US6858723B1 - Amphiphile cyclodextrins, preparation and use thereof for solubilizing organized systems and incorporating hydrophobic molecules - Google Patents
Amphiphile cyclodextrins, preparation and use thereof for solubilizing organized systems and incorporating hydrophobic molecules Download PDFInfo
- Publication number
- US6858723B1 US6858723B1 US09/926,413 US92641301A US6858723B1 US 6858723 B1 US6858723 B1 US 6858723B1 US 92641301 A US92641301 A US 92641301A US 6858723 B1 US6858723 B1 US 6858723B1
- Authority
- US
- United States
- Prior art keywords
- formula
- represent
- derivative according
- group
- cyclodextrin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000002209 hydrophobic effect Effects 0.000 title claims abstract description 22
- 229920000858 Cyclodextrin Polymers 0.000 title description 44
- 229940097362 cyclodextrins Drugs 0.000 title description 13
- 238000002360 preparation method Methods 0.000 title description 8
- OGQYPPBGSLZBEG-UHFFFAOYSA-N dimethyl(dioctadecyl)azanium Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC OGQYPPBGSLZBEG-UHFFFAOYSA-N 0.000 title 1
- 230000003381 solubilizing effect Effects 0.000 title 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical class O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 claims abstract description 80
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 12
- 125000003118 aryl group Chemical group 0.000 claims abstract description 11
- 150000003904 phospholipids Chemical class 0.000 claims abstract description 10
- 125000002345 steroid group Chemical group 0.000 claims abstract 3
- 229960004853 betadex Drugs 0.000 claims description 25
- 150000001875 compounds Chemical class 0.000 claims description 24
- 239000002105 nanoparticle Substances 0.000 claims description 24
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 claims description 21
- 239000000243 solution Substances 0.000 claims description 19
- 125000001424 substituent group Chemical group 0.000 claims description 18
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 14
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 claims description 12
- 239000007864 aqueous solution Substances 0.000 claims description 11
- 239000004094 surface-active agent Substances 0.000 claims description 9
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 8
- 229910021529 ammonia Inorganic materials 0.000 claims description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 150000008065 acid anhydrides Chemical class 0.000 claims description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 5
- IEYFRQLMJACEQY-UHFFFAOYSA-N 16-iodo-3-methylhexadecanoic acid Chemical compound OC(=O)CC(C)CCCCCCCCCCCCCI IEYFRQLMJACEQY-UHFFFAOYSA-N 0.000 claims description 4
- 238000003800 Staudinger reaction Methods 0.000 claims description 4
- 125000005843 halogen group Chemical group 0.000 claims description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 claims description 3
- PLXMOAALOJOTIY-FPTXNFDTSA-N Aesculin Natural products OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)[C@H]1Oc2cc3C=CC(=O)Oc3cc2O PLXMOAALOJOTIY-FPTXNFDTSA-N 0.000 claims description 3
- WNBCMONIPIJTSB-BGNCJLHMSA-N Cichoriin Natural products O([C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1)c1c(O)cc2c(OC(=O)C=C2)c1 WNBCMONIPIJTSB-BGNCJLHMSA-N 0.000 claims description 3
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 claims description 3
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 claims description 3
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 claims description 3
- 229960005091 chloramphenicol Drugs 0.000 claims description 3
- 229960001393 dosulepin Drugs 0.000 claims description 3
- XHCADAYNFIFUHF-TVKJYDDYSA-N esculin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC(C(=C1)O)=CC2=C1OC(=O)C=C2 XHCADAYNFIFUHF-TVKJYDDYSA-N 0.000 claims description 3
- 229940093496 esculin Drugs 0.000 claims description 3
- AWRMZKLXZLNBBK-UHFFFAOYSA-N esculin Natural products OC1OC(COc2cc3C=CC(=O)Oc3cc2O)C(O)C(O)C1O AWRMZKLXZLNBBK-UHFFFAOYSA-N 0.000 claims description 3
- PHTUQLWOUWZIMZ-GZTJUZNOSA-N trans-dothiepin Chemical compound C1SC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 PHTUQLWOUWZIMZ-GZTJUZNOSA-N 0.000 claims description 3
- 235000019155 vitamin A Nutrition 0.000 claims description 3
- 239000011719 vitamin A Substances 0.000 claims description 3
- 229940045997 vitamin a Drugs 0.000 claims description 3
- 108010052285 Membrane Proteins Proteins 0.000 claims description 2
- 102000018697 Membrane Proteins Human genes 0.000 claims description 2
- 238000006467 substitution reaction Methods 0.000 claims 9
- 150000001412 amines Chemical class 0.000 claims 3
- 150000008050 dialkyl sulfates Chemical class 0.000 claims 1
- 239000011440 grout Substances 0.000 claims 1
- 239000012736 aqueous medium Substances 0.000 abstract description 11
- 239000002537 cosmetic Substances 0.000 abstract description 4
- 238000001228 spectrum Methods 0.000 description 34
- 0 *[C@H]1CC(CNCOCC(=O)N[1*])OC(O[C@@H]2C(C[4*])OC(O)[C@@H](*)[C@H]2*)[C@H]1* Chemical compound *[C@H]1CC(CNCOCC(=O)N[1*])OC(O[C@@H]2C(C[4*])OC(O)[C@@H](*)[C@H]2*)[C@H]1* 0.000 description 25
- GZDFHIJNHHMENY-UHFFFAOYSA-N Dimethyl dicarbonate Chemical compound COC(=O)OC(=O)OC GZDFHIJNHHMENY-UHFFFAOYSA-N 0.000 description 16
- 238000009792 diffusion process Methods 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 238000010348 incorporation Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 6
- 150000003431 steroids Chemical class 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 239000012429 reaction media Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 239000001116 FEMA 4028 Substances 0.000 description 4
