (en) * | 2004-08-23 | 2006-02-23 | Supra John R Jr | Method and system for commercial processing of digital image files |
US8666148B2 (en) | 2010-06-03 | 2014-03-04 | Adobe Systems Incorporated | Image adjustment |
US9020243B2 (en) | 2010-06-03 | 2015-04-28 | Adobe Systems Incorporated | Image adjustment |
US9070044B2 (en) | 2010-06-03 | 2015-06-30 | Adobe Systems Incorporated | Image adjustment |
US8787659B2 (en) | 2011-09-02 | 2014-07-22 | Adobe Systems Incorporated | Automatic adaptation to image processing pipeline |
US8903169B1 (en) * | 2011-09-02 | 2014-12-02 | Adobe Systems Incorporated | Automatic adaptation to image processing pipeline |
US9008415B2 (en) | 2011-09-02 | 2015-04-14 | Adobe Systems Incorporated | Automatic image adjustment parameter correction |
US9292911B2 (en) | 2011-09-02 | 2016-03-22 | Adobe Systems Incorporated | Automatic image adjustment parameter correction |
CN107534768A (en) * | 2015-03-02 | 2018-01-02 | 三星电子株式会社 | Method and apparatus for being compressed based on photographing information to image |
US10735724B2 (en) | 2015-03-02 | 2020-08-04 | Samsung Electronics Co., Ltd | Method and device for compressing image on basis of photography information |
CN107534768B (en) * | 2015-03-02 | 2020-09-29 | 三星电子株式会社 | Method and apparatus for compressing image based on photographing information |
Also Published As
Publication number | Publication date |
---|---|
US7362908B2 (en) | 2008-04-22 |
US20060239567A1 (en) | 2006-10-26 |
US20040001637A1 (en) | 2004-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7362908B2 (en) | Adaptive generation of Q-table2 for improved image quality | |
US6606418B2 (en) | Enhanced compression of documents | |
US5432870A (en) | Method and apparatus for compressing and decompressing images of documents | |
US9401001B2 (en) | Full-color visibility model using CSF which varies spatially with local luminance | |
US5883979A (en) | Method for selecting JPEG quantization tables for low bandwidth applications | |
EP0974933B1 (en) | Adaptive video compression using variable quantization | |
US5850484A (en) | Text and image sharpening of JPEG compressed images in the frequency domain | |
KR100745429B1 (en) | Enhancing compression while transcoding jpeg images | |
US6650773B1 (en) | Method including lossless compression of luminance channel and lossy compression of chrominance channels | |
EP2003896A1 (en) | Statistical image enhancement | |
WO2008048473A2 (en) | Auxiliary information for reconstructing digital images processed through print-scan channels | |
JP2006501736A5 (en) | ||
FR2763766A1 (en) | METHOD AND DEVICE FOR IMPLEMENTING A REVERSIBLE NOISEE WAVELET SYSTEM | |
US20060103861A1 (en) | Systems and methods of embedding gamut mapping information into printed images | |
US6343152B1 (en) | Bi-level image compression by gray scale encoding | |
EP1006714A2 (en) | Method of processing mixed raster content planes | |
JP2000307879A (en) | Method and device for color image communication | |
AU2002236462A1 (en) | Enhanced compression of documents | |
Asha | Undithering using linear filtering and non-linear diffusion techniques | |
Lewis et al. | Towards copy-evident JPEG images. | |
Bansikar | Optimization of Jpeg image compression using a video quality metric | |
Ryu et al. | Resolution enhancement techniques for halftoned images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES COR, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PRAKASH, RAVI;MITCHELL, JOAN LAVERNE;REEL/FRAME:013973/0185;SIGNING DATES FROM 20030909 TO 20030911 |
|
AS | Assignment |
Owner name: INTERNAATIONAL BUSINESS MACHINES COR, NEW YORK Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE TITLE OF INVENTION, PREVIOUSLY RECORDED AT REEL 012973, FRAME 0185;ASSIGNORS:PRAKASH, RAVI;MITCHELL, JOAN LAVERNE;REEL/FRAME:013985/0461;SIGNING DATES FROM 20030909 TO 20030911 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MITCHELL, JOAN L.;PRAKASH, RAVINDER;REEL/FRAME:017533/0079;SIGNING DATES FROM 20060201 TO 20060208 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553) Year of fee payment: 12 |
|
AS | Assignment |
Owner name: AWEMANE LTD., CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:057991/0960 Effective date: 20210826 |
|
AS | Assignment |
Owner name: BEIJING PIANRUOJINGHONG TECHNOLOGY CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AWEMANE LTD.;REEL/FRAME:064501/0498 Effective date: 20230302 |
|
AS | Assignment |
Owner name: BEIJING ZITIAO NETWORK TECHNOLOGY CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BEIJING PIANRUOJINGHONG TECHNOLOGY CO., LTD.;REEL/FRAME:066565/0952 Effective date: 20231130 |