US7094532B2 - Genetic mutation underlying orthostatic intolerance and diagnostic and therapeutic methods relating thereto - Google Patents
Genetic mutation underlying orthostatic intolerance and diagnostic and therapeutic methods relating thereto Download PDFInfo
- Publication number
- US7094532B2 US7094532B2 US09/750,609 US75060900A US7094532B2 US 7094532 B2 US7094532 B2 US 7094532B2 US 75060900 A US75060900 A US 75060900A US 7094532 B2 US7094532 B2 US 7094532B2
- Authority
- US
- United States
- Prior art keywords
- transporter
- subject
- polymorphism
- nucleic acid
- norepinephrine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 208000004056 Orthostatic intolerance Diseases 0.000 title claims abstract description 38
- 230000035772 mutation Effects 0.000 title description 38
- 238000002405 diagnostic procedure Methods 0.000 title description 7
- 238000002560 therapeutic procedure Methods 0.000 title description 4
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 claims abstract description 436
- SFLSHLFXELFNJZ-UHFFFAOYSA-N norepinephrine Natural products NCC(O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-UHFFFAOYSA-N 0.000 claims abstract description 436
- 229960002748 norepinephrine Drugs 0.000 claims abstract description 434
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 157
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 150
- 241000282414 Homo sapiens Species 0.000 claims abstract description 29
- 108010078791 Carrier Proteins Proteins 0.000 claims description 251
- 238000000034 method Methods 0.000 claims description 134
- 229920001184 polypeptide Polymers 0.000 claims description 134
- 150000007523 nucleic acids Chemical class 0.000 claims description 99
- 108010049586 Norepinephrine Plasma Membrane Transport Proteins Proteins 0.000 claims description 84
- 102000008092 Norepinephrine Plasma Membrane Transport Proteins Human genes 0.000 claims description 80
- 102000039446 nucleic acids Human genes 0.000 claims description 72
- 108020004707 nucleic acids Proteins 0.000 claims description 72
- 239000000523 sample Substances 0.000 claims description 65
- 239000002773 nucleotide Substances 0.000 claims description 53
- 125000003729 nucleotide group Chemical group 0.000 claims description 53
- 150000001413 amino acids Chemical class 0.000 claims description 41
- 108091034117 Oligonucleotide Proteins 0.000 claims description 36
- 239000003153 chemical reaction reagent Substances 0.000 claims description 34
- 239000012472 biological sample Substances 0.000 claims description 32
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 27
- 230000003321 amplification Effects 0.000 claims description 27
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 27
- 230000003247 decreasing effect Effects 0.000 claims description 21
- 230000008859 change Effects 0.000 claims description 12
- 238000012216 screening Methods 0.000 claims description 12
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims description 11
- 238000012163 sequencing technique Methods 0.000 claims description 8
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 claims description 6
- 229960002685 biotin Drugs 0.000 claims description 3
- 235000020958 biotin Nutrition 0.000 claims description 3
- 239000011616 biotin Substances 0.000 claims description 3
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 claims description 2
- 102000040430 polynucleotide Human genes 0.000 abstract description 61
- 108091033319 polynucleotide Proteins 0.000 abstract description 61
- 239000002157 polynucleotide Substances 0.000 abstract description 61
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 19
- 238000004458 analytical method Methods 0.000 abstract description 14
- 239000002299 complementary DNA Substances 0.000 abstract description 13
- 230000006735 deficit Effects 0.000 abstract description 12
- 108020004999 messenger RNA Proteins 0.000 abstract description 6
- 230000001225 therapeutic effect Effects 0.000 abstract description 3
- 108020004414 DNA Proteins 0.000 description 107
- 210000004027 cell Anatomy 0.000 description 107
- 108090000623 proteins and genes Proteins 0.000 description 81
- 102000004169 proteins and genes Human genes 0.000 description 52
- 239000013615 primer Substances 0.000 description 49
- 239000013598 vector Substances 0.000 description 49
- 235000018102 proteins Nutrition 0.000 description 46
- 235000001014 amino acid Nutrition 0.000 description 43
- 229940024606 amino acid Drugs 0.000 description 41
- 108091028043 Nucleic acid sequence Proteins 0.000 description 40
- DZGWFCGJZKJUFP-UHFFFAOYSA-N tyramine Chemical compound NCCC1=CC=C(O)C=C1 DZGWFCGJZKJUFP-UHFFFAOYSA-N 0.000 description 38
- 239000000047 product Substances 0.000 description 34
- 230000000694 effects Effects 0.000 description 32
- 230000000295 complement effect Effects 0.000 description 31
- 230000006870 function Effects 0.000 description 30
- 108700028369 Alleles Proteins 0.000 description 26
- 210000001519 tissue Anatomy 0.000 description 24
- 239000012634 fragment Substances 0.000 description 23
- 101000639975 Homo sapiens Sodium-dependent noradrenaline transporter Proteins 0.000 description 22
- 230000036772 blood pressure Effects 0.000 description 22
- 230000001771 impaired effect Effects 0.000 description 22
- 238000009396 hybridization Methods 0.000 description 21
- 102000004190 Enzymes Human genes 0.000 description 20
- 108090000790 Enzymes Proteins 0.000 description 20
- 230000004087 circulation Effects 0.000 description 20
- 102000055827 human SLC6A2 Human genes 0.000 description 20
- 238000012360 testing method Methods 0.000 description 20
- 230000027455 binding Effects 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 19
- 238000001514 detection method Methods 0.000 description 19
- 239000000203 mixture Substances 0.000 description 19
- 229960003732 tyramine Drugs 0.000 description 19
- 230000004071 biological effect Effects 0.000 description 18
- 150000003943 catecholamines Chemical class 0.000 description 18
- 108091026890 Coding region Proteins 0.000 description 17
- 239000000427 antigen Substances 0.000 description 17
- 239000003795 chemical substances by application Substances 0.000 description 17
- 238000002360 preparation method Methods 0.000 description 17
- 241001465754 Metazoa Species 0.000 description 16
- 108091007433 antigens Proteins 0.000 description 16
- 102000036639 antigens Human genes 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 16
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 15
- 108020004705 Codon Proteins 0.000 description 15
- 230000007812 deficiency Effects 0.000 description 15
- 206010035226 Plasma cell myeloma Diseases 0.000 description 14
- 201000000050 myeloid neoplasm Diseases 0.000 description 14
- 238000003752 polymerase chain reaction Methods 0.000 description 14
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 13
- 241000699666 Mus <mouse, genus> Species 0.000 description 13
- 235000004279 alanine Nutrition 0.000 description 13
- 238000003556 assay Methods 0.000 description 13
- 230000002068 genetic effect Effects 0.000 description 13
- 230000003612 virological effect Effects 0.000 description 13
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 12
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 12
- 208000035475 disorder Diseases 0.000 description 12
- 238000006467 substitution reaction Methods 0.000 description 12
- 238000003786 synthesis reaction Methods 0.000 description 12
- YNYAYWLBAHXHLL-UHFFFAOYSA-N Normetanephrine Chemical compound COC1=CC(C(O)CN)=CC=C1O YNYAYWLBAHXHLL-UHFFFAOYSA-N 0.000 description 11
- YNYAYWLBAHXHLL-MRVPVSSYSA-N Normetanephrine Natural products COC1=CC([C@H](O)CN)=CC=C1O YNYAYWLBAHXHLL-MRVPVSSYSA-N 0.000 description 11
- 210000004369 blood Anatomy 0.000 description 11
- 239000008280 blood Substances 0.000 description 11
- 210000004408 hybridoma Anatomy 0.000 description 11
- 210000002569 neuron Anatomy 0.000 description 11
- 239000007787 solid Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- JWJCTZKFYGDABJ-UHFFFAOYSA-N Metanephrine Chemical compound CNCC(O)C1=CC=C(O)C(OC)=C1 JWJCTZKFYGDABJ-UHFFFAOYSA-N 0.000 description 10
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 10
- 230000004075 alteration Effects 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 230000036544 posture Effects 0.000 description 10
- 230000002889 sympathetic effect Effects 0.000 description 10
- 208000024891 symptom Diseases 0.000 description 10
- 230000000946 synaptic effect Effects 0.000 description 10
- 102000053602 DNA Human genes 0.000 description 9
- 239000003155 DNA primer Substances 0.000 description 9
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 9
- 102000010909 Monoamine Oxidase Human genes 0.000 description 9
- 108010062431 Monoamine oxidase Proteins 0.000 description 9
- 241000700159 Rattus Species 0.000 description 9
- 239000002671 adjuvant Substances 0.000 description 9
- 239000013604 expression vector Substances 0.000 description 9
- 238000002741 site-directed mutagenesis Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 230000009261 transgenic effect Effects 0.000 description 9
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 8
- 241000700605 Viruses Species 0.000 description 8
- 239000000872 buffer Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 230000005574 cross-species transmission Effects 0.000 description 8
- 239000003623 enhancer Substances 0.000 description 8
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 239000013612 plasmid Substances 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 231100000419 toxicity Toxicity 0.000 description 8
- 230000001988 toxicity Effects 0.000 description 8
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 7
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 7
- 208000001871 Tachycardia Diseases 0.000 description 7
- 238000003149 assay kit Methods 0.000 description 7
- 238000001415 gene therapy Methods 0.000 description 7
- 230000001404 mediated effect Effects 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000002746 orthostatic effect Effects 0.000 description 7
- 241000894007 species Species 0.000 description 7
- 210000000952 spleen Anatomy 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 230000009885 systemic effect Effects 0.000 description 7
- 230000006794 tachycardia Effects 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- TVZGACDUOSZQKY-LBPRGKRZSA-N 4-aminofolic acid Chemical compound C1=NC2=NC(N)=NC(N)=C2N=C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 TVZGACDUOSZQKY-LBPRGKRZSA-N 0.000 description 6
- 239000004475 Arginine Substances 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 6
- 108700024394 Exon Proteins 0.000 description 6
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 6
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 6
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 6
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 6
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 6
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 6
- 238000007792 addition Methods 0.000 description 6
- 229960003896 aminopterin Drugs 0.000 description 6
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 6
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 6
- 230000009260 cross reactivity Effects 0.000 description 6
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 6
- 238000010790 dilution Methods 0.000 description 6
- 239000012895 dilution Substances 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000002163 immunogen Effects 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- -1 proline amino acid Chemical class 0.000 description 6
- 230000002285 radioactive effect Effects 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 238000007423 screening assay Methods 0.000 description 6
- 208000011580 syndromic disease Diseases 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 239000003981 vehicle Substances 0.000 description 6
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 5
- 229930182837 (R)-adrenaline Natural products 0.000 description 5
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 5
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 5
- 239000004471 Glycine Substances 0.000 description 5
- 206010020772 Hypertension Diseases 0.000 description 5
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 5
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 5
- 239000004472 Lysine Substances 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 5
- 206010063080 Postural orthostatic tachycardia syndrome Diseases 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 108700009124 Transcription Initiation Site Proteins 0.000 description 5
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 5
- 230000002567 autonomic effect Effects 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 229960005139 epinephrine Drugs 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 5
- 238000007834 ligase chain reaction Methods 0.000 description 5
- 230000004060 metabolic process Effects 0.000 description 5
- 230000009250 muscle sympathetic nerve activity Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000008194 pharmaceutical composition Substances 0.000 description 5
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 5
- 102000054765 polymorphisms of proteins Human genes 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 230000010076 replication Effects 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 206010042772 syncope Diseases 0.000 description 5
- 230000035488 systolic blood pressure Effects 0.000 description 5
- 230000002103 transcriptional effect Effects 0.000 description 5
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 5
- AGNGYMCLFWQVGX-AGFFZDDWSA-N (e)-1-[(2s)-2-amino-2-carboxyethoxy]-2-diazonioethenolate Chemical compound OC(=O)[C@@H](N)CO\C([O-])=C\[N+]#N AGNGYMCLFWQVGX-AGFFZDDWSA-N 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 4
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 4
- 108010017826 DNA Polymerase I Proteins 0.000 description 4
- 102000004594 DNA Polymerase I Human genes 0.000 description 4
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 4
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 4
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 4
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 4
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000001042 affinity chromatography Methods 0.000 description 4
- YEESUBCSWGVPCE-UHFFFAOYSA-N azanylidyneoxidanium iron(2+) pentacyanide Chemical compound [Fe++].[C-]#N.[C-]#N.[C-]#N.[C-]#N.[C-]#N.N#[O+] YEESUBCSWGVPCE-UHFFFAOYSA-N 0.000 description 4
- 229950011321 azaserine Drugs 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 238000012258 culturing Methods 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 4
- 210000002064 heart cell Anatomy 0.000 description 4
- 230000003053 immunization Effects 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 238000001802 infusion Methods 0.000 description 4
- 230000002452 interceptive effect Effects 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 4
- 229960000485 methotrexate Drugs 0.000 description 4
- 229960002460 nitroprusside Drugs 0.000 description 4
- 230000000966 norepinephrine reuptake Effects 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 238000011830 transgenic mouse model Methods 0.000 description 4
- 230000002485 urinary effect Effects 0.000 description 4
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 3
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 3
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 3
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 3
- 102000006378 Catechol O-methyltransferase Human genes 0.000 description 3
- 108020002739 Catechol O-methyltransferase Proteins 0.000 description 3
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 3
- 102100031780 Endonuclease Human genes 0.000 description 3
- 108091027305 Heteroduplex Proteins 0.000 description 3
- 206010021137 Hypovolaemia Diseases 0.000 description 3
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 3
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 3
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 3
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 3
- 208000003430 Mitral Valve Prolapse Diseases 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 241000699660 Mus musculus Species 0.000 description 3
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 3
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 3
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 3
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 3
- 239000004473 Threonine Substances 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 229960001230 asparagine Drugs 0.000 description 3
- 235000009582 asparagine Nutrition 0.000 description 3
- 230000001363 autoimmune Effects 0.000 description 3
- 230000035581 baroreflex Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 3
- 229960003920 cocaine Drugs 0.000 description 3
- 235000018417 cysteine Nutrition 0.000 description 3
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 3
- 229940104302 cytosine Drugs 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 229940029575 guanosine Drugs 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 230000005847 immunogenicity Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 229960000310 isoleucine Drugs 0.000 description 3
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 3
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 3
- 239000006193 liquid solution Substances 0.000 description 3
- 108010026228 mRNA guanylyltransferase Proteins 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000002207 metabolite Substances 0.000 description 3
- 229930182817 methionine Natural products 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 230000001537 neural effect Effects 0.000 description 3
- 230000002474 noradrenergic effect Effects 0.000 description 3
- 239000002853 nucleic acid probe Substances 0.000 description 3
- 239000002751 oligonucleotide probe Substances 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 230000036470 plasma concentration Effects 0.000 description 3
- 230000008488 polyadenylation Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000001177 retroviral effect Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 210000001679 solitary nucleus Anatomy 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 230000008700 sympathetic activation Effects 0.000 description 3
- 210000000225 synapse Anatomy 0.000 description 3
- 229940104230 thymidine Drugs 0.000 description 3
- 239000004474 valine Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- 108091035707 Consensus sequence Proteins 0.000 description 2
- 241000699802 Cricetulus griseus Species 0.000 description 2
- 238000007400 DNA extraction Methods 0.000 description 2
- 238000001712 DNA sequencing Methods 0.000 description 2
- 238000009007 Diagnostic Kit Methods 0.000 description 2
- 206010013654 Drug abuse Diseases 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000633984 Homo sapiens Influenza virus NS1A-binding protein Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 102100029241 Influenza virus NS1A-binding protein Human genes 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- 241000220317 Rosa Species 0.000 description 2
- 108010071390 Serum Albumin Proteins 0.000 description 2
- 102000007562 Serum Albumin Human genes 0.000 description 2
- 208000033042 Somatoform disorder cardiovascular Diseases 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 239000000935 antidepressant agent Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229940009098 aspartate Drugs 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000001447 compensatory effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000035487 diastolic blood pressure Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 206010016256 fatigue Diseases 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- 238000010230 functional analysis Methods 0.000 description 2
- 230000009395 genetic defect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 230000002440 hepatic effect Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 208000009157 neurocirculatory asthenia Diseases 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 150000002871 norepinephrines Chemical class 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000007310 pathophysiology Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 230000035479 physiological effects, processes and functions Effects 0.000 description 2
- 230000006461 physiological response Effects 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 230000001144 postural effect Effects 0.000 description 2
- 239000002987 primer (paints) Substances 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 239000003368 psychostimulant agent Substances 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 239000001226 triphosphate Substances 0.000 description 2
- 235000011178 triphosphate Nutrition 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- 239000003656 tris buffered saline Substances 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- 229930182836 (R)-noradrenaline Natural products 0.000 description 1
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QEYONPKSDTUPAX-UHFFFAOYSA-N 4-bromo-2-chloro-6-fluorophenol Chemical compound OC1=C(F)C=C(Br)C=C1Cl QEYONPKSDTUPAX-UHFFFAOYSA-N 0.000 description 1
- HWQQCFPHXPNXHC-UHFFFAOYSA-N 6-[(4,6-dichloro-1,3,5-triazin-2-yl)amino]-3',6'-dihydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound C=1C(O)=CC=C2C=1OC1=CC(O)=CC=C1C2(C1=CC=2)OC(=O)C1=CC=2NC1=NC(Cl)=NC(Cl)=N1 HWQQCFPHXPNXHC-UHFFFAOYSA-N 0.000 description 1
- VHTUHGNVVZPWGO-UHFFFAOYSA-N 7-(2-hydroxyethyl)-1,3-dimethyl-8-(pyridin-3-ylmethyl)purine-2,6-dione Chemical compound OCCN1C=2C(=O)N(C)C(=O)N(C)C=2N=C1CC1=CC=CN=C1 VHTUHGNVVZPWGO-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 102000013563 Acid Phosphatase Human genes 0.000 description 1
- 108010051457 Acid Phosphatase Proteins 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical class NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 201000004384 Alopecia Diseases 0.000 description 1
- 208000029197 Amphetamine-Related disease Diseases 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 206010003840 Autonomic nervous system imbalance Diseases 0.000 description 1
- 206010061666 Autonomic neuropathy Diseases 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 101000639976 Bos taurus Sodium-dependent noradrenaline transporter Proteins 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 101100293607 Caenorhabditis elegans nas-9 gene Proteins 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 206010008874 Chronic Fatigue Syndrome Diseases 0.000 description 1
- 208000022497 Cocaine-Related disease Diseases 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 238000007399 DNA isolation Methods 0.000 description 1
- 230000033616 DNA repair Effects 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 241001524679 Escherichia virus M13 Species 0.000 description 1
- 102000008857 Ferritin Human genes 0.000 description 1
- 108050000784 Ferritin Proteins 0.000 description 1
- 238000008416 Ferritin Methods 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 241000701109 Human adenovirus 2 Species 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 101000829171 Hypocrea virens (strain Gv29-8 / FGSC 10586) Effector TSP1 Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 206010027727 Mitral valve incompetence Diseases 0.000 description 1
- 208000001089 Multiple system atrophy Diseases 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- 208000000112 Myalgia Diseases 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- RFMMMVDNIPUKGG-YFKPBYRVSA-N N-acetyl-L-glutamic acid Chemical compound CC(=O)N[C@H](C(O)=O)CCC(O)=O RFMMMVDNIPUKGG-YFKPBYRVSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 102000005665 Neurotransmitter Transport Proteins Human genes 0.000 description 1
- 108010084810 Neurotransmitter Transport Proteins Proteins 0.000 description 1
- 108091005461 Nucleic proteins Chemical group 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 206010031127 Orthostatic hypotension Diseases 0.000 description 1
- 108010058846 Ovalbumin Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 206010033557 Palpitations Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 108010010677 Phosphodiesterase I Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 102000009572 RNA Polymerase II Human genes 0.000 description 1
- 108010009460 RNA Polymerase II Proteins 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 102100034333 Synaptic vesicular amine transporter Human genes 0.000 description 1
- 101710164184 Synaptic vesicular amine transporter Proteins 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- 108700026226 TATA Box Proteins 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 102000012607 Thrombomodulin Human genes 0.000 description 1
- 108010079274 Thrombomodulin Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 229940123445 Tricyclic antidepressant Drugs 0.000 description 1
- 108010046334 Urease Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 206010046865 Vaccinia virus infection Diseases 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- CTCBPRXHVPZNHB-VQFZJOCSSA-N [[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate;(2r,3r,4s,5r)-2-(6-aminopurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O.C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O CTCBPRXHVPZNHB-VQFZJOCSSA-N 0.000 description 1
- SWPYNTWPIAZGLT-UHFFFAOYSA-N [amino(ethoxy)phosphanyl]oxyethane Chemical class CCOP(N)OCC SWPYNTWPIAZGLT-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000001800 adrenalinergic effect Effects 0.000 description 1
- 210000002934 adrenergic neuron Anatomy 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 230000001270 agonistic effect Effects 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 231100000360 alopecia Toxicity 0.000 description 1
- CJCSPKMFHVPWAR-JTQLQIEISA-N alpha-methyl-L-dopa Chemical compound OC(=O)[C@](N)(C)CC1=CC=C(O)C(O)=C1 CJCSPKMFHVPWAR-JTQLQIEISA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 201000002472 amphetamine abuse Diseases 0.000 description 1
- 238000001949 anaesthesia Methods 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000001430 anti-depressive effect Effects 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000006472 autoimmune response Effects 0.000 description 1
- 230000037424 autonomic function Effects 0.000 description 1
- 230000009910 autonomic response Effects 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 1
- 239000002876 beta blocker Substances 0.000 description 1
- 229940097320 beta blocking agent Drugs 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000010876 biochemical test Methods 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 239000003618 borate buffered saline Substances 0.000 description 1
- 210000002302 brachial artery Anatomy 0.000 description 1
- 235000021152 breakfast Nutrition 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 208000035850 clinical syndrome Diseases 0.000 description 1
- 201000001272 cocaine abuse Diseases 0.000 description 1
- 231100000026 common toxicity Toxicity 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 230000000093 cytochemical effect Effects 0.000 description 1
- 238000007822 cytometric assay Methods 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 1
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 1
- 230000003412 degenerative effect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000002638 denervation Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000013024 dilution buffer Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 208000019479 dysautonomia Diseases 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000003191 femoral vein Anatomy 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- AAXVEMMRQDVLJB-BULBTXNYSA-N fludrocortisone Chemical compound O=C1CC[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 AAXVEMMRQDVLJB-BULBTXNYSA-N 0.000 description 1
- 229960002011 fludrocortisone Drugs 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 238000003205 genotyping method Methods 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000002527 hyperadrenergic effect Effects 0.000 description 1
- 230000009610 hypersensitivity Effects 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 229940127121 immunoconjugate Drugs 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 229940102213 injectable suspension Drugs 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 210000002977 intracellular fluid Anatomy 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000003447 ipsilateral effect Effects 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 208000013433 lightheadedness Diseases 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003471 mutagenic agent Substances 0.000 description 1
- 208000029766 myalgic encephalomeyelitis/chronic fatigue syndrome Diseases 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 230000008035 nerve activity Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000012154 norepinephrine uptake Effects 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 238000011580 nude mouse model Methods 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229940092253 ovalbumin Drugs 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 125000001151 peptidyl group Chemical group 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 238000013186 photoplethysmography Methods 0.000 description 1
- 230000009894 physiological stress Effects 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 230000001242 postsynaptic effect Effects 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 230000003518 presynaptic effect Effects 0.000 description 1
- 208000018290 primary dysautonomia Diseases 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 230000006825 purine synthesis Effects 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 239000002510 pyrogen Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- SIIICDNNMDMWCI-YJNKXOJESA-N rti-55 Chemical compound C1([C@H]2C[C@@H]3CC[C@@H](N3C)[C@H]2C(=O)OC)=CC=C(I)C=C1 SIIICDNNMDMWCI-YJNKXOJESA-N 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000037432 silent mutation Effects 0.000 description 1
- 238000012868 site-directed mutagenesis technique Methods 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000011272 standard treatment Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000011476 stem cell transplantation Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 201000009032 substance abuse Diseases 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 210000002504 synaptic vesicle Anatomy 0.000 description 1
- 230000001839 systemic circulation Effects 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- JGVWCANSWKRBCS-UHFFFAOYSA-N tetramethylrhodamine thiocyanate Chemical compound [Cl-].C=12C=CC(N(C)C)=CC2=[O+]C2=CC(N(C)C)=CC=C2C=1C1=CC=C(SC#N)C=C1C(O)=O JGVWCANSWKRBCS-UHFFFAOYSA-N 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 102000040811 transporter activity Human genes 0.000 description 1
- 108091092194 transporter activity Proteins 0.000 description 1
- 239000003029 tricyclic antidepressant agent Substances 0.000 description 1
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 238000002562 urinalysis Methods 0.000 description 1
- 208000007089 vaccinia Diseases 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000006442 vascular tone Effects 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Definitions
- the present invention relates to isolated polynucleotide molecules useful for analyzing novel norepinephrine (NE) transporter variants, to peptides encoded by these molecules, and to the diagnostic and therapeutic uses thereof relating to a newly identified NE transporter polymorphism.
- NE norepinephrine
- diagnostic and therapeutic uses thereof relating to a newly identified NE transporter polymorphism.
- methods for determining the susceptibility of a subject to orthostatic intolerance based on an analysis of a biological sample from the subject.
- Orthostatic intolerance is a syndrome characterized by adrenergic symptoms brought on by upright posture. Usually, there is a heart rate increase of at least 30 bpm on standing without significant orthostatic hypotension. Jacob et al., Circulation (1997). Females are disproportionately affected and patients usually present in the second to fourth decade of life. Low et al., Neurology (1995). This dysautonomic syndrome is quite common and may have been first described as Da Costa's syndrome more than 100 years ago. Jordan et al., Chin J. Physiol (1997); Novak et al., J Aut N Syst (1996); Streeten, Orthostatic Disorders of the Circulation: Mechanisms, Manifestations and Treatment (1987).
- POTS postural tachycardia syndrome
- NET presynaptic norepinephrine transporter
- a method of screening for sub-optimal NE transporter-mediated physiological responses function in a subject comprises: (a) obtaining a biological sample from the subject; and (b) detecting a polymorphism of a NE transporter gene in the biological sample from the subject, the presence of the polymorphism indicating that the susceptibility of the subject to sub-optimal NET-mediated physiological responses.
- detection of the polymorphism is employed with respect to determining the susceptibility of a subject to orthostatic intolerance (OI).
- the polymorphism of the NE transporter polypeptide comprises a G to C transversion in exon 9 of the NE transporter gene.
- the G to C transversion further comprises a change in the triplet code from GCA/GCC/GCG/GCU to CCA/CCC/CCG/CCU, which encodes a NE transporter polypeptide having a proline moiety at amino acid residue 457 instead of an alanine moiety.
- Kits and reagents including oligonucleotides, nucleic acid probes and antibodies suitable for use in carrying out the methods of the present invention and for use in detecting the polypeptides and polynucleotides of the present invention are also disclosed herein. Methods for preparing the polynucleotides and polypeptides of the present invention are also disclosed herein.
- this invention pertains to diagnostic methods based upon a polymorphism of a NE transporter gene as described herein. Such diagnostic methods include detection of NE transporter deficiencies and disorders related thereto based upon a comparison of NE transporter function related data to data observed in patients having the NE transporter polymorphism disclosed here.
- It is yet a further object of the present invention is to provide methods for diagnosing clinical syndromes related to and associated with the NE transporter polymorphism and/or sub-optimal NE transporter function.
- FIGS. 1A–1C depict continuous blood pressure (BP) and heart rate (HR) recordings.
- Beat-by-beat BP as determined by photoplethysmography and continuous HR recording illustrates spontaneous excursions of up to 50 mmHg and 25 bpm respectively in the proband ( FIG. 1A ) and her identical twin ( FIG. 1B ). With tilt ( FIG. 1C ), BP and HR volatility is intensified.
- FIGS. 2A–2F depict evaluation of norepinephrine transporter (NET) mutation.
- DNA sequencing FIG. 2A
- FIG. 2B shows the position of the A457P mutation within NET. This mutation occurs in transmembrane domain 9 which is highly conserved among the related murine and bovine NETs and the frog epinephrine transporter (fET) as seen in FIG. 2C .
- FIG. 2A DNA sequencing
- FIG. 2A DNA sequencing identified the presence of both C and G nucleotides (arrows) in both the sense and antisense DNA indicating heterozygosity at this locus.
- This C to G nucleotide change results in an alanine to proline change in amino acid 457 (A457P).
- FIG. 2B shows the position of the A457P mutation within NET. This mutation occurs in transmembrane domain 9 which is highly conserved among the related murine and bovine NETs and the frog epinephrine
- FIGS. 2E and 2F evaluated the presence of the mutant (P) and wild type (A) alleles within the family of the OI proband (arrow).
- FIGS. 3A–3F depict supine and upright heart rate and plasma catecholamines in the proband's family.
- Supine HR ( FIG. 3A ) was similar in AA and AP individuals.
- Upright HR ( FIG. 3B ) and NE ( FIG. 3D ) were significantly greater in AP family members than in AA individuals.
- Supine NE ( FIG. 3C ) trended toward higher values in AP individuals but did not reach statistical significance.
- FIG. 4A is a schematic depicting neuronal metabolism of norepinephrine (NE) in normal conditions.
- FIG. 4B is a schematic depicting neuronal metabolism of norepinephrine (NE) in NET deficiency conditions.
- Orthostatic intolerance is a common syndrome characterized by lightheadedness, palpitations, fatigue, altered mentation, and a syncope and is often accompanied by postural tachycardia and elevated plasma norepinephrine. Previous studies suggest that heart rate and plasma norepinephrine are elevated out of proportion to increase in sympathetic outflow.
- the cocaine and antidepressant sensitive L-norepinephrine transporter (NET) is responsible for synaptic norepinephrine inactivation.
- NE As shown in FIG. 4B , release of NE into the synaptic space is unaffected (e). Because of decreased NET activity, less than 80% of the synapic NE is taken up into the neuron by NET and the spillover into the circulation is greater than 20%. Also because of decreased NET activity, NE has greater opportunity for interaction with adrenoreceptors (f). Because the reuptake of NE is decreased, DHPG production is decreased (g). Lower DHPG concentration in the neuron results in lower DHPG concentrations in the plasma and, subsequently, a reduced plasma DHPG/NE ration (h).
- NET function might contribute to the pathophysiology of OI, using a battery of bedside physiological, pharmacological, biochemical, and molecular biological tests was tested.
- the present co-inventors found disproportionately elevated plasma norepinephrine with standing, impaired systemic clearance of infused titrated norepinephrine, impaired tyramine responsiveness, and a dissociation between plasma norepinephrine and DHPG elevation.
- SCL6A2 referred to herein as the “NE transporter” or “NET” revealed the proband to be a heterozygote for an inactivating coding mutation in exon 9.
- the present invention pertains to the first identification of a specific genetic defect in OI and to the first identification of a disease linked to a coding alteration in a Na+/Cl ⁇ dependent neurotransmitter transporter.
- the present invention also pertains to the discovery that genetic or acquired deficits in norepinephrine inactivation underlie hyperadrenergic states leading to orthostatic intolerance.
- the transport polypeptide that plays a role in norepinephrine reuptake at the synaptic cleft, among other in vivo roles.
- the polymorphism is characterized by an amino acid substitution, alanine/proline at amino acid 457 in the encoded NE transporter polypeptide.
- a single nucleotide change in the NE transporter gene is responsible for the functional polymorphism of the NE transporter.
- a G to C transversion with exon 9 of the NE transporter gene leads to an A457P change in the encoded NE transporter polypeptide.
- Nucleic acid molecules utilized in these contexts may be amplified, as described below, and generally include RNA, genomic DNA and cDNA derived from RNA.
- a method of screening for susceptibility to sub-optimal norepinephrine (NE) transport function resulting in decreased NE clearance in a subject comprising the steps of: (a) obtaining a nucleic acid sample from the subject; and (b) detecting a polymorphism of a norepinephrine transporter (“NE transporter” or “NET”) gene in the nucleic acid sample from the subject, the presence of the polymorphism indicating that the susceptibility of the subject to sub-optimal NE transport function, which results in decreased NE transport.
- detection of the polymorphism is particularly provided with respect to determining the susceptibility of a subject to orthostatic intolerance (OI).
- polymorphism refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population.
- a polymorphic marker is the locus at which divergence occurs. Preferred markers have at least two alleles, each occurring at frequency of greater than 1%.
- a polymorphic locus may be as small as one base pair.
- Useful nucleic acid molecules according to the present invention include those which will specifically hybridize to NE transporter sequences in the region of the G to C transversion at base 237 within exon 9 (GenBank Accession No. x91127, SEQ ID NO:15) of the NE transporter gene, changing the triplet code from GCA or GCC or GCG or GCU to CCA or CCC or CCG or CCU.
- This transversion leads to the A457P change in the encoded NE transporter polypeptide.
- these are at least about 20 nucleotides in length and have the nucleotide sequence corresponding to the region of the G to C transversion in a cDNA (e.g.
- SEQ ID NO:3 encoding a NE transporter polypeptide and including exon 9 of the NE transporter gene.
- the cDNA sequence set forth in SEQ ID NO:1 is referred to herein as a NE transporter “consensus sequence”.
- the term “consensus sequence”, as used herein, is meant to refer to a nucleic acid or protein sequence for NET, the nucleic or amino acids of which are known to occur with high frequency in a population of individuals who carry the gene which codes for a normally functioning protein, or which nucleic acid itself has normal function.
- nucleic acid molecules can be labeled according to any technique known in the art, such as with radiolabels, fluorescent labels, enzymatic labels, sequence tags, etc.
- the nucleic acid molecules contain the G to C transversion of exon 9.
- Such molecules can be used as allele-specific oligonucleotide probes to track a particular mutation, for example, through a family of subjects.
- Body samples can be tested to determine whether the NE transporter gene contains the G to C transversion of exon 9.
- Suitable body samples for testing include those comprising DNA, RNA or protein obtained from biopsies, including liver and intestinal tissue biopsies; or from blood, prenatal; or embryonic tissues, for example.
- a pair of isolated oligonucleotide primers are provided: RB655 (SEQ ID NO:32) and RB667(SEQ ID NO:33). These primers are derived from NE transporter exon 9 (the location of the polymorphism of the present invention), and amplify a yield a 448 base pair (bp) product. Other primers are also derived from NE transporter exon 9 (the location of the polymorphism of the present invention, GenBank Accession No. x91127, SEQ ID NO:15). The oligonucleotide primers are useful in diagnosis of a subject at risk for impaired or sub-optimal NET function and orthostatic intolerance. The primers direct amplification of a target polynucleotide prior to sequencing. These unique NE transporter exon 9 oligonucleotide primers were designed and produced based upon identification of the G to C transversion in exon 9.
- isolated allele specific oligonucleotides e.g. SEQ ID NOS: 9 & 10. Sequences substantially similar thereto are also provided in accordance with the present invention.
- the allele specific oligonucleotides are useful in diagnosis of a subject at risk for impaired or sub-optimal NET function.
- These unique NE transporter exon 9 oligonucleotide primers were designed and produced based upon identification of the G to C transversion in exon 9.
- substantially complementary to refers to sequences which hybridize to the sequences provided (e.g. SEQ ID NOs: 9 and 10) under stringent conditions and/or sequences having sufficient homology with any of SEQ ID NOs: 9 and 10, such that the allele specific oligonucleotides of the invention hybridize to the sequence.
- isolated includes oligonucleotides substantially free of other nucleic acids, proteins, lipids, carbohydrates or other materials with which they may be associated, such association being either in cellular material or in a synthesis medium.
- target polynucleotide or “target nucleic acid” refers to the nucleic acid sequence of interest e.g., a NE transporter-encoding polynucleotide.
- Other primers which can be used for primer hybridization are readily ascertainable to those of skill in the art based upon the disclosure herein of the NE transporter polymorphism.