- KKHUSADXXDNRPW-UHFFFAOYSA-N O=C1CC(=O)O1 Chemical compound O=C1CC(=O)O1 KKHUSADXXDNRPW-UHFFFAOYSA-N 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 4
- 239000002872 contrast media Substances 0.000 description 4
- 238000002059 diagnostic imaging Methods 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 239000002691 unilamellar liposome Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 235000011175 beta-cyclodextrine Nutrition 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- YGPZWPHDULZYFR-VEIPTCAHSA-N (3r,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-amine Chemical compound C1C=C2C[C@H](N)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 YGPZWPHDULZYFR-VEIPTCAHSA-N 0.000 description 2
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 2
- JMTMSDXUXJISAY-UHFFFAOYSA-N 2H-benzotriazol-4-ol Chemical compound OC1=CC=CC2=C1N=NN2 JMTMSDXUXJISAY-UHFFFAOYSA-N 0.000 description 2
- IVRMZWNICZWHMI-UHFFFAOYSA-N Azide Chemical compound [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 241000714177 Murine leukemia virus Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000003385 bacteriostatic effect Effects 0.000 description 2
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 2
- 229910001863 barium hydroxide Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005100 correlation spectroscopy Methods 0.000 description 2
- -1 diazide cyclodextrin derivatives Chemical class 0.000 description 2
- WGLUMOCWFMKWIL-UHFFFAOYSA-N dichloromethane;methanol Chemical compound OC.ClCCl WGLUMOCWFMKWIL-UHFFFAOYSA-N 0.000 description 2
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 2
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 2
- 229960002702 piroxicam Drugs 0.000 description 2
- 125000003367 polycyclic group Chemical group 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 238000010898 silica gel chromatography Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910021653 sulphate ion Inorganic materials 0.000 description 2
- 235000015961 tonic Nutrition 0.000 description 2
- 230000001256 tonic effect Effects 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- CITHEXJVPOWHKC-UUWRZZSWSA-N 1,2-di-O-myristoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCC CITHEXJVPOWHKC-UUWRZZSWSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- HVYWMOMLDIMFJA-UHFFFAOYSA-N 3-cholesterol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)CCCC(C)C)C1(C)CC2 HVYWMOMLDIMFJA-UHFFFAOYSA-N 0.000 description 1
- 238000004679 31P NMR spectroscopy Methods 0.000 description 1
- PCLFEHAPITXKJL-UHFFFAOYSA-N 5,8-dihydroxy-2-[2-(4-methoxyphenyl)ethyl]chromen-4-one Chemical compound C1=CC(OC)=CC=C1CCC1=CC(=O)C2=C(O)C=CC(O)=C2O1 PCLFEHAPITXKJL-UHFFFAOYSA-N 0.000 description 1
- KIGRCOLRFFVKHG-QAYXBSCWSA-N CC(C)CCCC(C)[C@H]1CCC2C3CC=C4CC(C)CC[C@]4(C)C3CC[C@@]21C Chemical compound CC(C)CCCC(C)[C@H]1CCC2C3CC=C4CC(C)CC[C@]4(C)C3CC[C@@]21C KIGRCOLRFFVKHG-QAYXBSCWSA-N 0.000 description 1
- ZYBJUDDFAFXIHO-UHFFFAOYSA-N CCC(C)CCCNC Chemical compound CCC(C)CCCNC ZYBJUDDFAFXIHO-UHFFFAOYSA-N 0.000 description 1
- GPQVGNNFNBHPLE-TXALULMDSA-N CCC.CCCC(C)[C@H]1CCC2C3CC=C4CC(C)CC[C@]4(C)C3CC[C@@]21C Chemical compound CCC.CCCC(C)[C@H]1CCC2C3CC=C4CC(C)CC[C@]4(C)C3CC[C@@]21C GPQVGNNFNBHPLE-TXALULMDSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000000022 bacteriostatic agent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- YIUAXTFNXCKDOU-UHFFFAOYSA-N cholest-5-en-3beta-ol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(CCCC(C)C(C)C)C1(C)CC2 YIUAXTFNXCKDOU-UHFFFAOYSA-N 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- FHIVAFMUCKRCQO-UHFFFAOYSA-N diazinon Chemical class CCOP(=S)(OCC)OC1=CC(C)=NC(C(C)C)=N1 FHIVAFMUCKRCQO-UHFFFAOYSA-N 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- 229960003724 dimyristoylphosphatidylcholine Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000005313 fatty acid group Chemical group 0.000 description 1
- GDSRMADSINPKSL-HSEONFRVSA-N gamma-cyclodextrin Chemical class OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO GDSRMADSINPKSL-HSEONFRVSA-N 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- IDBFBDSKYCUNPW-UHFFFAOYSA-N lithium nitride Chemical compound [Li]N([Li])[Li] IDBFBDSKYCUNPW-UHFFFAOYSA-N 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002077 nanosphere Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005897 peptide coupling reaction Methods 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- 230000003578 releasing effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 229940035637 spectrum-4 Drugs 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 1
- 229960000716 tonics Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5161—Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6949—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
- A61K47/6951—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes using cyclodextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions ; Emulsion preconcentrates; Micelles
- A61K9/1075—Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
- A61K9/1271—Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/02—Nutrients, e.g. vitamins, minerals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/14—Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/0006—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
- C08B37/0009—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
- C08B37/0012—Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
Definitions
- the present invention relates to new cyclodextrin derivatives, that can particularly be used to incorporate in aqueous media hydrophobic chemical compounds such as pharmaceutically active molecules, molecules with cosmetic applications and molecules used as contrast agents for medical imaging.
