US6930143B2 - Acrylic latex composition - Google Patents

Acrylic latex composition Download PDF

Info

Publication number
US6930143B2
US6930143B2 US10003838 US383801A US6930143B2 US 6930143 B2 US6930143 B2 US 6930143B2 US 10003838 US10003838 US 10003838 US 383801 A US383801 A US 383801A US 6930143 B2 US6930143 B2 US 6930143B2
Authority
US
Grant status
Grant
Patent type
Prior art keywords
weight
acrylic
emulsion
methacrylate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US10003838
Other versions
US20030083431A1 (en )
Inventor
Stephen H. Harris
Daniel B. Pourreau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lyondell Chemical Technology LP
Original Assignee
Lyondell Chemical Technology LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUSE OF INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof

Abstract

An acrylic emulsion is disclosed. The emulsion comprises from about 30% to about 90% by weight of water, about 10% to about 70% by weight of an acrylic polymer, about 0.2% to about 10% by weight of a emulsifying agent, and up to 20% by weight of an organic solvent. The acrylic polymer contains from about 20% to about 80% by weight of recurring units of t-butyl acrylate or methacrylate. Latex coatings formulated from the acrylic emulsion show significantly improved resistance to moisture and corrosion.

Description

FIELD OF THE INVENTION

The invention relates to an acrylic emulsion and latex coatings therefrom. In particular, the invention relates to an acrylic emulsion that contains an acrylic polymer from t-butyl acrylate or methacrylate.

BACKGROUND OF THE INVENTION

Acrylic emulsions are known. They have been widely used in interior and exterior architectural and industrial coatings. Acrylic emulsions are usually prepared by emulsion polymerization of one or more alkyl acrylates or methacrylates. Acrylic monomers that contain a polar group are often used to stabilize the emulsion. These monomers include acrylic and methacrylic acids, and hydroxyalkyl acrylates and methacrylates. Introducing acid or hydroxyl functional groups into acrylic emulsions also makes them crosslinkable to form thermosetting coatings.

Usually, a combination of high-Tg (glass transition temperature) and low-Tg alkyl acrylates or methacrylates is used. Examples of low-Tg monomers are n-butyl acrylate (Tg: −54° C.), n-butyl methacrylate (Tg: 20° C.), and 2-ethylhexyl methacrylate (Tg: −10° C.). Methyl methacrylate (Tg: 100° C.) is the most commonly used high-Tg acrylic monomer. High-Tg monomers increase the coatings' gloss and hardness, while low-Tg monomers impart toughness and flexibility.

Styrene is also often incorporated into acrylic emulsions as a high-Tg monomer (Tg: 99° C.). Styrene is inexpensive. However, styrene-containing acrylic emulsions are often sensitive to UV (ultraviolet) light, and thus they have limited uses in exterior coatings.

Acrylic emulsions have replaced solvent-based acrylics in many areas, such as automotive base coats and industrial maintenance coatings. They are more environmentally friendly because reduced amounts of VOCs (volatile organic compounds) are used. However, acrylic emulsions and coatings therefrom are sensitive to moisture, which causes the coating surface to be cloudy and the coated metal surface to rust. Thus, new acrylic emulsions and latex coatings less sensitive to moisture and corrosion are needed.

SUMMARY OF THE INVENTION

The invention is an acrylic emulsion. The emulsion comprises from about 30% to about 90% by weight of water, about 10% to about 70% by weight of an acrylic polymer, about 0.2% to about 10% by weight (based on polymer) of an emulsifying agent, and up to 20% by weight of an organic solvent. The acrylic polymer contains from about 20% to about 80% by weight of recurring units of t-butyl acrylate (TBA) or methacrylate (TBMA).

The invention also includes a process for making an acrylic emulsion. The process comprises charging a reactor with water, an emulsifying agent, an initiator, and a portion of a monomer mixture, polymerizing the reactor contents to form a seed emulsion, and then gradually adding the remaining monomer mixture into the seed emulsion. The monomer mixture contains from about 20% to about 80% by weight of TBA or TBMA.