- the primers of the invention embrace oligonucleotides of sufficient length and appropriate sequence so as to provide initiation of polymerization on a significant number of nucleic acids in the polymorphic locus (See FIG. 2 ).
- the term “primer” as used herein refers to a sequence comprising two or more deoxyribonucleotides or ribonucleotides, preferably more than three, and more preferably more than eight and most preferably at least about 20 nucleotides of the NE transporter gene wherein the DNA sequence contains the G to C transversion within to NE transporter exon 9.
- the allele including guanosine (G) within NE transporter exon 9 is referred to herein as the “NET-a allele”, the “A457 allele”, or the “alanine-encoding allele”.
- the allele including cytosine (C) within NE transporter exon 9 is referred to herein as the “NET-b allele”, the “P457 allele”, or the “proline-encoding allele”.
- An oligonucleotide that distinguishes between the NET-a and the NET-b alleles of the NE transporter gene, wherein the oligonucleotide hybridizes to a portion of the NE transporter gene that includes nucleotide 237 of exon 9 of the NE transporter gene when the nucleotide 237 is cytosine, but does not hybridize with the portion of the NE transporter gene when the nucleotide 237 is guanosine is also provided in accordance with the present invention.
- An oligonucleotide that distinguishes between the NET-a and the NET-b alleles of the NE transporter gene, wherein the oligonucleotide hybridizes to a portion of the NE transporter gene that includes nucleotide 237 of exon 9 of the NE transporter gene when the nucleotide 237 is guanosine, but does not hybridize with the portion of the NE transporter gene when the nucleotide 237 is cytosine is also provided in accordance with the present invention.
- Such oligonucleotides are preferably between ten and thirty bases in length.
- Such oligonucleotides can optionally further comprise a detectable label.
- Environmental conditions conducive to synthesis include the presence of nucleoside triphosphates and an agent for polymerization, such as DNA polymerase, and a suitable temperature and pH.
- the primer is preferably single stranded for maximum efficiency in amplification, but can be double stranded. If double stranded, the primer is first treated to separate its strands before being used to prepare extension products. The primer must be sufficiently long to prime the synthesis of extension products in the presence of the inducing agent for polymerization. The exact length of primer will depend on many factors, including temperature, buffer, and nucleotide composition.
- the oligonucleotide primer typically contains 12–20 or more nucleotides, although it can contain fewer nucleotides.
- Primers of the invention are designed to be “substantially” complementary to each strand of the genomic locus to be amplified. This means that the primers must be sufficiently complementary to hybridize with their respective strands under conditions which allow the agent for polymerization to perform. In other words, the primers should have sufficient complementarity with the 5′ and 3′ sequences flanking the transversion to hybridize therewith and permit amplification of the genomic locus.
- Oligonucleotide primers of the invention are employed in the amplification method which is an enzymatic chain reaction that produces exponential quantities of polymorphic locus relative to the number of reaction steps involved.
- one primer is complementary to the negative ( ⁇ ) strand of the polymorphic locus and the other is complementary to the positive (+) strand.
- Annealing the primers to denatured nucleic acid followed by extension with an enzyme, such as the large fragment of DNA polymerase I (Klenow) and nucleotides results in newly synthesized + and ⁇ strands containing the target polymorphic locus sequence.
- the product of the chain reaction is a discreet nucleic acid duplex with termini corresponding to the ends of the specific primers employed.
- oligonucleotide primers of the invention can be prepared using any suitable method, such as conventional phosphotriester and phosphodiester methods or automated embodiments thereof.
- diethylphosphoramidites are used as starting materials and can be synthesized as described by Beaucage et al., Tetrahedron Letters 22:1859–1862 (1981).
- One method for synthesizing oligonucleotides on a modified solid support is described in U.S. Pat. No. 4,458,066.
- nucleic acid specimen in purified or non-purified form, can be utilized as the starting nucleic acid or acids, providing it contains, or is suspected of containing, a nucleic acid sequence containing the polymorphic locus.
- the method can amplify, for example, DNA or RNA, including messenger RNA, wherein DNA or RNA can be single stranded or double stranded.
- RNA is to be used as a template, enzymes, and/or conditions optimal for reverse transcribing the template to DNA would be utilized.
- a DNA-RNA hybrid which contains one strand of each can be utilized.
- a mixture of nucleic acids can also be employed, or the nucleic acids produced in a previous amplification reaction herein, using the same or different primers can be so utilized.
- the specific nucleic acid sequence to be amplified i.e., the polymorphic locus, can be a fraction of a larger molecule or can be present initially as a discrete molecule, so that the specific sequence constitutes the entire nucleic acid. It is not necessary that the sequence to be amplified be present initially in a pure form; it can be a minor fraction of a complex mixture, such as contained in whole human DNA.
- DNA utilized herein can be extracted from a body sample, such as blood, tissue material, preferably white blood cells, and the like by a variety of techniques such as that described by Maniatis et. al. in Molecular Cloning: A Laboratory Manual , Cold Spring Harbor, N.Y., p 280–281 (1982). If the extracted sample is impure, it can be treated before amplification with an amount of a reagent effective to open the cells, or animal cell membranes of the sample, and to expose and/or separate the strand(s) of the nucleic acid(s). This lysing and nucleic acid denaturing step to expose and separate the strands will allow amplification to occur much more readily.
- the deoxyribonucleotide triphosphates dATP, dCTP, dGTP, and dTTP are added to the synthesis mixture, either separately or together with the primers, in adequate amounts and the resulting solution is heated to about 90–100° C. from about 1 to 10 minutes, preferably from 1 to 4 minutes. After this heating period, the solution is allowed to cool, which is preferable for the primer hybridization. To the cooled mixture is added an appropriate agent for effecting the primer extension reaction (called herein “agent for polymerization”), and the reaction is allowed to occur under conditions known in the art.
- agent for polymerization can also be added together with the other reagents if it is heat stable.
- This synthesis (or amplification) reaction can occur at room temperature up to a temperature above which the agent for polymerization no longer functions.
- the temperature is generally no greater than about 40° C. Most conveniently the reaction occurs at room temperature.
- the agent for polymerization can be any compound or system which will function to accomplish the synthesis of primer extension products, including enzymes.
- Suitable enzymes for this purpose include, for example, E. coli DNA polymerase I, Klenow fragment of E. coli DNA polymerase, polymerase muteins, reverse transcriptase, other enzymes, including heat-stable enzymes (i.e., those enzymes which perform primer extension after being subjected to temperatures sufficiently elevated to cause denaturation), such as Taq polymerase.
- Suitable enzyme will facilitate combination of the nucleotides in the proper manner to form the primer extension products which are complementary to each polymorphic locus nucleic acid strand.
- the synthesis will be initiated at the 3′ end of each primer and proceed in the 5′ direction along the template strand, until synthesis terminates, producing molecules of different lengths.
- the newly synthesized strand and its complementary nucleic acid strand will form a double-stranded molecule under hybridizing conditions described above and this hybrid is used in subsequent steps of the method.
- the newly synthesized double-stranded molecule is subjected to denaturing conditions using any of the procedures described above to provide single-stranded molecules.
- the amplification products can be detected by Southern blot analysis with or without using radioactive probes.
- a small sample of DNA containing a very low level of the nucleic acid sequence of the polymorphic locus is amplified, and analyzed via a Southern blotting technique or similarly, using dot blot analysis.
- the use of non-radioactive probes or labels is facilitated by the high level of the amplified signal.
- probes used to detect the amplified products can be directly or indirectly detectably labeled, for example, with a radioisotope, a fluorescent compound, a bioluminescent compound, a chemiluminescent compound, a metal chelator or an enzyme.
- Sequences amplified by the methods of the invention can be further evaluated, detected, cloned, sequenced, and the like, either in solution or after binding to a solid support, by any method usually applied to the detection of a specific DNA sequence such as dideoxy sequencing, PCR, oligomer restriction (Saiki et al., Bio/Technology 3:1008–1012 (1985), allele-specific oligonucleotide (ASO) probe analysis (Conner et al., Proc. Natl. Acad. Sci. U.S.A. 80:278 (1983), oligonucleotide ligation assays (OLAs) (Landgren et. al., Science 241:1007, 1988), and the like. Molecular techniques for DNA analysis have been reviewed (Landgren et. al., Science 242:229–237, 1988).
- the method of amplifying is by PCR, as described herein and in U.S. Pat. Nos. 4,683,195; 4,683,202; and 4,965,188 each of which is hereby incorporated by reference; and as is commonly used by those of ordinary skill in the art.
- Alternative methods of amplification have been described and can also be employed as long as the NE transporter locus amplified by PCR using primers of the invention is similarly amplified by the alternative means.
- Such alternative amplification systems include but are not limited to self-sustained sequence replication, which begins with a short sequence of RNA of interest and a T7 promoter. Reverse transcriptase copies the RNA into cDNA and degrades the RNA, followed by reverse transcriptase polymerizing a second strand of DNA.
- NASBATM nucleic acid sequence-based amplification
- T7 RNA polymerase reverse transcription and T7 RNA polymerase
- NASBATM amplification can begin with either DNA or RNA and finish with either, and amplifies to about 10 8 copies within 60 to 90 minutes.
- nucleic acid can be amplified by ligation activated transcription (LAT).
- LAT works from a single-stranded template with a single primer that is partially single-stranded and partially double-stranded. Amplification is initiated by ligating a cDNA to the promoter olignucleotide and within a few hours, amplification is about 10 8 to about 10 9 fold.
- the QB replicase system can be utilized by attaching an RNA sequence called MDV-1 to RNA complementary to a DNA sequence of interest. Upon mixing with a sample, the hybrid RNA finds its complement among the specimen's mRNAs and binds, activating the replicase to copy the tag-along sequence of interest.
- LCR ligase chain reaction
- the repair chain reaction (RCR) nucleic acid amplification technique uses two complementary and target-specific oligonucleotide probe pairs, thermostable polymerase and ligase, and DNA nucleotides to geometrically amplify targeted sequences.
- a 2-base gap separates the oligo probe pairs, and the RCR fills and joins the gap, mimicking normal DNA repair.
- Nucleic acid amplification by strand displacement activation utilizes a short primer containing a recognition site for HincII with short overhang on the 5′ end which binds to target DNA.
- a DNA polymerase fills in the part of the primer opposite the overhang with sulfur-containing adenine analogs. HincII is added but only cuts the unmodified DNA strand.
- a DNA polymerase that lacks 5′ exonuclease activity enters at the cite of the nick and begins to polymerize, displacing the initial primer strand downstream and building a new one which serves as more primer.
- SDA produces greater than about a 10 7 -fold amplification in 2 hours at 37° C. Unlike PCR and LCR, SDA does not require instrumented temperature cycling.
- Another amplification system useful in the method of the invention is the QB Replicase System.
- PCR is the preferred method of amplification if the invention, these other methods can also be used to amplify the NE transporter locus as described in the method of the invention.
- the term “amplification technique” as used herein and in the claims is meant to encompass all the foregoing methods.
- a method for diagnosing or identifying a subject having a predisposition or higher susceptibility to (at risk of) impaired sub-optimal NET function comprising sequencing a target nucleic acid of a sample from a subject by dideoxy sequencing, preferably following amplification of the target nucleic acid.
- a method for diagnosing a subject having a predisposition or higher susceptibility to (at risk of) impaired sub-optimal NET function comprising contacting a target nucleic acid of a sample from a subject with a reagent that detects the presence of the NE transporter polymorphism and detecting the reagent.
- Another method comprises contacting a target nucleic acid of a sample from a subject with a reagent that detects the presence of the G to C transversion at base 237, within exon 9, and detecting the transversion.
- a reagent that detects the presence of the G to C transversion at base 237, within exon 9, and detecting the transversion.
- kits can comprise a carrier being compartmentalized to receive in close confinement one or more containers such as vials, tubes, and the like, each of the container comprising one of the separate elements to be used in the method.
- one of the containers can comprise a reagent or reagents for amplifying NE transporter DNA, the reagent or reagents comprising the necessary enzyme(s) and oligonucleotide primers for amplifying said target DNA from the subject.
- the oligonucleotide primers include primers having a sequence of NET exon 9 selected from the group including, but not limited to: SEQ ID NO:15, or primer sequences substantially complementary or substantially homologous thereto.
- the target flanking 5′ and 3′ polynucleotide sequence of NET exon 9 has substantially the sequence set forth in SEQ ID NO:15, and sequences substantially complementary or homologous thereto.
- Other oligonucleotide primers for amplifying NE transporter are readily ascertainable to those of skill in the art given the disclosure of the present invention presented herein.
- a kit in accordance with the present invention can further comprise a reagent or reagents for extracting a nucleic acid sample from a biological sample obtained from a subject.
- a suitable lysis buffer for the tissue along with a suspension of glass beads for capturing the nucleic acid sample and an elution buffer for eluting the nucleic acid sample off of the glass beads comprise means for extracting a nucleic acid sample from a biological sample obtained from a subject.
- kits include commercially available, such as the GENOMIC ISOLATION KIT A.S.A.P.TM (Boehringer Mannheim, Indianapolis, Ind.), Genomic DNA Isolation System (GIBCO BRL, Gaithersburg, Md.), ELU-QUIKTM DNA Purification Kit (Schleicher & Schuell, Keene, N.H.), DNA Extraction Kit (Stratagene, La Jolla, Calif.), TURBOGENTM Isolation Kit (Invitrogen, San Diego, Calif.), and the like. Use of these kits according to the manufacturer's instructions is generally acceptable for purification of DNA prior to practicing the methods of the present invention.
- NE transporter-encoding polynucleotide comprises a NE transporter encoding polynucleotide which includes a G to C transversion at base 237 within exon 9 of the NE transporter gene which changes the triplet code from GCA or GCC or GCG or GCU to CCA or CCC or CCG or CCU and leads to the A457P change in the encoded NE transporter polypeptide.
- the encoded NE transporter polypeptide comprising the A457P change is also particularly provided.
- allelic variant polynucleotides and polypeptides encoded by same are provided in accordance with the present invention.
- a biologically active NE transporter polypeptide is also provided in accordance with the present invention, as is a NE transporter-encoding polynucleotide encoding such a NE transporter polypeptide.
- Exemplary biological activities include the biological activity of mediating NE uptake and the biological activity of cross-reacting with an anti-NE transporter antibody.
- the provided NE transporter-encoding polynucleotides and polypeptides have broad utility given the biological significance of NE uptake, as is known in the art.
- the NE transporter-encoding polynucleotides and polypeptides are useful in the preparation of screening assays and assay kits that are used to detect the presence of the proteins and nucleic acids of this invention in biological samples, and in the detection and analysis of polymorphic sequences and polypeptides encoded by such sequences, as disclosed herein.
- the provided NE transporter polynucleotides and polypeptides are isolated from vertebrate and invertebrate sources.
- homologs of NE transporter including, but not limited to, mammalian, yeast and bacterial homologs are provided in accordance with the present invention.
- Preferred mammalian homologs of NE transporter members include, but are not limited to, bovine, rat, mouse and human homologs.
- NE transporter gene product refers to proteins having amino acid sequences which are substantially identical to the native amino acid sequences in NE transporter and which are biologically active in that they are capable of mediating NE uptake, or cross-reacting with anti-NE transporter antibodies raised against a NE transporter polypeptide.
- NE transporter gene product also include analogs of NE transporter molecules which exhibit at least some biological activity in common with native NE transporter gene products. Furthermore, those skilled in the art of mutagenesis will appreciate that other analogs, as yet undisclosed or undiscovered, can be used to construct NE transporter analogs. There is no need for an “NE transporter gene product”, “NE transporter protein” or “NE transporter polypeptide” to comprise all, or substantially all of the amino acid sequence of a native NE transporter gene product. Shorter or longer sequences are anticipated to be of use in the invention. Thus, the term “NE transporter gene product” also includes fusion or recombinant NE transporter polypeptides and proteins. Methods of preparing such proteins are described herein.
- NE transporter-encoding polynucleotide refers to any DNA sequence that is substantially identical to a polynucleotide sequence encoding a NE transporter gene product, NE transporter protein or NE transporter polypeptide as defined above.
- the terms also refer to RNA, or antisense sequences, compatible with such DNA sequences.
- a “NE transporter-encoding polynucleotide”, “NE transporter gene”, “NE transporter gene sequence” and “NE transporter gene segment” can also comprise any combination of associated control sequences.
- substantially identical when used to define either a NE transporter gene product or NE transporter amino acid sequence, or a NE transporter gene or NE transporter nucleic acid sequence, means that a particular sequence, for example, a mutant sequence, varies from the sequence of a natural NE transporter by one or more deletions, substitutions, or additions, the net effect of which is to retain at least some of biological activity of NE transporter.
- DNA analog sequences are “substantially identical” to specific DNA sequences disclosed herein if: (a) the DNA analog sequence is derived from coding regions of the natural NE transporter gene; or (b) the DNA analog sequence is capable of hybridization of DNA sequences of (a) under moderately stringent conditions and which encode biologically active NE transporter gene product; or (c) the DNA sequences are degenerative as a result of the genetic code to the DNA analog sequences defined in (a) and/or (b). Substantially identical analog proteins will be greater than about 60% identical to the corresponding sequence of the native protein. Sequences having lesser degrees of similarity but comparable biological activity are considered to be equivalents. In determining nucleic acid sequences, all subject nucleic acid sequences capable of encoding substantially similar amino acid sequences are considered to be substantially similar to a reference nucleic acid sequence, regardless of differences in codon sequences.
- Percent similarity can be determined, for example, by comparing sequence information using the GAP computer program, available from the University of Wisconsin Geneticist Computer Group.
- the GAP program utilizes the alignment method of Needleman et al., J. Mol. Biol. 48:443 (1970), as revised by Smith et al., Adv. Appl. Math. 2:482 (1981). Briefly, the GAP program defines similarity as the number of aligned symbols (i.e. nucleotides or amino acids) which are similar, divided by the total number of symbols in the shorter of the two sequences.
- the preferred default parameters for the GAP program include: (1) a unitary comparison matrix (containing a value of 1 for identities and 0 for non-identities) of nucleotides and the weighted comparison matrix of Gribskov et al., Nucl. Acids. Res. 14:6745 (1986), as described by Schwartz et al., eds., Atlas of Protein Sequence and Structure , National Biomedical Research Foundation, pp.357–358 (1979); (2) a penalty of 3.0 for each gap and an additional 0.01 penalty for each symbol and each gap; and (3) no penalty for end gaps.
- Other comparison techniques are described in the Examples.
- homology describes a mathematically based comparison of sequence similarities which is used to identify genes or proteins with similar functions or motifs. Accordingly, the term “homology” is synonymous with the term “similarity” and “percent similarity” as defined above. Thus, the phrases “substantial homology” or “substantial similarity” have similar meanings.
- the invention concerns the use of NE transporter genes and gene products that include within their respective sequences a sequence which is essentially that of a NE transporter gene, or the corresponding protein.
- a sequence essentially as that of a NE transporter gene means that the sequence substantially corresponds to a portion of a NE transporter polypeptide or NE transporter encoding polynucleotide and has relatively few bases or amino acids (whether DNA or protein) which are not identical to those of a NE transporter protein or NE transporter gene, (or a biologically functional equivalent of, when referring to proteins).
- biologically functional equivalent is well understood in the art and is further defined in detail herein.
- sequences which have between about 70% and about 80%; or more preferably, between about 81% and about 90%; or even more preferably, between about 91% and about 99%; of amino acids which are identical or functionally equivalent to the amino acids of a NE transporter protein or NE transporter gene, will be sequences which are “essentially the same”.
- NE transporter gene products and NE transporter genes which have functionally equivalent codons are also covered by the invention.
- the term “functionally equivalent codon” is used herein to refer to codons that encode the same amino acid, such as the ACG and AGU codons for serine.
- SEQ ID NO's:1–4 and 11-14 applicants provide substitution of functionally equivalent codons of Table 1 into the sequence examples of SEQ ID NO's:1–4 and 11–14.
- applicants are in possession of amino acid and nucleic acids sequences which include such substitutions but which are not set forth herein in their entirety for convenience.
- amino acid and nucleic acid sequences can include additional residues, such as additional N- or C-terminal amino acids or 5′ or 3′ sequences, and yet still be essentially as set forth in one of the sequences disclosed herein, so long as the sequence meets the criteria set forth above, including the maintenance of biological protein activity where protein expression is concerned.
- the addition of terminal sequences particularly applies to nucleic acid sequences which can, for example, include various non-coding sequences flanking either of the 5′ or 3′ portions of the coding region or can include various internal sequences, i.e., introns, which are known to occur within genes.
- the present invention also encompasses the use of DNA segments which are complementary, or essentially complementary, to the sequences set forth in the specification.
- Nucleic acid sequences which are “complementary” are those which are base-pairing according to the standard Watson-Crick complementarity rules.
- the term “complementary sequences” means nucleic acid sequences which are substantially complementary, as can be assessed by the same nucleotide comparison set forth above, or as defined as being capable of hybridizing to the nucleic acid segment in question under relatively stringent conditions such as those described herein.
- a particular example of a provided complementary nucleic acid segment is an antisense oligonucleotide.
- Nucleic acid hybridization will be affected by such conditions as salt concentration, temperature, or organic solvents, in addition to the base composition, length of the complementary strands, and the number of nucleotide base mismatches between the hybridizing nucleic acids, as will be readily appreciated by those skilled in the art.
- Stringent temperature conditions will generally include temperatures in excess of 30° C., typically in excess of 37° C., and preferably in excess of 45° C.
- Stringent salt conditions will ordinarily be less than 1,000 mM, typically less than 500 mM, and preferably less than 200 mM. However, the combination of parameters is much more important than the measure of any single parameter. (See e.g., Wetmur & Davidson, J. Mol. Biol. 31:349–370 (1968)).
- Probe sequences can also hybridize specifically to duplex DNA under certain conditions to form triplex or other higher order DNA complexes.
- the preparation of such probes and suitable hybridization conditions are well known in the art.
- DNA segment refers to a DNA molecule which has been isolated free of total genomic DNA of a particular species.
- a DNA segment encoding a NE transporter polypeptide refers to a DNA segment which contains NE transporter coding sequences, yet is isolated away from, or purified free from, total genomic DNA of a source species, such as Homo sapiens .
- Included within the term “DNA segment” are DNA segments and smaller fragments of such segments, and also recombinant vectors, including, for example, plasmids, cosmids, phages, viruses, and the like.
- a DNA segment comprising an isolated or purified NE transporter gene refers to a DNA segment including NE transporter coding sequences isolated substantially away from other naturally occurring genes or protein encoding sequences.
- the term “gene” is used for simplicity to refer to a functional protein, polypeptide or peptide encoding unit. As will be understood by those in the art, this functional term includes both genomic sequences and cDNA sequences.
- isolated substantially away from other coding sequences means that the gene of interest, in this case, the NE transporter gene, forms the significant part of the coding region of the DNA segment, and that the DNA segment does not contain large portions of naturally-occurring coding DNA, such as large chromosomal fragments or other functional genes or cDNA coding regions. Of course, this refers to the DNA segment as originally isolated, and does not exclude genes or coding regions later added to the segment by the hand of man.
- the invention concerns isolated DNA segments and recombinant vectors incorporating DNA sequences which encode a NE transporter polypeptide that includes within its amino acid sequence an amino acid sequence of any of SEQ ID NOs:2, 4, 12 and 14.
- the invention concerns isolated DNA segments and recombinant vectors incorporating DNA sequences which encode a protein that includes within its amino acid sequence the amino acid sequence of a NE transporter polypeptide corresponding to human tissues.
- this invention is not limited to the particular nucleic acid and amino acid sequences of SEQ ID NO's:1–4 and 11–14.
- Recombinant vectors and isolated DNA segments can therefore variously include the NE transporter polypeptide-encoding region itself, include coding regions bearing selected alterations or modifications in the basic coding region, or include encoded larger polypeptides which nevertheless include NE transporter polypeptide-encoding regions or can encode biologically functional equivalent proteins or peptides which have variant amino acid sequences.
- the invention concerns isolated DNA segments and recombinant vectors which encode a protein or peptide that includes within its amino acid sequence an amino acid sequence essentially as set forth in any of SEQ ID NOs:2, 4, 12 and 14.
- the DNA segment or vector encodes a full length NE transporter gene product
- the most preferred nucleic acid sequence is that which is essentially as set forth in any of SEQ ID NOs: 1, 3, 11 and 13 and which encode a protein that exhibits NE uptake-modulating activity, as can be determined by, for example, assays to detect NE uptake, as disclosed herein in the Examples.
- sequence essentially as set forth in any of SEQ ID NO:2, 4, 12 and 14 means that the sequence substantially corresponds to a portion an amino acid sequence either of SEQ ID NOs:2, 4, 12 and 14 and has relatively few amino acids which are not identical to, or a biologically functional equivalent of, the amino acids of an amino acid sequence of any of SEQ ID NOs:2, 4, 12 and 14.
- biologically functional equivalent is well understood in the art and is further defined in detail herein.
- sequences which have between about 70% and about 80%; or more preferably, between about 81% and about 90%; or even more preferably, between about 91% and about 99%; of amino acids which are identical or functionally equivalent to the amino acids in any of SEQ ID NOs: 2, 4, 12 and 14, will be sequences which “a sequence essentially as set forth in SEQ ID NOs:2, 4, 12 and 14”.
- the invention concerns gene therapy methods that use isolated DNA segments and recombinant vectors incorporating DNA sequences which encode a protein that includes within its amino acid sequence an amino acid sequence of any of SEQ ID NOs:2, 4, 12 and 14, SEQ ID NOs:2, 4, 12 and 14 including sequences which are derived from human tissue.
- the invention concerns isolated DNA sequences and recombinant DNA vectors incorporating DNA sequences which encode a protein that includes within its amino acid sequence the amino acid sequence of the NE transporter protein from human hepatic tissue.
- the invention concerns isolated DNA segments and recombinant vectors that include within their sequence a nucleic acid sequence essentially as set forth in any of SEQ ID NO:1, 3, 11 and 13.
- a sequence essentially as set forth in any of SEQ ID NO:1, 3, 11 and 13 is used in the same sense as described above and means that the nucleic acid sequence substantially corresponds to a portion of any of SEQ ID NOs:1, 3, 11 and 13, respectively, and has relatively few codons which are not identical, or functionally equivalent, to the codons of any of SEQ ID NOs:1, 3, 11 and 13, respectively.
- DNA segments which encode gene products exhibiting NE transport activity, cross-reactivity with an anti-NE transporter antibody, or other biological activity of the NE transporter gene product will be most preferred.
- the term “functionally equivalent codon” is used herein to refer to codons that encode the same amino acid, such as the six codons for arginine or serine, and also to refer to codons that encode biologically equivalent amino acids (see Table 1).
- nucleic acid segments of the present invention regardless of the length of the coding sequence itself, can be combined with other DNA sequences, such as promoters, enhancers, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length can vary considerably. It is therefore provided that a nucleic acid fragment of almost any length can be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol.
- nucleic acid fragments can be prepared which include a short stretch complementary to a nucleic acid sequence set for in any of SEQ ID NOs:1, 3, 11 and 13 respectively, such as about 10 nucleotides, and which are up to 10,000 or 5,000 base pairs in length, with segments of 3,000 being preferred in certain cases. DNA segments with total lengths of about 1,000, 500, 200, 100 and about 50 base pairs in length are also useful.
- DNA segments of the present invention encompass biologically functional equivalent NE transporter proteins and peptides. Such sequences can rise as a consequence of codon redundancy and functional equivalency which are known to occur naturally within nucleic acid sequences and the proteins thus encoded.
- functionally equivalent proteins or peptides can be created via the application of recombinant DNA technology, in which changes in the protein structure can be engineered, based on considerations of the properties of the amino acids being exchanged, e.g. substitution of Ile and Leu at amino acid 2 in SEQ ID NOs:11–14.
- Changes designed by man can be introduced through the application of site-directed mutagenesis techniques, e.g., to introduce improvements to the antigenicity of the protein or to test NE transporter mutants in order to examine NE transport activity, or other activity at the molecular level.
- fusion proteins and peptides e.g., where the NE transporter coding region is aligned within the same expression unit with other proteins or peptides having desired functions, such as for purification or immunodetection purposes (e.g., proteins which can be purified by affinity chromatography and enzyme label coding regions, respectively).
- Recombinant vectors form important further aspects of the present invention.
- Particularly useful vectors are those vectors in which the coding portion of the DNA segment is positioned under the control of a promoter.
- the promoter can be in the form of the promoter which is naturally associated with the NE transporter gene, e.g., in mammalian tissues, as can be obtained by isolating the 5′ non-coding sequences located upstream of the coding segment or exon, for example, using recombinant cloning and/or PCR technology, in connection with the compositions disclosed herein.
- a recombinant or heterologous promoter is intended to refer to a promoter that is not normally associated with a NE transporter gene in its natural environment.
- promoters can include promoters isolated from bacterial, viral, eukaryotic, or mammalian cells.
- promoters isolated from bacterial, viral, eukaryotic, or mammalian cells.
- it will be important to employ a promoter that effectively directs the expression of the DNA segment in the cell type chosen for expression.
- the use of promoter and cell type combinations for protein expression is generally known to those of skill in the art of molecular biology, for example, see Sambrook et al., 1989, incorporated herein by reference.
- the promoters employed can be constitutive, or inducible, and can be used under the appropriate conditions to direct high level expression of the introduced DNA segment, such as is advantageous in the large-scale production of recombinant proteins or peptides.
- Appropriate promoter systems provided for use in high-level expression include, but are not limited to, the vaccina virus promoter and the baculovirus promoter.
- the present invention provides an expression vector comprising a polynucleotide that encodes a NE transporter polypeptide having NE transport activity, cross-reacting with an anti-NE transporter antibody, or other biological activity in accordance with the present invention.
- an expression vector of the present invention comprises a polynucleotide that encodes a human NE transporter gene product. More preferably, an expression vector of the present invention comprises a polynucleotide that encodes a polypeptide comprising an amino acid residue sequence of any of SEQ ID NOs:2, 4, 12 and 14. More preferably, an expression vector of the present invention comprises a polynucleotide comprising the nucleotide base sequence of any of SEQ ID NO:1, 3, 11 and 13.
- an expression vector of the invention comprises a polynucleotide operatively linked to an enhancer-promoter. More preferably still, an expression vector of the invention comprises a polynucleotide operatively linked to a prokaryotic promoter. Alternatively, an expression vector of the present invention comprises a polynucleotide operatively linked to an enhancer-promoter that is a eukaryotic promoter, and the expression vector further comprises a polyadenylation signal that is positioned 3′ of the carboxy-terminal amino acid and within a transcriptional unit of the encoded polypeptide.
- the present invention provides a recombinant host cell transfected with a polynucleotide that encodes a NE transporter polypeptide having NE transport activity, cross-reactivity with an anti-NE transporter antibody, or other biological activity in accordance with the present invention.
- SEQ ID NO's: 1–4 and 11–14 set forth nucleotide and amino acid sequences from an exemplary vertebrate, human.
- a recombinant host cell of the present invention is transfected with the polynucleotide that encodes human NE transporter polypeptide. More preferably, a recombinant host cell of the present invention is transfected with the polynucleotide sequence of any of SEQ ID NOs:1, 3, 11 and 13. Even more preferably, a host cell of the invention is a eukaryotic host cell. Still more preferably, a recombinant host cell of the present invention is a vertebrate cell. Preferably, a recombinant host cell of the invention is a mammalian cell.
- a recombinant host cell of the present invention is a prokaryotic host cell.
- a recombinant host cell of the invention is a bacterial cell, preferably a strain of Escherichia coli .
- a recombinant host cell comprises a polynucleotide under the transcriptional control of regulatory signals functional in the recombinant host cell, wherein the regulatory signals appropriately control expression of the NE transporter polypeptide in a manner to enable all necessary transcriptional and post-transcriptional modification.
- the present invention provides a method of preparing a NE transporter polypeptide comprising transfecting a cell with polynucleotide that encodes a NE transporter polypeptide having NE transport activity, cross-reacting with an anti-NE transporter antibody, or other biological activity in accordance with the present invention, to produce a transformed host cell; and maintaining the transformed host cell under biological conditions sufficient for expression of the polypeptide.
- the transformed host cell is a eukaryotic cell. More preferably still, the eukaryotic cell is a vertebrate cell.
- the host cell is a prokaryotic cell. More preferably, the prokaryotic cell is a bacterial cell of Escherichia coli .
- a polynucleotide transfected into the transformed cell comprises a nucleotide base sequence of any of SEQ ID NOs:1, 3, 11 and 13.
- SEQ ID NO's:1–4 and 11–14 set forth nucleotide and amino acid sequences for an exemplary vertebrate, human.
- homologues or biologically equivalent NE transporter polynucleotides and polypeptides found in other vertebrates, particularly warm blooded vertebrates, and more particularly bovine, mouse and rat.
- NE transporter proteins and peptides As mentioned above, in connection with expression embodiments to prepare recombinant NE transporter proteins and peptides, it is provided that longer DNA segments will most often be used, with DNA segments encoding the entire NE transporter protein, functional domains or cleavage products thereof, being most preferred. However, it will be appreciated that the use of shorter DNA segments to direct the expression of NE transporter peptides or epitopic core regions, such as can be used to generate anti-NE transporter antibodies, also falls within the scope of the invention.
- DNA segments which encode peptide antigens from about 15 to about 50 amino acids in length, or more preferably, from about 15 to about 30 amino acids in length are particularly useful.
- DNA segments encoding peptides will generally have a minimum coding length in the order of about 45 to about 150, or to about 90 nucleotides.
- DNA segments encoding full length proteins can have a minimum coding length on the order of about 4,500 to about 4,600 nucleotides for a protein in accordance with any of SEQ ID NOs: 2, 4, 12 and 14.
- the present invention also encompasses DNA segments which are complementary, or essentially complementary, to the sequences set forth in any of SEQ ID NO's: 1, 3, 11 and 13.
- the terms “complementary” and “essentially complementary” are defined above. Excepting intronic or flanking regions, details of which are disclosed graphically in FIG. 2 , and allowing for the degeneracy of the genetic code, sequences which have between about 70% and about 80%; or more preferably, between about 81% and about 90%; or even more preferably, between about 91% and about 99%; of nucleotides which are identical or functionally equivalent (i.e.
- modification and changes can be made in the structure of the NE transporter proteins and peptides described herein and still obtain a molecule having like or otherwise desirable characteristics.
- certain amino acids can be substituted for other amino acids in a protein structure without appreciable loss of interactive capacity with structures such as, for example, in the nucleus of a cell. Since it is the interactive capacity and nature of a protein that defines that protein's biological functional activity, certain amino acid sequence substitutions can be made in a protein sequence (or, of course, its underlying DNA coding sequence) and nevertheless obtain a protein with like or even countervailing properties (e.g., antagonistic v. agonistic). Thus, various changes can be made in the sequence of the NE transporter proteins and peptides (or underlying DNA) without appreciable loss of their biological utility or activity.
- Bioly functional equivalent protein or peptide is the concept that there is a limit to the number of changes that can be made within a defined portion of the molecule and still result in a molecule with an acceptable level of equivalent biological activity.
- Biologically functional equivalent peptides are thus defined herein as those peptides in which certain, not most or all, of the amino acids can be substituted.
- a plurality of distinct proteins/peptides with different substitutions can easily be made and used in accordance with the invention.
- residues are shown to be particularly important to the biological or structural properties of a protein or peptide, e.g., residues in active sites, such residues can not generally be exchanged. This is the case in the present invention, where if any changes, for example, in the phosphorylation domains of a NE transporter polypeptide, could result in a loss of an aspect of the utility of the resulting peptide for the present invention.
- Amino acid substitutions such as those which might be employed in modifying the NE transporter proteins and peptides described herein, are generally based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like.