- amphiphilic cyclodextrin derivatives showing self-organisation properties in aqueous media and liable to be incorporated in organised surfactant systems resulting in the formation of combined systems.
- Said incorporation in organised surfactant systems such as small phospholipid vesicles is intended to enable the transport of hydrophobic molecules included in the cyclodextrin, for example an active ingredient, particularly by the transmembrane route, for example the transdermal route.
- Cyclodextrins or cyclomaltooligosaccharides are natural compounds formed by the sequencing of 6, 7 or 8 glucose units bonded in ⁇ -1 ⁇ 4 mode. Numerous studies have shown that these compounds could form inclusion complexes with hydrophobic molecules, thus enabling their solubilisation in aqueous media. Numerous applications have been proposed to benefit from this phenomenon, particularly in the pharmaceutical field, as described by D. Duchêne, in “Pharmaceutical Applications of Cyclodextrins”, published in “Cyclodextrins and their industrial uses”, Editions de Santé, Paris 1987, pp. 213-257 [1].
- ⁇ -cyclodextrin (comprising 7 glucose units) is the most suitable in terms of the size of its cavity and is the least expensive of the three. Chemical modifications of ⁇ -cyclodextrin have been described to render it amphiphilic with a view to incorporating it in organised systems.
- ⁇ -cyclodextrin derivatives comprising aliphatic chains located in primary and secondary positions, with a view to incorporating said cyclodextrin derivatives in phosphatidylcholine vesicles.
- Said derivatives are amphiphilic and can be incorporated in the vesicles, but the internal cavity of the cyclodextrin is no longer accessible due to the significant sterio size of the aliphatic chains. Consquently, said derivatives are unable to include hydrophobic molecules, particularly active ingredient molecules.
- the present invention specifically relates to amphiphilic cyclodextrin derivatives, stable in physiological media, able to include hydrophobic compounds, having good incorporation abilities in organised systems and also showing self-organisation properties in aqueous media.
- amphiphilic cyclodextrin derivative complying with the formula:
- steroids are compounds derived from a polycyclic nucleus according to the formula:
- R 1 may represent a group derived from sterols by eliminating the hydroxyl group from the first cycle, with a degree of unsaturation of 0 to 6. It may also consist of groups derived from sterones. For example, R 1 may represent a group derived from cholesterol such as the group according to the formula:
- the amphiphilic properties are obtained due to the presence of one or two substituents comprising a group derived from a steroid.
- the derivative comprises two substituents of this type, it is necessary for them not be located on two adjacent glucose units of the cyclodextrin, due to their size.
- the two glucose units comprising said substituents are separated by one or two glucose units comprising an OR 2 substituent.
- the cyclodextrin derivative only comprises a single substituent of this type, with all the R 4 representing OR 2 .
- the R 2 group represents a linear or ramified alkyl or aryl group, substituted if applicable. If an alkyl group is used, said group generally has 1 to 4 carbon atoms and is preferentially linear.
- the aryl group may be, for example, the phenyl group or the benzyl group. Any substituents of said alkyl or aryl groups may be, for example, halogen atoms and hydroxyl, carboxyl and amine groups.
- R 2 represents the methyl group.
- R 3 may represent a hydrogen atom or an alkyl group identical or different to R 2 . Preferentially, R 3 represents H.
- the aliphatic chain linking the steroid-derived group to the glucose unit may comprise between the two amide groups, of 1 to 8 carbon atoms. Satisfactory results are obtained with two carbon atoms, i.e. where m is equal to 2.
- the cyclodextrin derivatives according to the invention may be ⁇ -, ⁇ - or ⁇ -CD derivatives.
- ⁇ -CD derivatives are used, which corresponds in formula I given above to the case were n is equal to 6.