The invention includes a latex coating formulated from the acrylic emulsion. The coating shows significantly improved resistance to moisture and corrosion.

DETAILED DESCRIPTION OF THE INVENTION

Acrylic emulsions of the invention comprise from about 30% to about 90% by weight of water. Water forms the continuous phase of the emulsion. Preferably, the water content is from about 40% to about 60% by weight.

The emulsion contains from about 10% to about 70% of an acrylic polymer. The acrylic polymer contains from about 20% to about 80% by weight of recurring units of t-butyl acrylate (TBA) or methacrylate (TBMA). Preferably, the content of the TBA or TBMA recurring units is from about 30% to about 70% by weight.

TBA and TBMA are high-Tg monomers. Poly(TBA) and poly(TBMA) have Tgs of 73° C. and 107° C., respectively, which are substantially higher than the Tgs of poly(n-butyl methacrylate) (Tg: 20° C.) and poly(n-butyl acrylate) (Tg: −54° C.). Very few high-Tg alkyl acrylates or methacrylates are available. Methyl methacrylate (Tg: 105° C.) is the most commonly used high-Tg monomer in acrylic emulsions. It is known that poly(TBMA) has lower solution viscosity than poly(MMA). Thus, it has been suggested to substitute TBMA for MMA in high-solids acrylic resins. See Technical Bulletin: “tert-Butyl Methacrylate—Acryester® TB, Mitsubishi Rayon.” We have surprisingly found that incorporating TBMA into acrylic emulsions can significantly enhance the resistance of latex coatings to moisture and corrosion.

The acrylic polymer contains from about 1% to about 20% by weight of recurring units of acrylic or methacrylic acid. Acid-functional monomers are used to stabilize the emulsion. However, if the acid content is too high, the acrylic emulsion and coatings therefrom are sensitive to moisture and corrosion. Preferably, the acid monomer content is from about 1% to about 15% by weight. More preferably, the acid content is from about 5% to about 10% by weight.

The acrylic polymer also contains up to 79% of recurring units of a third monomer. Preferably, the third monomer is selected from the group consisting of C1 to C10 alkyl acrylates and methacrylates, vinyl halides, vinyl ethers and esters, unsaturated nitriles, vinylidene halides, and the like, and mixtures thereof. Incorporating a third monomer can balance the cost and optimize the properties of the emulsion and latex coatings therefrom.

More preferably, the third monomer is a low-Tg, C1 to C10 alkyl acrylate or methacrylate (Tg below 25° C.). The combination of TBA or TBMA and a low-Tg acrylate or methacrylate balances the hardness and flexibility of the emulsion polymer and coatings therefrom. Examples of suitable low-Tg alkyl acrylates and methacrylates include n-butyl acrylate, n-butyl methacrylate, lauryl acrylate, lauryl methacrylate, tridecyl acrylate, tridecyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, and the like, and mixtures thereof.

One advantage of the invention is that no vinyl aromatic monomer, such as styrene, is needed in the acrylic polymer. The acrylic emulsion and latex coatings therefrom show excellent moisture resistance even without incorporating any vinyl aromatics. Therefore, the acrylic emulsion and latex coating therefrom should have not only improved moisture resistance but also improved UV resistance compared to conventional acrylic emulsions.

The acrylic emulsion contains from about 0.2% to about 10% by weight of an emulsifying agent. Suitable emulsifying agents include anionic and nonionic surfactants. Examples of non-ionic surfactants are sorbitan esters such as sorbitan monooleate, sorbitan monolaurate, polyvinyl alcohol, and poly(ethylene oxide). Examples of anionic surfactants are sodium and potassium stearates, laurates and palmitates, sodium lauryl sulfate, and sodium dodecylbenzene sulfonate. Anionic surfactants are preferably used in an amount within the range of about 0.2 to about 2% by weight, while nonionic surfactants are preferably used in an amount within the range of about 1% to about 10% by weight. Increasing the amount of surfactant increases particle number and decreases particle size. Preferably, surfactants are used in an amount effective to produce an emulsion having a particle size within the range of about 50 to about 250 nm.