- An analysis of the size, shape and type of the amino acid side-chain substituents reveals that arginine, lysine and histidine are all positively charged residues; that alanine, glycine and serine are all a similar size; and that phenylalanine, tryptophan and tyrosine all have a generally similar shape.
- arginine, lysine and histidine; alanine, glycine and serine; and phenylalanine, tryptophan and tyrosine; are defined herein as biologically functional equivalents.
- hydropathic index of amino acids can be considered.
- Each amino acid has been assigned a hydropathic index on the basis of their hydrophobicity and charge characteristics, these are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine ( ⁇ 0.4); threonine ( ⁇ 0.7); serine ( ⁇ 0.8); tryptophan ( ⁇ 0.9); tyrosine ( ⁇ 1.3); proline ( ⁇ 1.6); histidine ( ⁇ 3.2); glutamate ( ⁇ 3.5); glutamine ( ⁇ 3.5); aspartate ( ⁇ 3.5); asparagine ( ⁇ 3.5); lysine ( ⁇ 3.9); and arginine ( ⁇ 4.5).
- hydropathic amino acid index in conferring interactive biological function on a protein is generally understood in the art (Kyte & Doolittle, J. Mol. Biol. 157:105–132 (1982), incorporated herein by reference). It is known that certain amino acids can be substituted for other amino acids having a similar hydropathic index or score and still retain a similar biological activity. In making changes based upon the hydropathic index, the substitution of amino acids whose hydropathic indices are within ⁇ 2 of the original value is preferred, those which are within ⁇ 1 of the original value are particularly preferred, and those within ⁇ 0.5 of the original value are even more particularly preferred.
- hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0 ⁇ 1); glutamate (+3.0 ⁇ 1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine ( ⁇ 0.4); proline ( ⁇ 0.5 ⁇ 1); alanine ( ⁇ 0.5); histidine ( ⁇ 0.5); cysteine ( ⁇ 1.0); methionine ( ⁇ 1.3); valine ( ⁇ 1.5); leucine ( ⁇ 1.8); isoleucine ( ⁇ 1.8); tyrosine ( ⁇ 2.3); phenylalanine ( ⁇ 2.5); tryptophan ( ⁇ 3.4).
- Modifications to the NE transporter proteins and peptides described herein can be carried out using techniques such as site directed mutagenesis.
- Site-specific mutagenesis is a technique useful in the preparation of individual peptides, or biologically functional equivalent proteins or peptides, through specific mutagenesis of the underlying DNA.
- the technique further provides a ready ability to prepare and test sequence variants, for example, incorporating one or more of the foregoing considerations, by introducing one or more nucleotide sequence changes into the DNA.
- Site-specific mutagenesis allows the production of mutants through the use of specific oligonucleotide sequences which encode the DNA sequence of the desired mutation, as well as a sufficient number of adjacent nucleotides, to provide a primer sequence of sufficient size and sequence complexity to form a stable duplex on both sides of the deletion junction being traversed.
- a primer of about 17 to 30 nucleotides in length is preferred, with about 5 to 10 residues on both sides of the junction of the sequence being altered.
- the technique of site-specific mutagenesis is well known in the art as exemplified by publications (e.g., Adelman et al., 1983). As will be appreciated, the technique typically employs a phage vector which exists in both a single stranded and double stranded form.
- Typical vectors useful in site-directed mutagenesis include vectors such as the M13 phage (Messing et al., 1981). These phage are readily commercially available and their use is generally well known to those skilled in the art.
- Double stranded plasmids are also routinely employed in site directed mutagenesis which eliminates the step of transferring the gene of interest from a plasmid to a phage.
- site-directed mutagenesis in accordance herewith is performed by first obtaining a single-stranded vector or melting apart the two strands of a double stranded vector which includes within its sequence a DNA sequence which encodes, for example, a human NE transporter polypeptide.
- An oligonucleotide primer bearing the desired mutated sequence is prepared, generally synthetically, for example by the method of Crea et al. (1978). This primer is then annealed with the single-stranded vector, and subjected to DNA polymerizing enzymes such as E. coli polymerase I Klenow fragment, in order to complete the synthesis of the mutation-bearing strand.
- heteroduplex is formed wherein one strand encodes the original non-mutated sequence and the second strand bears the desired mutation.
- This heteroduplex vector is then used to transform appropriate cells, such as E. coli cells, and clones are selected which include recombinant vectors bearing the mutated sequence arrangement.
- sequence variants of the selected gene using site-directed mutagenesis is provided as a means of producing potentially useful NE transporter polypeptide or other species having NE transport activity and is not meant to be limiting as there are other ways in which sequence variants of these peptides can be obtained.
- recombinant vectors encoding the desired genes can be treated with mutagenic agents to obtain sequence variants (see, e.g., a method described by Eichenlaub, 1979) for the mutagenesis of plasmid DNA using hydroxylamine.
- NE transporter peptidyl compounds described herein the inventors also provide that other sterically similar compounds can be formulated to mimic the key portions of the peptide structure. Such compounds can be used in the same manner as the peptides of the invention and hence are also functional equivalents. The generation of a structural functional equivalent can be achieved by the techniques of modeling and chemical design known to those of skill in the art. It will be understood that all such sterically similar constructs fall within the scope of the present invention.
- a convenient method of introduction will be through the use of a recombinant vector which incorporates the desired gene, together with its associated control sequences.
- the preparation of recombinant vectors is well known to those of skill in the art and described in many references, such as, for example, Sambrook et al. (1989), specifically incorporated herein by reference.
- the DNA coding sequences to be expressed are positioned adjacent to and under the control of a promoter. It is understood in the art that to bring a coding sequence under the control of such a promoter, one generally positions the 5′ end of the transcription initiation site of the transcriptional reading frame of the gene product to be expressed between about 1 and about 50 nucleotides “downstream” of (i.e., 3′ of) the chosen promoter.
- an appropriate polyadenylation site e.g., 5′-AATAAA-3′
- these polyA addition sites are placed about 30 to 2000 nucleotides “downstream” of the coding sequence at a position prior to transcription termination.
- control sequences of the specific gene i.e., a NE transporter promoter for a NE transporter gene
- a NE transporter promoter for a NE transporter gene there is no reason why other control sequences could not be employed, so long as they are compatible with the genotype of the cell being treated.
- useful promoters including, e.g., an SV40 early promoter, a long terminal repeat promoter from retrovirus, an actin promoter, a heat shock promoter, a metallothionein promoter, and the like.
- a promoter is a region of a DNA molecule typically within about 100 nucleotide pairs in front of (upstream of) the point at which transcription begins (i.e., a transcription start site). That region typically contains several types of DNA sequence elements that are located in similar relative positions in different genes.
- promoter includes what is referred to in the art as an upstream promoter region, a promoter region or a promoter of a generalized eukaryotic RNA Polymerase II transcription unit.
- An enhancer provides specificity of time, location and expression level for a particular encoding region (e.g., gene).
- a major function of an enhancer is to increase the level of transcription of a coding sequence in a cell that contains one or more transcription factors that bind to that enhancer.
- an enhancer can function when located at variable distances from transcription start sites so long as a promoter is present.
- the phrase “enhancer-promoter” means a composite unit that contains both enhancer and promoter elements.
- An enhancer-promoter is operatively linked to a coding sequence that encodes at least one gene product.
- the phrase “operatively linked” means that an enhancer-promoter is connected to a coding sequence in such a way that the transcription of that coding sequence is controlled and regulated by that enhancer-promoter.
- Techniques for operatively linking an enhancer-promoter to a coding sequence are well known in the art. As is also well known in the art, the precise orientation and location relative to a coding sequence whose transcription is controlled, is dependent inter alia upon the specific nature of the enhancer-promoter.
- a TATA box minimal promoter is typically located from about 25 to about 30 base pairs upstream of a transcription initiation site and an upstream promoter element is typically located from about 100 to about 200 base pairs upstream of a transcription initiation site.
- an enhancer can be located downstream from the initiation site and can be at a considerable distance from that site.
- An enhancer-promoter used in a vector construct of the present invention can be any enhancer-promoter that drives expression in a cell to be transfected.
- an enhancer-promoter with well-known properties, the level and pattern of gene product expression can be optimized.
- a vector construct that will deliver the desired gene to the affected cells. This will, of course, generally require that the construct be delivered to the targeted cells, for example, mammalian cardiac cells. It is proposed that this can be achieved most preferably by introduction of the desired gene through the use of a viral vector to carry the NE transporter sequence to efficiently infect the cells.
- viral vector to carry the NE transporter sequence to efficiently infect the cells.
- These vectors will preferably be an adenoviral, a retroviral, a vaccinia viral vector or adeno-associated virus. These vectors are preferred because they have been successfully used to deliver desired sequences to cells and tend to have a high infection efficiency.
- Suitable vector-NE transporter gene constructs are adapted for administration as pharmaceutical compositions, as described herein below.
- viral promoters for expression vectors are derived from polyoma, cytomegalovirus, Adenovirus 2, and Simian Virus 40 (SV40).
- the early and late promoters of SV40 virus are particularly useful because both are obtained easily from the virus as a fragment which also contains the SV40 viral origin of replication. Smaller or larger SV40 fragments can also be used, provided there is included the approximately 250 bp sequence extending from the Hind III site toward the Bgl I site located in the viral origin of replication.
- promoter or control sequences normally associated with the desired gene sequence provided such control sequences are compatible with the host cell systems.
- the origin of replication can be provided either by construction of the vector to include an exogenous origin, such as can be derived from SV40 or other viral (e.g., Polyoma, Adeno, VSV, BPV) source, or can be provided by the host cell chromosomal replication mechanism. If the vector is integrated into the host cell chromosome, the latter is often sufficient.
- an exogenous origin such as can be derived from SV40 or other viral (e.g., Polyoma, Adeno, VSV, BPV) source, or can be provided by the host cell chromosomal replication mechanism. If the vector is integrated into the host cell chromosome, the latter is often sufficient.
- the NE transporter gene itself is employed it will be most convenient to simply use a wild type NE transporter gene directly.
- the NE transporter gene comprises the alanine encoding allele such that amino acid 457 of the encoded polypeptide comprises alanine.
- certain regions of a NE transporter gene can be employed exclusively without employing an entire wild type NE transporter gene or an entire allelic variant thereof. It is proposed that it will ultimately be preferable to employ the smallest region needed to modulate NE transport so that one is not introducing unnecessary DNA into cells which receive a NE transporter gene construct.
- transgenic non-human animal which expresses a NE transporter gene of the present invention or in which expression of a NE transporter gene is “knocked-out”.
- the present invention provides transgenic non-human animals that express either the A457 form of NE transporter or the P457 form of NE transporter.
- a preferred transgenic animal is a mouse.
- transgenic animals Techniques for the preparation of transgenic animals are known in the art. Exemplary techniques are described in U.S. Pat. No. 5,489,742 (transgenic rats); U.S. Pat. Nos. 4,736,866, 5,550,316, 5,614,396, 5,625,125 and 5,648,061 (transgenic mice); U.S. Pat. No. 5,573,933 (transgenic pigs); U.S. Pat. No. 5,162,215 (transgenic avian species) and U.S. Pat. No. 5,741,957 (transgenic bovine species), the entire contents of each of which are herein incorporated by reference.
- cloned recombinant or synthetic DNA sequences or DNA segments encoding a NE transporter gene product are injected into fertilized mouse eggs.
- the injected eggs are implanted in pseudo pregnant females and are grown to term to provide transgenic mice whose cells express a NE transporter gene product.
- the injected sequences are constructed having promoter sequences connected so as to express the desired protein in cardiac cells of the transgenic mouse.
- NE transporter genes can be used for gene therapy in accordance with the present invention.
- Exemplary gene therapy methods including liposomal transfection of nucleic acids into host cells, are described in U.S. Pat. Nos. 5,279,833; 5,286,634; 5,399,346; 5,646,008; 5,651,964; 5,641,484; and 5,643,567, the contents of each of which are herein incorporated by reference.
- NE transporter gene therapy directed toward modulation of NE transport in a target cell is described.
- Target cells include but are not limited cardiac cells.
- a therapeutic method of the present invention provides a method for modulating of NE transport in a cell comprising the steps of: (a) delivering to the cell an effective amount of a DNA molecule comprising a polynucleotide that encodes a NE transporter polypeptide that modulates NE transport; and (b) maintaining the cell under conditions sufficient for expression of said polypeptide.
- Delivery is preferably accomplished by injecting the DNA molecule into the cell.
- delivering is preferably administering the DNA molecule into the circulatory system of the subject.
- administering comprises the steps of: (a) providing a vehicle that contains the DNA molecule; and (b) administering the vehicle to the subject.
- a vehicle is preferably a cell transformed or transfected with the DNA molecule or a transfected cell derived from such a transformed or transfected cell.
- An exemplary and preferred transformed or transfected cell is a hepatic cell. Means for transforming or transfecting a cell with a DNA molecule of the present invention are set forth above.
- the vehicle is a virus or an antibody that specifically infects or immunoreacts with an antigen of the tumor.
- Retroviruses used to deliver the constructs to the host target tissues generally are viruses in which the 3′-LTR (linear transfer region) has been inactivated. That is, these are enhancerless 3′-LTR's, often referred to as SIN (self-inactivating viruses) because after productive infection into the host cell, the 3′-LTR is transferred to the 5′-end and both viral LTR's are inactive with respect to transcriptional activity.
- SIN self-inactivating viruses
- a use of these viruses well known to those skilled in the art is to clone genes for which the regulatory elements of the cloned gene are inserted in the space between the two LTR's.
- An advantage of a viral infection system is that it allows for a very high level of infection into the appropriate recipient cell.
- Antibodies have been used to target and deliver DNA molecules.
- An N-terminal modified poly-L-lysine (NPLL)-antibody conjugate readily forms a complex with plasmid DNA.
- a complex of monoclonal antibodies against a cell surface thrombomodulin conjugated with NPLL was used to target a foreign plasmid DNA to an antigen-expressing mouse lung endothelial cell line and mouse lung. Those targeted endothelial cells expressed the product encoded by that foreign DNA.
- this embodiment of the present invention can be practiced using alternative viral or phage vectors, including retroviral vectors and vaccinia viruses whose genome has been manipulated in alternative ways so as to render the virus non-pathogenic.
- Methods for creating such a viral mutation are set forth in detail in U.S. Pat. No. 4,769,331, incorporated herein by reference.
- a human NE transporter-encoding polynucleotide or a NE transporter-encoding polynucleotide homolog from another warm-blooded vertebrate is introduced into isolated cardiac cells or other relevant cells.
- the re-injection of the transgene-carrying cells into the heart or other relevant tissues provides a treatment for susceptibility to impaired NET function, orthostatic intolerance, or other relevant diseases in human and animals.
- the present invention provides pharmaceutical compositions comprising a polypeptide or polynucleotide of the present invention and a physiologically acceptable carrier. More preferably, a pharmaceutical composition comprises a polynucleotide that encodes a biologically active NE transporter polypeptide.
- composition of the present invention is typically administered orally or parenterally in dosage unit formulations containing standard, well-known nontoxic physiologically acceptable carriers, adjuvants, and vehicles as desired.
- parenteral as used herein includes intravenous, intramuscular, intra-arterial injection, or infusion techniques.
- Injectable preparations for example sterile injectable aqueous or oleaginous suspensions, are formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
- the sterile injectable preparation can also be a sterile injectable solution or suspension in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.
- Suitable vehicles and solvents that can be employed are water, Ringer's solution, and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil can be employed including synthetic mono-or di-glycerides.
- fatty acids such as oleic acid find use in the preparation of injectables.
- Preferred carriers include neutral saline solutions buffered with phosphate, lactate, Tris, and the like.
- phosphate phosphate
- lactate Tris
- a preferred means of purifying the vector involves the use of buoyant density gradients, such as cesium chloride gradient centrifugation.
- a transfected cell can also serve as a carrier.
- a liver cell can be removed from an organism, transfected with a polynucleotide of the present invention using methods set forth above and then the transfected cell returned to the organism (e.g. injected intra-vascularly).
- an “effective” dose refers to one that is administered in doses tailored to each individual patient manifesting symptoms of NE transport deficiency sufficient to cause an improvement therein.
- an effective dose and a therapeutically effective dose are generally synonymous.
- compounds can be administered to patients having reduced symptoms or even administered to patients as a preventative measure.
- the composition can be effective in therapeutic treatment even in the absence of symptoms of the disorder.
- a unit dose can be administered, for example, 1 to 4 times per day. Most preferably, the unit dose is administered twice a day (BID).
- BID twice a day
- the dose depends on the route of administration and the formulation of a composition containing the compound or compounds. Further, it will be appreciated by one of ordinary skill in the art after receiving the disclosure of the present invention that it can be necessary to make routine adjustments or variations to the dosage depending on the combination of agents employed, on the age and weight of the patient, and on the severity of the condition to be treated.
- Maximally tolerated dose (MTD) of vector construct when administered directly into the affected tissue is determined.
- Primary endpoints are: 1) the rate of transduction in abnormal and/or normal cells, 2) the presence and stability of this vector in the systemic circulation and in affected cells, and 3) the nature of the systemic (fever, myalgias) and local (infections, pain) toxicities induced by the vector.
- a secondary endpoint is the clinical efficacy of the vector construct.
- a 4 ml serum-free volume of viral (e.g. adenoviral, retroviral, etc.) vector construct (containing up to 5 ⁇ 10 7 viral particles in AIM V media) is administered daily per session.
- 1 ml of medium containing the appropriate titer of vector construct is injected into 4 regions of the affected tissue for a total of 4 ml per session in a clinical examination room. This is repeated daily for 4 days (4 sessions).
- This 16 ml total inoculum volume over 4 days is proportionally well below the one safely tolerated by nude mice (0.5 ml/20 g body weight).
- Patient evaluation includes history and physical examination prior to initiation of therapy and daily during the 4 day period of vector construct injection. Toxicity grading is done using the ECOG Common Toxicity Criteria. CBC, SMA-20, urinalysis, and conventional studies are performed daily during this period.
- the MTD of vector construct is defined as the dose where 2 of 6 patients experience grade 3 or 4 toxicity. If 2 of 3, or if 3 of 6 patients experience grade 3 or 4 toxicity, the MTD is defined as the immediately lower dose level.
- escalation schema 1) level 1, 3 ⁇ 10 6 viral particles; 2) level 2, 1 ⁇ 10 7 ; 3) level 3, 3 ⁇ 10 7 ; 4) level 4, 5 ⁇ 10 7 .
- Patients with measurable disease are evaluated for a clinical response to vector construct. Histology and local symptoms are followed. NE clearance, tyramine administration and other standard tests such as are disclosed in the Examples are employed.
- the present invention provides an antibody immunoreactive with a polypeptide or polynucleotide of the present invention.
- an antibody of the invention is a monoclonal antibody.
- Techniques for preparing and characterizing antibodies are well known in the art (See e.g. Antibodies: A Laboratory Manual , E. Howell and D. Lane, Cold Spring Harbor Laboratory, 1988). More preferred antibodies distinguish between the different forms of NE transporter polypeptides (e.g. SEQ ID NOs:2 and 4) that comprise the NE transporter polymorphism.
- a polyclonal antibody is prepared by immunizing an animal with an immunogen comprising a polypeptide or polynucleotide of the present invention, and collecting antisera from that immunized animal.
- an immunogen comprising a polypeptide or polynucleotide of the present invention
- a wide range of animal species can be used for the production of antisera.
- an animal used for production of anti-antisera is a rabbit, a mouse, a rat, a hamster or a guinea pig. Because of the relatively large blood volume of rabbits, a rabbit is a preferred choice for production of polyclonal antibodies.
- a given polypeptide or polynucleotide can vary in its immunogenicity. It is often necessary therefore to couple the immunogen (e.g., a polypeptide or polynucleotide) of the present invention) with a carrier.
- a carrier e.g., keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA).
- KLH keyhole limpet hemocyanin
- BSA bovine serum albumin
- Other albumins such as ovalbumin, mouse serum albumin or rabbit serum albumin can also be used as carriers.
- Techniques and reagents for conjugating a polypeptide or a polynucleotide to a carrier protein include glutaraldehyde, m-maleimidobencoyl-N-hydroxysuccinimide ester, carbodiimide and bis-biazotized benzidine.
- immunogencity to a particular immunogen can be enhanced by the use of non-specific stimulators of the immune response known as adjuvants.
- adjuvants include complete Freund's adjuvant, incomplete Freund's adjuvants and aluminum hydroxide adjuvant.
- the amount of immunogen used of the production of polyclonal antibodies varies, inter alia, upon the nature of the immunogen as well as the animal used for immunization.
- routes can be used to administer the immunogen, e.g. subcutaneous, intramuscular, intradermal, intravenous and intraperitoneal.
- the production of polyclonal antibodies is monitored by sampling blood of the immunized animal at various points following immunization. When a desired level of immunogenicity is obtained, the immunized animal can be bled and the serum isolated and stored.
- the present invention provides a method of producing an antibody immunoreactive with a NE transporter polypeptide, the method comprising the steps of (a) transfecting recombinant host cells with a polynucleotide that encodes that polypeptide; (b) culturing the host cells under conditions sufficient for expression of the polypeptide; (c) recovering the polypeptide; and (d) preparing antibodies to the polypeptide.
- the NE transporter polypeptide is capable of mediating NE transport, cross-reacting with anti-NE transporter antibody, or other biological activity in accordance with the present invention. Even more preferably, the present invention provides antibodies prepared according to the method described above.
- a monoclonal antibody of the present invention can be readily prepared through use of well-known techniques such as those exemplified in U.S. Pat. No. 4,196,265, herein incorporated by reference.
- a technique involves first immunizing a suitable animal with a selected antigen (e.g., a polypeptide or polynucleotide of the present invention) in a manner sufficient to provide an immune response. Rodents such as mice and rats are preferred animals. Spleen cells from the immunized animal are then fused with cells of an immortal myeloma cell. Where the immunized animal is a mouse, a preferred myeloma cell is a murine NS-1 myeloma cell.
- a selected antigen e.g., a polypeptide or polynucleotide of the present invention
- the fused spleen/myeloma cells are cultured in a selective medium to select fused spleen/myeloma cells from the parental cells.
- Fused cells are separated from the mixture of non-fused parental cells, for example, by the addition of agents that block the de novo synthesis of nucleotides in the tissue culture media.
- agents that block the de novo synthesis of nucleotides in the tissue culture media are aminopterin, methotrexate, and azaserine. Aminopterin and methotrexate block de novo synthesis of both purines and pyrimidines, whereas azaserine blocks only purine synthesis.
- the media is supplemented with hypoxanthine and thymidine as a source of nucleotides.
- azaserine is used, the media is supplemented with hypoxanthine.
- This culturing provides a population of hybridomas from which specific hybridomas are selected.
- selection of hybridomas is performed by culturing the cells by single-clone dilution in microtiter plates, followed by testing the individual clonal supernatants for reactivity with an antigen-polypeptides. The selected clones can then be propagated indefinitely to provide the monoclonal antibody.
- mice are injected intraperitoneally with between about 1–200 ⁇ g of an antigen comprising a polypeptide of the present invention.
- B lymphocyte cells are stimulated to grow by injecting the antigen in association with an adjuvant such as complete Freund's adjuvant (a non-specific stimulator of the immune response containing killed Mycobacterium tuberculosis ).
- an adjuvant such as complete Freund's adjuvant (a non-specific stimulator of the immune response containing killed Mycobacterium tuberculosis ).
- mice are boosted by injection with a second dose of the antigen mixed with incomplete Freund's adjuvant.
- mice are tail bled and the sera titered by immunoprecipitation against radiolabeled antigen.
- the process of boosting and titering is repeated until a suitable titer is achieved.
- the spleen of the mouse with the highest titer is removed and the spleen lymphocytes are obtained by homogenizing the spleen with a syringe.
- a spleen from an immunized mouse contains approximately 5 ⁇ 10 7 to 2 ⁇ 10 8 lymphocytes.
- myeloma cells are obtained from laboratory animals in which such cells have been induced to grow by a variety of well-known methods. Myeloma cells lack the salvage pathway of nucleotide biosynthesis. Because myeloma cells are tumor cells, they can be propagated indefinitely in tissue culture, and are thus denominated immortal. Numerous cultured cell lines of myeloma cells from mice and rats, such as murine NS-1 myeloma cells, have been established.
- Myeloma cells are combined under conditions appropriate to foster fusion with the normal antibody-producing cells from the spleen of the mouse or rat injected with the antigen/polypeptide of the present invention. Fusion conditions include, for example, the presence of polyethylene glycol. The resulting fused cells are hybridoma cells. Like myeloma cells, hybridoma cells grow indefinitely in culture.
- Hybridoma cells are separated from unfused myeloma cells by culturing in a selection medium such as HAT media (hypoxanthine, aminopterin, thymidine).
- HAT media hyperxanthine, aminopterin, thymidine.
- Unfused myeloma cells lack the enzymes necessary to synthesize nucleotides from the salvage pathway because they are killed in the presence of aminopterin, methotrexate, or azaserine. Unfused lymphocytes also do not continue to grow in tissue culture. Thus, only cells that have successfully fused (hybridoma cells) can grow in the selection media.
- Each of the surviving hybridoma cells produces a single antibody. These cells are then screened for the production of the specific antibody immunoreactive with an antigen/polypeptide of the present invention.
- Single cell hybridomas are isolated by limiting dilutions of the hybridomas. The hybridomas are serially diluted many times and, after the dilutions are allowed to grow, the supernatant is tested for the presence of the monoclonal antibody. The clones producing that antibody are then cultured in large amounts to produce an antibody of the present invention in convenient quantity.
- polypeptides and polynucleotide of the invention can be recognized as antigens, and thus identified. Once identified, those polypeptides and polynucleotide can be isolated and purified by techniques such as antibody-affinity chromatography. In antibody-affinity chromatography, a monoclonal antibody is bound to a solid substrate and exposed to a solution containing the desired antigen. The antigen is removed from the solution through an immunospecific reaction with the bound antibody. The polypeptide or polynucleotide is then easily removed from the substrate and purified.
- the present invention provides a method of detecting a polypeptide of the present invention, wherein the method comprises immunoreacting the polypeptides with antibodies prepared according to the methods described above to form antibody-polypeptide conjugates, and detecting the conjugates.
- the present invention provides a method of detecting messenger RNA transcripts that encode a polypeptide of the present invention, wherein the method comprises hybridizing the messenger RNA transcripts with polynucleotide sequences that en code the polypeptide to form duplexes; and detecting the duplex.
- the present invention provides a method of detecting DNA molecules that encode a polypeptide of the present invention, wherein the method comprises hybridizing DNA molecules with a polynucleotide that encodes that polypeptide to form duplexes; and detecting the duplexes.
- the detection and screening assays disclosed herein can be also used as a part of a diagnostic method.
- Human NE transporter-encoding polynucleotides as well as their protein products can be readily used in clinical setting to diagnose susceptibility to orthostatic intolerance and to other heritable NE transporter-related diseases in humans.
- the present invention provides a method of screening a biological sample for the presence of a NE transporter polypeptide.
- the NE transporter polypeptide possesses NE transport activity, cross-reactivity with an anti-NE transporter antibody, or other biological activity in accordance with the present invention.
- a biological sample to be screened can be a biological fluid such as extracellular or intracellular fluid or a cell or tissue extract or homogenate.
- a biological sample can also be an isolated cell (e.g., in culture) or a collection of cells such as in a tissue sample or histology sample.
- a tissue sample can be suspended in a liquid medium or fixed onto a solid support such as a microscope slide. Hepatic tissues comprise particularly contemplated tissues.
- antibodies which distinguish between the A457 NE transporter polypeptide and the P457 NE transporter polypeptide are provided.
- Such antibodies can comprise polyclonal antibodies but are preferably monoclonal antibodies prepared as described hereinabove.
- a biological sample is exposed to an antibody immunoreactive with the polypeptide whose presence is being assayed.
- exposure is accomplished by forming an admixture in a liquid medium that contains both the antibody and the candidate polypeptide.
- Either the antibody or the sample with the polypeptide can be affixed to a solid support (e.g., a column or a microtiter plate).
- the biological sample is exposed to the antibody under biological reaction conditions and for a period of time sufficient for antibody-polypeptide conjugate formation.
- biological reaction conditions include ionic composition and concentration, temperature, pH and the like.
- Ionic composition and concentration can range from that of distilled water to a 2 molal solution of NaCl.
- osmolality is from about 100 mosmols/l to about 400 mosmols/l and, more preferably from about 200 mosmols/l to about 300 mosmols/l.
- Temperature preferably is from about 4° C. to about 100° C., more preferably from about 15° C. to about 50° C. and, even more preferably from about 25° C. to about 40° C.
- pH is preferably from about a value of 4.0 to a value of about 9.0, more preferably from about a value of 6.5 to a value of about 8.5 and, even more preferably from about a value of 7.0 to a value of about 7.5.
- the only limit on biological reaction conditions is that the conditions selected allow for antibody-polypeptide conjugate formation and that the conditions do not adversely affect either the antibody or the polypeptide.
- Exposure time will vary inter alia with the biological conditions used, the concentration of antibody and polypeptide and the nature of the sample (e.g., fluid or tissue sample). Techniques for determining exposure time are well known to one of ordinary skill in the art. Typically, where the sample is fluid and the concentration of polypeptide in that sample is about 10 ⁇ 10 M, exposure time is from about 10 minutes to about 200 minutes.
- the presence of polypeptide in the sample is detected by detecting the formation and presence of antibody-polypeptide conjugates.
- Techniques for detecting such antibody-antigen (e.g., receptor polypeptide) conjugates or complexes are well known in the art and include such procedures as centrifugation, affinity chromatography and the like, binding of a secondary antibody to the antibody-candidate receptor complex.
- detection is accomplished by detecting an indicator affixed to the antibody.
- indicators include radioactive labels (e.g., 32 P, 125 I, 14 C), a second antibody or an enzyme such as horse radish peroxidase.
- radioactive labels e.g., 32 P, 125 I, 14 C
- a second antibody e.g., a second antibody
- an enzyme such as horse radish peroxidase.
- Techniques for affixing indicators to antibodies are well known in the art. Commercial kits are available.
- the present invention provides a method of screening a biological sample for the presence of antibodies immunoreactive with a NE transporter polypeptide.
- the NE transporter polypeptide has NE transport activity, cross-reactivity with an anti-NE transporter antibody, or other biological activity in accordance with the present invention.
- a biological sample is exposed to a NE transporter polypeptide under biological conditions and for a period of time sufficient for antibody-polypeptide conjugate formation and the formed conjugates are detected.
- Autoimmune antibodies associated with acquired impaired NET function are particularly contemplated for detection.
- binding substances comprising a NE transporter polypeptide as described herein have selective binding activity with an antibody epitope (antigen recognition specificity).
- This binding specificity can be employed for detecting and/or purifying the antibody or fragment thereof.
- fragment thus refers any fragment of the antibody, such as Fab and F(ab′) 2 fragments.
- a NE transporter polypeptide is prepared as described herein above.
- the polypeptide is then conjugated to, or labeled with, a material that will enable visualization of the presence of the NE transporter polypeptide.
- the NE transporter polypeptide can thus be used in a variety of applications to detect antibodies or antibody fragments.
- fluoresceinated, alkaline phosphatase labeled, peroxidase labeled, or biotinylated NE transporter polypeptides are used in indirect cytochemical assays to detect antibody binding to cells and tissues in histological or flow cytometric assays. Such detection can be used in a variety of research or clinical contexts.
- immobilized NE transporter polypeptides can be used to precipitate immune complexes in radioimmune and other quantitative immune or antigen capture assays.
- immunoprecipitation assays where immune complexes of radiolabeled antigens are captured on immobilized NE transporter polypeptides of the present invention have wide application in the art.
- the NE transporter polypeptides are used to detect the presence of antibodies and fragments thereof, in solutions, or on surfaces exposed to antibodies, or fragments thereof, by a variety of techniques. Techniques which are used include: enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), immunoblot analysis, immunofluorescent assay (IFA), immunohistochemistry, immunoelectron microscopy (IEM), and immunoilluminescence. Each technique utilizes conjugates including NE transporter polypeptides to visualize the binding of the conjugate to antibody molecules or fragments thereof.
- ELISA enzyme-linked immunosorbent assay
- RIA radioimmunoassay
- IFA immunofluorescent assay
- IEM immunohistochemistry
- IEM immunoelectron microscopy
- conjugates include, but are not limited to, enzymes such as biotin, horseradish peroxidase, alkaline phosphatase (O'Sullivan et al. (1978) FEBS Letters 95:311), acid phosphatase, beta-galactosidase (Ishikawa et al. (1978) Scand. J. Immunol. 8:43) and luciferase; radioisotopes such as 125 I, 35 S, 14 C, and 3 H; fluorescent dyes such as fluorescein, rhodamine, dichlorotriazinylaminofluorescein (DTAF; Blakeslee et al., J. Immunol Meth.
- enzymes such as biotin, horseradish peroxidase, alkaline phosphatase (O'Sullivan et al. (1978) FEBS Letters 95:311), acid phosphatase, beta-galactosidase (Ishikawa e
- the protein conjugate is stored in appropriate buffers until needed. Colloidal gold conjugates can be maintained in Tris-based stabilizing buffer, such as those described in Robinson et al., (1984) Infect. Immun. 46:361–366.
- the buffer would typically be phosphate-buffered saline, pH 7.2 (PBS).
- physiological buffers such as Tris- or borate-buffered saline (TBS or BBS) in pH ranging from 6.5 to 8.0, or non-saline buffers such as acetates, bicarbonates, or citrates within this pH range can be utilized.
- the NE transporter polypeptide conjugate can be first diluted in an appropriate buffer.
- the extent of dilution varies according to the conjugate and sensitivity required, and is normally determined empirically for a given conjugate preparation and detection method. Dilutions typically range from 1:10 to 1:10,000.
- the conjugate is incubated with a sample suspected of containing antibodies or fragments thereof. The incubation should proceed for about 15–60 minutes at room temperature, or about 4–16 hours at about 4° C., during which time from one to ten (optimally) NE transporter polypeptide molecules will bind to any antibodies or fragments thereof present.
- the sample is washed twice for about 5-10 minutes each with dilution buffer or with buffer which is compatible with the visualization conditions (if different).
- the presence of bound NE transporter polypeptide can then be detected or visualized by chromogenic assay, radioactivity, illuminescence, fluorescence, flow cytometry or electron density, as appropriate for the conjugate.
- a method for detecting an antibody or fragment thereof, in a sample suspected of an antibody or fragment thereof comprises: (a) contacting the sample with a binding substance comprising a NE transporter polypeptide under conditions favorable to binding an antibody or fragment thereof, to the binding substance to form a complex therebetween; and (b) detecting the complex by means of a label conjugated to the binding substance or by means of a labeled reagent that specifically binds to the complex subsequent to its formation.
- the binding substance can be immobilized on a solid substrate.
- the detecting step (b) comprises: (i) contacting the complex with a reagent conjugated with a detectable label wherein the reagent specifically binds to the antibody or fragment thereof, and (ii) detecting the detectable label.
- the binding substance can be conjugated with a detectable label.
- the detecting step (b) comprises: (i) separating the complex from unbound labeled binding substance; and (ii) detecting the detectable label which is present in the complex or which is unbound.
- the detection method of the present invention can further comprise: (i) contacting the complex with a reagent immobilized on a solid substrate to form immobilized complex thereon wherein the reagent binds the antibody or fragment, present in the complexes; and (ii) separating the immobilized complex from the remaining mixture.
- a nucleic acid molecule and, particularly a probe molecule can be used for hybridizing as an oligonucleotide probe to a nucleic acid source suspected of encoding a NE transporter polypeptide of the present invention.
- the NE transporter polypeptide has NE transport activity, cross-reactivity with an anti-NE transporter antibody, or other biological activity in accordance with the present invention.