- cyclodextrin derivatives according to the invention may be prepared using conventional methods from the corresponding mono-azide or diazide cyclodextrin derivatives.
- the monoazide or diazide derivatives used as the starting product in the method may be obtained from the corresponding monotosylate or ditosylate cyclodextrin derivative through the action of lithium nitride in water.
- step a of the method described above the cyclodextrin derivative according to formula IV is reacted with a dialkyl sulphate SO 4 R 2 2 in a mixture of organic solvents such as dimethylformamide DMF and dimethylsulphoxide DMSO in 50:50 proportions by volumes, in the presence of a base such as barium oxide and barium hydroxide, at 8° C.
- a dialkyl sulphate SO 4 R 2 2 2 in a mixture of organic solvents such as dimethylformamide DMF and dimethylsulphoxide DMSO in 50:50 proportions by volumes, in the presence of a base such as barium oxide and barium hydroxide, at 8° C.
- the derivative according to formula V obtained in this way may be separated using the methods described in detail in example 1.
- step b the derivative according to formula V is reacted with trichenylphosphine in an organic solvent such as DMS and 20% ammonia is then added.
- the derivative according to formula VI obtained in this way may be purified by evaporating the solvent, eliminating the white precipitate formed by filtration and then separating by ion exchange chromatography.
- step c the derivative according to formula VI is reacted with the acid anhydride according to formula VII desired in an organic solvent such as DMF.
- the derivative according to formula VIII obtained is not isolated and the next step d is carried out directly in the same reaction medium.
- Peptide coupling reagents such as N,N′-diisopropylcarbodiimide and hydroxybenzotriazole, are then added.
- the derivative according to formula VIII then reacts with the compound according to the formula H 2 N—R 1 such as cholest-5-en-3 ⁇ -ylamine.
- the derivative according to formula I obtained in this way may be separated from the reaction medium by evaporating the solvent and purifying by silica gel column chromatography.
- step a alkylation of all the OH groups is performed with an iodoalkane.
- step a alkylation of all the OH groups is performed with an iodoalkane.
- the invention also relates to the inclusion complexes of the cyclodextrin derivative according to formula I with a hydrophobic compound in an aqueous medium.
- the hydrophobic chemical compounds liable to be solubilised in aqueous media by means of said cyclodextrin derivatives I may be of different types. Examples of such compounds include cosmetic products, vitamins, pharmaceutically active molecules and molecules used as contrast agents for medical imaging, for example, the compounds described by Uekama and Irie in Chemical Review (1998), 98, pp. 2045-2076 [7].
- the hydrophobic chemical compound is a pharmaceutically active molecule.
- examples of such molecules include steroids, for example prednisolone, neurotropes such as dothiepin, bacteriostatics such as chloramphenicol, vitamins such as vitamin A, vascular wall tonics such as esculin, and contrast agents for medical imaging such as 16-iodo-3-methylhexadecanoic acid.
- Said inclusion complexes may be prepared using conventional methods, for example by adding to a solution or suspension of the formula I cyclodextrin used, a solution of hydrophobic compound in a suitable organic solvent, for example acetone.
- the formula I cyclodextrin derivatives are characterised in that they organise themselves spontaneously in aqueous media to give nanoparticles from 25 to 30 ⁇ of mean radius and perfectly spherical in shape.
- the mean number of monomers is 24 cyclodextrin derivative molecules per nanoparticle.
- the invention also relates to an aqueous solution of nanoparticles of a cyclodextrin derivative according to formula I alone or in the form of an inclusion complex with a hydrophobic compound.
- Said nanoparticle solution may be prepared by forming an aqueous solution of the cyclodextrin derivative or an inclusion complex of said derivative having a derivative or complex concentration greater than the critical micellar concentration of the derivative.
- amphiphilic cyclodextrins into nanoparticles in an aqueous medium makes it possible to transport a hydrophobic molecule, for example an active ingredient, particularly by the transmembrane or parenteral route.
- the cyclodextrin derivatives according to the invention are of particular interest since they can be incorporated into organised surfactant systems such as small phospholipid vesicles or micellae. Said incorporation is intended to enable the solubilisation of organised systems, with a view to transporting active ingredients included in the cyclodextrin derivative.
- the invention also relates to an organised surfactant system comprising a cyclodextrin derivative or an inclusion complex of said derivative according to the invention.
- the surfactants liable to form such organised systems may be of different types. Examples include the phospholipids complying with the following general formula:
- cyclodextrin derivative or an _inclusion complex of said derivative according to the invention in the organised surfactant system, it is possible to form small DMPC vesicles beforehand by sonication and then add in the aqueous solution the cyclodextrin derivative or the inclusion complex.
- the combined system obtained in this way then becomes perfectly soluble in water, resulting in a clear solution.
- the combined system obtained in this specific case is a combined micella of a mean radius of 60 ⁇ .
- the invention also relates to an aqueous solution comprising in solution a combined system formed from phospholipid or membrane protein vesicles, and at least one cyclodextrin derivative or at least one cyclodextrin derivative inclusion complex according to the invention.