Optionally, organic solvents are used in the emulsion. Organic solvents stabilize emulsions and function as coalescing agents in the latex coatings therefrom. Suitable organic solvents include ethers, esters, ketones, glycol ether esters, lactams, and the like, and mixtures thereof. Examples are methanol, ethanol, isopropyl alcohol, acetone, ethylene glycol methyl ether, and the like, and mixtures thereof. Organic solvents are used in an amount up to 20% by weight of the emulsion.

The acrylic emulsion of the invention can be prepared by emulsion polymerization. One process for preparing the latex involves charging a reactor with the amounts needed of water, surfactant, initiator, and a portion of monomer mixture, and heating the reactor contents to the desired polymerization temperature to form a “seed” emulsion. The remaining monomer mixture is then gradually added into the seed emulsion. Suitable monomers are discussed above. The process is advantageous in forming a uniform and stable emulsion. The gradual addition of monomer mixture makes it easier to control the reaction temperature.

Initiators suitable for emulsion polymerization are water-soluble initiators, such as potassium and sodium persulfates, and hydrogen peroxide. Partially water-soluble peroxides such as t-butyl hydroperoxide, and succinic acid peroxide, and azo compounds can also be used. A redox system, i.e., an initiator plus a reducing agent, is preferably used. An example of a redox system is persulfate with ferrous ion. Suitable reducing agents also include sodium bisulfite, sodium hydrosulfite, and sodium formaldehyde sulfoxylate. Redox systems are advantageous in yielding desirable initiation rates at a low temperature.

The polymerization is preferably performed at a temperature within the range of about −50° C. to about 100° C. More preferably the temperature is within the range of about 25° C. to about 90° C. When a redox initiator system is used, the temperature can be relatively low.

Alternatively, the emulsion of the invention is prepared by emulsifying a pre-prepared acrylic polymer in water in the presence of an emulsifying agent and an optional organic solvent. Suitable emulsifying agents and organic solvents are discussed above. The pre-prepared acrylic polymer has essentially the same composition as made in the emulsion polymerization. However, the pre-prepared acrylic polymer preferably has an acid number greater than about 2 mg KOH/g. More preferably, it has an acid number greater than about 5 mg KOH/g. Most preferably, it has an acid number greater than about 8 mg KOH/g. The emulsion is preferably prepared by slowly adding an acrylic polymer into water. The emulsifying process is performed preferably with high-speed mixing (2,000 to 5,000 revolutions per minute) and preferably at a temperature within the range of about 40° C. to about 70° C., more preferably 45° C. to 55° C.

When emulsifying a pre-prepared acrylic polymer, a neutralizing agent can be used. Useful neutralizing agents are preferably selected from alkali and alkaline earth metal hydroxides, ammonia, and organic amines. Tertiary amines are more preferred. Examples of neutralizing agents are sodium hydroxide, potassium hydroxide, magnesium hydroxide, triethylamine, trimethylamine, diethanolamine, triethanolamine, N,N-dimethylethanolamine, and the like, and mixtures thereof. Neutralizing agents are used in an amount sufficient to convert at least some of the acid groups to their salts.

Emulsion polymerization usually produces high molecular weight polymers (Mn usually greater than 10,000), which are suitable for formulating thermoplastic acrylic coatings. The emulsion can be applied directly onto a surface, and a coating film forms when water and optional solvents evaporate. Alternatively, the acrylic emulsion is mixed with pigments such as titanium dioxide, to form pigmented coatings. Organic solvents are optionally added to the coating formulation to accelerate water evaporation. Suitable organic solvents are discussed above. Organic solvents are usually used in an amount less than 20% by weight of the total coating formulation. Thermoplastic acrylic coatings are particularly useful for household paints.