- the probing is usually accomplished by hybridizing the oligonucleotide to a DNA source suspected of possessing a NE transporter gene.
- the probes constitute only a single probe, and in others, the probes constitute a collection of probes based on a certain amino acid sequence or sequences of the polypeptide and account in their diversity for the redundancy inherent in the genetic code.
- a suitable source of DNA for probing in this manner is capable of expressing a polypeptide of the present invention and can be a genomic library of a cell line of interest.
- a source of DNA can include total DNA from the cell line of interest.
- DNA molecules can be used in a number of techniques including their use as: (1) diagnostic tools to detect normal and abnormal DNA sequences in DNA derived from patient's cells, such as a NE transporter polymorphism described herein; (2) tools for detecting and isolating other members of the polypeptide family and related polypeptides from a DNA library potentially containing such sequences; (3) primers for hybridizing to related sequences for the purpose of amplifying those sequences; (4) primers for altering native NE transporter DNA sequences; as well as other techniques which rely on the similarity of the DNA sequences to those of the DNA segments herein disclosed.
- DNA sequence information provided by the invention allows for the preparation of relatively short DNA (or RNA) sequences (e.g., probes) that specifically hybridize to encoding sequences of a selected NE transporter gene.
- nucleic acid probes of an appropriate length are prepared based on a consideration of the encoding sequence for a polypeptide of this invention. The ability of such nucleic acid probes to specifically hybridize to other encoding sequences lend them particular utility in a variety of embodiments.
- the probes can be used in a variety of assays for detecting the presence of complementary sequences in a given sample. However, other uses are envisioned, including the use of the sequence information for the preparation of mutant species primers, or primers for use in preparing other genetic constructions.
- a preferred nucleic acid sequence employed for hybridization studies or assays includes probe sequences that are complementary to at least a 14 to 40 or so long nucleotide stretch of a nucleic acid sequence of the present invention, such as a sequence shown in any of SEQ ID NOs:1, 3, 11 and 13.
- a size of at least 14 nucleotides in length helps to ensure that the fragment is of sufficient length to form a duplex molecule that is both stable and selective.
- Molecules having complementary sequences over stretches greater than 14 bases in length are generally preferred, though, to increase stability and selectivity of the hybrid, and thereby improve the quality and degree of specific hybrid molecules obtained.
- nucleic acid molecules having gene-complementary stretches of 14 to 20 nucleotides, or even longer where desired.
- Such fragments can be readily prepared by, for example, directly synthesizing the fragment by chemical means, by application of nucleic acid reproduction technology, such as the PCR technology of U.S. Pat. No. 4,683,202, herein incorporated by reference, or by introducing selected sequences into recombinant vectors for recombinant production.
- a nucleotide sequence of the present invention can be used for its ability to selectively form duplex molecules with complementary stretches of the gene.
- relatively stringent conditions For applications requiring a high degree of selectivity, one typically employs relatively stringent conditions to form the hybrids.
- relatively low salt and/or high temperature conditions such as provided by 0.02M–0.15M salt at temperatures of about 50° C. to about 70° C. including particularly temperatures of about 55° C., about 60° C. and about 65° C.
- Such conditions are particularly selective, and tolerate little, if any, mismatch between the probe and the template or target strand.
- nucleic acid sequence of the present invention in combination with an appropriate means, such as a label, for determining hybridization.
- appropriate indicator means include radioactive, enzymatic or other ligands, such as avidin/biotin, which are capable of giving a detectable signal.
- an enzyme tag such as a urease, alkaline phosphatase or peroxidase, instead of radioactive or other environmentally undesirable reagents.
- calorimetric indicator substrates are known which can be employed to provide a means visible to the human eye or spectrophotometrically, to identify specific hybridization with complementary nucleic acid-containing samples.
- the hybridization probes described herein are useful both as reagents in solution hybridization as well as in embodiments employing a solid phase.
- the sample containing test DNA (or RNA) is adsorbed or otherwise affixed to a selected matrix or surface.
- This fixed, single-stranded nucleic acid is then subjected to specific hybridization with selected probes under desired conditions.
- the selected conditions depend inter alia on the particular circumstances based on the particular criteria required (depending, for example, on the G+C contents, type of target nucleic acid, source of nucleic acid, size of hybridization probe, etc.).
- specific hybridization is detected, or even quantified, via the label.
- the present invention provides diagnostic assay kits for detecting the presence of a polypeptide of the present invention in biological samples, where the kits comprise a first container containing a first antibody capable of immunoreacting with the polypeptide, with the first antibody present in an amount sufficient to perform at least one assay.
- the assay kits of the invention further comprise a second container containing a second antibody that immunoreacts with the first antibody.
- the antibodies used in the assay kits of the present invention are monoclonal antibodies.
- the first antibody is affixed to a solid support.
- the first and second antibodies comprise an indicator, and, preferably, the indicator is a radioactive label or an enzyme.
- the present invention also provides a diagnostic kit for screening agents.
- a diagnostic kit for screening agents can contain a polypeptide of the present invention.
- the kit can contain reagents for detecting an interaction between an agent and a receptor of the present invention.
- the provided reagent can be radiolabeled.
- the kit can contain a known radiolabelled agent capable of binding or interacting with a receptor of the present invention.
- the present invention provides diagnostic assay kits for detecting the presence, in biological samples, of a polynucleotide that encodes a polypeptide of the present invention, the kits comprising a first container that contains a second polynucleotide identical or complementary to a segment of at least 10 contiguous nucleotide bases of, as a preferred example, in any of SEQ ID NOs:1, 3, 11 and 13.
- the present invention provides diagnostic assay kits for detecting the presence, in a biological sample, of antibodies immunoreactive with a polypeptide of the present invention, the kits comprising a first container containing a NE transporter polypeptide, that immunoreacts with the antibodies, with the polypeptide present in an amount sufficient to perform at least one assay.
- the NE transporter polypeptide has NE transport activity, cross-reactivity on an anti-NE transporter antibody, or other biological activity in accordance with the present invention.
- the reagents of the kit can be provided as a liquid solution, attached to a solid support or as a dried powder.
- the liquid solution is an aqueous solution.
- the solid support can be chromatograph media or a microscope slide.
- the reagent provided is a dry powder, the powder can be reconstituted by the addition of a suitable solvent.
- the solvent can be provided.
- the present invention also provides the detection and diagnoses of impaired NE transport and disorders related thereto based on the use of standard tests associated with evaluating NE transport function, such as the NE clearance and tyramine tests described in the Examples. Such test results are prepared, and the results are compared to results observed in patients having the NET mutation disclosed herein. Test results that indicate a correlation with the results observed in a patient having the polymorphism disclosed herein indicates the presence of a deficiency in NE transport in a patient so screened.
- NE transport deficient patients i.e. those having the NET polymorphism disclosed herein
- NE clearance rates are 2–3 liters per minute in normal patients.
- plasma NE levels after administration of the unit dose of tyramine were observed to range from about 1 to about 20 pg/ml and more particularly from about 5 to about 50 pg/ml in patients having the NE transporter polymorphism disclosed herein.
- plasma NE levels after administration of a unit dose of tyramine in a normal patient ranges from about 40 to about 70 pg/ml, and usually ranges from about 50 to about 60 pg/mL.
- Urinary NE levels range from about 100 to about 500 ⁇ g/24 hrs and usually from about 200 to about 400 in the patients observed to have the NET polymorphism. In contrast, in normal patients, urinary NE levels range from about 0 to about 90 ⁇ g/24 hrs. Thus, these data can be used in accordance with the present invention to detect impaired NE transport and disorders related thereto.
- the ratio of DHPG to NE in blood is also used to detect impaired NE transport and disorders related thereto.
- DHPG is a metabolite of NE, resulting from the enzymatic action of monoamine oxidase. Since the monoamine oxidase is predominantly in the neuron itself, NE pumped back into the neuron by the NET is exposed to the enzyme and can be broken down into DHPG, which can then leak out into the plasma. If the NET is not functioning appropriately or if there is a deficiency of NET, not as much norepinephrine is pumped up into the neuron and subsequently metabolized to DHPG.
- the ratio of DHPG to NE in blood is less in patients with NET deficiency. This difference can appear during upright posture or with exercise.
- the ratio of DHPG to NE in blood is determined, and the results are compared to results observed in patients having the NET mutation disclosed herein. Test results that indicate a correlation with the results observed in a patient having the polymorphism disclosed herein indicates the presence of a deficiency in NE transport in a patient so screened.
- the ratio of DHPG to normetanephrine is also used to detect impaired NE transport and disorders related thereto.
- NE When NE is not pumped into the neuron by the NE transporter, NE is exposed to extraneuronal tissue which contains a different enzyme called catechol-O-methyltransferase (COMT), which catalyzes the metabolism of NE to NMN.
- CCT catechol-O-methyltransferase
- the metabolism of NE to NMN is enhanced under circumstances where NE transport into the neuron is impaired, and thus, a ratio of DHPG to normetanephrine (NMN) can also be used to detect impaired NE transport and disorders related thereto.
- the ratio of DHPG to NMN is determined, and the results are compared to results observed in patients having the NET mutation disclosed herein.
- Test results that indicate a correlation with the results observed in a patient having the polymorphism disclosed herein indicates the presence of a deficiency in NE transport in a patient so screened.
- the method can be used to detect susceptibility to a NET mediated disorder in a patient.
- the detection of secondary test results indicative of impaired NET function can thus be used to detect susceptibility to mental illness, hypertension, heart disease and psycho stimulant abuse (e.g. cocaine or amphetamine abuse).
- psycho stimulant abuse e.g. cocaine or amphetamine abuse.
- the identification of the NET transporter mutation as set forth herein represents the first establishment of a link between genetic causes of NET deficiencies and more indirect measures of NET deficiencies, such as the tyramine and NE clearance tests disclosed in the Examples presented below. This information is thus useful in facilitating diagnoses of approximately half a million patients in the United States alone who are suffering from disorders associated with NET deficiencies.
- the proband was a 33-year old female with a 20 year history of exertional and orthostatic provocation of tachycardia, dyspnea, concentration difficulty, and syncope. She had volatile blood pressure during or following anaesthesia with each of her three Caesarean sections with blood pressures as high as 210/180 mm Hg. Standard treatment for syncope ( ⁇ -blockers, compression stockings, fludrocortisone) had been unsatisfactory. Implantation of a dual chamber pacemaker seemed to decrease the frequency of syncope, but symptoms of orthostatic intolerance persisted. An echocardiogram revealed mild mitral regurgitation and possible mitral valve prolapse. The probands identical twin also had a history of mitral valve prolapse and syncope as well as multiple symptoms worsened by stress and upright posture.
- the proband and her twin were admitted to the General Clinical Research Center at Vanderbilt University Medical Center, Nashville, Tenn. They were placed on a caffeine-free, low monoamine diet containing 150 mEq Na + and 70 mEq K + per day for 3 days. All medications had been discontinued at least two weeks prior to admission. After fasting supine overnight, blood pressure, heart rate, and plasma catecholamines were measured supine and after standing. At least two hours after breakfast standard autonomic function testing was performed as described by Mosqueda-Gracia, Disorders of the Autonomic Nervous System (1995). Urine was collected over a 24 hour period for catecholamines and catecholamine metabolites.
- the proband and normal controls were studied after overnight rest. Catheters were placed in a brachial artery, the ipsilateral femoral vein, and bilateral antecubital veins. Blood pressure was monitored intraarterially and heart rate was monitored by continuous ECG. After instrumentation and 30 minutes recovery, tritiated norepinephrine (3H-NE) was infused intraveneously at 0.9 ⁇ Ci/mL/min (see Riley et al., Clin Sci (1991)) after a loading dose of 25 ⁇ Ci over 2 min. See Esler et al., Physiol Rev (1990). After allowing 30 to 40 minutes to reach steady state, blood for baseline norepinephrine concentration was obtained from the artery.
- H-NE tritiated norepinephrine
- Norepinephrine spillover and clearance were determined before and during baroreflex-mediated sympathetic activation with infusion of nitroprusside sufficient to decrease systolic blood pressure by 20 mmHg. 3 H-NE concentration in plasma samples was determined as described by Shannon et al., Circulation (1999).
- Genomic DNA was isolated from venous blood using the PureGene DNA Extraction Kit (Gentra Systems, Minneapolis, Minn.).
- the exons of the human NET gene (SLC6A2, McKusick # 163970) were amplified using the polymerase chain reaction (PCR) with sense and antisense primers set forth in Table 2 as follows:
- Amplified products (60 ng) were directly sequenced using PCR primers with AmpliTaq®-FS fluorescent dideoxy chain terminators (Perkin Elmer, Wellesley, Mass.) using 25 cycles of 96° C. for 30 sec, 50° C. for 15 sec, and 60° C. for 4 min. After ethanol precipitation, the reactions were analyzed on an ABI 310TM automated DNA sequencer (Vanderbilt University Center for Molecular Neuroscience DNA Sequencing Core, Nashville, Tenn.).
- DNA encoding the hNET A457P mutant was created using QuikChangeTM Site-Directed Mutagenesis Kit (Stratagene, La Jolla, Calif.) according to manufacturer's protocol using the oligonucleotides RB675 (5′ccttcagtactttccttctcccctgttctgcataaccaag-3′) (SEQ ID NO:5) and RB676 (5′cttggttatgcagaacagggggagaaggaaagtactgaagg-3′) (SEQ ID NO:6).
- the underlying bases indicate modified bases to introduce the g237c mutation or to introduce a Sca I restriction site that could be used to identify mutated plasmids.
- Amplified DNA was cloned into a pcDNA3 (Invitrogen, Carlsbad, Calif.) construct containing wild type hNET cDNA that had been previously mutated to introduce a silent mutation (L438L), creating a unique Afi II site to facilitate subcloning of the mutated sequences back into the wild type construct.
- the subcloned region was sequenced using hNET oligonuceotides RB252 (SEQ ID NO:7) (5′-cattctgggctgttgtgt-3′) and RB584 (SEQ ID NO:8) (5′-gtggttgtggtcagcatcatc-3′).
- DNA from multiple isolates of mutant clones were purified (Qiagen Inc., Santa Clarita, Calif.) to test for the impact of the A457P mutation on transporter activity.
- hNET, hNET A457P, and pcDNA3 plasmids were transiently tranfected in parallel into Chinese Hamster Ovary (CHO; American Type Culture Collection, Manasas, Va., accession no. CCL-61) cells using lipofectamine (Gibco-BRL, Grand Island, N.Y.) according to manufacturer's protocols.
- CHO cells were cultured at 37° C. in 5% CO 2 in Dulbelco's Minimum Essential Medium with 10% fetal bovine serum (Hyclone, Logan, Utah), 2 mM glutamine (Gibco-BRL, Grand Island, N.Y.), 100 I.
- Allele specific oligonucleotide hybridization was used to genotype individuals for the A457P mutation with RB704 (5′-ccttctcgccctgtt-3′) (SEQ ID NO:9) hybridizing to the wild type allele and RB705 (5′-ccttctcccctgtt-3′) (SEQ ID NO: 10) hybridizing to the mutant allele.
- the underlined bases identify the single nucleotide polymorphism. All genomic DNA was coded prior to analysis to preserve anonymity of the sample. Genotypes were assigned without knowledge of the sample's identity and then used to associate genotype with a phenotype.
- Results are expressed as mean ⁇ SEM. Paired and unpaired two tail t-tests were used for comparisons between groups and within one group before and after the various stimuli. Data were analyzed using GRAPHPAD PRISMTM software. (GraphPAD Software Inc., San Diego, Calif.) A p value less than 0.05 was considered significant.
- the supine DHPG/norepinephrine ratio was approximately 5:1 while in the proband and her twin, the ratio was approximately 2:1. With standing, the ratios in normal controls averaged 3:1 while in the proband and twin, they were 1:1. Urinary norepinephrine was elevated outside the normal range in both the proband and her twin (Table 3).
- Tyramine is an indirectly-acting amine that exerts its effect by releasing cytosolic norepinephrine.
- tyramine To cause norepinephrine release, tyramine must first be taken up into the neuron by NET, as described by Blakely et al., J Exp Biol (1994), and Demanet, Cardiology (1976).
- Intravenous injection of tyramine 3 mg increased systolic blood pressure 19 ⁇ 2 mmHg and plasma norepinephrine by 56 ⁇ 21 pg/ml in normal controls.
- the same dose increased systolic blood pressure similarly (118 mmHg), but the elevation in plasma norepinephrine was significantly blunted (12 pg/ml).
- the proband's mother and 4 of her 8 siblings were genotyped by ASO and were found to be heterozygous for the mutant allele (AP), including her twin ( FIG. 2E and FIG. 2F ).
- AP mutant allele
- FIG. 2E and FIG. 2F heart rates and plasma catecholamines were obtained from the family.
- supine plasma norepinephrine tended to be greater in AP that AA family members, whereas upright norepinephrine was significantly greater in AP individuals ( FIG. 3C and FIG. 3D ).
- the plasma DHPG/norepinephrine ratio was significantly greater in AA individuals that in AP individuals with both supine and upright postures ( FIG. 3E and FIG. 3F ).
- the norepinephrine transporter is responsible for clearance of norepinephrine (NE) from the synapse and is a target for antidepressant drugs and psychostimulants.
- NE norepinephrine
- a human NET (hNET; SLC6A2) coding mutation, A457P, linked to orthostatic Intolerance which results in near complete loss of [ 3 H]NE transport ( ⁇ 2% of wild type (wt)) is also disclosed herein above. This Example pertains to the identification of a mechanism underlying the loss of transport of A457P.
- Biotinylation of cell surface proteins and Western analysis reveal that the 80–100 kD form of hNET, the major species in the plasma membrane, is decreased in total cell extracts and in plasma membrane from COS-7 cells transfected with A457P compared to wt.
- Competition of [ 125 I]RTI-55 binding to membrane preparations demonstrates alterations in both antagonist and substrate binding to A457P.
- Cotransfection of A457P with wt hNET reveals a dominant negative interaction of decreased [ 3 H]NE uptake to 59 ⁇ 2.4% of wt alone.
- SNPs single nucleotide polymorphisms
- the NET deficiency in this family represents the first demonstration of a functional mutation in a monoamine transporter in humans.
- coding polymorphisms have been found in hNET, but these had no effect on norepinephrine transport activity. See e.g. Stober et al., Genetics (1996).
- the A457P mutation renders the transporter nonfunctional and segregates with an alteration in heart rate regulation and norepinephrine metabolism. Bedside physiological, pharmacological, and biochemical tests in the proband indicated a defect in norepinephrine reuptake.
- Supine resting heart rate was within normal range but about 10 bpm greater than age matched controls, as described by Shannon et al., Hypertension (1998), and rose substantially with upright posture. This heart rate change was paralleled by an increase in plasma norepinephrine which rose almost four-fold with upright posture.
- the relatively low DHPG compared to norepinephrine in the plasma of the proband and her twin are consistent with impaired NET activity.
- the A457P mutation is the first genetic defect identified in the syndrome of OI.
- the pathophysiology of OI has elicited considerable interest in recent years, and a number of potential mechanisms have been suggested. Most invoke a primary or secondary activation of sympathetic outflow to account for the tachycardia and raised norepinephrine with physiological stress. Postulated mechanisms include partial dysautonomia, central hyperadrenergia, abnormal ⁇ -adrenoreceptor function and hypovolemia.
- NET deficiency can at least partially explain a number of clinical features in patients with OI. Elevated supine heart rate, elevated plasma norepinephrine associated with relatively decreased plasma DHPG, the reduced norepinephrine response to tyramine, reduced systemic norepinephrine clearance, and the disparity of the change in heart rate and plasma norepinephrine as compared to sympathetic nerve activity with upright posture are all contemplated to be attributed to impaired NET activity and/or NET deficiency.
- noradrenergic synaptic clefts in the heart rate are approximately three times narrower than the synapic clefts in the vasculature. See Novi, Anatomical Record (1968). Therefore, removal of synaptic norepinephrine in the heart is far more dependent on NET that it is in vascular beds. See Goldstein et al., Circulation (1988). Thus, one would expect a disproportionate effect on heart rate and myocardial contractility as compared with blood pressure if NET were dysfunctional. That is precisely what is observed in patients with OI.
- central nervous system NET impairment is considerably more complicated. Noradrenergic and adrenergic neurons located at several sites in the central nervous system (e.g. the nucleus tractus solitarii (NTS) and the ventrolateral nuclei in the medulla) are involved in cardiovascular regulation. Increasing concentrations of norepinephrine, epinephrine, and their cogeners in the NTS greatly reduce blood pressure and heart rate in the rat by binding to ⁇ 2 -adrenoreceptors as disclosed by Goldberg et al., Clinical & Experimental Hypertension—Part A Theory & Practice (1982), and Tung et al., J Pharm Exp Ther (1983).
- NTS nucleus tractus solitarii
- the disclosure of the present invention facilities the discovery of other NET mutations, non-genetic NET defects, and other noradrenergic defects affecting NET function in patients with OI.
- autoantibodies to NET or membrane structures essential to NET function are autoantibodies to NET or membrane structures essential to NET function.
- the importance of such a role for autoantibodies is underscored by the preponderance of OI in females in whom autoimmune illnesses are more common, but by the fact that approximately 50% of patients report an antecedent viral illness which could trigger an autoimmune response. See Low et al., Neurology (1995). Regardless, the identification of defective norepinephrine transport in patients with OI shifts attention toward a heretofore unexplored mechanism of a very common clinical problem.
- proband twin normals Supine and Upright Blood Pressure and Heart Rate supine sbp (mmHg) 107 ⁇ 2 122 ⁇ 6 108 ⁇ 2 dpb (mmHg) 61 ⁇ 1 65 ⁇ 4 63 ⁇ 2 hr (bpm) 75 ⁇ 2 72 ⁇ 3 65 ⁇ 2 upright sbp (mmHg) 109 ⁇ 3 127 ⁇ 5 106 ⁇ 3 dpb (mmHg) 68 ⁇ 2 77 ⁇ 3 67 ⁇ 3 hr (bpm) 105 ⁇ 3 108 ⁇ 6 83 ⁇ 4 Supine and Upright Plasma Catecholamines supine NE (pg/ml) 269 199 200 ⁇ 20 Epi (pg/ml) 11 22 25 ⁇ 3 DHPG (pg/ml) 824 480 1104 ⁇ 115 DHPG/NE 3.06 2.41 5.52 upright NE (pg/ml) 923 911 485 ⁇ 50 Epi
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Isolated polynucleotide molecules and peptides encoded by these molecules are used in the analysis of human norepinephrine (NE) transporter variants, as well as in diagnostic and therapeutic applications, relating to a human NE transporter polymorphism. By analyzing genomic DNA or amplified genomic DNA, or amplified cDNA derived from mRNA, it is possible to type a human NE transporter with regard to the human NE transporter polymorphism, for example, in the context of diagnosing and treating NE transport impairments, and disorders associated with NE transport impairments, such as orthostatic intolerance.
Description
This application is based on and claims priority to U.S. Provisional Application Ser. No. 60/173,682, filed Dec. 29, 1999, and to U.S. Provisional Application Ser. No. 60/175,456, filed Jan. 11, 2000, each of which are herein incorporated by reference in their entirety.
This work was supported by NIH grants MH58921, PO1 HL56693 and RR00095, and by NASA grant NAS 9 19483. Thus, the U.S. Government has certain rights in the invention.
The present invention relates to isolated polynucleotide molecules useful for analyzing novel norepinephrine (NE) transporter variants, to peptides encoded by these molecules, and to the diagnostic and therapeutic uses thereof relating to a newly identified NE transporter polymorphism. Among such uses are methods for determining the susceptibility of a subject to orthostatic intolerance based on an analysis of a biological sample from the subject.
| Table of Abbreviations |
| A457P | alanine to proline amino acid mutation of amino acid 457 |
| of the norepinephrine transporter polypeptide | |
| ASO | allele-specific oligonucleotide |
| ATP | adenosine triphosphate |
| bp | base pair(s) |
| BP | blood pressure |
| bpm | beats per minute |
| BSA | bovine serum albumin |
| COMT | catechol-O-methyltransferase |
| dbp | diastolic blood pressure |
| DHPG | dihydroxyphenyl glycol |
| Epi | epinephrine |
| fl | full length |
| HAT | hypoxanthine, aminopterin, thymidine |
| HR or hr | heart rate |
| KDa | kilodalton |
| KLH | keyhole limpet hemocyanin |
| l | liter |
| LAT | ligation activated translation |
| LCR | ligase chain reaction |
| MAO | monoamine oxidase |
| MN | metanephrine |
| ml | milliliter(s) |
| mmHg | millimeters of mercury - standard blood pressure unit |
| MSNA | muscle sympathetic nerve activity |
| NAG | n-acetyl glutamate |
| NASDA ™ | nucleic acid sequence-based amplification |
| NE | norepinephrine |
| NET | norepinephrine transporter |
| NMN | normetanephrine |
| NO | nitric oxide |
| NTP | nitroprusside infusion |
| OI | orthostatic intolerance |
| OLA | oligonucleotide ligate assays |
| PBSCT | peripheral blood stem-cell transplantation |
| pg | picogram(s) |
| POTS | postural tachycardia syndrome |
| PCR | polymerase chain reaction |
| RCR | repair chain reaction |
| sbp | systolic blood pressure |
| SSCP | single strand conformation polymorphism |
| SDA | strand displacement activation |
| REF | Restriction endonuclease fingerprinting |
Orthostatic intolerance (OI) is a syndrome characterized by adrenergic symptoms brought on by upright posture. Usually, there is a heart rate increase of at least 30 bpm on standing without significant orthostatic hypotension. Jacob et al., Circulation (1997). Females are disproportionately affected and patients usually present in the second to fourth decade of life. Low et al., Neurology (1995). This dysautonomic syndrome is quite common and may have been first described as Da Costa's syndrome more than 100 years ago. Jordan et al., Chin J. Physiol (1997); Novak et al., J Aut N Syst (1996); Streeten, Orthostatic Disorders of the Circulation: Mechanisms, Manifestations and Treatment (1987). It has been re-recognized over the years as soldiers heart, neurocirculatory asthenia, and mitral valve prolapse syndrome. It also bears many similarities to chronic fatigue syndrome. Because of the prominent feature of orthostatic tachycardia, postural tachycardia syndrome (POTS) is a current popular name. Rosen et al., Am J Med (1982).
These features and their improvement with salt and volume replacement are consistent with hypovolemia and a secondary sympathetic activation. However, most patients are not hypovolemic. Excessive venous pooling with upright posture, hypersensitivity of veins to alpha-adrenoreceptor agonists and decreased autonomic latencies in the lower extremities are consistent with partial autonomic denervation as another mechanism which could cause secondary sympathetic activation. However, increased heart rate, plasma norepinephrine and muscle sympathetic nerve activity (MSNA) even in the supine position coupled with widely oscillating heart rate with upright posture and disparities among heart rate, plasma norepinephrine and MSNA responses to upright tilt are more consistent with fundamentally disordered autonomic regulation. Novak et al., J Aut N Syst (1996); Furlan et al., Circulation (1998); Shannon et al., Circulation (1998); Puddu et al., Am Heart J (1983); Pasternac et al., Am J Med (1982); Coghlan et al., Am J Med (1979).
Thus far, most explanations of the physiological and biochemical abnormalities in OI have focused on alterations in norepinephrine release (i.e., compensatory, excessive, or disordered). Streeten et al., J Lab Clin Med (1988); Furlan et al., Circulation (1998); Novak et al., Stroke (1998). An alternative explanation is an abnormality in synaptic norepinephrine clearance. Approximately 80–90% of norepinephrine released into many synapses can be cleared by neuronal re-uptake via the presynaptic norepinephrine transporter (NET), while the remaining 10–20% spills over into the circulation or extraneuronal tissue, as disclosed by Esler et al., Physiol Rev (1990).
To date, attempts to identify a genetic basis within the NE transporter gene for OI or other NE transport impairment have not been undertaken. It is further noted that drugs inhibiting NET (e.g., cocaine, amphetamines, tricyclic antidepressants) cause features typical of OI (i.e., tachycardia, orthostatic symptoms, and elevated plasma catecholamines). Thus, exploration of impaired NET function, including exploration of a genetic basis for such impaired NET function, would provide important information about the biological and addictive effects of these drugs.
What is needed, then, is further characterization of the structure of the NE transporter gene generally and in OI patients. Since the NE transporter plays a pivotal role in norepinephrine uptake at the synaptic cleft, further characterization of the structure and role of the NE transporter gene would meet a long-felt need in the art for diagnostic and therapeutic methods associated with NE transporter-mediated biological functions.
A method of screening for sub-optimal NE transporter-mediated physiological responses function in a subject is disclosed. The method comprises: (a) obtaining a biological sample from the subject; and (b) detecting a polymorphism of a NE transporter gene in the biological sample from the subject, the presence of the polymorphism indicating that the susceptibility of the subject to sub-optimal NET-mediated physiological responses. In accordance with a preferred embodiment of the present invention, detection of the polymorphism is employed with respect to determining the susceptibility of a subject to orthostatic intolerance (OI).
Preferably, the polymorphism of the NE transporter polypeptide comprises a G to C transversion in exon 9 of the NE transporter gene. Preferably, the G to C transversion further comprises a change in the triplet code from GCA/GCC/GCG/GCU to CCA/CCC/CCG/CCU, which encodes a NE transporter polypeptide having a proline moiety at amino acid residue 457 instead of an alanine moiety.
Kits and reagents, including oligonucleotides, nucleic acid probes and antibodies suitable for use in carrying out the methods of the present invention and for use in detecting the polypeptides and polynucleotides of the present invention are also disclosed herein. Methods for preparing the polynucleotides and polypeptides of the present invention are also disclosed herein.
In a further embodiment, this invention pertains to diagnostic methods based upon a polymorphism of a NE transporter gene as described herein. Such diagnostic methods include detection of NE transporter deficiencies and disorders related thereto based upon a comparison of NE transporter function related data to data observed in patients having the NE transporter polymorphism disclosed here.
It is therefore an object of the present invention to provide polynucleotide molecules that can be used in analyzing NE transporter genes in vertebrate subjects.
It is also an object of the present invention to provide for the determination of NE transporter genotype in vertebrate subjects and particularly human subjects, based on information obtained through the analysis of nucleic acids, including genomic DNA and cDNA, derived from tissues from the subject.
It is yet another object of the present invention to provide a ready method for determining NE transporter genotype.
It is still a further object of the present invention to provide polypeptide and polynucleotide molecules for use in generating antibodies that distinguish between the different forms of NE transporter which constitute the NE transporter polymorphism.
It is yet a further object of the present invention is to provide methods for diagnosing clinical syndromes related to and associated with the NE transporter polymorphism and/or sub-optimal NE transporter function.
Some of the objects of the invention having been stated hereinabove, other objects will become evident as the description proceeds, when taken in connection with the accompanying Drawings and Examples as best described hereinbelow.
Orthostatic intolerance (OI) is a common syndrome characterized by lightheadedness, palpitations, fatigue, altered mentation, and a syncope and is often accompanied by postural tachycardia and elevated plasma norepinephrine. Previous studies suggest that heart rate and plasma norepinephrine are elevated out of proportion to increase in sympathetic outflow. The cocaine and antidepressant sensitive L-norepinephrine transporter (NET) is responsible for synaptic norepinephrine inactivation.
As shown in FIG. 4A , under normal conditions exocytotic release of NE from intraneuronal vesicles into the synaptic space where the amine can interact with post-synaptic and pre-synapic adrenoreceptors (a). Approximately 80% of the synapic NE is taken up into the neuron by NET. Approximately 20% spills over into the circulation (b). Captured NE is preferentially converted to DHPG by monoamine oxidase (MAO); some is repackaged into synaptic vesicles (c). DHPG diffuses out of the neuron into the circulation (d).
As shown in FIG. 4B , release of NE into the synaptic space is unaffected (e). Because of decreased NET activity, less than 80% of the synapic NE is taken up into the neuron by NET and the spillover into the circulation is greater than 20%. Also because of decreased NET activity, NE has greater opportunity for interaction with adrenoreceptors (f). Because the reuptake of NE is decreased, DHPG production is decreased (g). Lower DHPG concentration in the neuron results in lower DHPG concentrations in the plasma and, subsequently, a reduced plasma DHPG/NE ration (h).
Whether abnormal NET function might contribute to the pathophysiology of OI, using a battery of bedside physiological, pharmacological, biochemical, and molecular biological tests was tested. In a proband with significant orthostatic symptoms and tachycardia, the present co-inventors found disproportionately elevated plasma norepinephrine with standing, impaired systemic clearance of infused titrated norepinephrine, impaired tyramine responsiveness, and a dissociation between plasma norepinephrine and DHPG elevation. Analysis of the norepinephrine transporter (SCL6A2, referred to herein as the “NE transporter” or “NET”) revealed the proband to be a heterozygote for an inactivating coding mutation in exon 9. Analysis of norepinephrine transport activity produced by the mutant cDNA in transfected cells demonstrated greater than 98% reduction in function relative to normal. Presence of the mutant allele in the proband's family segregated with postural tachycardia and alteration in plasma catecholamine homeostasis.
Thus, the present invention pertains to the first identification of a specific genetic defect in OI and to the first identification of a disease linked to a coding alteration in a Na+/Cl− dependent neurotransmitter transporter. The present invention also pertains to the discovery that genetic or acquired deficits in norepinephrine inactivation underlie hyperadrenergic states leading to orthostatic intolerance.
As disclosed herein is the discovery of a polymorphism of the norepinephrine transporter, the transport polypeptide that plays a role in norepinephrine reuptake at the synaptic cleft, among other in vivo roles. Particularly, the polymorphism is characterized by an amino acid substitution, alanine/proline at amino acid 457 in the encoded NE transporter polypeptide.
Also disclosed herein is the observation that a single nucleotide change in the NE transporter gene is responsible for the functional polymorphism of the NE transporter. Particularly, a G to C transversion with exon 9 of the NE transporter gene leads to an A457P change in the encoded NE transporter polypeptide.
In light of these discoveries, manipulation of biological samples derived from vertebrate subjects can be effected to provide for the analysis of NE transporter phenotypes, for the generation of peptides encoded by such nucleic acid molecules, and for diagnostic methods relating to the NE transporter polymorphism. Nucleic acid molecules utilized in these contexts may be amplified, as described below, and generally include RNA, genomic DNA and cDNA derived from RNA.
A. Polynucleotide Screening Techniques
In accordance with one embodiment of the present invention, a method of screening for susceptibility to sub-optimal norepinephrine (NE) transport function resulting in decreased NE clearance in a subject is provided. The method comprising the steps of: (a) obtaining a nucleic acid sample from the subject; and (b) detecting a polymorphism of a norepinephrine transporter (“NE transporter” or “NET”) gene in the nucleic acid sample from the subject, the presence of the polymorphism indicating that the susceptibility of the subject to sub-optimal NE transport function, which results in decreased NE transport. In accordance with the present invention, detection of the polymorphism is particularly provided with respect to determining the susceptibility of a subject to orthostatic intolerance (OI).
As used herein and in the claims, the term “polymorphism” refers to the occurrence of two or more genetically determined alternative sequences or alleles in a population. A polymorphic marker is the locus at which divergence occurs. Preferred markers have at least two alleles, each occurring at frequency of greater than 1%. A polymorphic locus may be as small as one base pair.
Useful nucleic acid molecules according to the present invention include those which will specifically hybridize to NE transporter sequences in the region of the G to C transversion at base 237 within exon 9 (GenBank Accession No. x91127, SEQ ID NO:15) of the NE transporter gene, changing the triplet code from GCA or GCC or GCG or GCU to CCA or CCC or CCG or CCU. This transversion leads to the A457P change in the encoded NE transporter polypeptide. Typically these are at least about 20 nucleotides in length and have the nucleotide sequence corresponding to the region of the G to C transversion in a cDNA (e.g. SEQ ID NO:3) encoding a NE transporter polypeptide and including exon 9 of the NE transporter gene. The cDNA sequence set forth in SEQ ID NO:1 is referred to herein as a NE transporter “consensus sequence”. The term “consensus sequence”, as used herein, is meant to refer to a nucleic acid or protein sequence for NET, the nucleic or amino acids of which are known to occur with high frequency in a population of individuals who carry the gene which codes for a normally functioning protein, or which nucleic acid itself has normal function.