- Such solutions are beneficial since they enable the transport of hydrophobic molecules, for example an active ingredient, by the transmembrane or parenteral route, for pharmaceutical or cosmetic applications.
- FIG. 1 illustrates the experimental neutron diffusion spectrum, on a logarithmic scale, of an aqueous solution of nanoparticles of the cyclodextrin derivative obtained in example 1 with three theoretical curves of spherical micellae, cylindrical micellae and double layers.
- FIG. 2 illustrates the appearance of different cyclodextrin and phospholipid mixtures.
- FIGS. 3 , 4 and 5 illustrate the 31 P nuclear magnetic resonance spectra obtained from sample a (FIG. 3 ), b ( FIG. 5 ) and d (FIG. 4 ), respectively, in example 3.
- FIG. 6 illustrates the experimental neutron diffusion spectrum, on a logarithmic scale, of a DMPC/cyclodextrin derivative mixture (sample d) obtained in example 3 with three theoretical curves of spherical micellae, cylindrical micellae and double layers.
- FIG. 7 illustrates the experimental neutron diffusion spectrum, on a logarithmic scale, of mixtures of 16-iodo-3-methylhexadecanoic acid and the cyclodextrin derivative in example 1 (1/1 and 0.1/1 mol) and the neutron diffusion, spectrum of the cyclodextrin derivative in example 1 alone with the theoretical diffusion curve of nanoparticles alone.
- This compound is the derivative according to formula I where R 1 represents the group according to formula III, R 2 is the methyl group, R 3 represents H, all the R 4 represent OCH 3 , m is equal to 2 and n is equal to 6.
- the residual solid is taken up with 100 ml of dichloromethane, and two more times with 50 ml of dichloromethane.
- the organic phases are pooled, washed 3 times with 20 ml of an aqueous solution saturated with sodium chloride, twice with 20 ml of m water, dried on magnesium sulphate and concentrated at reduced pressure.
- the product is precipitated by adding 100 ml of n-hexane, filtered, washed with 100 ml of n-hexane and dried in a vacuum.
- the mono-6-(cholest-5-en-3 ⁇ -ylamide)succinylamide-6-deoxy-2,2′,2′′,2′′′,2′′′′,2′′′′′,2′′′′′′,6′,6′′,6′′′, 6′′′′,6′′′′′,6′′′′′′-trideca-O-methyl-cyclomaltoheptaose nanoparticles are prepared simply by forming an aqueous solution of this cholesteryl-cyclodextrin at a concentration greater than its critical micellar concentration cmc.
- the cmc of the cyclodextrin in example 1 was determined with surface tension measurements. The value of the cmc is 9.10 ⁇ 6 mol/l.
- the mean hydrodynamic diameter of the nanoparticles was measured by quasi-elastic light diffusion.
- the mean diameter MD value calculated according to the Stokes-Einstein approximation based on the interaction-free perfect sphere model is 0.6 nm (60 ⁇ ).
- the static light diffusion analysis of aqueous solutions of nanoparticles at different concentrations (2.5.10 ⁇ 3 , 5.10 ⁇ 3 and 10 ⁇ 2 mol/l) gives a mean aggregate mass of 43,000 g/mol, which is equivalent to a mean of 24 monomers per nanoparticle.
- the perfectly spherical shape and the size of the nanoparticles were confirmed by neutron diffusion.
- the diffusion spectrum obtained from a 10 ⁇ 2 mol/l solution in D 2 O of the cyclodextrin derivative in example 1 is represented in FIG. 1 (spectrum 1).
- FIG. 1 the theoretical spectra simulating spheres (spectrum 2), cylinders (spectrum 3) or lamellae (spectrum 4) formed from the cyclodextrin derivative in example 1, at a concentration of 10 ⁇ 2 mol/l in D 2 O, are also shown.
- spectrum 2 simulating spheres with experimental spectrum 1 proves the spherical shape of the cholesteryl-cyclodextrin aggregates. These aggregates are lined on the surface with cyclodextrin cavities available for the inclusion of hydrophobic active molecules, the core being composed of cholesterol groups.
- the theoretical spectrum simulating spheres gives a mean diameter of 0.5 nm (50 ⁇ ) and a mean number of monomers per nanoparticle of 24.
- aqueous 15.10 ⁇ 3 mol/l DMPC solution is prepared either in the form of multilamellar large vesicles MLVs, or in the form of small unilamellar vesicles SUVs, by following the preparation protocols described for example in “Liposomes: a practical approach”, R.R.C. New Ed., IRL Press, Oxford University Press, 1990 [11].
- the cyclodextrin in example 1 is added such that the final cyclodextrin concentration in the aqueous cyclodextrin/DMPC mixture is 0.5.10 ⁇ 3 or 2.5.10 ⁇ 3 mol/l.
- FIG. 2 illustrates the appearance of the different mixtures after 12 hours at 25° C.
- Tube a contains an aqueous suspension of 15 mM DMPC unilamellar vesicles.
- Tubes c and d correspond to the following DMPC/cyclodextrin mixtures: 15.10 ⁇ 3 /0.5.10 ⁇ 3 and 15.10 ⁇ 3 /2.5.10 ⁇ 3 mol/l respectively.