Pre-prepared polymers can be made by any known methods, e.g., solution polymerization. The polymer is isolated from the solution before use. Emulsifying pre-prepared polymers usually involves with low molecular weight polymers (Mn usually less than 10,000). Crosslinkers are used in the formulation. A coating is applied to a surface. Film forms after water and solvent evaporate. Crosslinking occurs when the film is heated. Suitable crosslinkers include blocked polyisocyanates and melamine compounds. When a blocked polyisocyanate crosslinker is used, the product is an acrylic-urethane coating; when a melamine crosslinker is used, the product is an acrylic-melamine coating. Suitable melamine compounds for use in making coatings of the invention include commercial grade hexamethoxymethylmelamines, such as, for example, CYMEL 303, CYMEL 370 and CYMEL 325 crosslinkers (products of Cytec).

The following examples merely illustrate the invention. Those skilled in the art will recognize many variations that are within the spirit of the invention and scope of the claims.

EXAMPLE 1 Emulsion Prepared from t-Butyl Methacrylate Emulsion Preparation

Water (615 g), TBMA (90 g), 2-ethylhexyl acrylate (80 g), ammonium persulfate (1.24 g), dodecylbenzene sulfonate sodium salt (8.26 g), and sodium bicarbonate (2.10 g) are added to a one-liter reaction kettle. The reactor contents are purged with nitrogen and heated to 80° C. for one hour to form a seed emulsion. A mixture of ammonium persulfate (2.1 g), sodium bicarbonate (3.56 g), and water (60 g) is then added to the reactor. A mixture of TBMA (120 g), 2-ethylhexyl acrylate (77 g), butyl methacrylate (158 g), and acrylic acid (26.1 g) is gradually fed into the reactor over 4 hours with rapid mixing. After the addition is complete, an additional one gram of ammonium persulfate is added and the reaction continues for an additional hour to yield an emulsion. Ammonium hydroxide is added to the emulsion to a pH value 8-9. The emulsion is then filtered through a 75-micron screen to remove grit. The product has 45% solids and a particle size of 163 nm in diameter.

Coating Formulation

The above prepared emulsion (25 g), Texanol™ solvent (product of Texaco, 1.25 g, and water (3 g) are mixed. The solution is allowed to sit overnight to equilibrate. It is then applied onto Bonderite treated steel panels using a 5 mil Bird bar. The panels are allowed to dry for seven days. Cleveland Humidity testing, ASTM D2247, of the panels is then performed. After 24 hours of continuous humidity exposure, the coated panels show virtually no corrosion and the coating films lose no gloss.

COMPARATIVE EXAMPLE 2 Emulsion Prepared from Methyl Methacrylate

The procedure of Example 1 is repeated but MMA replaces TBMA. After 4 hours of continuous humidity exposure, the coated panels are corroded and the coating films lose gloss.

Claims (5)

1. A latex coating comprising
(a) from about 30% to about 90% by weight of water;
(b) from about 10% to about 70% by weight of an acrylic polymer that consists essentially of 20% to 80% by weight of recurring units of t-butyl acrylate or methacrylate, 1% to 20% by weight of recurring units of acrylic or methacrylic acid, and up to 79% of recurring units of a C1-C10 alkyl acrylate or methacrylate having a Tg lower than 25° C.;
(c) from about 0.2% to about 10% by weight of a emulsifying agent;
(d) up to 20% by weight of an organic solvent;
(e) up to 60% by weight of a pigment; and
(f) from 1 to 30% by weight of a crosslinker,
wherein the coating has improved moisture and corrosion resistance.
2. The latex coating of claim 1 wherein the acrylic polymer has an acid number greater than about 2 mg KOH/g.
3. The latex coating of claim 1 wherein the organic solvent is an alcohol.
4. The latex coating of claim 1 wherein the pigment is titanium dioxide.
5. The latex coating of the claim 1 wherein the crosslinker is a melamine compound or a blocked isocyanate.
US10003838 2001-11-01 2001-11-01 Acrylic latex composition Active 2023-08-02 US6930143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10003838 US6930143B2 (en) 2001-11-01 2001-11-01 Acrylic latex composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10003838 US6930143B2 (en) 2001-11-01 2001-11-01 Acrylic latex composition