Provided nucleic acid molecules can be labeled according to any technique known in the art, such as with radiolabels, fluorescent labels, enzymatic labels, sequence tags, etc. According to another aspect of the invention, the nucleic acid molecules contain the G to C transversion of exon 9. Such molecules can be used as allele-specific oligonucleotide probes to track a particular mutation, for example, through a family of subjects.
Body samples can be tested to determine whether the NE transporter gene contains the G to C transversion of exon 9. Suitable body samples for testing include those comprising DNA, RNA or protein obtained from biopsies, including liver and intestinal tissue biopsies; or from blood, prenatal; or embryonic tissues, for example.
In one embodiment of the invention a pair of isolated oligonucleotide primers are provided: RB655 (SEQ ID NO:32) and RB667(SEQ ID NO:33). These primers are derived from NE transporter exon 9 (the location of the polymorphism of the present invention), and amplify a yield a 448 base pair (bp) product. Other primers are also derived from NE transporter exon 9 (the location of the polymorphism of the present invention, GenBank Accession No. x91127, SEQ ID NO:15). The oligonucleotide primers are useful in diagnosis of a subject at risk for impaired or sub-optimal NET function and orthostatic intolerance. The primers direct amplification of a target polynucleotide prior to sequencing. These unique NE transporter exon 9 oligonucleotide primers were designed and produced based upon identification of the G to C transversion in exon 9.
In another embodiment of the invention isolated allele specific oligonucleotides (e.g. SEQ ID NOS: 9 & 10) are provided. Sequences substantially similar thereto are also provided in accordance with the present invention. The allele specific oligonucleotides are useful in diagnosis of a subject at risk for impaired or sub-optimal NET function. These unique NE transporter exon 9 oligonucleotide primers were designed and produced based upon identification of the G to C transversion in exon 9.
The terms “substantially complementary to” or “substantially the sequence of” refer to sequences which hybridize to the sequences provided (e.g. SEQ ID NOs: 9 and 10) under stringent conditions and/or sequences having sufficient homology with any of SEQ ID NOs: 9 and 10, such that the allele specific oligonucleotides of the invention hybridize to the sequence. The term “isolated” as used herein includes oligonucleotides substantially free of other nucleic acids, proteins, lipids, carbohydrates or other materials with which they may be associated, such association being either in cellular material or in a synthesis medium. A “target polynucleotide” or “target nucleic acid” refers to the nucleic acid sequence of interest e.g., a NE transporter-encoding polynucleotide. Other primers which can be used for primer hybridization are readily ascertainable to those of skill in the art based upon the disclosure herein of the NE transporter polymorphism.
The primers of the invention embrace oligonucleotides of sufficient length and appropriate sequence so as to provide initiation of polymerization on a significant number of nucleic acids in the polymorphic locus (See FIG. 2 ). Specifically, the term “primer” as used herein refers to a sequence comprising two or more deoxyribonucleotides or ribonucleotides, preferably more than three, and more preferably more than eight and most preferably at least about 20 nucleotides of the NE transporter gene wherein the DNA sequence contains the G to C transversion within to NE transporter exon 9. The allele including guanosine (G) within NE transporter exon 9 is referred to herein as the “NET-a allele”, the “A457 allele”, or the “alanine-encoding allele”. The allele including cytosine (C) within NE transporter exon 9 is referred to herein as the “NET-b allele”, the “P457 allele”, or the “proline-encoding allele”.
An oligonucleotide that distinguishes between the NET-a and the NET-b alleles of the NE transporter gene, wherein the oligonucleotide hybridizes to a portion of the NE transporter gene that includes nucleotide 237 of exon 9 of the NE transporter gene when the nucleotide 237 is cytosine, but does not hybridize with the portion of the NE transporter gene when the nucleotide 237 is guanosine is also provided in accordance with the present invention. An oligonucleotide that distinguishes between the NET-a and the NET-b alleles of the NE transporter gene, wherein the oligonucleotide hybridizes to a portion of the NE transporter gene that includes nucleotide 237 of exon 9 of the NE transporter gene when the nucleotide 237 is guanosine, but does not hybridize with the portion of the NE transporter gene when the nucleotide 237 is cytosine is also provided in accordance with the present invention. Such oligonucleotides are preferably between ten and thirty bases in length. Such oligonucleotides can optionally further comprise a detectable label.
Environmental conditions conducive to synthesis include the presence of nucleoside triphosphates and an agent for polymerization, such as DNA polymerase, and a suitable temperature and pH. The primer is preferably single stranded for maximum efficiency in amplification, but can be double stranded. If double stranded, the primer is first treated to separate its strands before being used to prepare extension products. The primer must be sufficiently long to prime the synthesis of extension products in the presence of the inducing agent for polymerization. The exact length of primer will depend on many factors, including temperature, buffer, and nucleotide composition. The oligonucleotide primer typically contains 12–20 or more nucleotides, although it can contain fewer nucleotides.
Primers of the invention are designed to be “substantially” complementary to each strand of the genomic locus to be amplified. This means that the primers must be sufficiently complementary to hybridize with their respective strands under conditions which allow the agent for polymerization to perform. In other words, the primers should have sufficient complementarity with the 5′ and 3′ sequences flanking the transversion to hybridize therewith and permit amplification of the genomic locus.
Oligonucleotide primers of the invention are employed in the amplification method which is an enzymatic chain reaction that produces exponential quantities of polymorphic locus relative to the number of reaction steps involved. Typically, one primer is complementary to the negative (−) strand of the polymorphic locus and the other is complementary to the positive (+) strand. Annealing the primers to denatured nucleic acid followed by extension with an enzyme, such as the large fragment of DNA polymerase I (Klenow) and nucleotides, results in newly synthesized + and − strands containing the target polymorphic locus sequence. Because these newly synthesized sequences are also templates, repeated cycles of denaturing, primer annealing, and extension results in exponential production of the region (i.e., the target polymorphic locus sequence) defined by the primers. The product of the chain reaction is a discreet nucleic acid duplex with termini corresponding to the ends of the specific primers employed.
The oligonucleotide primers of the invention can be prepared using any suitable method, such as conventional phosphotriester and phosphodiester methods or automated embodiments thereof. In one such automated embodiment, diethylphosphoramidites are used as starting materials and can be synthesized as described by Beaucage et al., Tetrahedron Letters 22:1859–1862 (1981). One method for synthesizing oligonucleotides on a modified solid support is described in U.S. Pat. No. 4,458,066.
Any nucleic acid specimen, in purified or non-purified form, can be utilized as the starting nucleic acid or acids, providing it contains, or is suspected of containing, a nucleic acid sequence containing the polymorphic locus. Thus, the method can amplify, for example, DNA or RNA, including messenger RNA, wherein DNA or RNA can be single stranded or double stranded. In the event that RNA is to be used as a template, enzymes, and/or conditions optimal for reverse transcribing the template to DNA would be utilized. In addition, a DNA-RNA hybrid which contains one strand of each can be utilized. A mixture of nucleic acids can also be employed, or the nucleic acids produced in a previous amplification reaction herein, using the same or different primers can be so utilized. The specific nucleic acid sequence to be amplified, i.e., the polymorphic locus, can be a fraction of a larger molecule or can be present initially as a discrete molecule, so that the specific sequence constitutes the entire nucleic acid. It is not necessary that the sequence to be amplified be present initially in a pure form; it can be a minor fraction of a complex mixture, such as contained in whole human DNA.
DNA utilized herein can be extracted from a body sample, such as blood, tissue material, preferably white blood cells, and the like by a variety of techniques such as that described by Maniatis et. al. in Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, N.Y., p 280–281 (1982). If the extracted sample is impure, it can be treated before amplification with an amount of a reagent effective to open the cells, or animal cell membranes of the sample, and to expose and/or separate the strand(s) of the nucleic acid(s). This lysing and nucleic acid denaturing step to expose and separate the strands will allow amplification to occur much more readily.
The deoxyribonucleotide triphosphates dATP, dCTP, dGTP, and dTTP are added to the synthesis mixture, either separately or together with the primers, in adequate amounts and the resulting solution is heated to about 90–100° C. from about 1 to 10 minutes, preferably from 1 to 4 minutes. After this heating period, the solution is allowed to cool, which is preferable for the primer hybridization. To the cooled mixture is added an appropriate agent for effecting the primer extension reaction (called herein “agent for polymerization”), and the reaction is allowed to occur under conditions known in the art. The agent for polymerization can also be added together with the other reagents if it is heat stable. This synthesis (or amplification) reaction can occur at room temperature up to a temperature above which the agent for polymerization no longer functions. Thus, for example, if DNA polymerase is used as the agent, the temperature is generally no greater than about 40° C. Most conveniently the reaction occurs at room temperature.
The agent for polymerization can be any compound or system which will function to accomplish the synthesis of primer extension products, including enzymes. Suitable enzymes for this purpose include, for example, E. coli DNA polymerase I, Klenow fragment of E. coli DNA polymerase, polymerase muteins, reverse transcriptase, other enzymes, including heat-stable enzymes (i.e., those enzymes which perform primer extension after being subjected to temperatures sufficiently elevated to cause denaturation), such as Taq polymerase. Suitable enzyme will facilitate combination of the nucleotides in the proper manner to form the primer extension products which are complementary to each polymorphic locus nucleic acid strand. Generally, the synthesis will be initiated at the 3′ end of each primer and proceed in the 5′ direction along the template strand, until synthesis terminates, producing molecules of different lengths.
The newly synthesized strand and its complementary nucleic acid strand will form a double-stranded molecule under hybridizing conditions described above and this hybrid is used in subsequent steps of the method. In the next step, the newly synthesized double-stranded molecule is subjected to denaturing conditions using any of the procedures described above to provide single-stranded molecules.
The steps of denaturing, annealing, and extension product synthesis can be repeated as often as needed to amplify the target polymorphic locus nucleic acid sequence to the extent necessary for detection. The amount of the specific nucleic acid sequence produced will accumulate in an exponential fashion. PCR. A Practical Approach, ILR Press, Eds. McPherson et al. (1992).
The amplification products can be detected by Southern blot analysis with or without using radioactive probes. In one such method, for example, a small sample of DNA containing a very low level of the nucleic acid sequence of the polymorphic locus is amplified, and analyzed via a Southern blotting technique or similarly, using dot blot analysis. The use of non-radioactive probes or labels is facilitated by the high level of the amplified signal. Alternatively, probes used to detect the amplified products can be directly or indirectly detectably labeled, for example, with a radioisotope, a fluorescent compound, a bioluminescent compound, a chemiluminescent compound, a metal chelator or an enzyme. Those of ordinary skill in the art will know of other suitable labels for binding to the probe, or will be able to ascertain such, using routine experimentation.
Sequences amplified by the methods of the invention can be further evaluated, detected, cloned, sequenced, and the like, either in solution or after binding to a solid support, by any method usually applied to the detection of a specific DNA sequence such as dideoxy sequencing, PCR, oligomer restriction (Saiki et al., Bio/Technology 3:1008–1012 (1985), allele-specific oligonucleotide (ASO) probe analysis (Conner et al., Proc. Natl. Acad. Sci. U.S.A. 80:278 (1983), oligonucleotide ligation assays (OLAs) (Landgren et. al., Science 241:1007, 1988), and the like. Molecular techniques for DNA analysis have been reviewed (Landgren et. al., Science 242:229–237, 1988).
Preferably, the method of amplifying is by PCR, as described herein and in U.S. Pat. Nos. 4,683,195; 4,683,202; and 4,965,188 each of which is hereby incorporated by reference; and as is commonly used by those of ordinary skill in the art. Alternative methods of amplification have been described and can also be employed as long as the NE transporter locus amplified by PCR using primers of the invention is similarly amplified by the alternative means. Such alternative amplification systems include but are not limited to self-sustained sequence replication, which begins with a short sequence of RNA of interest and a T7 promoter. Reverse transcriptase copies the RNA into cDNA and degrades the RNA, followed by reverse transcriptase polymerizing a second strand of DNA.
Another nucleic acid amplification technique is nucleic acid sequence-based amplification (NASBA™) which uses reverse transcription and T7 RNA polymerase and incorporates two primers to target its cycling scheme. NASBA™ amplification can begin with either DNA or RNA and finish with either, and amplifies to about 108 copies within 60 to 90 minutes.
Alternatively, nucleic acid can be amplified by ligation activated transcription (LAT). LAT works from a single-stranded template with a single primer that is partially single-stranded and partially double-stranded. Amplification is initiated by ligating a cDNA to the promoter olignucleotide and within a few hours, amplification is about 108 to about 109 fold. The QB replicase system can be utilized by attaching an RNA sequence called MDV-1 to RNA complementary to a DNA sequence of interest. Upon mixing with a sample, the hybrid RNA finds its complement among the specimen's mRNAs and binds, activating the replicase to copy the tag-along sequence of interest.
Another nucleic acid amplification technique, ligase chain reaction (LCR), works by using two differently labeled halves of a sequence of interest which are covalently bonded by ligase in the presence of the contiguous sequence in a sample, forming a new target. The repair chain reaction (RCR) nucleic acid amplification technique uses two complementary and target-specific oligonucleotide probe pairs, thermostable polymerase and ligase, and DNA nucleotides to geometrically amplify targeted sequences. A 2-base gap separates the oligo probe pairs, and the RCR fills and joins the gap, mimicking normal DNA repair.
Nucleic acid amplification by strand displacement activation (SDA) utilizes a short primer containing a recognition site for HincII with short overhang on the 5′ end which binds to target DNA. A DNA polymerase fills in the part of the primer opposite the overhang with sulfur-containing adenine analogs. HincII is added but only cuts the unmodified DNA strand. A DNA polymerase that lacks 5′ exonuclease activity enters at the cite of the nick and begins to polymerize, displacing the initial primer strand downstream and building a new one which serves as more primer.
SDA produces greater than about a 107-fold amplification in 2 hours at 37° C. Unlike PCR and LCR, SDA does not require instrumented temperature cycling. Another amplification system useful in the method of the invention is the QB Replicase System. Although PCR is the preferred method of amplification if the invention, these other methods can also be used to amplify the NE transporter locus as described in the method of the invention. Thus, the term “amplification technique” as used herein and in the claims is meant to encompass all the foregoing methods.
In another embodiment of the invention a method is provided for diagnosing or identifying a subject having a predisposition or higher susceptibility to (at risk of) impaired sub-optimal NET function, comprising sequencing a target nucleic acid of a sample from a subject by dideoxy sequencing, preferably following amplification of the target nucleic acid.
In another embodiment of the invention a method is provided for diagnosing a subject having a predisposition or higher susceptibility to (at risk of) impaired sub-optimal NET function, comprising contacting a target nucleic acid of a sample from a subject with a reagent that detects the presence of the NE transporter polymorphism and detecting the reagent.
Another method comprises contacting a target nucleic acid of a sample from a subject with a reagent that detects the presence of the G to C transversion at base 237, within exon 9, and detecting the transversion. A number of hybridization methods are well known to those skilled in the art. Many of them are useful in carrying out the invention.
The materials for use in the method of the invention are ideally suited for the preparation of a diagnostic kit. Such a kit can comprise a carrier being compartmentalized to receive in close confinement one or more containers such as vials, tubes, and the like, each of the container comprising one of the separate elements to be used in the method. For example, one of the containers can comprise a reagent or reagents for amplifying NE transporter DNA, the reagent or reagents comprising the necessary enzyme(s) and oligonucleotide primers for amplifying said target DNA from the subject.
The oligonucleotide primers include primers having a sequence of NET exon 9 selected from the group including, but not limited to: SEQ ID NO:15, or primer sequences substantially complementary or substantially homologous thereto. The target flanking 5′ and 3′ polynucleotide sequence of NET exon 9 has substantially the sequence set forth in SEQ ID NO:15, and sequences substantially complementary or homologous thereto. Other oligonucleotide primers for amplifying NE transporter are readily ascertainable to those of skill in the art given the disclosure of the present invention presented herein.
A kit in accordance with the present invention can further comprise a reagent or reagents for extracting a nucleic acid sample from a biological sample obtained from a subject. Any such reagent or reagents as would be readily apparent to one of ordinary skill in the art falls within the scope of the present invention. By way of particular example, a suitable lysis buffer for the tissue along with a suspension of glass beads for capturing the nucleic acid sample and an elution buffer for eluting the nucleic acid sample off of the glass beads comprise means for extracting a nucleic acid sample from a biological sample obtained from a subject.
Other examples include commercially available, such as the GENOMIC ISOLATION KIT A.S.A.P.™ (Boehringer Mannheim, Indianapolis, Ind.), Genomic DNA Isolation System (GIBCO BRL, Gaithersburg, Md.), ELU-QUIK™ DNA Purification Kit (Schleicher & Schuell, Keene, N.H.), DNA Extraction Kit (Stratagene, La Jolla, Calif.), TURBOGEN™ Isolation Kit (Invitrogen, San Diego, Calif.), and the like. Use of these kits according to the manufacturer's instructions is generally acceptable for purification of DNA prior to practicing the methods of the present invention.
B. Definitions Affecting NE Transporter-Encoding Polynucleotide and NET Transporter Polypeptides Encoded by Same
In accordance with the present invention, purified and isolated NE transporter-encoding polynucleotides and NE transporter polypeptides encoded by same are provided. A particularly provided NE transporter-encoding polynucleotide comprises a NE transporter encoding polynucleotide which includes a G to C transversion at base 237 within exon 9 of the NE transporter gene which changes the triplet code from GCA or GCC or GCG or GCU to CCA or CCC or CCG or CCU and leads to the A457P change in the encoded NE transporter polypeptide. The encoded NE transporter polypeptide comprising the A457P change is also particularly provided. Thus, allelic variant polynucleotides and polypeptides encoded by same are provided in accordance with the present invention. Further, a biologically active NE transporter polypeptide is also provided in accordance with the present invention, as is a NE transporter-encoding polynucleotide encoding such a NE transporter polypeptide. Exemplary biological activities include the biological activity of mediating NE uptake and the biological activity of cross-reacting with an anti-NE transporter antibody.
The provided NE transporter-encoding polynucleotides and polypeptides have broad utility given the biological significance of NE uptake, as is known in the art. By way of example, the NE transporter-encoding polynucleotides and polypeptides are useful in the preparation of screening assays and assay kits that are used to detect the presence of the proteins and nucleic acids of this invention in biological samples, and in the detection and analysis of polymorphic sequences and polypeptides encoded by such sequences, as disclosed herein.
Preferably, the provided NE transporter polynucleotides and polypeptides are isolated from vertebrate and invertebrate sources. Thus, homologs of NE transporter, including, but not limited to, mammalian, yeast and bacterial homologs are provided in accordance with the present invention. Preferred mammalian homologs of NE transporter members include, but are not limited to, bovine, rat, mouse and human homologs.
The terms “NE transporter gene product”, “NE transporter protein” and “NE transporter polypeptide” refer to proteins having amino acid sequences which are substantially identical to the native amino acid sequences in NE transporter and which are biologically active in that they are capable of mediating NE uptake, or cross-reacting with anti-NE transporter antibodies raised against a NE transporter polypeptide.
The terms “NE transporter gene product”, “NE transporter protein” and “NE transporter polypeptide” also include analogs of NE transporter molecules which exhibit at least some biological activity in common with native NE transporter gene products. Furthermore, those skilled in the art of mutagenesis will appreciate that other analogs, as yet undisclosed or undiscovered, can be used to construct NE transporter analogs. There is no need for an “NE transporter gene product”, “NE transporter protein” or “NE transporter polypeptide” to comprise all, or substantially all of the amino acid sequence of a native NE transporter gene product. Shorter or longer sequences are anticipated to be of use in the invention. Thus, the term “NE transporter gene product” also includes fusion or recombinant NE transporter polypeptides and proteins. Methods of preparing such proteins are described herein.
The terms “NE transporter-encoding polynucleotide”, “NE transporter gene”, “NE transporter gene sequence” and “NE transporter gene segment” refer to any DNA sequence that is substantially identical to a polynucleotide sequence encoding a NE transporter gene product, NE transporter protein or NE transporter polypeptide as defined above. The terms also refer to RNA, or antisense sequences, compatible with such DNA sequences. A “NE transporter-encoding polynucleotide”, “NE transporter gene”, “NE transporter gene sequence” and “NE transporter gene segment” can also comprise any combination of associated control sequences.
The term “substantially identical”, when used to define either a NE transporter gene product or NE transporter amino acid sequence, or a NE transporter gene or NE transporter nucleic acid sequence, means that a particular sequence, for example, a mutant sequence, varies from the sequence of a natural NE transporter by one or more deletions, substitutions, or additions, the net effect of which is to retain at least some of biological activity of NE transporter. Alternatively, DNA analog sequences are “substantially identical” to specific DNA sequences disclosed herein if: (a) the DNA analog sequence is derived from coding regions of the natural NE transporter gene; or (b) the DNA analog sequence is capable of hybridization of DNA sequences of (a) under moderately stringent conditions and which encode biologically active NE transporter gene product; or (c) the DNA sequences are degenerative as a result of the genetic code to the DNA analog sequences defined in (a) and/or (b). Substantially identical analog proteins will be greater than about 60% identical to the corresponding sequence of the native protein. Sequences having lesser degrees of similarity but comparable biological activity are considered to be equivalents. In determining nucleic acid sequences, all subject nucleic acid sequences capable of encoding substantially similar amino acid sequences are considered to be substantially similar to a reference nucleic acid sequence, regardless of differences in codon sequences.
B.1. Percent Similarity
Percent similarity can be determined, for example, by comparing sequence information using the GAP computer program, available from the University of Wisconsin Geneticist Computer Group. The GAP program utilizes the alignment method of Needleman et al., J. Mol. Biol. 48:443 (1970), as revised by Smith et al., Adv. Appl. Math. 2:482 (1981). Briefly, the GAP program defines similarity as the number of aligned symbols (i.e. nucleotides or amino acids) which are similar, divided by the total number of symbols in the shorter of the two sequences. The preferred default parameters for the GAP program include: (1) a unitary comparison matrix (containing a value of 1 for identities and 0 for non-identities) of nucleotides and the weighted comparison matrix of Gribskov et al., Nucl. Acids. Res. 14:6745 (1986), as described by Schwartz et al., eds., Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, pp.357–358 (1979); (2) a penalty of 3.0 for each gap and an additional 0.01 penalty for each symbol and each gap; and (3) no penalty for end gaps. Other comparison techniques are described in the Examples.
The term “homology” describes a mathematically based comparison of sequence similarities which is used to identify genes or proteins with similar functions or motifs. Accordingly, the term “homology” is synonymous with the term “similarity” and “percent similarity” as defined above. Thus, the phrases “substantial homology” or “substantial similarity” have similar meanings.
B.2. Nucleic Acid Sequences
In certain embodiments, the invention concerns the use of NE transporter genes and gene products that include within their respective sequences a sequence which is essentially that of a NE transporter gene, or the corresponding protein. The term “a sequence essentially as that of a NE transporter gene”, means that the sequence substantially corresponds to a portion of a NE transporter polypeptide or NE transporter encoding polynucleotide and has relatively few bases or amino acids (whether DNA or protein) which are not identical to those of a NE transporter protein or NE transporter gene, (or a biologically functional equivalent of, when referring to proteins). The term “biologically functional equivalent” is well understood in the art and is further defined in detail herein. Accordingly, sequences which have between about 70% and about 80%; or more preferably, between about 81% and about 90%; or even more preferably, between about 91% and about 99%; of amino acids which are identical or functionally equivalent to the amino acids of a NE transporter protein or NE transporter gene, will be sequences which are “essentially the same”.
NE transporter gene products and NE transporter genes which have functionally equivalent codons are also covered by the invention. The term “functionally equivalent codon” is used herein to refer to codons that encode the same amino acid, such as the ACG and AGU codons for serine. Thus, when referring to the sequence examples presented in SEQ ID NO's:1–4 and 11-14, applicants provide substitution of functionally equivalent codons of Table 1 into the sequence examples of SEQ ID NO's:1–4 and 11–14. Thus, applicants are in possession of amino acid and nucleic acids sequences which include such substitutions but which are not set forth herein in their entirety for convenience.
| TABLE 1 | |
| Table of the Genetic Code | |
| Amino Acids | Codons |
| Alanine | Ala | A | GCA GCC GCG GCU |
| Cysteine | Cys | C | UGC UGU |
| Aspartic Acid | Asp | D | GAC GAU |
| Glumatic acid | Glu | E | GAA GAG |
| Phenylalanine | Phe | F | UUC UUU |
| Glycine | Gly | G | GGA GGC GGG GGU |
| Histidine | His | H | CAC CAU |
| Isoleucine | Ile | I | AUA AUC AUU |
| Lysine | Lys | K | AAA AAG |
| Leucine | Leu | L | UUA UUG CUA CUC CUG CUU |
| Methionine | Met | M | AUG |
| Asparagine | Asn | N | AAC AAU |
| Proline | Pro | P | CCA CCC CCG CCU |
| Glutamine | Gln | Q | CAA CAG |
| Arginine | Arg | R | AGA AGG CGA CGC CGG CGU |
| Serine | Ser | S | ACG AGU UCA UCC UCG UCU |
| Threonine | Thr | T | ACA ACC ACG ACU |
| Valine | Val | V | GUA GUC GUG GUU |
| Tryptophan | Trp | W | UGG |
| Tyrosine | Tyr | Y | UAC UAU |
It will also be understood that amino acid and nucleic acid sequences can include additional residues, such as additional N- or C-terminal amino acids or 5′ or 3′ sequences, and yet still be essentially as set forth in one of the sequences disclosed herein, so long as the sequence meets the criteria set forth above, including the maintenance of biological protein activity where protein expression is concerned. The addition of terminal sequences particularly applies to nucleic acid sequences which can, for example, include various non-coding sequences flanking either of the 5′ or 3′ portions of the coding region or can include various internal sequences, i.e., introns, which are known to occur within genes.
The present invention also encompasses the use of DNA segments which are complementary, or essentially complementary, to the sequences set forth in the specification. Nucleic acid sequences which are “complementary” are those which are base-pairing according to the standard Watson-Crick complementarity rules. As used herein, the term “complementary sequences” means nucleic acid sequences which are substantially complementary, as can be assessed by the same nucleotide comparison set forth above, or as defined as being capable of hybridizing to the nucleic acid segment in question under relatively stringent conditions such as those described herein. A particular example of a provided complementary nucleic acid segment is an antisense oligonucleotide.
Nucleic acid hybridization will be affected by such conditions as salt concentration, temperature, or organic solvents, in addition to the base composition, length of the complementary strands, and the number of nucleotide base mismatches between the hybridizing nucleic acids, as will be readily appreciated by those skilled in the art. Stringent temperature conditions will generally include temperatures in excess of 30° C., typically in excess of 37° C., and preferably in excess of 45° C. Stringent salt conditions will ordinarily be less than 1,000 mM, typically less than 500 mM, and preferably less than 200 mM. However, the combination of parameters is much more important than the measure of any single parameter. (See e.g., Wetmur & Davidson, J. Mol. Biol. 31:349–370 (1968)).
Probe sequences can also hybridize specifically to duplex DNA under certain conditions to form triplex or other higher order DNA complexes. The preparation of such probes and suitable hybridization conditions are well known in the art.
As used herein, the term “DNA segment” refers to a DNA molecule which has been isolated free of total genomic DNA of a particular species. Furthermore, a DNA segment encoding a NE transporter polypeptide refers to a DNA segment which contains NE transporter coding sequences, yet is isolated away from, or purified free from, total genomic DNA of a source species, such as Homo sapiens. Included within the term “DNA segment” are DNA segments and smaller fragments of such segments, and also recombinant vectors, including, for example, plasmids, cosmids, phages, viruses, and the like.
Similarly, a DNA segment comprising an isolated or purified NE transporter gene refers to a DNA segment including NE transporter coding sequences isolated substantially away from other naturally occurring genes or protein encoding sequences. In this respect, the term “gene” is used for simplicity to refer to a functional protein, polypeptide or peptide encoding unit. As will be understood by those in the art, this functional term includes both genomic sequences and cDNA sequences. “Isolated substantially away from other coding sequences” means that the gene of interest, in this case, the NE transporter gene, forms the significant part of the coding region of the DNA segment, and that the DNA segment does not contain large portions of naturally-occurring coding DNA, such as large chromosomal fragments or other functional genes or cDNA coding regions. Of course, this refers to the DNA segment as originally isolated, and does not exclude genes or coding regions later added to the segment by the hand of man.
In particular embodiments, the invention concerns isolated DNA segments and recombinant vectors incorporating DNA sequences which encode a NE transporter polypeptide that includes within its amino acid sequence an amino acid sequence of any of SEQ ID NOs:2, 4, 12 and 14. In other particular embodiments, the invention concerns isolated DNA segments and recombinant vectors incorporating DNA sequences which encode a protein that includes within its amino acid sequence the amino acid sequence of a NE transporter polypeptide corresponding to human tissues.
It will also be understood that this invention is not limited to the particular nucleic acid and amino acid sequences of SEQ ID NO's:1–4 and 11–14. Recombinant vectors and isolated DNA segments can therefore variously include the NE transporter polypeptide-encoding region itself, include coding regions bearing selected alterations or modifications in the basic coding region, or include encoded larger polypeptides which nevertheless include NE transporter polypeptide-encoding regions or can encode biologically functional equivalent proteins or peptides which have variant amino acid sequences.
In certain embodiments, the invention concerns isolated DNA segments and recombinant vectors which encode a protein or peptide that includes within its amino acid sequence an amino acid sequence essentially as set forth in any of SEQ ID NOs:2, 4, 12 and 14. Naturally, where the DNA segment or vector encodes a full length NE transporter gene product, the most preferred nucleic acid sequence is that which is essentially as set forth in any of SEQ ID NOs: 1, 3, 11 and 13 and which encode a protein that exhibits NE uptake-modulating activity, as can be determined by, for example, assays to detect NE uptake, as disclosed herein in the Examples.
The term “a sequence essentially as set forth in any of SEQ ID NO:2, 4, 12 and 14” means that the sequence substantially corresponds to a portion an amino acid sequence either of SEQ ID NOs:2, 4, 12 and 14 and has relatively few amino acids which are not identical to, or a biologically functional equivalent of, the amino acids of an amino acid sequence of any of SEQ ID NOs:2, 4, 12 and 14. The term “biologically functional equivalent” is well understood in the art and is further defined in detail herein. Accordingly, sequences, which have between about 70% and about 80%; or more preferably, between about 81% and about 90%; or even more preferably, between about 91% and about 99%; of amino acids which are identical or functionally equivalent to the amino acids in any of SEQ ID NOs: 2, 4, 12 and 14, will be sequences which “a sequence essentially as set forth in SEQ ID NOs:2, 4, 12 and 14”.
In particular embodiments, the invention concerns gene therapy methods that use isolated DNA segments and recombinant vectors incorporating DNA sequences which encode a protein that includes within its amino acid sequence an amino acid sequence of any of SEQ ID NOs:2, 4, 12 and 14, SEQ ID NOs:2, 4, 12 and 14 including sequences which are derived from human tissue. In other particular embodiments, the invention concerns isolated DNA sequences and recombinant DNA vectors incorporating DNA sequences which encode a protein that includes within its amino acid sequence the amino acid sequence of the NE transporter protein from human hepatic tissue.
In certain other embodiments, the invention concerns isolated DNA segments and recombinant vectors that include within their sequence a nucleic acid sequence essentially as set forth in any of SEQ ID NO:1, 3, 11 and 13. The term “a sequence essentially as set forth in any of SEQ ID NO:1, 3, 11 and 13” is used in the same sense as described above and means that the nucleic acid sequence substantially corresponds to a portion of any of SEQ ID NOs:1, 3, 11 and 13, respectively, and has relatively few codons which are not identical, or functionally equivalent, to the codons of any of SEQ ID NOs:1, 3, 11 and 13, respectively. Again, DNA segments which encode gene products exhibiting NE transport activity, cross-reactivity with an anti-NE transporter antibody, or other biological activity of the NE transporter gene product will be most preferred. The term “functionally equivalent codon” is used herein to refer to codons that encode the same amino acid, such as the six codons for arginine or serine, and also to refer to codons that encode biologically equivalent amino acids (see Table 1).
The nucleic acid segments of the present invention, regardless of the length of the coding sequence itself, can be combined with other DNA sequences, such as promoters, enhancers, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length can vary considerably. It is therefore provided that a nucleic acid fragment of almost any length can be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol. For example, nucleic acid fragments can be prepared which include a short stretch complementary to a nucleic acid sequence set for in any of SEQ ID NOs:1, 3, 11 and 13 respectively, such as about 10 nucleotides, and which are up to 10,000 or 5,000 base pairs in length, with segments of 3,000 being preferred in certain cases. DNA segments with total lengths of about 1,000, 500, 200, 100 and about 50 base pairs in length are also useful.
The DNA segments of the present invention encompass biologically functional equivalent NE transporter proteins and peptides. Such sequences can rise as a consequence of codon redundancy and functional equivalency which are known to occur naturally within nucleic acid sequences and the proteins thus encoded. Alternatively, functionally equivalent proteins or peptides can be created via the application of recombinant DNA technology, in which changes in the protein structure can be engineered, based on considerations of the properties of the amino acids being exchanged, e.g. substitution of Ile and Leu at amino acid 2 in SEQ ID NOs:11–14. Changes designed by man can be introduced through the application of site-directed mutagenesis techniques, e.g., to introduce improvements to the antigenicity of the protein or to test NE transporter mutants in order to examine NE transport activity, or other activity at the molecular level.
If desired, one can also prepare fusion proteins and peptides, e.g., where the NE transporter coding region is aligned within the same expression unit with other proteins or peptides having desired functions, such as for purification or immunodetection purposes (e.g., proteins which can be purified by affinity chromatography and enzyme label coding regions, respectively).
Recombinant vectors form important further aspects of the present invention. Particularly useful vectors are those vectors in which the coding portion of the DNA segment is positioned under the control of a promoter. The promoter can be in the form of the promoter which is naturally associated with the NE transporter gene, e.g., in mammalian tissues, as can be obtained by isolating the 5′ non-coding sequences located upstream of the coding segment or exon, for example, using recombinant cloning and/or PCR technology, in connection with the compositions disclosed herein.
In other embodiments, certain advantages will be gained by positioning the coding DNA segment under the control of a recombinant, or heterologous, promoter. As used herein, a recombinant or heterologous promoter is intended to refer to a promoter that is not normally associated with a NE transporter gene in its natural environment. Such promoters can include promoters isolated from bacterial, viral, eukaryotic, or mammalian cells. Naturally, it will be important to employ a promoter that effectively directs the expression of the DNA segment in the cell type chosen for expression. The use of promoter and cell type combinations for protein expression is generally known to those of skill in the art of molecular biology, for example, see Sambrook et al., 1989, incorporated herein by reference. The promoters employed can be constitutive, or inducible, and can be used under the appropriate conditions to direct high level expression of the introduced DNA segment, such as is advantageous in the large-scale production of recombinant proteins or peptides. Appropriate promoter systems provided for use in high-level expression include, but are not limited to, the vaccina virus promoter and the baculovirus promoter.