- Tube b is a “control” tube corresponding to the 15.10 ⁇ 3 /2.5.10 ⁇ 3 mol/l DMPC/heptakis(2,6-di-O-methyl)cyclomaltoheptaose mixture, i.e. a mixture of DMPC with a cyclodextrin comprising no steroid substituent.
- FIG. 3 represents the spectrum corresponding to tube a (DPMC only).
- FIG. 4 represents the spectrum corresponding to tube d (DMPC/cyclodextrin mixture; 15.10 ⁇ 3 /2.5.10 ⁇ 3 mol/l).
- FIG. 5 represents the spectrum corresponding to tube b (DMPC/cyclodextrin mixture according to the prior art).
- tube c the quantity of cyclodextrin according to the invention is too low with reference to the quantity of DMPC to produce a transparent solution as in tube d. A two-phase mixture is obtained.
- the mean hydrodynamic diameter of the combined aggregates in sample d was measured by quasi-elastic light diffusion.
- the mean diameter MD value calculated according to the Stokes-Einstein approximation based on the interaction-free perfect sphere model is 13 nm (130 ⁇ ).
- FIG. 6 illustrates the diffusion spectrum obtained (spectrum 5).
- the theoretical spectra simulating spheres (spectrum 6), cylinders (spectrum 7) or lamellae (spectrum 8) formed from the cyclodextrin derivative in example 1, at a ratio of 15.10 ⁇ 3 /2.5.10 ⁇ 3 mol/l in D 2 O, are also shown.
- Superimposing spectrum 6 simulating spheres with experimental spectrum 5 proves the spherical shape of the combined aggregates of DMPC/cyclodextrin according to example 1. These combined spherical systems comprise on their surface cyclodextrin cavities available for the inclusion of hydrophobic active molecules.
- the theoretical spectrum simulating spheres gives a mean diameter of 10.8 nm (108 ⁇ ).
- FIG. 7 represents the neutron diffusion spectra obtained with:
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- Dispersion Chemistry (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Optics & Photonics (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Cardiology (AREA)
- Hematology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Psychiatry (AREA)
- Pain & Pain Management (AREA)
- Oncology (AREA)
- Nutrition Science (AREA)
- Diabetes (AREA)
- Vascular Medicine (AREA)
Abstract
The invention provides cyclodextrin derivatives that may be used to transport hydrophobic molecules for pharmaceutical or cosmetic applications, by forming organised systems in an aqueous medium, alone or with phospholipids. The cyclodextrin derivatives of the present invention have the formula:
in which, R1 represents a steroid, R2 represents an alkyl or aryl group, substituted if applicable, R3 represents H or R2, all the R4 represent OR2, or one of the R4 represents —NHCO(CH2)mCONHR1, m is an integer ranging from 1 to 8, and n is equal to 5, 6 or 7.
in which, R1 represents a steroid, R2 represents an alkyl or aryl group, substituted if applicable, R3 represents H or R2, all the R4 represent OR2, or one of the R4 represents —NHCO(CH2)mCONHR1, m is an integer ranging from 1 to 8, and n is equal to 5, 6 or 7.
Description
The present invention relates to new cyclodextrin derivatives, that can particularly be used to incorporate in aqueous media hydrophobic chemical compounds such as pharmaceutically active molecules, molecules with cosmetic applications and molecules used as contrast agents for medical imaging.
More specifically, it relates to amphiphilic cyclodextrin derivatives showing self-organisation properties in aqueous media and liable to be incorporated in organised surfactant systems resulting in the formation of combined systems.
Said incorporation in organised surfactant systems such as small phospholipid vesicles is intended to enable the transport of hydrophobic molecules included in the cyclodextrin, for example an active ingredient, particularly by the transmembrane route, for example the transdermal route.
Cyclodextrins or cyclomaltooligosaccharides are natural compounds formed by the sequencing of 6, 7 or 8 glucose units bonded in α-1→4 mode. Numerous studies have shown that these compounds could form inclusion complexes with hydrophobic molecules, thus enabling their solubilisation in aqueous media. Numerous applications have been proposed to benefit from this phenomenon, particularly in the pharmaceutical field, as described by D. Duchêne, in “Pharmaceutical Applications of Cyclodextrins”, published in “Cyclodextrins and their industrial uses”, Editions de Santé, Paris 1987, pp. 213-257 [1]. Pharmaceutical formulations using cyclodextrins have already been introduced onto the market in Japan, Italy and, more recently, in France, for example by Pierre Fabre Medicament for Brexin® which is an inclusion complex of Piroxicam in β-cyclodextrin.
Of the cyclodextrins that may be used, β-cyclodextrin (comprising 7 glucose units) is the most suitable in terms of the size of its cavity and is the least expensive of the three. Chemical modifications of β-cyclodextrin have been described to render it amphiphilic with a view to incorporating it in organised systems.