Publications (2)

Publication Number Publication Date
US20030083431A1 true US20030083431A1 (en) 2003-05-01
US6930143B2 true US6930143B2 (en) 2005-08-16

Family

ID=21707826

Family Applications (1)

Application Number Title Priority Date Filing Date
US10003838 Active 2023-08-02 US6930143B2 (en) 2001-11-01 2001-11-01 Acrylic latex composition

Country Status (1)

Country Link
US (1) US6930143B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050020744A1 (en) * 2003-07-24 2005-01-27 Ivan Cabrera Coating composition and process for its preparation
US20050266057A1 (en) * 2004-05-28 2005-12-01 Kao Corporation Cosmetic preparation
US8465846B2 (en) 2003-04-02 2013-06-18 Valspar Sourcing, Inc. Aqueous dispersions and coatings
US8617663B2 (en) 2004-10-20 2013-12-31 Valspar Sourcing, Inc. Coating compositions for cans and methods of coating

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070237738A1 (en) * 2006-04-04 2007-10-11 The Sherwin-Williams Company Low Odor Latex Paint Capable of Reducing Interior Odors
ES2405546T3 (en) * 2007-09-04 2013-05-31 Basf Se Copolymers, aqueous formulations thereof and uses thereof
CN101161697B (en) 2007-09-30 2010-10-13 攀钢集团攀枝花钢铁研究院;四川大学 Method for preparing grafted nano titanium oxide functional particles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4468498A (en) * 1980-06-12 1984-08-28 Rohm And Haas Company Sequential heteropolymer dispersion and a particulate materal obtainable therefrom, useful in coating compositions as a thickening and/or opacifying agent
US4476217A (en) 1982-05-10 1984-10-09 Honeywell Inc. Sensitive positive electron beam resists
US4508812A (en) 1984-05-03 1985-04-02 Hughes Aircraft Company Method of applying poly(methacrylic anhydride resist to a semiconductor
US5194510A (en) 1990-05-21 1993-03-16 Shell Oil Company Thermoplastic elastomers
US5212243A (en) 1991-06-06 1993-05-18 Nippon Paint Co., Ltd. A powder coating which is excellent in stain resistance
US5679735A (en) * 1994-12-24 1997-10-21 Hoechst Aktiengesellschaft Process for the preparation of synthetic resin dispersions
US5869590A (en) 1995-04-12 1999-02-09 Eastman Chemical Company Waterborne polymers having pendant allyl groups
US5928830A (en) * 1998-02-26 1999-07-27 Xerox Corporation Latex processes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5889590A (en) * 1997-03-28 1999-03-30 General Electric Company Optical cavity sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4468498A (en) * 1980-06-12 1984-08-28 Rohm And Haas Company Sequential heteropolymer dispersion and a particulate materal obtainable therefrom, useful in coating compositions as a thickening and/or opacifying agent
US4476217A (en) 1982-05-10 1984-10-09 Honeywell Inc. Sensitive positive electron beam resists
US4508812A (en) 1984-05-03 1985-04-02 Hughes Aircraft Company Method of applying poly(methacrylic anhydride resist to a semiconductor
US5194510A (en) 1990-05-21 1993-03-16 Shell Oil Company Thermoplastic elastomers
US5212243A (en) 1991-06-06 1993-05-18 Nippon Paint Co., Ltd. A powder coating which is excellent in stain resistance
US5679735A (en) * 1994-12-24 1997-10-21 Hoechst Aktiengesellschaft Process for the preparation of synthetic resin dispersions
US5869590A (en) 1995-04-12 1999-02-09 Eastman Chemical Company Waterborne polymers having pendant allyl groups
US5928830A (en) * 1998-02-26 1999-07-27 Xerox Corporation Latex processes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Technical Bulletin: "tert-Butyl Methacrylate Acryester(R) TB, Mitsubishi Rayon".