In an alternative embodiment, the present invention provides an expression vector comprising a polynucleotide that encodes a NE transporter polypeptide having NE transport activity, cross-reacting with an anti-NE transporter antibody, or other biological activity in accordance with the present invention. Also preferably, an expression vector of the present invention comprises a polynucleotide that encodes a human NE transporter gene product. More preferably, an expression vector of the present invention comprises a polynucleotide that encodes a polypeptide comprising an amino acid residue sequence of any of SEQ ID NOs:2, 4, 12 and 14. More preferably, an expression vector of the present invention comprises a polynucleotide comprising the nucleotide base sequence of any of SEQ ID NO:1, 3, 11 and 13.
Even more preferably, an expression vector of the invention comprises a polynucleotide operatively linked to an enhancer-promoter. More preferably still, an expression vector of the invention comprises a polynucleotide operatively linked to a prokaryotic promoter. Alternatively, an expression vector of the present invention comprises a polynucleotide operatively linked to an enhancer-promoter that is a eukaryotic promoter, and the expression vector further comprises a polyadenylation signal that is positioned 3′ of the carboxy-terminal amino acid and within a transcriptional unit of the encoded polypeptide.
In yet another embodiment, the present invention provides a recombinant host cell transfected with a polynucleotide that encodes a NE transporter polypeptide having NE transport activity, cross-reactivity with an anti-NE transporter antibody, or other biological activity in accordance with the present invention. SEQ ID NO's: 1–4 and 11–14 set forth nucleotide and amino acid sequences from an exemplary vertebrate, human. Also provided by the present invention are homologous or biologically equivalent polynucleotides and NE transporter polypeptides found in other vertebrates, including bovine, mouse and rat.
Preferably, a recombinant host cell of the present invention is transfected with the polynucleotide that encodes human NE transporter polypeptide. More preferably, a recombinant host cell of the present invention is transfected with the polynucleotide sequence of any of SEQ ID NOs:1, 3, 11 and 13. Even more preferably, a host cell of the invention is a eukaryotic host cell. Still more preferably, a recombinant host cell of the present invention is a vertebrate cell. Preferably, a recombinant host cell of the invention is a mammalian cell.
In another aspect, a recombinant host cell of the present invention is a prokaryotic host cell. Preferably, a recombinant host cell of the invention is a bacterial cell, preferably a strain of Escherichia coli. More preferably, a recombinant host cell comprises a polynucleotide under the transcriptional control of regulatory signals functional in the recombinant host cell, wherein the regulatory signals appropriately control expression of the NE transporter polypeptide in a manner to enable all necessary transcriptional and post-transcriptional modification.
In yet another embodiment, the present invention provides a method of preparing a NE transporter polypeptide comprising transfecting a cell with polynucleotide that encodes a NE transporter polypeptide having NE transport activity, cross-reacting with an anti-NE transporter antibody, or other biological activity in accordance with the present invention, to produce a transformed host cell; and maintaining the transformed host cell under biological conditions sufficient for expression of the polypeptide. More preferably, the transformed host cell is a eukaryotic cell. More preferably still, the eukaryotic cell is a vertebrate cell. Alternatively, the host cell is a prokaryotic cell. More preferably, the prokaryotic cell is a bacterial cell of Escherichia coli. Even more preferably, a polynucleotide transfected into the transformed cell comprises a nucleotide base sequence of any of SEQ ID NOs:1, 3, 11 and 13. SEQ ID NO's:1–4 and 11–14 set forth nucleotide and amino acid sequences for an exemplary vertebrate, human. Also provided by the present invention are homologues or biologically equivalent NE transporter polynucleotides and polypeptides found in other vertebrates, particularly warm blooded vertebrates, and more particularly bovine, mouse and rat.
As mentioned above, in connection with expression embodiments to prepare recombinant NE transporter proteins and peptides, it is provided that longer DNA segments will most often be used, with DNA segments encoding the entire NE transporter protein, functional domains or cleavage products thereof, being most preferred. However, it will be appreciated that the use of shorter DNA segments to direct the expression of NE transporter peptides or epitopic core regions, such as can be used to generate anti-NE transporter antibodies, also falls within the scope of the invention.
DNA segments which encode peptide antigens from about 15 to about 50 amino acids in length, or more preferably, from about 15 to about 30 amino acids in length are particularly useful. DNA segments encoding peptides will generally have a minimum coding length in the order of about 45 to about 150, or to about 90 nucleotides. DNA segments encoding full length proteins can have a minimum coding length on the order of about 4,500 to about 4,600 nucleotides for a protein in accordance with any of SEQ ID NOs: 2, 4, 12 and 14.
Naturally, the present invention also encompasses DNA segments which are complementary, or essentially complementary, to the sequences set forth in any of SEQ ID NO's: 1, 3, 11 and 13. The terms “complementary” and “essentially complementary” are defined above. Excepting intronic or flanking regions, details of which are disclosed graphically in FIG. 2 , and allowing for the degeneracy of the genetic code, sequences which have between about 70% and about 80%; or more preferably, between about 81% and about 90%; or even more preferably, between about 91% and about 99%; of nucleotides which are identical or functionally equivalent (i.e. encoding the same amino acid) of nucleotides in any of SEQ ID NOs:1, 3, 11 and 13 will be sequences which are “a sequence essentially as set forth in any of SEQ ID NOs:1, 3, 11 and 13”. Sequences which are essentially the same as those set forth in any of SEQ ID NOs:1, 3, 11 and 13 can also be functionally defined as sequences which are capable of hybridizing to a nucleic acid segment containing the complement in any of SEQ ID NOs:1, 3, 11 and 13 under relatively stringent conditions. Suitable relatively stringent hybridization conditions are described herein and will be well known to those of skill in the art.
B.3. Biologically Functional Equivalents
As mentioned above, modification and changes can be made in the structure of the NE transporter proteins and peptides described herein and still obtain a molecule having like or otherwise desirable characteristics. For example, certain amino acids can be substituted for other amino acids in a protein structure without appreciable loss of interactive capacity with structures such as, for example, in the nucleus of a cell. Since it is the interactive capacity and nature of a protein that defines that protein's biological functional activity, certain amino acid sequence substitutions can be made in a protein sequence (or, of course, its underlying DNA coding sequence) and nevertheless obtain a protein with like or even countervailing properties (e.g., antagonistic v. agonistic). Thus, various changes can be made in the sequence of the NE transporter proteins and peptides (or underlying DNA) without appreciable loss of their biological utility or activity.
It is also well understood by the skilled artisan that, inherent in the definition of a biologically functional equivalent protein or peptide, is the concept that there is a limit to the number of changes that can be made within a defined portion of the molecule and still result in a molecule with an acceptable level of equivalent biological activity. Biologically functional equivalent peptides are thus defined herein as those peptides in which certain, not most or all, of the amino acids can be substituted. Of course, a plurality of distinct proteins/peptides with different substitutions can easily be made and used in accordance with the invention.
It is also well understood that where certain residues are shown to be particularly important to the biological or structural properties of a protein or peptide, e.g., residues in active sites, such residues can not generally be exchanged. This is the case in the present invention, where if any changes, for example, in the phosphorylation domains of a NE transporter polypeptide, could result in a loss of an aspect of the utility of the resulting peptide for the present invention.
Amino acid substitutions, such as those which might be employed in modifying the NE transporter proteins and peptides described herein, are generally based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. An analysis of the size, shape and type of the amino acid side-chain substituents reveals that arginine, lysine and histidine are all positively charged residues; that alanine, glycine and serine are all a similar size; and that phenylalanine, tryptophan and tyrosine all have a generally similar shape. Therefore, based upon these considerations, arginine, lysine and histidine; alanine, glycine and serine; and phenylalanine, tryptophan and tyrosine; are defined herein as biologically functional equivalents.
In making such changes, the hydropathic index of amino acids can be considered. Each amino acid has been assigned a hydropathic index on the basis of their hydrophobicity and charge characteristics, these are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (−0.4); threonine (−0.7); serine (−0.8); tryptophan (−0.9); tyrosine (−1.3); proline (−1.6); histidine (−3.2); glutamate (−3.5); glutamine (−3.5); aspartate (−3.5); asparagine (−3.5); lysine (−3.9); and arginine (−4.5).
The importance of the hydropathic amino acid index in conferring interactive biological function on a protein is generally understood in the art (Kyte & Doolittle, J. Mol. Biol. 157:105–132 (1982), incorporated herein by reference). It is known that certain amino acids can be substituted for other amino acids having a similar hydropathic index or score and still retain a similar biological activity. In making changes based upon the hydropathic index, the substitution of amino acids whose hydropathic indices are within ±2 of the original value is preferred, those which are within ±1 of the original value are particularly preferred, and those within ±0.5 of the original value are even more particularly preferred.
It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. U.S. Pat. No. 4,554,101, incorporated herein by reference, states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigenicity, i.e. with a biological property of the protein. It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still obtain a biologically equivalent protein.
As detailed in U.S. Pat. No. 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0±1); glutamate (+3.0±1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (−0.4); proline (−0.5±1); alanine (−0.5); histidine (−0.5); cysteine (−1.0); methionine (−1.3); valine (−1.5); leucine (−1.8); isoleucine (−1.8); tyrosine (−2.3); phenylalanine (−2.5); tryptophan (−3.4).
In making changes based upon similar hydrophilicity values, the substitution of amino acids whose hydrophilicity values are within ±2 of the original value is preferred, those which are within ±1 of the original value are particularly preferred, and those within ±0.5 of the original value are even more particularly preferred.
While discussion has focused on functionally equivalent polypeptides arising from amino acid changes, it will be appreciated that these changes can be effected by alteration of the encoding DNA, taking into consideration also that the genetic code is degenerate and that two or more codons can code for the same amino acid.
B.4. Sequence Modification Techniques
Modifications to the NE transporter proteins and peptides described herein can be carried out using techniques such as site directed mutagenesis. Site-specific mutagenesis is a technique useful in the preparation of individual peptides, or biologically functional equivalent proteins or peptides, through specific mutagenesis of the underlying DNA. The technique further provides a ready ability to prepare and test sequence variants, for example, incorporating one or more of the foregoing considerations, by introducing one or more nucleotide sequence changes into the DNA. Site-specific mutagenesis allows the production of mutants through the use of specific oligonucleotide sequences which encode the DNA sequence of the desired mutation, as well as a sufficient number of adjacent nucleotides, to provide a primer sequence of sufficient size and sequence complexity to form a stable duplex on both sides of the deletion junction being traversed. Typically, a primer of about 17 to 30 nucleotides in length is preferred, with about 5 to 10 residues on both sides of the junction of the sequence being altered.
In general, the technique of site-specific mutagenesis is well known in the art as exemplified by publications (e.g., Adelman et al., 1983). As will be appreciated, the technique typically employs a phage vector which exists in both a single stranded and double stranded form. Typical vectors useful in site-directed mutagenesis include vectors such as the M13 phage (Messing et al., 1981). These phage are readily commercially available and their use is generally well known to those skilled in the art. Double stranded plasmids are also routinely employed in site directed mutagenesis which eliminates the step of transferring the gene of interest from a plasmid to a phage.
In general, site-directed mutagenesis in accordance herewith is performed by first obtaining a single-stranded vector or melting apart the two strands of a double stranded vector which includes within its sequence a DNA sequence which encodes, for example, a human NE transporter polypeptide. An oligonucleotide primer bearing the desired mutated sequence is prepared, generally synthetically, for example by the method of Crea et al. (1978). This primer is then annealed with the single-stranded vector, and subjected to DNA polymerizing enzymes such as E. coli polymerase I Klenow fragment, in order to complete the synthesis of the mutation-bearing strand. Thus, a heteroduplex is formed wherein one strand encodes the original non-mutated sequence and the second strand bears the desired mutation. This heteroduplex vector is then used to transform appropriate cells, such as E. coli cells, and clones are selected which include recombinant vectors bearing the mutated sequence arrangement.
The preparation of sequence variants of the selected gene using site-directed mutagenesis is provided as a means of producing potentially useful NE transporter polypeptide or other species having NE transport activity and is not meant to be limiting as there are other ways in which sequence variants of these peptides can be obtained. For example, recombinant vectors encoding the desired genes can be treated with mutagenic agents to obtain sequence variants (see, e.g., a method described by Eichenlaub, 1979) for the mutagenesis of plasmid DNA using hydroxylamine.
B.5. Other Structural Equivalents
In addition to the NE transporter peptidyl compounds described herein, the inventors also provide that other sterically similar compounds can be formulated to mimic the key portions of the peptide structure. Such compounds can be used in the same manner as the peptides of the invention and hence are also functional equivalents. The generation of a structural functional equivalent can be achieved by the techniques of modeling and chemical design known to those of skill in the art. It will be understood that all such sterically similar constructs fall within the scope of the present invention.
C. Introduction of Gene Products
Where the gene itself is employed to introduce the gene products, a convenient method of introduction will be through the use of a recombinant vector which incorporates the desired gene, together with its associated control sequences. The preparation of recombinant vectors is well known to those of skill in the art and described in many references, such as, for example, Sambrook et al. (1989), specifically incorporated herein by reference.
In vectors, it is understood that the DNA coding sequences to be expressed, in this case those encoding the NE transporter gene products, are positioned adjacent to and under the control of a promoter. It is understood in the art that to bring a coding sequence under the control of such a promoter, one generally positions the 5′ end of the transcription initiation site of the transcriptional reading frame of the gene product to be expressed between about 1 and about 50 nucleotides “downstream” of (i.e., 3′ of) the chosen promoter. One can also desire to incorporate into the transcriptional unit of the vector an appropriate polyadenylation site (e.g., 5′-AATAAA-3′), if one was not contained within the original inserted DNA. Typically, these polyA addition sites are placed about 30 to 2000 nucleotides “downstream” of the coding sequence at a position prior to transcription termination.
While use of the control sequences of the specific gene (i.e., a NE transporter promoter for a NE transporter gene) will be preferred, there is no reason why other control sequences could not be employed, so long as they are compatible with the genotype of the cell being treated. Thus, one can mention other useful promoters by way of example, including, e.g., an SV40 early promoter, a long terminal repeat promoter from retrovirus, an actin promoter, a heat shock promoter, a metallothionein promoter, and the like.
As is known in the art, a promoter is a region of a DNA molecule typically within about 100 nucleotide pairs in front of (upstream of) the point at which transcription begins (i.e., a transcription start site). That region typically contains several types of DNA sequence elements that are located in similar relative positions in different genes. As used herein, the term “promoter” includes what is referred to in the art as an upstream promoter region, a promoter region or a promoter of a generalized eukaryotic RNA Polymerase II transcription unit.
Another type of discrete transcription regulatory sequence element is an enhancer. An enhancer provides specificity of time, location and expression level for a particular encoding region (e.g., gene). A major function of an enhancer is to increase the level of transcription of a coding sequence in a cell that contains one or more transcription factors that bind to that enhancer. Unlike a promoter, an enhancer can function when located at variable distances from transcription start sites so long as a promoter is present.
As used herein, the phrase “enhancer-promoter” means a composite unit that contains both enhancer and promoter elements. An enhancer-promoter is operatively linked to a coding sequence that encodes at least one gene product. As used herein, the phrase “operatively linked” means that an enhancer-promoter is connected to a coding sequence in such a way that the transcription of that coding sequence is controlled and regulated by that enhancer-promoter. Techniques for operatively linking an enhancer-promoter to a coding sequence are well known in the art. As is also well known in the art, the precise orientation and location relative to a coding sequence whose transcription is controlled, is dependent inter alia upon the specific nature of the enhancer-promoter. Thus, a TATA box minimal promoter is typically located from about 25 to about 30 base pairs upstream of a transcription initiation site and an upstream promoter element is typically located from about 100 to about 200 base pairs upstream of a transcription initiation site. In contrast, an enhancer can be located downstream from the initiation site and can be at a considerable distance from that site.
An enhancer-promoter used in a vector construct of the present invention can be any enhancer-promoter that drives expression in a cell to be transfected. By employing an enhancer-promoter with well-known properties, the level and pattern of gene product expression can be optimized.
For introduction of, for example, the human NE transporter gene including allelic variations thereof, it is proposed that one will desire to preferably employ a vector construct that will deliver the desired gene to the affected cells. This will, of course, generally require that the construct be delivered to the targeted cells, for example, mammalian cardiac cells. It is proposed that this can be achieved most preferably by introduction of the desired gene through the use of a viral vector to carry the NE transporter sequence to efficiently infect the cells. These vectors will preferably be an adenoviral, a retroviral, a vaccinia viral vector or adeno-associated virus. These vectors are preferred because they have been successfully used to deliver desired sequences to cells and tend to have a high infection efficiency. Suitable vector-NE transporter gene constructs are adapted for administration as pharmaceutical compositions, as described herein below.
Commonly used viral promoters for expression vectors are derived from polyoma, cytomegalovirus, Adenovirus 2, and Simian Virus 40 (SV40). The early and late promoters of SV40 virus are particularly useful because both are obtained easily from the virus as a fragment which also contains the SV40 viral origin of replication. Smaller or larger SV40 fragments can also be used, provided there is included the approximately 250 bp sequence extending from the Hind III site toward the Bgl I site located in the viral origin of replication. Further, it is also possible, and often desirable, to utilize promoter or control sequences normally associated with the desired gene sequence, provided such control sequences are compatible with the host cell systems.
The origin of replication can be provided either by construction of the vector to include an exogenous origin, such as can be derived from SV40 or other viral (e.g., Polyoma, Adeno, VSV, BPV) source, or can be provided by the host cell chromosomal replication mechanism. If the vector is integrated into the host cell chromosome, the latter is often sufficient.
Where a NE transporter gene itself is employed it will be most convenient to simply use a wild type NE transporter gene directly. Preferably, the NE transporter gene comprises the alanine encoding allele such that amino acid 457 of the encoded polypeptide comprises alanine. Additionally, it is provided that certain regions of a NE transporter gene can be employed exclusively without employing an entire wild type NE transporter gene or an entire allelic variant thereof. It is proposed that it will ultimately be preferable to employ the smallest region needed to modulate NE transport so that one is not introducing unnecessary DNA into cells which receive a NE transporter gene construct. Techniques well known to those of skill in the art, such as the use of restriction enzymes, will allow for the generation of small regions of an exemplary NE transporter gene. The ability of these regions to modulate NE transport can easily be determined by the assays reported in the Examples. In general, techniques for assessing the modulation of NE transport are known in the art.
C.1. Transgenic Animals
It is also within the scope of the present invention to prepare a transgenic non-human animal which expresses a NE transporter gene of the present invention or in which expression of a NE transporter gene is “knocked-out”. The present invention provides transgenic non-human animals that express either the A457 form of NE transporter or the P457 form of NE transporter. A preferred transgenic animal is a mouse.
Techniques for the preparation of transgenic animals are known in the art. Exemplary techniques are described in U.S. Pat. No. 5,489,742 (transgenic rats); U.S. Pat. Nos. 4,736,866, 5,550,316, 5,614,396, 5,625,125 and 5,648,061 (transgenic mice); U.S. Pat. No. 5,573,933 (transgenic pigs); U.S. Pat. No. 5,162,215 (transgenic avian species) and U.S. Pat. No. 5,741,957 (transgenic bovine species), the entire contents of each of which are herein incorporated by reference.
With respect to an exemplary method for the preparation of a transgenic mouse, cloned recombinant or synthetic DNA sequences or DNA segments encoding a NE transporter gene product are injected into fertilized mouse eggs. The injected eggs are implanted in pseudo pregnant females and are grown to term to provide transgenic mice whose cells express a NE transporter gene product. Preferably, the injected sequences are constructed having promoter sequences connected so as to express the desired protein in cardiac cells of the transgenic mouse.
C.2. Gene Therapy
NE transporter genes can be used for gene therapy in accordance with the present invention. Exemplary gene therapy methods, including liposomal transfection of nucleic acids into host cells, are described in U.S. Pat. Nos. 5,279,833; 5,286,634; 5,399,346; 5,646,008; 5,651,964; 5,641,484; and 5,643,567, the contents of each of which are herein incorporated by reference.
Briefly, NE transporter gene therapy directed toward modulation of NE transport in a target cell is described. Target cells include but are not limited cardiac cells. In one embodiment, a therapeutic method of the present invention provides a method for modulating of NE transport in a cell comprising the steps of: (a) delivering to the cell an effective amount of a DNA molecule comprising a polynucleotide that encodes a NE transporter polypeptide that modulates NE transport; and (b) maintaining the cell under conditions sufficient for expression of said polypeptide.
Delivery is preferably accomplished by injecting the DNA molecule into the cell. Where the cell is in a subject delivering is preferably administering the DNA molecule into the circulatory system of the subject. In a preferred embodiment, administering comprises the steps of: (a) providing a vehicle that contains the DNA molecule; and (b) administering the vehicle to the subject.
A vehicle is preferably a cell transformed or transfected with the DNA molecule or a transfected cell derived from such a transformed or transfected cell. An exemplary and preferred transformed or transfected cell is a hepatic cell. Means for transforming or transfecting a cell with a DNA molecule of the present invention are set forth above.
Alternatively, the vehicle is a virus or an antibody that specifically infects or immunoreacts with an antigen of the tumor. Retroviruses used to deliver the constructs to the host target tissues generally are viruses in which the 3′-LTR (linear transfer region) has been inactivated. That is, these are enhancerless 3′-LTR's, often referred to as SIN (self-inactivating viruses) because after productive infection into the host cell, the 3′-LTR is transferred to the 5′-end and both viral LTR's are inactive with respect to transcriptional activity. A use of these viruses well known to those skilled in the art is to clone genes for which the regulatory elements of the cloned gene are inserted in the space between the two LTR's. An advantage of a viral infection system is that it allows for a very high level of infection into the appropriate recipient cell.
Antibodies have been used to target and deliver DNA molecules. An N-terminal modified poly-L-lysine (NPLL)-antibody conjugate readily forms a complex with plasmid DNA. A complex of monoclonal antibodies against a cell surface thrombomodulin conjugated with NPLL was used to target a foreign plasmid DNA to an antigen-expressing mouse lung endothelial cell line and mouse lung. Those targeted endothelial cells expressed the product encoded by that foreign DNA.
It is also envisioned that this embodiment of the present invention can be practiced using alternative viral or phage vectors, including retroviral vectors and vaccinia viruses whose genome has been manipulated in alternative ways so as to render the virus non-pathogenic. Methods for creating such a viral mutation are set forth in detail in U.S. Pat. No. 4,769,331, incorporated herein by reference.
By way of specific example, a human NE transporter-encoding polynucleotide or a NE transporter-encoding polynucleotide homolog from another warm-blooded vertebrate is introduced into isolated cardiac cells or other relevant cells. The re-injection of the transgene-carrying cells into the heart or other relevant tissues provides a treatment for susceptibility to impaired NET function, orthostatic intolerance, or other relevant diseases in human and animals.
D. Pharmaceutical Compositions
In a preferred embodiment, the present invention provides pharmaceutical compositions comprising a polypeptide or polynucleotide of the present invention and a physiologically acceptable carrier. More preferably, a pharmaceutical composition comprises a polynucleotide that encodes a biologically active NE transporter polypeptide.
A composition of the present invention is typically administered orally or parenterally in dosage unit formulations containing standard, well-known nontoxic physiologically acceptable carriers, adjuvants, and vehicles as desired. The term “parenteral” as used herein includes intravenous, intramuscular, intra-arterial injection, or infusion techniques.
Injectable preparations, for example sterile injectable aqueous or oleaginous suspensions, are formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation can also be a sterile injectable solution or suspension in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.
Among the acceptable vehicles and solvents that can be employed are water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono-or di-glycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.
Preferred carriers include neutral saline solutions buffered with phosphate, lactate, Tris, and the like. Of course, in the case of a pharmaceutical composition provided in use in gene therapy, one purifies the vector sufficiently to render it essentially free of undesirable contaminants, such as defective interfering adenovirus particles or endotoxins and other pyrogens such that it does not cause any untoward reactions in the individual receiving the vector construct. A preferred means of purifying the vector involves the use of buoyant density gradients, such as cesium chloride gradient centrifugation.
A transfected cell can also serve as a carrier. By way of example, a liver cell can be removed from an organism, transfected with a polynucleotide of the present invention using methods set forth above and then the transfected cell returned to the organism (e.g. injected intra-vascularly).
D.1. Dosages
As used herein, an “effective” dose refers to one that is administered in doses tailored to each individual patient manifesting symptoms of NE transport deficiency sufficient to cause an improvement therein. After review of the disclosure herein of the present invention, one of ordinary skill in the art can tailor the dosages to an individual patient, taking into account the particular formulation and method of administration to be used with the composition as well as patient height, weight, severity of symptoms, and stage of the disorder to be treated.
An effective dose and a therapeutically effective dose are generally synonymous. However, compounds can be administered to patients having reduced symptoms or even administered to patients as a preventative measure. Hence, the composition can be effective in therapeutic treatment even in the absence of symptoms of the disorder.
A unit dose can be administered, for example, 1 to 4 times per day. Most preferably, the unit dose is administered twice a day (BID). The dose depends on the route of administration and the formulation of a composition containing the compound or compounds. Further, it will be appreciated by one of ordinary skill in the art after receiving the disclosure of the present invention that it can be necessary to make routine adjustments or variations to the dosage depending on the combination of agents employed, on the age and weight of the patient, and on the severity of the condition to be treated.
Such adjustments or variations, as well as evaluation of when and how to make such adjustments or variations, are well known to those of ordinary skill in the art of medicine. Evaluation parameters and techniques can vary with the patient and the severity of the disease. Particularly useful evaluative techniques for NE transport include NE clearance, tyramine administration and other standard tests such as are disclosed in the Examples.
D.2. Gene Therapy Vector Construct Dosing.
Maximally tolerated dose (MTD) of vector construct when administered directly into the affected tissue is determined. Primary endpoints are: 1) the rate of transduction in abnormal and/or normal cells, 2) the presence and stability of this vector in the systemic circulation and in affected cells, and 3) the nature of the systemic (fever, myalgias) and local (infections, pain) toxicities induced by the vector. A secondary endpoint is the clinical efficacy of the vector construct.
For example, a 4 ml serum-free volume of viral (e.g. adenoviral, retroviral, etc.) vector construct (containing up to 5×107 viral particles in AIM V media) is administered daily per session. During each session, 1 ml of medium containing the appropriate titer of vector construct is injected into 4 regions of the affected tissue for a total of 4 ml per session in a clinical examination room. This is repeated daily for 4 days (4 sessions). This 16 ml total inoculum volume over 4 days is proportionally well below the one safely tolerated by nude mice (0.5 ml/20 g body weight).
Patient evaluation includes history and physical examination prior to initiation of therapy and daily during the 4 day period of vector construct injection. Toxicity grading is done using the ECOG Common Toxicity Criteria. CBC, SMA-20, urinalysis, and conventional studies are performed daily during this period.
D.3. Dose Escalation and MTD.
Patients are treated with 3×106 viral particles×4. Once they have all recovered from all grade 2 or less toxicities (except alopecia), and as long as grade 3–4 toxicity is not encountered, a subsequent dose level is initiated in patients. As one grade 3 or 4 toxicity occurs at a given dose level, a minimum of 6 patients are enrolled at that level. As only 1 of 6 patients has grade 3 or 4 toxicity, dose escalation continues. The MTD of vector construct is defined as the dose where 2 of 6 patients experience grade 3 or 4 toxicity. If 2 of 3, or if 3 of 6 patients experience grade 3 or 4 toxicity, the MTD is defined as the immediately lower dose level.
The following escalation schema is followed: 1) level 1, 3×106 viral particles; 2) level 2, 1×107; 3) level 3, 3×107; 4) level 4, 5×107. Patients with measurable disease are evaluated for a clinical response to vector construct. Histology and local symptoms are followed. NE clearance, tyramine administration and other standard tests such as are disclosed in the Examples are employed.
E. Generation of Antibodies
In still another embodiment, the present invention provides an antibody immunoreactive with a polypeptide or polynucleotide of the present invention. Preferably, an antibody of the invention is a monoclonal antibody. Techniques for preparing and characterizing antibodies are well known in the art (See e.g. Antibodies: A Laboratory Manual, E. Howell and D. Lane, Cold Spring Harbor Laboratory, 1988). More preferred antibodies distinguish between the different forms of NE transporter polypeptides (e.g. SEQ ID NOs:2 and 4) that comprise the NE transporter polymorphism.
Briefly, a polyclonal antibody is prepared by immunizing an animal with an immunogen comprising a polypeptide or polynucleotide of the present invention, and collecting antisera from that immunized animal. A wide range of animal species can be used for the production of antisera. Typically an animal used for production of anti-antisera is a rabbit, a mouse, a rat, a hamster or a guinea pig. Because of the relatively large blood volume of rabbits, a rabbit is a preferred choice for production of polyclonal antibodies.
As is well known in the art, a given polypeptide or polynucleotide can vary in its immunogenicity. It is often necessary therefore to couple the immunogen (e.g., a polypeptide or polynucleotide) of the present invention) with a carrier. Exemplary and preferred carriers are keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA). Other albumins such as ovalbumin, mouse serum albumin or rabbit serum albumin can also be used as carriers.
Techniques and reagents for conjugating a polypeptide or a polynucleotide to a carrier protein are well known in the art and include glutaraldehyde, m-maleimidobencoyl-N-hydroxysuccinimide ester, carbodiimide and bis-biazotized benzidine.
As is also well known in the art, immunogencity to a particular immunogen can be enhanced by the use of non-specific stimulators of the immune response known as adjuvants. Exemplary and preferred adjuvants include complete Freund's adjuvant, incomplete Freund's adjuvants and aluminum hydroxide adjuvant.
The amount of immunogen used of the production of polyclonal antibodies varies, inter alia, upon the nature of the immunogen as well as the animal used for immunization. A variety of routes can be used to administer the immunogen, e.g. subcutaneous, intramuscular, intradermal, intravenous and intraperitoneal. The production of polyclonal antibodies is monitored by sampling blood of the immunized animal at various points following immunization. When a desired level of immunogenicity is obtained, the immunized animal can be bled and the serum isolated and stored.
In another aspect, the present invention provides a method of producing an antibody immunoreactive with a NE transporter polypeptide, the method comprising the steps of (a) transfecting recombinant host cells with a polynucleotide that encodes that polypeptide; (b) culturing the host cells under conditions sufficient for expression of the polypeptide; (c) recovering the polypeptide; and (d) preparing antibodies to the polypeptide. Preferably, the NE transporter polypeptide is capable of mediating NE transport, cross-reacting with anti-NE transporter antibody, or other biological activity in accordance with the present invention. Even more preferably, the present invention provides antibodies prepared according to the method described above.
A monoclonal antibody of the present invention can be readily prepared through use of well-known techniques such as those exemplified in U.S. Pat. No. 4,196,265, herein incorporated by reference. Typically, a technique involves first immunizing a suitable animal with a selected antigen (e.g., a polypeptide or polynucleotide of the present invention) in a manner sufficient to provide an immune response. Rodents such as mice and rats are preferred animals. Spleen cells from the immunized animal are then fused with cells of an immortal myeloma cell. Where the immunized animal is a mouse, a preferred myeloma cell is a murine NS-1 myeloma cell.
The fused spleen/myeloma cells are cultured in a selective medium to select fused spleen/myeloma cells from the parental cells. Fused cells are separated from the mixture of non-fused parental cells, for example, by the addition of agents that block the de novo synthesis of nucleotides in the tissue culture media. Exemplary and preferred agents are aminopterin, methotrexate, and azaserine. Aminopterin and methotrexate block de novo synthesis of both purines and pyrimidines, whereas azaserine blocks only purine synthesis. Where aminopterin or methotrexate is used, the media is supplemented with hypoxanthine and thymidine as a source of nucleotides. Where azaserine is used, the media is supplemented with hypoxanthine.
This culturing provides a population of hybridomas from which specific hybridomas are selected. Typically, selection of hybridomas is performed by culturing the cells by single-clone dilution in microtiter plates, followed by testing the individual clonal supernatants for reactivity with an antigen-polypeptides. The selected clones can then be propagated indefinitely to provide the monoclonal antibody.
By way of specific example, to produce an antibody of the present invention, mice are injected intraperitoneally with between about 1–200 μg of an antigen comprising a polypeptide of the present invention. B lymphocyte cells are stimulated to grow by injecting the antigen in association with an adjuvant such as complete Freund's adjuvant (a non-specific stimulator of the immune response containing killed Mycobacterium tuberculosis). At some time (e.g., at least two weeks) after the first injection, mice are boosted by injection with a second dose of the antigen mixed with incomplete Freund's adjuvant.
A few weeks after the second injection, mice are tail bled and the sera titered by immunoprecipitation against radiolabeled antigen. Preferably, the process of boosting and titering is repeated until a suitable titer is achieved. The spleen of the mouse with the highest titer is removed and the spleen lymphocytes are obtained by homogenizing the spleen with a syringe. Typically, a spleen from an immunized mouse contains approximately 5×107 to 2×108 lymphocytes.
Mutant lymphocyte cells known as myeloma cells are obtained from laboratory animals in which such cells have been induced to grow by a variety of well-known methods. Myeloma cells lack the salvage pathway of nucleotide biosynthesis. Because myeloma cells are tumor cells, they can be propagated indefinitely in tissue culture, and are thus denominated immortal. Numerous cultured cell lines of myeloma cells from mice and rats, such as murine NS-1 myeloma cells, have been established.
Myeloma cells are combined under conditions appropriate to foster fusion with the normal antibody-producing cells from the spleen of the mouse or rat injected with the antigen/polypeptide of the present invention. Fusion conditions include, for example, the presence of polyethylene glycol. The resulting fused cells are hybridoma cells. Like myeloma cells, hybridoma cells grow indefinitely in culture.
Hybridoma cells are separated from unfused myeloma cells by culturing in a selection medium such as HAT media (hypoxanthine, aminopterin, thymidine). Unfused myeloma cells lack the enzymes necessary to synthesize nucleotides from the salvage pathway because they are killed in the presence of aminopterin, methotrexate, or azaserine. Unfused lymphocytes also do not continue to grow in tissue culture. Thus, only cells that have successfully fused (hybridoma cells) can grow in the selection media.
Each of the surviving hybridoma cells produces a single antibody. These cells are then screened for the production of the specific antibody immunoreactive with an antigen/polypeptide of the present invention. Single cell hybridomas are isolated by limiting dilutions of the hybridomas. The hybridomas are serially diluted many times and, after the dilutions are allowed to grow, the supernatant is tested for the presence of the monoclonal antibody. The clones producing that antibody are then cultured in large amounts to produce an antibody of the present invention in convenient quantity.
By use of a monoclonal antibody of the present invention, specific polypeptides and polynucleotide of the invention can be recognized as antigens, and thus identified. Once identified, those polypeptides and polynucleotide can be isolated and purified by techniques such as antibody-affinity chromatography. In antibody-affinity chromatography, a monoclonal antibody is bound to a solid substrate and exposed to a solution containing the desired antigen. The antigen is removed from the solution through an immunospecific reaction with the bound antibody. The polypeptide or polynucleotide is then easily removed from the substrate and purified.
F. Detection Methods
Alternatively, the present invention provides a method of detecting a polypeptide of the present invention, wherein the method comprises immunoreacting the polypeptides with antibodies prepared according to the methods described above to form antibody-polypeptide conjugates, and detecting the conjugates.
In yet another embodiment, the present invention provides a method of detecting messenger RNA transcripts that encode a polypeptide of the present invention, wherein the method comprises hybridizing the messenger RNA transcripts with polynucleotide sequences that en code the polypeptide to form duplexes; and detecting the duplex. Alternatively, the present invention provides a method of detecting DNA molecules that encode a polypeptide of the present invention, wherein the method comprises hybridizing DNA molecules with a polynucleotide that encodes that polypeptide to form duplexes; and detecting the duplexes.
The detection and screening assays disclosed herein can be also used as a part of a diagnostic method. Human NE transporter-encoding polynucleotides as well as their protein products can be readily used in clinical setting to diagnose susceptibility to orthostatic intolerance and to other heritable NE transporter-related diseases in humans.