In this way, amphiphilic cyclodextrins comprising multiple chains on the primary face have been studied. A. Yabe et al described in “Thin Solid Films”, (1988), 160, pp. 33-41 [2], the derivative per(6-dodecylamino-6-deoxy)-β-cyclodextrin in order to form stable Langmuir-Blodget layers. Similarly, L. Julien et al described in J. Chem. Soc. Perkin Trans 2, 1993, pp. 1011-1022 [3], β-cyclodextrin derivatives comprising aliphatic chains located in primary and secondary positions, with a view to incorporating said cyclodextrin derivatives in phosphatidylcholine vesicles. Said derivatives are amphiphilic and can be incorporated in the vesicles, but the internal cavity of the cyclodextrin is no longer accessible due to the significant sterio size of the aliphatic chains. Consquently, said derivatives are unable to include hydrophobic molecules, particularly active ingredient molecules.
Recently, it was demonstrated by A. Gulik et al in Langmuir (1998), 14, pp. 1050-1057 [4], that so-called “skirted” cyclodextrins, comprising fatty acid chains grafted onto secondary hydroxyls could form stable nanospheres. These molecular super-assemblies appear to show very promising encapsulation and releasing properties due to the cumulative effects of the specificity of cyclodextrin size and transport, firstly, and nanoparticle organisation, secondly. However, it is necessary to note that the synthesis and particularly the purification of such cyclodextrins remain very difficult and require long purification steps resulting in low yields. It is clear that the supramolecular organisation properties are drastically linked with the chemical purity of the amphiphilic cyclodextrin derivatives.
J. Line et al described in FR-A-2 736 056 [5] and in J. Chem. Soc. Perkin Trans 2, (1998), pp. 2638-2646 [6], the synthesis of cyclodextrin derivatives referred to as “ball joints” comprising one or more aliphatic chains giving them amphiphilic properties, without inducing a self-inclusion phenomenon of the chain(s) in the cyclodextrin. For this reason, it is possible to obtain from such derivatives inclusion complexes containing a hydrophobic molecule and the incorporation of said complexes in phospholipid vesicles. However, these molecules have proved to be relatively unstable in physiological media, i.e. at pH values greater than or equal to 7, and their incorporation abilities in organised systems remain limited. In addition, said “ball joint” molecules do not organise themselves spontaneously in aqueous media to give particles of well-defined size and shape.
The present invention specifically relates to amphiphilic cyclodextrin derivatives, stable in physiological media, able to include hydrophobic compounds, having good incorporation abilities in organised systems and also showing self-organisation properties in aqueous media.
-
- wherein:
- R1 represents a group derived from a steroid,
- R2 represents an alkyl or aryl group, substituted if applicable,
- R3 represents H or R2,
- all the R4 represent OR2, or
- one of the R4 represents —NHCO(CH2)mCONHR1, and the other R4 represent OR2 provided that there is at least one glucose unit where R4 represents OR2 between the two glucose units comprising the substituent —NHCO—(CH2)m—CONH—R1,
- m is an integer ranging from 1 to 8, and
- n is equal to 5, 6 or 7.
- wherein:
-
- wherein R represents a linear or ramified hydrocarbon group of 1 to 9 carbon atoms and wherein the polycyclic nucleus may comprise one or more double bonds, and one or more substituents chosen from CH3, OH and O, on one or more carbon atoms of the cycles.
In the cyclodextrin derivative according to the invention, R1 may represent a group derived from sterols by eliminating the hydroxyl group from the first cycle, with a degree of unsaturation of 0 to 6. It may also consist of groups derived from sterones. For example, R1 may represent a group derived from cholesterol such as the group according to the formula:
In the derivative according to the invention, the amphiphilic properties are obtained due to the presence of one or two substituents comprising a group derived from a steroid.
If the derivative comprises two substituents of this type, it is necessary for them not be located on two adjacent glucose units of the cyclodextrin, due to their size.
In addition, the two glucose units comprising said substituents are separated by one or two glucose units comprising an OR2 substituent.
Preferentially, the cyclodextrin derivative only comprises a single substituent of this type, with all the R4 representing OR2.
In the cyclodextrin derivative according to the invention, the R2 group represents a linear or ramified alkyl or aryl group, substituted if applicable. If an alkyl group is used, said group generally has 1 to 4 carbon atoms and is preferentially linear. The aryl group may be, for example, the phenyl group or the benzyl group. Any substituents of said alkyl or aryl groups may be, for example, halogen atoms and hydroxyl, carboxyl and amine groups. Advantageously, R2 represents the methyl group.
R3 may represent a hydrogen atom or an alkyl group identical or different to R2. Preferentially, R3 represents H.
In formula I given above, the aliphatic chain linking the steroid-derived group to the glucose unit may comprise between the two amide groups, of 1 to 8 carbon atoms. Satisfactory results are obtained with two carbon atoms, i.e. where m is equal to 2.
The cyclodextrin derivatives according to the invention may be α-, β- or γ-CD derivatives. Preferentially, β-CD derivatives are used, which corresponds in formula I given above to the case were n is equal to 6.
The cyclodextrin derivatives according to the invention may be prepared using conventional methods from the corresponding mono-azide or diazide cyclodextrin derivatives.