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911874B2 (en) 2003-04-02 2014-12-16 Valspar Sourcing, Inc. Aqueous dispersions and coatings
US8465846B2 (en) 2003-04-02 2013-06-18 Valspar Sourcing, Inc. Aqueous dispersions and coatings
US20050020744A1 (en) * 2003-07-24 2005-01-27 Ivan Cabrera Coating composition and process for its preparation
US20050266057A1 (en) * 2004-05-28 2005-12-01 Kao Corporation Cosmetic preparation
US8142768B2 (en) * 2004-05-28 2012-03-27 Kao Corporation Cosmetic preparation
US8617663B2 (en) 2004-10-20 2013-12-31 Valspar Sourcing, Inc. Coating compositions for cans and methods of coating
US8835012B2 (en) 2004-10-20 2014-09-16 Valspar Sourcing, Inc. Coating compositions for aluminum beverage cans and methods of coating same
US9415900B2 (en) 2004-10-20 2016-08-16 Valspar Sourcing, Inc. Coating compositions for aluminum beverage cans and methods of coating same
US9862854B2 (en) 2004-10-20 2018-01-09 Valspar Sourcing, Inc. Coating compositions for aluminum beverage cans and methods of coating same

Also Published As

Publication number Publication date Type
US20030083431A1 (en) 2003-05-01 application

Similar Documents

Publication Publication Date Title
US6306934B1 (en) Aqueous coating composition
US5824734A (en) Waterborne coating compositions
US4304701A (en) Aqueous acrylic polymer dispersions
US5010121A (en) Production of aqueous-based fluoropolymer compositions
US4820762A (en) Resin-fortified emulsion polymers and methods of preparing the same
US5498659A (en) Crosslinkable surface coatings
US4144212A (en) Air-curing copolymer latices
US5521266A (en) Method for forming polymers
US7049352B2 (en) Aqueous coating compositions
US4692491A (en) Polymer emulsion products
US4440897A (en) Process of making substantially external surfactant-free vinyl polymer emulsion products
US6008273A (en) Waterborne coating compositions for metal containers
US5962571A (en) Production of aqueous polymer compositions
US4794139A (en) Thixotropic thickening agent for aqueous systems
US4338379A (en) High-solids thermosetting enamel coating composition
US5464897A (en) Aqueous fluoropolymer dispersions
US5859112A (en) Production of aqueous polymer compositions
US5804632A (en) Production of polymer emulsions
US3919154A (en) Aqueous coating composition of acrylic polymer latex, acrylic polymer solution and aminoplast and method of making
US4151143A (en) Surfactant-free polymer emulsion coating composition and method for preparing same
US4916171A (en) Polymers comprising alkali-insoluble core/alkali-soluble shell and copositions thereof
US5731377A (en) Polymer blend
US5308890A (en) Emulsion polymer blend of a multi-stage latex and a non-film forming latex
US6258887B1 (en) Dirt pickup resistant coating binder and coatings
US5610225A (en) Latex paints which are free of volatile coalescents and freeze-thaw additives

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARCO CHEMICAL TECHNOLOGY LP, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HARRIS, STEPHEN H.;POURREAU, DANIEL B.;REEL/FRAME:012358/0136

Effective date: 20011101

AS Assignment

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., DELAWARE

Free format text: CHANGE OF NAME;ASSIGNOR:ARCO CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:016206/0001

Effective date: 20050622

AS Assignment

Owner name: JPMORGAN CHASE BANK N.A., AS ADMINISTRATIVE AGENT,

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:018260/0306

Effective date: 20060816

AS Assignment

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., DELAWARE

Free format text: RELEASE OF LYONDELL CHEMICAL TECHNOLOGY, L.P. PATENT SECURITY AGREEMENT;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:020679/0063

Effective date: 20071220

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P.,DELAWARE

Free format text: RELEASE OF LYONDELL CHEMICAL TECHNOLOGY, L.P. PATENT SECURITY AGREEMENT;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:020679/0063