F.1. Screening Assays for a Polypeptide of the Present Invention
The present invention provides a method of screening a biological sample for the presence of a NE transporter polypeptide. Preferably, the NE transporter polypeptide possesses NE transport activity, cross-reactivity with an anti-NE transporter antibody, or other biological activity in accordance with the present invention. A biological sample to be screened can be a biological fluid such as extracellular or intracellular fluid or a cell or tissue extract or homogenate. A biological sample can also be an isolated cell (e.g., in culture) or a collection of cells such as in a tissue sample or histology sample. A tissue sample can be suspended in a liquid medium or fixed onto a solid support such as a microscope slide. Hepatic tissues comprise particularly contemplated tissues.
Preferably, antibodies which distinguish between the A457 NE transporter polypeptide and the P457 NE transporter polypeptide are provided. Such antibodies can comprise polyclonal antibodies but are preferably monoclonal antibodies prepared as described hereinabove.
In accordance with a screening assay method, a biological sample is exposed to an antibody immunoreactive with the polypeptide whose presence is being assayed. Typically, exposure is accomplished by forming an admixture in a liquid medium that contains both the antibody and the candidate polypeptide. Either the antibody or the sample with the polypeptide can be affixed to a solid support (e.g., a column or a microtiter plate).
The biological sample is exposed to the antibody under biological reaction conditions and for a period of time sufficient for antibody-polypeptide conjugate formation. Biological reaction conditions include ionic composition and concentration, temperature, pH and the like.
Ionic composition and concentration can range from that of distilled water to a 2 molal solution of NaCl. Preferably, osmolality is from about 100 mosmols/l to about 400 mosmols/l and, more preferably from about 200 mosmols/l to about 300 mosmols/l. Temperature preferably is from about 4° C. to about 100° C., more preferably from about 15° C. to about 50° C. and, even more preferably from about 25° C. to about 40° C. pH is preferably from about a value of 4.0 to a value of about 9.0, more preferably from about a value of 6.5 to a value of about 8.5 and, even more preferably from about a value of 7.0 to a value of about 7.5. The only limit on biological reaction conditions is that the conditions selected allow for antibody-polypeptide conjugate formation and that the conditions do not adversely affect either the antibody or the polypeptide.
Exposure time will vary inter alia with the biological conditions used, the concentration of antibody and polypeptide and the nature of the sample (e.g., fluid or tissue sample). Techniques for determining exposure time are well known to one of ordinary skill in the art. Typically, where the sample is fluid and the concentration of polypeptide in that sample is about 10−10M, exposure time is from about 10 minutes to about 200 minutes.
The presence of polypeptide in the sample is detected by detecting the formation and presence of antibody-polypeptide conjugates. Techniques for detecting such antibody-antigen (e.g., receptor polypeptide) conjugates or complexes are well known in the art and include such procedures as centrifugation, affinity chromatography and the like, binding of a secondary antibody to the antibody-candidate receptor complex.
In one embodiment, detection is accomplished by detecting an indicator affixed to the antibody. Exemplary and well known such indicators include radioactive labels (e.g., 32P, 125I, 14C), a second antibody or an enzyme such as horse radish peroxidase. Techniques for affixing indicators to antibodies are well known in the art. Commercial kits are available.
F.2. Screening Assay for Anti-Polypeptide Antibody
In another aspect, the present invention provides a method of screening a biological sample for the presence of antibodies immunoreactive with a NE transporter polypeptide. Optionally, the NE transporter polypeptide has NE transport activity, cross-reactivity with an anti-NE transporter antibody, or other biological activity in accordance with the present invention.
In accordance with such a method, a biological sample is exposed to a NE transporter polypeptide under biological conditions and for a period of time sufficient for antibody-polypeptide conjugate formation and the formed conjugates are detected. Autoimmune antibodies associated with acquired impaired NET function are particularly contemplated for detection.
Thus, binding substances comprising a NE transporter polypeptide as described herein have selective binding activity with an antibody epitope (antigen recognition specificity). This binding specificity can be employed for detecting and/or purifying the antibody or fragment thereof. The term “fragment” thus refers any fragment of the antibody, such as Fab and F(ab′)2 fragments.
A NE transporter polypeptide is prepared as described herein above. The polypeptide is then conjugated to, or labeled with, a material that will enable visualization of the presence of the NE transporter polypeptide.
The NE transporter polypeptide can thus be used in a variety of applications to detect antibodies or antibody fragments. For example, fluoresceinated, alkaline phosphatase labeled, peroxidase labeled, or biotinylated NE transporter polypeptides are used in indirect cytochemical assays to detect antibody binding to cells and tissues in histological or flow cytometric assays. Such detection can be used in a variety of research or clinical contexts.
Similarly, immobilized NE transporter polypeptides can be used to precipitate immune complexes in radioimmune and other quantitative immune or antigen capture assays. Such immunoprecipitation assays where immune complexes of radiolabeled antigens are captured on immobilized NE transporter polypeptides of the present invention have wide application in the art.
By way of elaboration, the NE transporter polypeptides are used to detect the presence of antibodies and fragments thereof, in solutions, or on surfaces exposed to antibodies, or fragments thereof, by a variety of techniques. Techniques which are used include: enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), immunoblot analysis, immunofluorescent assay (IFA), immunohistochemistry, immunoelectron microscopy (IEM), and immunoilluminescence. Each technique utilizes conjugates including NE transporter polypeptides to visualize the binding of the conjugate to antibody molecules or fragments thereof.
Commonly used conjugates include, but are not limited to, enzymes such as biotin, horseradish peroxidase, alkaline phosphatase (O'Sullivan et al. (1978) FEBS Letters 95:311), acid phosphatase, beta-galactosidase (Ishikawa et al. (1978) Scand. J. Immunol. 8:43) and luciferase; radioisotopes such as 125I, 35S, 14C, and 3H; fluorescent dyes such as fluorescein, rhodamine, dichlorotriazinylaminofluorescein (DTAF; Blakeslee et al., J. Immunol Meth. 13:320 (1977)), ferritin (Carlsson et al. (1978) Biochem. J. 173:723), fluoroscene isothiocyanste (FITC; McKinney et al. (1966) Anal. Biochem. 14:421), sulforhodamine 101 acid chloride (Texas Red) and tetra-methyrhodamine isothiocyanate (TRITC; Amante et al., J. Immunol. Meth., 1:289 (1972)); colloidal gold particles (Horisberger et al., Histochem. 82:219 (1985)); and the like. Effective procedures for such conjugations are generally conventional, as described by Harlow et al., 1988, Antibodies: a laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
The protein conjugate is stored in appropriate buffers until needed. Colloidal gold conjugates can be maintained in Tris-based stabilizing buffer, such as those described in Robinson et al., (1984) Infect. Immun. 46:361–366. For other conjugates, the buffer would typically be phosphate-buffered saline, pH 7.2 (PBS). However, physiological buffers such as Tris- or borate-buffered saline (TBS or BBS) in pH ranging from 6.5 to 8.0, or non-saline buffers such as acetates, bicarbonates, or citrates within this pH range can be utilized.
When needed to detect the presence of antibodies or fragments thereof in a preparation, the NE transporter polypeptide conjugate can be first diluted in an appropriate buffer. The extent of dilution varies according to the conjugate and sensitivity required, and is normally determined empirically for a given conjugate preparation and detection method. Dilutions typically range from 1:10 to 1:10,000. After dilution the conjugate is incubated with a sample suspected of containing antibodies or fragments thereof. The incubation should proceed for about 15–60 minutes at room temperature, or about 4–16 hours at about 4° C., during which time from one to ten (optimally) NE transporter polypeptide molecules will bind to any antibodies or fragments thereof present. Following incubation, the sample is washed twice for about 5-10 minutes each with dilution buffer or with buffer which is compatible with the visualization conditions (if different). The presence of bound NE transporter polypeptide can then be detected or visualized by chromogenic assay, radioactivity, illuminescence, fluorescence, flow cytometry or electron density, as appropriate for the conjugate.
Thus, a method for detecting an antibody or fragment thereof, in a sample suspected of an antibody or fragment thereof, is provided in accordance with the present invention. The method comprises: (a) contacting the sample with a binding substance comprising a NE transporter polypeptide under conditions favorable to binding an antibody or fragment thereof, to the binding substance to form a complex therebetween; and (b) detecting the complex by means of a label conjugated to the binding substance or by means of a labeled reagent that specifically binds to the complex subsequent to its formation.
In the detection method of the present invention, the binding substance can be immobilized on a solid substrate. In such case, the detecting step (b) comprises: (i) contacting the complex with a reagent conjugated with a detectable label wherein the reagent specifically binds to the antibody or fragment thereof, and (ii) detecting the detectable label.
In the detection method of the present invention, the binding substance can be conjugated with a detectable label. In such case, the detecting step (b) comprises: (i) separating the complex from unbound labeled binding substance; and (ii) detecting the detectable label which is present in the complex or which is unbound.
The detection method of the present invention can further comprise: (i) contacting the complex with a reagent immobilized on a solid substrate to form immobilized complex thereon wherein the reagent binds the antibody or fragment, present in the complexes; and (ii) separating the immobilized complex from the remaining mixture.
F.3. Screening Assay for Polynucleotide That Encodes a NE Transporter Polypeptide of the Present Invention
A nucleic acid molecule and, particularly a probe molecule, can be used for hybridizing as an oligonucleotide probe to a nucleic acid source suspected of encoding a NE transporter polypeptide of the present invention. Optimally, the NE transporter polypeptide has NE transport activity, cross-reactivity with an anti-NE transporter antibody, or other biological activity in accordance with the present invention. The probing is usually accomplished by hybridizing the oligonucleotide to a DNA source suspected of possessing a NE transporter gene. In some cases, the probes constitute only a single probe, and in others, the probes constitute a collection of probes based on a certain amino acid sequence or sequences of the polypeptide and account in their diversity for the redundancy inherent in the genetic code.
A suitable source of DNA for probing in this manner is capable of expressing a polypeptide of the present invention and can be a genomic library of a cell line of interest. Alternatively, a source of DNA can include total DNA from the cell line of interest. Once the hybridization method of the invention has identified a candidate DNA segment, one confirms that a positive clone has been obtained by further hybridization, restriction enzyme mapping, sequencing and/or expression and testing.
Alternatively, such DNA molecules can be used in a number of techniques including their use as: (1) diagnostic tools to detect normal and abnormal DNA sequences in DNA derived from patient's cells, such as a NE transporter polymorphism described herein; (2) tools for detecting and isolating other members of the polypeptide family and related polypeptides from a DNA library potentially containing such sequences; (3) primers for hybridizing to related sequences for the purpose of amplifying those sequences; (4) primers for altering native NE transporter DNA sequences; as well as other techniques which rely on the similarity of the DNA sequences to those of the DNA segments herein disclosed.
As set forth above, in certain aspects, DNA sequence information provided by the invention allows for the preparation of relatively short DNA (or RNA) sequences (e.g., probes) that specifically hybridize to encoding sequences of a selected NE transporter gene. In these aspects, nucleic acid probes of an appropriate length are prepared based on a consideration of the encoding sequence for a polypeptide of this invention. The ability of such nucleic acid probes to specifically hybridize to other encoding sequences lend them particular utility in a variety of embodiments. Most importantly, the probes can be used in a variety of assays for detecting the presence of complementary sequences in a given sample. However, other uses are envisioned, including the use of the sequence information for the preparation of mutant species primers, or primers for use in preparing other genetic constructions.
To provide certain of the advantages in accordance with the invention, a preferred nucleic acid sequence employed for hybridization studies or assays includes probe sequences that are complementary to at least a 14 to 40 or so long nucleotide stretch of a nucleic acid sequence of the present invention, such as a sequence shown in any of SEQ ID NOs:1, 3, 11 and 13. A size of at least 14 nucleotides in length helps to ensure that the fragment is of sufficient length to form a duplex molecule that is both stable and selective. Molecules having complementary sequences over stretches greater than 14 bases in length are generally preferred, though, to increase stability and selectivity of the hybrid, and thereby improve the quality and degree of specific hybrid molecules obtained. One will generally prefer to design nucleic acid molecules having gene-complementary stretches of 14 to 20 nucleotides, or even longer where desired. Such fragments can be readily prepared by, for example, directly synthesizing the fragment by chemical means, by application of nucleic acid reproduction technology, such as the PCR technology of U.S. Pat. No. 4,683,202, herein incorporated by reference, or by introducing selected sequences into recombinant vectors for recombinant production.
Accordingly, a nucleotide sequence of the present invention can be used for its ability to selectively form duplex molecules with complementary stretches of the gene. Depending on the application envisioned, one employs varying conditions of hybridization to achieve varying degrees of selectivity of the probe toward the target sequence. For applications requiring a high degree of selectivity, one typically employs relatively stringent conditions to form the hybrids. For example, one selects relatively low salt and/or high temperature conditions, such as provided by 0.02M–0.15M salt at temperatures of about 50° C. to about 70° C. including particularly temperatures of about 55° C., about 60° C. and about 65° C. Such conditions are particularly selective, and tolerate little, if any, mismatch between the probe and the template or target strand.
Of course, for some applications, for example, where one desires to prepare mutants employing a mutant primer strand hybridized to an underlying template or where one seeks to isolate polypeptide coding sequences from related species, functional equivalents, or the like, less stringent hybridization conditions are typically needed to allow formation of the heteroduplex. Under such circumstances, one employs conditions such as 0.15M–0.9M salt, at temperatures ranging from about 20° C. to about 55° C., including particularly temperatures of about 25° C., about 37° C., about 45° C., and about 50° C. Cross-hybridizing species can thereby be readily identified as positively hybridizing signals with respect to control hybridizations. In any case, it is generally appreciated that conditions can be rendered more stringent by the addition of increasing amounts of formamide, which serves to destabilize the hybrid duplex in the same manner as increased temperature. Thus, hybridization conditions can be readily manipulated, and thus will generally be a method of choice depending on the desired results.
In certain embodiments, it is advantageous to employ a nucleic acid sequence of the present invention in combination with an appropriate means, such as a label, for determining hybridization. A wide variety of appropriate indicator means are known in the art, including radioactive, enzymatic or other ligands, such as avidin/biotin, which are capable of giving a detectable signal. In preferred embodiments, one likely employs an enzyme tag such a urease, alkaline phosphatase or peroxidase, instead of radioactive or other environmentally undesirable reagents. In the case of enzyme tags, calorimetric indicator substrates are known which can be employed to provide a means visible to the human eye or spectrophotometrically, to identify specific hybridization with complementary nucleic acid-containing samples.
In general, it is envisioned that the hybridization probes described herein are useful both as reagents in solution hybridization as well as in embodiments employing a solid phase. In embodiments involving a solid phase, the sample containing test DNA (or RNA) is adsorbed or otherwise affixed to a selected matrix or surface. This fixed, single-stranded nucleic acid is then subjected to specific hybridization with selected probes under desired conditions. The selected conditions depend inter alia on the particular circumstances based on the particular criteria required (depending, for example, on the G+C contents, type of target nucleic acid, source of nucleic acid, size of hybridization probe, etc.). Following washing of the hybridized surface so as to remove nonspecifically bound probe molecules, specific hybridization is detected, or even quantified, via the label.
F.4. Assay Kits
In another aspect, the present invention provides diagnostic assay kits for detecting the presence of a polypeptide of the present invention in biological samples, where the kits comprise a first container containing a first antibody capable of immunoreacting with the polypeptide, with the first antibody present in an amount sufficient to perform at least one assay. Preferably, the assay kits of the invention further comprise a second container containing a second antibody that immunoreacts with the first antibody. More preferably, the antibodies used in the assay kits of the present invention are monoclonal antibodies. Even more preferably, the first antibody is affixed to a solid support. More preferably still, the first and second antibodies comprise an indicator, and, preferably, the indicator is a radioactive label or an enzyme.
The present invention also provides a diagnostic kit for screening agents. Such a kit can contain a polypeptide of the present invention. The kit can contain reagents for detecting an interaction between an agent and a receptor of the present invention. The provided reagent can be radiolabeled. The kit can contain a known radiolabelled agent capable of binding or interacting with a receptor of the present invention.
In an alternative aspect, the present invention provides diagnostic assay kits for detecting the presence, in biological samples, of a polynucleotide that encodes a polypeptide of the present invention, the kits comprising a first container that contains a second polynucleotide identical or complementary to a segment of at least 10 contiguous nucleotide bases of, as a preferred example, in any of SEQ ID NOs:1, 3, 11 and 13.
In another embodiment, the present invention provides diagnostic assay kits for detecting the presence, in a biological sample, of antibodies immunoreactive with a polypeptide of the present invention, the kits comprising a first container containing a NE transporter polypeptide, that immunoreacts with the antibodies, with the polypeptide present in an amount sufficient to perform at least one assay.
Autoimmune antibodies associated with acquired impaired NET function are particularly contemplated for detection. Preferably, the NE transporter polypeptide has NE transport activity, cross-reactivity on an anti-NE transporter antibody, or other biological activity in accordance with the present invention. The reagents of the kit can be provided as a liquid solution, attached to a solid support or as a dried powder. Preferably, when the reagent is provided in a liquid solution, the liquid solution is an aqueous solution. Preferably, when the reagent provided is attached to a solid support, the solid support can be chromatograph media or a microscope slide. When the reagent provided is a dry powder, the powder can be reconstituted by the addition of a suitable solvent. The solvent can be provided.
G. Other Diagnostic Methods
The present invention also provides the detection and diagnoses of impaired NE transport and disorders related thereto based on the use of standard tests associated with evaluating NE transport function, such as the NE clearance and tyramine tests described in the Examples. Such test results are prepared, and the results are compared to results observed in patients having the NET mutation disclosed herein. Test results that indicate a correlation with the results observed in a patient having the polymorphism disclosed herein indicates the presence of a deficiency in NE transport in a patient so screened.
For example, in the NE clearance evaluations described in the Examples, NE transport deficient patients, (i.e. those having the NET polymorphism disclosed herein) were observed to have NE clearance rates ranging from about 1–2 liters per minute. In contrast, NE clearance rates are 2–3 liters per minute in normal patients.
Additionally, in the tyramine administration test disclosed in the Examples, elevated plasma NE levels after administration of the unit dose of tyramine were observed to range from about 1 to about 20 pg/ml and more particularly from about 5 to about 50 pg/ml in patients having the NE transporter polymorphism disclosed herein. In contrast, plasma NE levels after administration of a unit dose of tyramine in a normal patient ranges from about 40 to about 70 pg/ml, and usually ranges from about 50 to about 60 pg/mL.
Urinary NE levels range from about 100 to about 500 μg/24 hrs and usually from about 200 to about 400 in the patients observed to have the NET polymorphism. In contrast, in normal patients, urinary NE levels range from about 0 to about 90 μg/24 hrs. Thus, these data can be used in accordance with the present invention to detect impaired NE transport and disorders related thereto.
In accordance with the present invention, the ratio of DHPG to NE in blood is also used to detect impaired NE transport and disorders related thereto. DHPG is a metabolite of NE, resulting from the enzymatic action of monoamine oxidase. Since the monoamine oxidase is predominantly in the neuron itself, NE pumped back into the neuron by the NET is exposed to the enzyme and can be broken down into DHPG, which can then leak out into the plasma. If the NET is not functioning appropriately or if there is a deficiency of NET, not as much norepinephrine is pumped up into the neuron and subsequently metabolized to DHPG. Thus, the ratio of DHPG to NE in blood is less in patients with NET deficiency. This difference can appear during upright posture or with exercise. The ratio of DHPG to NE in blood is determined, and the results are compared to results observed in patients having the NET mutation disclosed herein. Test results that indicate a correlation with the results observed in a patient having the polymorphism disclosed herein indicates the presence of a deficiency in NE transport in a patient so screened.
In accordance with the present invention, the ratio of DHPG to normetanephrine (NMN) is also used to detect impaired NE transport and disorders related thereto. When NE is not pumped into the neuron by the NE transporter, NE is exposed to extraneuronal tissue which contains a different enzyme called catechol-O-methyltransferase (COMT), which catalyzes the metabolism of NE to NMN. The metabolism of NE to NMN is enhanced under circumstances where NE transport into the neuron is impaired, and thus, a ratio of DHPG to normetanephrine (NMN) can also be used to detect impaired NE transport and disorders related thereto. The ratio of DHPG to NMN is determined, and the results are compared to results observed in patients having the NET mutation disclosed herein. Test results that indicate a correlation with the results observed in a patient having the polymorphism disclosed herein indicates the presence of a deficiency in NE transport in a patient so screened.
In another aspect, the method can be used to detect susceptibility to a NET mediated disorder in a patient. The detection of secondary test results indicative of impaired NET function can thus be used to detect susceptibility to mental illness, hypertension, heart disease and psycho stimulant abuse (e.g. cocaine or amphetamine abuse). Thus, the methods of the present invention are believed to meet a long felt need in the art for further characterization of NE transport impairments and predictive ability to detect susceptibility to disorders related thereto.
Stated differently, the identification of the NET transporter mutation as set forth herein represents the first establishment of a link between genetic causes of NET deficiencies and more indirect measures of NET deficiencies, such as the tyramine and NE clearance tests disclosed in the Examples presented below. This information is thus useful in facilitating diagnoses of approximately half a million patients in the United States alone who are suffering from disorders associated with NET deficiencies.
The following Examples have been included to illustrate preferred modes of the invention. Certain aspects of the following Examples are described in terms of techniques or procedures found or contemplated by the present inventors to work well in the practice of the invention. These Examples are exemplified through the use of standard laboratory practices of the inventors. In light of the present disclosure and the general level of skill in the art, those of skill will appreciate that the following Examples are intended to be exemplary only in that numerous changes, modification, and alterations can be employed without departing from the spirit and scope of the invention.
Clinical Characteristics
The proband was a 33-year old female with a 20 year history of exertional and orthostatic provocation of tachycardia, dyspnea, concentration difficulty, and syncope. She had volatile blood pressure during or following anaesthesia with each of her three Caesarean sections with blood pressures as high as 210/180 mm Hg. Standard treatment for syncope (β-blockers, compression stockings, fludrocortisone) had been unsatisfactory. Implantation of a dual chamber pacemaker seemed to decrease the frequency of syncope, but symptoms of orthostatic intolerance persisted. An echocardiogram revealed mild mitral regurgitation and possible mitral valve prolapse. The probands identical twin also had a history of mitral valve prolapse and syncope as well as multiple symptoms worsened by stress and upright posture.
Experimental Design
The proband and her twin were admitted to the General Clinical Research Center at Vanderbilt University Medical Center, Nashville, Tenn. They were placed on a caffeine-free, low monoamine diet containing 150 mEq Na+ and 70 mEq K+ per day for 3 days. All medications had been discontinued at least two weeks prior to admission. After fasting supine overnight, blood pressure, heart rate, and plasma catecholamines were measured supine and after standing. At least two hours after breakfast standard autonomic function testing was performed as described by Mosqueda-Gracia, Disorders of the Autonomic Nervous System (1995). Urine was collected over a 24 hour period for catecholamines and catecholamine metabolites.
In the proband, and a group of normal volunteers, systemic norepinephrine spillover and clearance and plasma norepinephrine concentrations were determined before and at the maximal blood pressure increase after an intravenous injection of 3 mg tyramine. Supine and upright blood pressure and heart rate, plasma catecholamines, norepinephrine spillover and clearance, and tyramine-mediated plasma catecholamine responses were compared to responses among subjects in a group of 10 normal volunteers (8 females, 2 males, 33±2 years).
In seven additional siblings and the proband's mother, blood pressure and heart rate were determined after twenty minutes supine and five minutes standing. Blood was obtained for determination of plasma catecholamines after twenty minutes supine and then after thirty minutes upright. In addition, blood was obtained from the proband, all nine of her siblings and her mother for DNA analysis. Plasma catecholamine or orthostatic vitals signs from one sister of the proband were not obtained. Her father is deceased. All subjects gave informed consent prior to study.
Plasma was analyzed for catecholamines by a modification of a high pressure liquid chromatographic method described by Goldstein et al., J Clin Invest (1988). Urine samples for catecholamines were assayed using analogous methods. See Goldstein et al., J Clin Invest (1988), Shoup et al., Clin Chem (1977). Tyramine responsiveness was determined by assaying blood pressure and heart rate after administration of 3 mg intravenous tyramine.
Systemic Norepinephrine Spillover and Clearance
The proband and normal controls were studied after overnight rest. Catheters were placed in a brachial artery, the ipsilateral femoral vein, and bilateral antecubital veins. Blood pressure was monitored intraarterially and heart rate was monitored by continuous ECG. After instrumentation and 30 minutes recovery, tritiated norepinephrine (3H-NE) was infused intraveneously at 0.9 μCi/mL/min (see Riley et al., Clin Sci (1991)) after a loading dose of 25 μCi over 2 min. See Esler et al., Physiol Rev (1990). After allowing 30 to 40 minutes to reach steady state, blood for baseline norepinephrine concentration was obtained from the artery. Norepinephrine spillover and clearance were determined before and during baroreflex-mediated sympathetic activation with infusion of nitroprusside sufficient to decrease systolic blood pressure by 20 mmHg. 3H-NE concentration in plasma samples was determined as described by Shannon et al., Circulation (1999).
Detection of Mutations
Genomic DNA was isolated from venous blood using the PureGene DNA Extraction Kit (Gentra Systems, Minneapolis, Minn.). The exons of the human NET gene (SLC6A2, McKusick # 163970) were amplified using the polymerase chain reaction (PCR) with sense and antisense primers set forth in Table 2 as follows:
| TABLE 2 | |
| Primer Sets for Amplification of the Exons | |
| of the Human NET Gene | |
| Exon 1: | |
| RB639 (5′-aggaccggtaaagttcctctcg-3′) | (SEQ ID NO:16) |
| RB640 (5′-tccgtgtgtattccagctcctg-3′) | (SEQ ID NO:17) |
| Exon 2: | |
| RB641 (5′-gattgctgcgcgtcgcctttg-3′) | (SEQ ID NO:18) |
| RB642 (5′-ccttagatctcaccactggag-3′) | (SEQ ID NO:19) |
| Exon 3: | |
| RB643 (5′-catgcgacaggtcactggtg-3′) | (SEQ ID NO:20) |
| RB644 (5′-tagtgtttggctcaggtcatac-3′) | (SEQ ID NO:21) |
| Exon 4: | |
| RB645 (5′-agagtggccaggtcctgtct-3′) | (SEQ ID NO:22) |
| RB646 (5′-cttgcacttccagctccatctt-3′) | (SEQ ID NO:23) |
| Exon 5: | |
| RB647 (5′-tggcttcagggccttgcctagag-3′) | (SEQ ID NO:24) |
| RB648 (5′-acaagcctggcccaaggcttggt-3′) | (SEQ ID NO:25) |
| Exon 6: | |
| RB649 (5′-ctgcccatctctggttcagaccat-3′) | (SEQ ID NO:26) |
| RB650 (5′-ggagagttggcttccagaccaga-3′) | (SEQ ID NO:27) |
| Exon 7: | |
| RB651 (5′-gtatccatgtggcagcaggagc-3′) | (SEQ ID NO:28) |
| RB652 (5′-cacggaagagccatgcagccaa-3′) | (SEQ ID NO:29) |
| Exon 8: | |
| RB653 (5′-ctatcatgtgcagctcagaccaatgg-3′) | (SEQ ID NO:30) |
| RB654 (5′-gtctgcaatttaaatagggccttctgg-3′) | (SEQ ID NO:31) |
| Exon 9: | |
| RB655 (5′-caaggcagcctacatgagtcctgg-3′) | (SEQ ID NO:32) |
| RB667 (5′-taacagggctgaatggaatcctcag-3′) | (SEQ ID NO:33) |
| Exons 9 and 10: | |
| RB655 (5′-caaggcagcctacatgagtcctgg-3′) | (SEQ ID NO:32) |
| RB656 (5′-ggtgcaggattctaggaggactgg-3′) | (SEQ ID NO:34) |
| Exons 11 and 12: | |
| RB657 (5′-catcttgcctcactgccctgctct-3′) | (SEQ ID NO:35) |
| RB658 (5′-catcttgcctcactgccctgctct-3′) | (SEQ ID NO:36) |
| Exons 13 and 14: | |
| RB659 (5′-gctgcaggatcaaatagcaggtgg-3′) | (SEQ ID NO:37) |
| RB660 (5′-tgctcctctcctctgagctaacag-3′) | (SEQ ID NO:38) |
| Exon 15: | |
| RB746 (5′-ggaggtgcttggagatcatttgg-3′) | (SEQ ID NO:39) |
| RB747 (5′-gcttcagtctcacattagcgagg-3′) | (SEQ ID NO:40) |
Amplified products (60 ng) were directly sequenced using PCR primers with AmpliTaq®-FS fluorescent dideoxy chain terminators (Perkin Elmer, Wellesley, Mass.) using 25 cycles of 96° C. for 30 sec, 50° C. for 15 sec, and 60° C. for 4 min. After ethanol precipitation, the reactions were analyzed on an ABI 310™ automated DNA sequencer (Vanderbilt University Center for Molecular Neuroscience DNA Sequencing Core, Nashville, Tenn.). Sequences were compared to the hNET genomic sequences reported in GenBank (Accession numbers x91117 to x91127) and the sequences reported by Pörzgen and colleagues (Pörzgen et al., Biochimica et Biophysica Acta (1998)), as well as in comparison with DNA from asymptomatic volunteers.
Functional Analysis of Identified Coding Mutation
DNA encoding the hNET A457P mutant was created using QuikChange™ Site-Directed Mutagenesis Kit (Stratagene, La Jolla, Calif.) according to manufacturer's protocol using the oligonucleotides RB675 (5′ccttcagtactttccttctccccctgttctgcataaccaag-3′) (SEQ ID NO:5) and RB676 (5′cttggttatgcagaacagggggagaaggaaagtactgaagg-3′) (SEQ ID NO:6). The underlying bases indicate modified bases to introduce the g237c mutation or to introduce a Sca I restriction site that could be used to identify mutated plasmids. Amplified DNA was cloned into a pcDNA3 (Invitrogen, Carlsbad, Calif.) construct containing wild type hNET cDNA that had been previously mutated to introduce a silent mutation (L438L), creating a unique Afi II site to facilitate subcloning of the mutated sequences back into the wild type construct. The subcloned region was sequenced using hNET oligonuceotides RB252 (SEQ ID NO:7) (5′-cattctgggctgttgtgt-3′) and RB584 (SEQ ID NO:8) (5′-gtggttgtggtcagcatcatc-3′). DNA from multiple isolates of mutant clones were purified (Qiagen Inc., Santa Clarita, Calif.) to test for the impact of the A457P mutation on transporter activity.
hNET, hNET A457P, and pcDNA3 plasmids were transiently tranfected in parallel into Chinese Hamster Ovary (CHO; American Type Culture Collection, Manasas, Va., accession no. CCL-61) cells using lipofectamine (Gibco-BRL, Grand Island, N.Y.) according to manufacturer's protocols. CHO cells were cultured at 37° C. in 5% CO2 in Dulbelco's Minimum Essential Medium with 10% fetal bovine serum (Hyclone, Logan, Utah), 2 mM glutamine (Gibco-BRL, Grand Island, N.Y.), 100 I. U./ml penicillin (Gibco-BRL, Grand Island, N.Y.), and 100 μg/ml streptomycin (Gibco-BRL, Grand Island, N.Y.). Twelve well plates (Falcon™ 3043 plates, Becton Dickinson, N.J.) were seeded with 2.0–2.5×105 cells per well. Approximately 48 hours later, the cells were transfected with the appropriate DNA constructs (A457P mutant, wild type hNET, or pcDNA3) in a 1:2 DNA:lipofectamine ratio. Cells were supplemented with fresh medium at 8 hours and then refed with fresh medium after a subsequent 14 hours. The cells were assayed for 3H-NE transport activity (20 nM) 72 hours after initial transfection as described by Apparsundaram et al., J Pharm Exp Ther (1998).
Genotyping of A457P Alleles
Allele specific oligonucleotide hybridization (ASO) was used to genotype individuals for the A457P mutation with RB704 (5′-ccttctcgccctgtt-3′) (SEQ ID NO:9) hybridizing to the wild type allele and RB705 (5′-ccttctccccctgtt-3′) (SEQ ID NO: 10) hybridizing to the mutant allele. The underlined bases identify the single nucleotide polymorphism. All genomic DNA was coded prior to analysis to preserve anonymity of the sample. Genotypes were assigned without knowledge of the sample's identity and then used to associate genotype with a phenotype.
Statistical Analysis
Results are expressed as mean±SEM. Paired and unpaired two tail t-tests were used for comparisons between groups and within one group before and after the various stimuli. Data were analyzed using GRAPHPAD PRISM™ software. (GraphPAD Software Inc., San Diego, Calif.) A p value less than 0.05 was considered significant.
Autonomic reflexes in both the proband and her twin were intact. The proband and twin had volatility of blood pressure and heart rate (FIG. 1 ). Supine and upright blood pressure, heart rate, and plasma catecholamines of the proband and her twin as compared to control subjects (Shannon et al., Circulation (1999)) are depicted in Table 3. The plasma levels of dihydroxyphenylglycol (DHPG, intraneuronal monoamine oxidase (MAO) metabolite of norepinephrine) (Goldstein et al., J Clin Invest (1988)) in the proband and her twin were low relative to the plasma level of norepinephrine. In normal controls, the supine DHPG/norepinephrine ratio was approximately 5:1 while in the proband and her twin, the ratio was approximately 2:1. With standing, the ratios in normal controls averaged 3:1 while in the proband and twin, they were 1:1. Urinary norepinephrine was elevated outside the normal range in both the proband and her twin (Table 3).
Arterial norepinephrine concentration at rest was slightly elevated in the proband compared to controls (280 pg/ml vs 204±18 pg/ml). This greater concentration was primarily due to decreased NE clearance since, despite a lower NE spillover rate in the proband (436 ng/min in the proband vs 514±98 ng/min in controls, clearance in the proband was less than half of normal controls (1.56 vs 2.42±0.25 L/min). With nitroprusside infusion, NE spillover increased to 1072 ng/min in the proband but only 745±75 ng/min in control subjects. Norepinephrine clearance did not change appreciably after nitroprusside in either the proband (1.76 L/min) or the control group (2.31±0.24 L/min).
Tyramine is an indirectly-acting amine that exerts its effect by releasing cytosolic norepinephrine. To cause norepinephrine release, tyramine must first be taken up into the neuron by NET, as described by Blakely et al., J Exp Biol (1994), and Demanet, Cardiology (1976). Intravenous injection of tyramine 3 mg increased systolic blood pressure 19±2 mmHg and plasma norepinephrine by 56±21 pg/ml in normal controls. In the proband, the same dose increased systolic blood pressure similarly (118 mmHg), but the elevation in plasma norepinephrine was significantly blunted (12 pg/ml).
The combination of the low plasma DHPG/norepinephrine ratio, decrease of plasma norepinephrine clearance, and blunted response to tyramine suggested a potential defect in NET in the proband. The presence of a similar syndrome in her identical twin suggested a genetic origin.
Direct sequence analysis of the human norepinephrine transporter (hNET) gene (SLC6A2) in the proband revealed no divergence from previously published sequences in exons 1 through 8 and 10 through 15. In addition, all exonic boundaries preserved canonical gt/ag donor/acceptor sequences. However, two novel polymorphisms were identified within exon 9, one silent (c154a) and one missense (g237c) mutation. The proband is heterozygous for both the c154a and g237c polymorphisms (FIG. 2A ). The g237c mutation results in a coding alteration of alanine to proline (A457P) within a highly conserved region of transmembrane domain 9 (FIG. 2B and FIG. 2C ).
Heterologous expression of hNET in parallel with hNETA457P cDNAs revealed that 3H-NE uptake is severely compromised by the A457P mutation. Chinese hamster ovary (CHO) cells transiently transfected with hNET cDNA display a >10 fold elevation in norepinephrine transport activity over vector transfected cells. CHO cells transiently transfected with A457P NET cDNA possessed ≦2% of the uptake activity of the wild type NET transfected cells (FIG. 2D ). Multiple clones were tested and all were found to be devoid of transport activity in a different cell host (LLC PK1 cells).
The proband's mother and 4 of her 8 siblings were genotyped by ASO and were found to be heterozygous for the mutant allele (AP), including her twin (FIG. 2E and FIG. 2F ). Independently, heart rates and plasma catecholamines were obtained from the family. Supine heart rates displayed a trend toward elevation associated with the AP genotype (p=ns). However, upon standing, the heart rate was significantly greater in family members carrying the A457P mutation (AP) than in family members homozygous for the A457 genotype (AA) (FIG. 3A and FIG. 3B ). Similarly, supine plasma norepinephrine tended to be greater in AP that AA family members, whereas upright norepinephrine was significantly greater in AP individuals (FIG. 3C and FIG. 3D ). Finally, the plasma DHPG/norepinephrine ratio was significantly greater in AA individuals that in AP individuals with both supine and upright postures (FIG. 3E and FIG. 3F ).
As disclosed herein above, the norepinephrine transporter (NET) is responsible for clearance of norepinephrine (NE) from the synapse and is a target for antidepressant drugs and psychostimulants. A human NET (hNET; SLC6A2) coding mutation, A457P, linked to orthostatic Intolerance which results in near complete loss of [3H]NE transport (<2% of wild type (wt)) is also disclosed herein above. This Example pertains to the identification of a mechanism underlying the loss of transport of A457P. Biotinylation of cell surface proteins and Western analysis reveal that the 80–100 kD form of hNET, the major species in the plasma membrane, is decreased in total cell extracts and in plasma membrane from COS-7 cells transfected with A457P compared to wt. Competition of [125I]RTI-55 binding to membrane preparations demonstrates alterations in both antagonist and substrate binding to A457P. Cotransfection of A457P with wt hNET reveals a dominant negative interaction of decreased [3H]NE uptake to 59±2.4% of wt alone.
Using techniques described in Example 6 above, applicants have also characterized additional hNET single nucleotide polymorphisms (SNPs) that have been identified, e.g. Stober et al. (1996) American Journal of Medical Genetics 67:523–532 and Halushka et al. (1999) Nature Genetics 22:239–247. Characterization of these SNPs has led to the observation of both loss of function as well as significant increases in transport in different mutants. By screening susceptible populations for hNET mutations and characterizing mutant proteins, structural components underlying transport function are identified and the role and prevalence of hNET mutations in disease are illuminated.
The NET deficiency in this family represents the first demonstration of a functional mutation in a monoamine transporter in humans. Previously, coding polymorphisms have been found in hNET, but these had no effect on norepinephrine transport activity. See e.g. Stober et al., Genetics (1996). In contrast, the A457P mutation renders the transporter nonfunctional and segregates with an alteration in heart rate regulation and norepinephrine metabolism. Bedside physiological, pharmacological, and biochemical tests in the proband indicated a defect in norepinephrine reuptake. Supine resting heart rate was within normal range but about 10 bpm greater than age matched controls, as described by Shannon et al., Hypertension (1998), and rose substantially with upright posture. This heart rate change was paralleled by an increase in plasma norepinephrine which rose almost four-fold with upright posture.
The proband's blunted plasma norepinephrine increase with tyramine, and her reduced systemic norepinephrine clearance compared to normal subjects were consistent with impaired norepinephrine reuptake as the primary deficit. The relationship of plasma DHPG and norepinephrine provided further evidence of impaired norepinephrine reuptake. Some NE taken up into the neuron by NET reaches the vesicles where it is stored for re-release, but much is converted to DHPG by MAO, as described in Esler et al., Physiol Rev (1990). DGPG can then enter the circulation and serve as a marker of uptake and MAO activity (FIG. 4 ) (see Goldstein et al., J Clin Invest (1988)). The relatively low DHPG compared to norepinephrine in the plasma of the proband and her twin are consistent with impaired NET activity.
These several observations and their consistency between the proband and her twin were highly suggestive of a genetic abnormality in the NET gene, which was previously mapped to chromosome 16q by Bruss, M., et al., Human Genetics 91:278–280 (1993). To confirm such a defect, the structure of the proband's NET gene was examined. One missense (g237c) mutation resulting in a coding alteration of alanine to proline (A457P) in a highly conserved transmembrane region was found. Proline disrupts α-helical secondary structures permitted by alanine residues. Therefore, substitution of a proline for alanine in this region is envisioned to disrupt permeation of norepinephrine or its coupled ions Na+ or Cl+. Chimera studies have shown that this transmembrane domain (TMD) 9 falls within a region likely to influence substrate affinity and stereoselectivity of catecholamine transporters (Giros et al., J Biol Chem (1994)). Subsequent functional analysis of the proband's NET demonstrated ≦2% activity compared to normal NET.
The A457P mutation is the first genetic defect identified in the syndrome of OI. The pathophysiology of OI has elicited considerable interest in recent years, and a number of potential mechanisms have been suggested. Most invoke a primary or secondary activation of sympathetic outflow to account for the tachycardia and raised norepinephrine with physiological stress. Postulated mechanisms include partial dysautonomia, central hyperadrenergia, abnormal β-adrenoreceptor function and hypovolemia. (Novak et al., J Aut N Syst (1996), Rosen et al., Am J Med (1982), Fouad et al., Ann Int Med (1986), Schodorf et al., Circulation (1998), Davies et al., Am J Med (1987), Davies et al., J Clin Endocrinol Metab (1991)).
NET deficiency can at least partially explain a number of clinical features in patients with OI. Elevated supine heart rate, elevated plasma norepinephrine associated with relatively decreased plasma DHPG, the reduced norepinephrine response to tyramine, reduced systemic norepinephrine clearance, and the disparity of the change in heart rate and plasma norepinephrine as compared to sympathetic nerve activity with upright posture are all contemplated to be attributed to impaired NET activity and/or NET deficiency.
The noradrenergic synaptic clefts in the heart rate are approximately three times narrower than the synapic clefts in the vasculature. See Novi, Anatomical Record (1968). Therefore, removal of synaptic norepinephrine in the heart is far more dependent on NET that it is in vascular beds. See Goldstein et al., Circulation (1988). Thus, one would expect a disproportionate effect on heart rate and myocardial contractility as compared with blood pressure if NET were dysfunctional. That is precisely what is observed in patients with OI.
The above features primarily represent manifestations of peripheral NET impairment. Central nervous system NET impairment is considerably more complicated. Noradrenergic and adrenergic neurons located at several sites in the central nervous system (e.g. the nucleus tractus solitarii (NTS) and the ventrolateral nuclei in the medulla) are involved in cardiovascular regulation. Increasing concentrations of norepinephrine, epinephrine, and their cogeners in the NTS greatly reduce blood pressure and heart rate in the rat by binding to α2-adrenoreceptors as disclosed by Goldberg et al., Clinical & Experimental Hypertension—Part A Theory & Practice (1982), and Tung et al., J Pharm Exp Ther (1983).
Agents which stimulate central α2-adrenoreceptors (e.g., cloridine and α-methyldopa) and thus mimic increased central norepinephrine concentrations in sensitive areas are widely used to reduce central sympathetic outflow. The prominent side effects of such agents include fatigue, a common complaint of patients with OI. Acute pharmacological blockade of NET causes a decrease in sympathetic outflow, as described by Esler et al., American Journal of Physiology (1991), presumably by increasing norepinephrine concentration in central synapses. Similarly, with NET deficiency, one would expect a decrease in the indices of sympathetic tone. Yet, in the proband and in many patients with OI, central sympathetic tone seems to be increased. Thus, chronic NET impairment, or perhaps compensatory (e.g., baroreflex) responses to it, is contemplated to further complicate phenotype. Peripheral and central impairment of NET could disrupt the fine control of autonomic balance. A limited capacity to clear synaptic norepinephrine might prolong the duration and increase the intensity of adrenoreceptor stimulation resulting from sympathetic nerve electrical activation. The supranormal and prolonged synaptic norepinephrine concentrations interacting with baroreflex-mediated withdrawal of sympathetic nerve traffic could coarsen blood pressure and heart rate patterns. This coarsening of sympathetic modulation could result in a spontaneous cycle of variability in heart rate and, to a lesser extent, vascular tone. Volatility of heart rate in patients with OI has not been reported, see Coghlan et al., Am J Med (1979), and was evident in the proband (FIG. 1 ).
While family members having the A457P mutation had physiological and biochemical similarity to the affected twins and other patients with OI, not all of them manifested the full-blown syndrome. This is contemplated to be attributable to the hemizygous nature of the A457P mutation and preliminary understanding of complex regulatory control over NET mRNA and protein expression. See Apparsundaram et al., J Pharm Exp Ther (1998) and Cubells et al., J Neurochem (1995).
The disclosure of the present invention, as indicated in the Examples, facilities the discovery of other NET mutations, non-genetic NET defects, and other noradrenergic defects affecting NET function in patients with OI. Among these are autoantibodies to NET or membrane structures essential to NET function. The importance of such a role for autoantibodies is underscored by the preponderance of OI in females in whom autoimmune illnesses are more common, but by the fact that approximately 50% of patients report an antecedent viral illness which could trigger an autoimmune response. See Low et al., Neurology (1995). Regardless, the identification of defective norepinephrine transport in patients with OI shifts attention toward a heretofore unexplored mechanism of a very common clinical problem.
| TABLE 3 |
| Orthostatic Blood Pressure, Heart Rate, and Plasma |
| Catecholamines Systolic blood pressure (sbp), |
| diastolic blood pressure (dbp) and heart rate (hr) |
| were determined on multiple occasions in the proband |
| and twin and on one occasion in each of eight normal |
| volunteers. Norepinephrine (NE), epinephrine (Epi) |
| and dihydroxyphenylglycol (DPHG) were determined |
| once each in the proband and twin and once in each |
| of the eight normal volunteers. Data are presented |
| as mean ± SEM. |
| proband | twin | normals | |||
| Supine and Upright Blood Pressure and Heart Rate |
| supine | sbp | (mmHg) | 107 ± 2 | 122 ± 6 | 108 ± 2 |
| dpb | (mmHg) | 61 ± 1 | 65 ± 4 | 63 ± 2 | |
| hr | (bpm) | 75 ± 2 | 72 ± 3 | 65 ± 2 | |
| upright | sbp | (mmHg) | 109 ± 3 | 127 ± 5 | 106 ± 3 |
| dpb | (mmHg) | 68 ± 2 | 77 ± 3 | 67 ± 3 | |
| hr | (bpm) | 105 ± 3 | 108 ± 6 | 83 ± 4 |
| Supine and Upright Plasma Catecholamines |
| supine | NE | (pg/ml) | 269 | 199 | 200 ± 20 |
| Epi | (pg/ml) | 11 | 22 | 25 ± 3 | |
| DHPG | (pg/ml) | 824 | 480 | 1104 ± 115 | |
| DHPG/NE | 3.06 | 2.41 | 5.52 | ||
| upright | NE | (pg/ml) | 923 | 911 | 485 ± 50 |
| Epi | (pg/ml) | 23 | 116 | 49 ± 4 | |
| DHPG | (pg/ml) | 968 | 1068 | 1379 ± 133 | |
| DHPG/NE | 1.05 | 1.17 | 2.84 | ||
| TABLE 4 |
| Urinary Catecholmines and Catecholamine Metabolites |
| Norepinephrine (NE), Epinephrine (Epi), noremetanephrine |
| (NMN), and metanephrine (MN) in the proband and twin. |
| proband | twin | normal values | ||||
| NE | (μg/24 hrs) | 435 | 125 | 0–90 | ||
| Epi | (μg/24 hrs) | 22 | 53 | 0–25 | ||
| NMN | (μg/24 hrs) | 166 | 236 | 50–500 | ||
| MN | (μg/24 hrs) | 122 | 179 | 50–400 | ||
The references listed below as well as all references cited in the specification are incorporated herein by reference to the extent that they supplement, explain, provide a background for or teach methodology, techniques and/or compositions employed herein.
- Adelman et al., DNA 2:183 (1983).
- Adler-Graschinsky et al., Br J Pharm 53:43–50 (1975).
- Amante et al., J. Immunol Meth., 1:289 (1972)
- Apparsundaram et al., J Pharm Exp Ther 287:744–751 (1998).
- Apparsundaram et al., J Pharm Exp Ther 287:733–743 (1998).
- Bachmann et al., New England Journal of Medicine 304:543 (1981).
- Beaucage et al., Tetrahedron Letters 22:1859–1862 (1981).
- Blakely et al., J Exp Biol 196:263–281 (1994).
- Blakeslee et al., J. Immunol. Meth. 13:320 (1977)
- Boudoulas et al., Circulation 61:1200–1205 (1980).
- Bruss et al., Human Genetics 91:278–280 (1993).
- Carlsson et al. (1978) Biochem. J. 173:723
- Coghlan et al., Am J Med 67:236–244 (1979).
- Crea et al., Proc. Natl. Acad. Sci. USA 75:5765 (1978).
- Cubells et al., J Neurochem 65:502–509 (1995).
- Davies et al., J Clin Endocrinol Metab 72:867–875 (1991).
- Davies et al., Am J Med 82:193–201 (1987).
- Davis et al., Circ Res 61:187–190 (1987).
- de Groot, C. J., et al., Biochemical & Biophysical Research Communications 124:882–888 (1984).
- Demanet, J. C., Cardiology 61 suppl 1:213–224 (1976).
- DeStefano et al., American Journal of Human Genetics 63:1425–1430 (1998).
- Eichenlaub et al., J. Bacteriol. 138:559–566 (1979).
- Esler et al., Physicol Rev 70:963–985 (1990).
- Esler et al., American Journal of Physiology 260:R817–R823 (1991).
- Fouad et al., Ann Int Med 104:298–303 (1986)
- Fraser et al., Br Med J 2:27–32 (1981).
- Furlan et al., Circulation 98:2154–2159 (1998).
- Gaffney et al., Chest 83:436–438 (1983).
- Giros et al., J Biol Chem 269:15985–15988 (1994).
- Goldberg et al., Clinical & Experimental Hypertension—Part A, Theory & Practice 4:595–604 (1982).
- Goldstein et al., Circulation 78:41–48 (1988).
- Goldstein et al., J Clin Invest 81:213–220 (1988).
- Gribskov et al., Nucl. Acids. Res. 14:6745 (1986).
- Halushka et al. (1999) Nature Genetics 22:239–247.
- Harlow et al., 1988, Antibodies: a Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Horisberger et al., Histochem. 82:219 (1985).
- Howell et al., Antibodies A Laboratory Manual Cold Spring Harbor Laboratory, (1988).
- Ishikawa et al. (1978) Scand. J. Immunol. 8:43
- Jacob et al., Circulation 96:575–580 (1997).
- Jacob et al., Am J Med 103:128–133 (1997).
- Jacob et al., Circulation 99:1706–1712 (1999).
- Jordan et al., Chin J. Physiol 40:1–8 (1997).
- Jordan et al., Am J. Med. Sci. (1999).
- Kyte & Doolittle, J. Mol. Biol. 157:105–132 (1982).
- Low et al., Neurology 45:S19–S25 (1995).
- Maniatis et. al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, N.Y., p 280–281 (1982).
- McKinney et al. (1966) Anal Biochem. 14:421
- Messing et al., Third Cleveland Symposium on Macro Molecular and Recombinant DNA Ed. Walton, A., (Elsevier, Amsterdam) (1981).
- Mosqueda-Garcia, R., Disorders of the Autonomic Nervous System 25–59 (1995).
- Needleman et al., J. Mol. Biol. 48:443 (1970).
- Novak et al., Stroke 29:1876–1881 (1998).
- Novak et al., J Aut N Syst 61:313–320 (1996).
- Novi, A. M., Anatomical Record 160:123–141 (1968).
- O'Sullivan et al. (1978) FEBS Letters 95:311
- Pasternac et al., Am J Med 73:783–790 (1982).
- PCR. A Practical Approach, ILR Press, Eds. McPherson, et al. (1992).
- Pörzgen et al., Biochimica et Biophysica Acta 1398:365–370 (1998).
- Puddu et al., Am Heart J 105:422–428 (1983).
- Riley et al., Clin Sci 80:633–639 (1991).
- Robinson et al., (1984) Infect. Immun. 46:361–366
- Rosen et al., Am J Med 72:847–850 (1982).
- Saiki et al., Bio/Technology 3:1008–1012 (1985).
- Sambrook et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Press, Cold Spring Harbor, N.Y.) (1989).
- Schmidt, R. D., Clin. Chim. Acta. 74:39–42 (1977).
- Schondorf et al., Neurology 43:132–137 (1993).
- Schondorf et al., Am J Med Sc 317:117–123 (1999).
- Schwartz et al., eds., Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, pp. 357–358 (1979).
- Shannon et al., Hypertension 101–107 (1998).
- Shannon et al., Circulation 98:1–336 (1998).
- Shoup et al., Clin Chem 23:1268–1274 (1977).
- Smith et al., Adv. Appl. Math. 2:482 (1981).
- Stober et al., American Journal of Medical Genetics 67:523–532 (1996).
- Streeten et al., J Lab Clin Med 111:326–335 (1988).
- Streeten, D. H., J Clin Invest 86:1582–1588 (1990).
- Streeten, D. H., Orthostatic Disorders of the Circulation: Mechanisms, Manifestations, and Treatment 111–125 (1987).
- Tung et al., J Pharm Exp Ther 227:484–490 (1983).
- U.S. Pat. No. 5,286,634
- U.S. Pat. No. 5,399,346
- U.S. Pat. No. 4,196,265
- U.S. Pat. No. 4,458,066
- U.S. Pat. No. 4,554,101
- U.S. Pat. No. 4,683,195
- U.S. Pat. No. 4,683,202
- U.S. Pat. No. 4,736,866
- U.S. Pat. No. 4,769,331
- U.S. Pat. No. 4,965,188
- U.S. Pat. No. 5,162,215
- U.S. Pat. No. 5,279,833;
- U.S. Pat. No. 5,625,125
- U.S. Pat. No. 5,641,484
- U.S. Pat. No. 5,489,742
- U.S. Pat. No. 5,550,316
- U.S. Pat. No. 5,573,933
- U.S. Pat. No. 5,614,396
- U.S. Pat. No. 5,741,957
- U.S. Pat. No. 5,643,567
- U.S. Pat. No. 5,646,008
- U.S. Pat. No. 5,648,061
- U.S. Pat. No. 5,651,964
- Walsh et al., J Clin Psychopharmacol 12:163–168 (1992).
- Wooley, C. F., Circulation 53:749–751 (1976).
It will be understood that various details of the invention can be changed without departing from the scope of the invention. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation—the invention being defined by the claims.
Claims (14)
1. A method of screening for susceptibility to sub-optimal norepinephrine (NE) transport resulting in decreased NE clearance in a subject, the method comprising:
(a) obtaining a biological sample from the subject, wherein the biological sample comprises a nucleic acid sample; and
(b) detecting a polymorphism of a NE transporter gene in the biological sample from the subject, wherein the polymorphism of the NE transporter gene comprises a G to C transversion within NE transporter exon 9 (nucleotides 129–257 of SEQ ID NO: 15), the presence of the polymorphism indicating the susceptibility of the subject to sub-optimal norepinephrine transport resulting in decreased NE clearance.
2. A method of screening for susceptibility to sub-optimal norepinephrine (NE) transport resulting in decreased NE clearance in a subject, the method comprising:
(a) obtaining a biological sample from the subject, wherein the biological sample comprises a nucleic acid sample; and
(b) detecting a polymorphism of a NE transporter gene in the biological sample from the subject, wherein the polymorphism of the NE transporter gene comprises a G to C transversion within NE transporter exon 9 (nucleotides 129–257 of SEQ ID NO: 15) and encodes a NE transporter polypeptide having a proline moiety at amino acid 457 of SEQ ID NO: 1, the presence of the polymorphism indicating the susceptibility of the subject to sub-optimal norepinephrine transport resulting in decreased NE clearance.
3. The method of claim 2 , wherein the polymorphism is detected by amplifying a target nucleic acid in the nucleic acid sample from the subject using an amplification technique.
4. The method of claim 3 , wherein the polymorphism is detected by amplifying a target nucleic acid in the nucleic acid sample from the subject using an oligonucleotide pair, wherein a first oligonucleotide of the pair hybridizes to a first portion of the NE transporter gene, wherein the first portion includes the polymorphism of the NE transporter gene, and wherein the second of the oligonucleotide pair hybridizes to a second portion of the NE transporter gene that is adjacent to the first portion.
5. A method of screening for susceptibility to sub-optimal norepinephrine (NE) transport resulting in decreased NE clearance in a subject, the method comprising:
(a) obtaining a biological sample from the subject, wherein the biological sample comprises a nucleic acid sample; and
(b) detecting a polymorphism of a NE transporter gene encoding an amino acid change in the biological sample from the subject, wherein the polymorphism of the NE transporter gene is detected by amplifying a target nucleic acid in the nucleic acid sample from the subject using an oligonucleotide pair, wherein a first oligonucleotide of the pair hybridizes to a first portion of the NE transporter gene including exon 9 (nucleotides 129–257 of SEQ ID NO: 15) and the polymorphism of the NE transporter gene, and wherein the second oligonucleotide of the pair hybridizes to a second portion of the NE transporter gene that is adjacent to the first portion, the presence of the polymorphism indicating the susceptibility of the subject to sub-optimal norepinephrine transport resulting in decreased NE clearance.
6. The method of claim 4 , wherein the first and the second oligonucleotides each further comprise a detectable label, and wherein the label of the first oligonucleotide is distinguishable from the label of the second oligonucleotide.
7. The method of claim 6 , wherein said label of said first oligonucleotide is a radiolabel, and wherein said label of said second oligonucleotide is a biotin label.
8. The method of claim 1 or 2 , wherein the polymorphism is detected by sequencing a target nucleic acid in the nucleic acid sample from the subject.
9. The method of claim 8 , wherein the sequencing comprises dideoxy sequencing.
10. A method of screening for susceptibility to sub-optimal norepinephrine (NE) transport resulting in decreased NE clearance in a subject, the method comprising:
(a) obtaining a biological sample from the subject, wherein the biological sample comprises a nucleic acid sample; and
(b) detecting a polymorphism of a NE transporter gene in the biological sample from the subject, wherein the polymorphism of the NE transporter gene is detected by contacting a target nucleic acid in the nucleic acid sample from the subject with a reagent that detects the presence of the NE transporter polymorphism and detecting the reagent, wherein the reagent detects a G to C transversion within NE transporter exon 9 (nucleotides 129–257 of SEQ ID NO: 15), the presence of the polymorphism indicating the susceptibility of the subject to sub-optimal norepinephrine transport resulting in decreased NE clearance.
11. A method of screening for susceptibility to sub-optimal norepinephrine (NE) transport resulting in decreased NE clearance in a subject, the method comprising:
(a) obtaining a biological sample from the subject, wherein the biological sample comprises a nucleic acid sample; and
(b) detecting a polymorphism of a NE transporter gene in the biological sample from the subject, wherein the polymorphism of the NE transporter gene is detected by contacting a target nucleic acid in the nucleic acid sample from the subject with a reagent that detects the presence of the NE transporter polymorphism and detecting the reagent, wherein the reagent is an oligonucleotide primer as set forth in SEQ ID NO:9 or SEQ ID NO:10, the presence of the polymorphism indicating the susceptibility of the subject to sub-optimal norepinephrine transport resulting in decreased NE clearance.
12. The method of claim 1 , wherein the subject is a human subject.
13. The method of claim 2 , wherein the susceptibility of the subject to sub-optimal NE transport is further characterized as susceptibility to orthostatic intolerance.
14. The method of claim 2 , wherein the polymorphism results in a norepinephrine transporter comprising an amino acid sequence as set forth in SEQ ID NO: 4.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/750,609 US7094532B2 (en) | 1999-12-29 | 2000-12-28 | Genetic mutation underlying orthostatic intolerance and diagnostic and therapeutic methods relating thereto |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17368299P | 1999-12-29 | 1999-12-29 | |
| US17545600P | 2000-01-11 | 2000-01-11 | |
| US09/750,609 US7094532B2 (en) | 1999-12-29 | 2000-12-28 | Genetic mutation underlying orthostatic intolerance and diagnostic and therapeutic methods relating thereto |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20030170875A1 US20030170875A1 (en) | 2003-09-11 |
| US7094532B2 true US7094532B2 (en) | 2006-08-22 |
Family
ID=26869426
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/750,609 Expired - Fee Related US7094532B2 (en) | 1999-12-29 | 2000-12-28 | Genetic mutation underlying orthostatic intolerance and diagnostic and therapeutic methods relating thereto |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US7094532B2 (en) |
| AU (1) | AU2462101A (en) |
| WO (1) | WO2001048246A1 (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030100479A1 (en) * | 2001-08-21 | 2003-05-29 | Dow David J. | Gene polymorphisms and response to treatment |
| ATE420160T1 (en) | 2003-06-18 | 2009-01-15 | Genelux Corp | MODIFIED RECOMBINANT VACCINIA VIRUSES, USES THEREOF |
| WO2007095352A2 (en) * | 2006-02-15 | 2007-08-23 | The Mc Lean Hospital Corporation | Diagnosis and treatment of attentional disorders |
| US20090117034A1 (en) | 2007-06-15 | 2009-05-07 | Nanhai Chen | Microorganisms for imaging and/or treatment of tumors |
| WO2024249843A2 (en) * | 2023-05-31 | 2024-12-05 | Vanderbilt University | Guanfacine for fatigue disorders |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1992017568A1 (en) | 1991-03-28 | 1992-10-15 | Oregon Health Sciences University | A cDNA CLONE ENCODING A HUMAN NOREPINEPRHINE TRANSPORTER |
| US5580775A (en) | 1992-05-01 | 1996-12-03 | Emory University | High affinity, brain-specific nucleic acids encoding a L-proline transporter, and vectors, and host cells comprising the same |
| US5763183A (en) * | 1995-11-09 | 1998-06-09 | The United States Of America As Represented By The Department Of Health And Human Services | Allelic variation of the serotonin 5HT7 receptor |
| US6248526B1 (en) * | 1997-12-15 | 2001-06-19 | Aventis Behring, Gmbh | Labeled primer for use in and detection of target nucleic acids |
-
2000
- 2000-12-28 WO PCT/US2000/035491 patent/WO2001048246A1/en active Application Filing
- 2000-12-28 AU AU24621/01A patent/AU2462101A/en not_active Abandoned
- 2000-12-28 US US09/750,609 patent/US7094532B2/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1992017568A1 (en) | 1991-03-28 | 1992-10-15 | Oregon Health Sciences University | A cDNA CLONE ENCODING A HUMAN NOREPINEPRHINE TRANSPORTER |
| US5580775A (en) | 1992-05-01 | 1996-12-03 | Emory University | High affinity, brain-specific nucleic acids encoding a L-proline transporter, and vectors, and host cells comprising the same |
| US5763183A (en) * | 1995-11-09 | 1998-06-09 | The United States Of America As Represented By The Department Of Health And Human Services | Allelic variation of the serotonin 5HT7 receptor |
| US6248526B1 (en) * | 1997-12-15 | 2001-06-19 | Aventis Behring, Gmbh | Labeled primer for use in and detection of target nucleic acids |
Non-Patent Citations (27)
| Title |
|---|
| "Chronic Orthostatic Intolerance (COI) Nerve Abnormality," Causes Disabling Rapid Heart Rate, Dizziness, Dallas, Texas, (Nov. 17, 1998). |
| Anonymous, "Gene Characterization Kits," In: Stratagene Catalog, p. 39, (1988). |
| Austin et al., "Multiple System Atrophy: Clinical Presentation and Diagnosis," Tenn. Med., vol. 92 (No. 2), p. 55-57, (1999). (Abstract only). |
| Caswell, "Orthostatic Intolerance," NASA West Virginia Space Grant Consortium, (1997). |
| Choy et al., "Abnormalities of the QT Intercal in Primary Disorder of Autonomic Failure," Am. Heart J., vol. 136 (No. 4), p. 664-671, (1998). (Abstract only). |
| Flattem et al., "Identification of a Coding Mutation in the Norepinephrine Transporter Gene WHich Predisposes a Family to Orthostatic Intolerance," Am. J. Human Genet., vol. 65 (No. 4), p. A43, (1999). |
| Flattem et al.Identification of a coding mutation in the norepinephrine transporter gene which predisposes a family to orthosattic intolerance. Am. J Human Genetics, vol. 65, No. 4, p. A43, 1999. * |
| Furlan et al., "Chronic Orthostatic Intolerance: a Disorder with Doscordant Cardiac and Vascular Sympathetic Control," Circulation, vol. 98 (No. 20), p. 2154-2159, (Nov. 17, 1998). (Abstract only). |
| Gilman et al., "Consensus Statement on the Diagnosis of Multiple System Atrophy," J. Neurol. Sci., vol. 163 (No. 1), p. 94-98, (Feb. 1, 1999). (Abstract only). |
| Jacob et al. Abnormal norepinephrine clearance and adrenergic receptor sensitivity in idiopathic orthostatic intolerance. Circulation, vol.. 99, No. 13, pp. 1706-1712, 1999. * |
| Jacob et al., "Abnormal norepinephrine Clearance and Adrenergic Receptor Seneiticity in Idiopathic Orthostatic Intolerance," Circulation, vol. 99 (No. 13), p. 1706-1712, (Apr. 6, 1999), (Abstract only). |
| Jacob et al., "Effects of Standing on Cerebrovascular Resistance in patients with Idiopathic Orthostatic Intolerance," Am. J. Med., vol. 106 (No. 1), p. 59-64, (1999). (Abstract only). |
| Jonsson et al. Polymorphisms in the dopamine, serotinin and norepinephrine transporter genes and their relationships to monoamine metabolite concentrations in CSF of healthy volunteers. Pscychiatry Res., vol. 79, pp. 1-9, 1998. * |
| Jordan et al., "Contrasting Actions of Pressor Agents in Severe Autonomic Failure," Am. J. Med., vol. 105 (No. 2), p. 116-124, (1998), (Abstract only). |
| Jordan et al., "Contrasting Effects of Vasodilators on Blood Pressure and Sodium Balance in the Hypertension of Autonomic Failure," J. Am. Soc. Nephrol., vol. 10 (No. 1), p. 35-42, (1999). (Abstract only). |
| National Dysautonomia Research Foundation, "Orthostatic Intolerance Syndromes," (1997). |
| Owen et al., "Norepinephrine Transporter Gene Polymorphism is not Associated with Susceptibility to Major Depression," Psychiatry Research, vol. 87 (No. 1), p. 1-5, (1999). |
| Pacholczyk et al., "Expression Cloning of a Cocaine and Antidepressant-Sensitive Human Noradrenaline Transporter," Bio Nature, p. 350-353, (Mar. 28, 1991). |
| PCT International Search Report for PCT International Application No. PCT/US00/35491. |
| Porzgen et al., "Molecular Cloning and Organization of the Coding region of the Human Norepinephrine Transporter Gene," Biochem. Biophys. Res. Commun., vol. 215 (No. 3), p. 1145-1150, (Oct. 24, 1995). |
| Robertson et al., "Neurally Mediated Syncope: Pthophysiology and IMplications for Treatment," Am. J. Med. Sci., vol. 317 (No. 2), p. 102-109, (1999). (Abstract only). |
| Robertson, "Distribution and Observed Associations of Orthostatic Blood Pressure Changes in Elderly General Medicine Outpatients," Am. J. Med. Si., vol. 315 (No. 5), p. 287-295, (1998). (Abstract only). |
| Shannon et al., "Acute Effect of Ephedrine on 24-h Energy Balance," Clin. Sci. (Colch), vol. 96 (No. 5), p. 483-491, (1999). (Abstract only). |
| Shannon, "Functional Polymorphism of the Norepinephrine Transporter (NET) Presenting as Mitral Valve Prolapse and Orthostatic Intolerance," Circulation, vol. 110 (No. 18), p. I.195, (Nov. 2, 1999). |
| Stober et al. Systemic search for variation in the human norepinephrine transporter gene: Indentification of five naturally occurring missense mutations and study of association with major psychiatric disorders. Am J Med Genet., vol. 67, pp. 523-553 1996. * |
| Stöber et al., Systematic Search for Variation in the Human Norepinephrine Transporter Gene: Identification of Five Naturally Occurring Missense Mutations and Study of Association with Major Psychiatric Disorders, Am. J. of Medical Genetics (Neuropsychiatic Genetics) 67:523-532 (1996). |
| Wang et al., "Genetic Approaches to Studying Norepinephrine Function: Knockout of the Mouse Norepinephrine Transporter," Gene Biol. Psychiatry, p. 1124-1130, (1999). |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2001048246A1 (en) | 2001-07-05 |
| AU2462101A (en) | 2001-07-09 |
| US20030170875A1 (en) | 2003-09-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6458542B1 (en) | Method of screening for susceptibility to drug-induced cardiac arrhythmia | |
| CA2458207A1 (en) | Determination of a genetic predisposition for behavioural disorders | |
| US20120129184A1 (en) | Systemic carnitine deficiency gene and uses thereof | |
| US5877283A (en) | Polypeptide for obesity and type II diabetes mellitus | |
| US7094532B2 (en) | Genetic mutation underlying orthostatic intolerance and diagnostic and therapeutic methods relating thereto | |
| JP2001501445A (en) | Long QT syndrome gene encoding KVLQT1 and its association with minK | |
| US6551821B1 (en) | Brain cyclic nucleotide gated ion channel and uses thereof | |
| US20090269814A1 (en) | Method of Analyzing a BRCA2 Gene in a Human Subject | |
| US7968296B2 (en) | CACNB2 nucleic acid mutations as indicators of shorter than normal QT interval and ST segment elevation associated with sudden cardiac death | |
| US20020128215A1 (en) | Novel sequence variants of the human N-acetyltransferase -2 (NAT -2) gene and use thereof | |
| US7041475B2 (en) | Purified and isolated platelet calcium channel nucleic acids | |
| US7183075B2 (en) | Purified and isolated potassium-chloride cotransporter nucleic acids and polypeptides and therapeutic and screening methods using same | |
| US7355023B2 (en) | Isolated nucleic acids and polypeptides associated with glucose homeostasis disorders and method of detecting the same | |
| US20050119458A1 (en) | Novel human proton-gated channels | |
| US20030082550A1 (en) | Mutations of the cyclooxygenase-2 gene | |
| WO2002002586A1 (en) | Isolated nucleic acids and polypeptides associated with glucose homeostasis disorders and method of detecting the same | |
| WO2001019864A1 (en) | Polynucleotides encoding novel human angiotensin ii-1 receptor proteins and the method of preparation and its use | |
| CN101200720A (en) | Mitochondrial membrane potential reduction related polynucleotide and encoding polypeptide and application thereof | |
| CA2285690A1 (en) | Gene necessary for striatal function and uses thereof | |
| AU2007205753A1 (en) | Purified and isolated potassium-chloride cotransporter nucleic acids and polypeptides and therapeutic and screening methods using same | |
| CA2453655A1 (en) | Novel human proton-gated channels | |
| WO2001030821A1 (en) | A novel polypeptide-homo rna cyclase 41 and polynucleotide encoding said polypeptide | |
| WO2001029077A1 (en) | A novel polypeptide-human beta 2 microglobin regulatory factor 34 and the polynucleotide encoding said polypeptide | |
| WO2001072794A1 (en) | A novel polypeptide-helicase 16 and the polynucleotide encoding said polypeptide | |
| WO2002038604A1 (en) | A new polypeptide-cicliary rootlet protein 45.98 and the polynucleotide encoding it |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140822 |