Effective date: 20071220

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS AND PATENT APPLICATIONS;ASSIGNORS:BASELL POLYOLEFINE GMBH;ARCO CHEMICAL TECHNOLOGY L.P.;ARCO CHEMICAL TECHNOLOGY, INC.;AND OTHERS;REEL/FRAME:020704/0562

Effective date: 20071220

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT,NEW YORK

Free format text: GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS AND PATENT APPLICATIONS;ASSIGNORS:BASELL POLYOLEFINE GMBH;ARCO CHEMICAL TECHNOLOGY L.P.;ARCO CHEMICAL TECHNOLOGY, INC.;AND OTHERS;REEL/FRAME:020704/0562

Effective date: 20071220

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:BASELL POLYOLEFINE GMBH;ARCO CHEMICAL TECHNOLOGY L.P.;ARCO CHEMICAL TECHNOLOGY, INC.;AND OTHERS;REEL/FRAME:021354/0708

Effective date: 20071220

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:BASELL POLYOLEFINE GMBH;ARCO CHEMICAL TECHNOLOGY L.P.;ARCO CHEMICAL TECHNOLOGY, INC.;AND OTHERS;REEL/FRAME:021354/0708

Effective date: 20071220

FPAY Fee payment

Year of fee payment: 4

XAS Not any more in us assignment database

Free format text: SECURITY AGREEMENT;ASSIGNOR:CITIBANK, N.A., AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT;REEL/FRAME:022520/0782

AS Assignment

Owner name: CITIBANK, N.A., AS ADMINISTRATIVE AGENT AND COLLAT

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:022708/0830

Effective date: 20090303

AS Assignment

Owner name: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT, CONN

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:023449/0138

Effective date: 20090303

Owner name: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT,CONNE

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:023449/0138

Effective date: 20090303

AS Assignment

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P.,DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0705

Effective date: 20100430

Owner name: EQUISTAR CHEMICALS, LP,TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0705

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P.,DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0856

Effective date: 20100430

Owner name: EQUISTAR CHEMICALS, LP,TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0856

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, LP,DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0020

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, LP,DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT;REEL/FRAME:024337/0285

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, LP, DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0020

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, LP, DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT;REEL/FRAME:024337/0285

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0705

Effective date: 20100430

Owner name: EQUISTAR CHEMICALS, LP, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0705

Effective date: 20100430

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0856

Effective date: 20100430

Owner name: EQUISTAR CHEMICALS, LP, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:024337/0856

Effective date: 20100430

AS Assignment

Owner name: DEUTSCHE BANK TRUST COMPANY AMERICAS, AS COLLATERA

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:024342/0421

Effective date: 20100430

AS Assignment

Owner name: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT,CONNE

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:024342/0801

Effective date: 20100430

Owner name: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT, CONN

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:024342/0801

Effective date: 20100430

AS Assignment

Owner name: CITIBANK, N.A., AS ADMINISTRATIVE AGENT,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:024397/0818

Effective date: 20100430

Owner name: CITIBANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:024397/0818

Effective date: 20100430

AS Assignment

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATE

Free format text: SECURITY AGREEMENT;ASSIGNOR:LYONDELL CHEMICAL TECHNOLOGY, L.P.;REEL/FRAME:024402/0681

Effective date: 20100430

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:032125/0296

Effective date: 20131018

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK TRUST COMPANY AMERICAS;REEL/FRAME:032123/0799

Effective date: 20131017

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:032138/0134

Effective date: 20131016

Owner name: BANK OF AMERICA, N.A., TEXAS

Free format text: APPOINTMENT OF SUCCESSOR ADMINISTRATIVE AGENT;ASSIGNOR:UBS AG, STAMFORD BRANCH;REEL/FRAME:032137/0639

Effective date: 20110304

Owner name: LYONDELL CHEMICAL TECHNOLOGY, L.P., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION;REEL/FRAME:032137/0156

Effective date: 20131022

FPAY Fee payment

Year of fee payment: 12