If it is desired to prepare a derivative according to formula I as defined above where R3 represents a hydrogen atom, the method comprises the following steps:
-
- a) react a derivative according to the formula:
- wherein all the R5 represent OH, or one of the R5 represents —N3 and the other R5 represent OH, provided that there is at least one glucose unit where R5 represents OH between the two glucose units comprising the N3 substituent, and n is equal to 5, 6 or 7,
- with a dialkyl sulphate SO4R2 2 where R2 has the significance given above, in a basic medium to obtain the cyclodextrin derivative according to the formula:
- wherein all the R6 represent OR2, or one of the R6 represents N3 and the other R6 represent OR2, and R2 and n are as defined above,
- b) perform a Staudinger reaction on the derivative according to formula V using triphenylphosphine and ammonia to convert N3 into NH2 and obtain the derivative according to the formula;
- wherein all the R7 represent OR2, or one of the R7 represents NH2 and the other R7 represent OR2, and R2 and n are as defined above,
- c) react the derivative according to formula VI with an acid anhydride according to the formula:
- where m is as defined above, to obtain the derivative according to the formula:
- wherein all the R8 represent OR2, or one of the R8 represents —NHCO—(CH2)m—COOH and the other R8 represent OR2, and R2, m and n are as defined above, and
- d) react the derivative according to formula VIII with a compound according to the formula NH2—R1 to obtain the cyclodextrin derivative according to formula I defined above.
- a) react a derivative according to the formula:
The monoazide or diazide derivatives used as the starting product in the method may be obtained from the corresponding monotosylate or ditosylate cyclodextrin derivative through the action of lithium nitride in water.
In step a of the method described above, the cyclodextrin derivative according to formula IV is reacted with a dialkyl sulphate SO4R2 2 in a mixture of organic solvents such as dimethylformamide DMF and dimethylsulphoxide DMSO in 50:50 proportions by volumes, in the presence of a base such as barium oxide and barium hydroxide, at 8° C. The derivative according to formula V obtained in this way may be separated using the methods described in detail in example 1.
In step b, the derivative according to formula V is reacted with trichenylphosphine in an organic solvent such as DMS and 20% ammonia is then added. The derivative according to formula VI obtained in this way may be purified by evaporating the solvent, eliminating the white precipitate formed by filtration and then separating by ion exchange chromatography. In step c, the derivative according to formula VI is reacted with the acid anhydride according to formula VII desired in an organic solvent such as DMF. The derivative according to formula VIII obtained is not isolated and the next step d is carried out directly in the same reaction medium. Peptide coupling reagents, such as N,N′-diisopropylcarbodiimide and hydroxybenzotriazole, are then added. The derivative according to formula VIII then reacts with the compound according to the formula H2N—R1 such as cholest-5-en-3α-ylamine. The derivative according to formula I obtained in this way may be separated from the reaction medium by evaporating the solvent and purifying by silica gel column chromatography.
If it is necessary to prepare a derivative according formula I as defined above, where R3 represents R2, the method comprises the same steps as above, but in step a, alkylation of all the OH groups is performed with an iodoalkane. In this case, the following steps are carried out:
-
- a) react a derivative according to the formula:
- wherein all the R5 represent OH, or one of the R5 represents —N3 and the other R5 represent OH, provided that there is at least one glucose unit where R5 represents OH between the two glucose units comprising the N3 substituent, and n is equal to 5, 6 or 7,
- with an iodoalkane according to the formula IR2 wherein R2 has the significance given above, in the presence of NaH to obtain the cyclodextrin derivative according to the formula:
- wherein all the R6 represent OR2, or one of the R6 represents N3 and the other R6 represent OR2, and R2 and n are as defined above,
- b) perform a Staudinger reaction on the derivative according to formula IX using triphenylphosphine and ammonia to convert N3 into NH2 and obtain the derivative according to the formula:
- wherein all the R7 represent OR2, or one of the R7 represents NH2 and the other R7 represent OR2, and R2 and n are as defined above,
- c) react the derivative according to formula X with an acid anhydride according to the formula:
- where m is as defined above, to obtain the derivative according to the formula:
- wherein all the R7 represent OR2 or one of the R7 represents —NHCO—(CH2)m—COOH and the other R7 represent OR2, and R2, m and n are as defined above, and
- d) react the derivative according to formula XI with a compound according to the formula NH2—R1 to obtain the cyclodextrin derivative according to formula I defined above.
- a) react a derivative according to the formula:
The invention also relates to the inclusion complexes of the cyclodextrin derivative according to formula I with a hydrophobic compound in an aqueous medium. The hydrophobic chemical compounds liable to be solubilised in aqueous media by means of said cyclodextrin derivatives I may be of different types. Examples of such compounds include cosmetic products, vitamins, pharmaceutically active molecules and molecules used as contrast agents for medical imaging, for example, the compounds described by Uekama and Irie in Chemical Review (1998), 98, pp. 2045-2076 [7].
Preferentially in the invention, the hydrophobic chemical compound is a pharmaceutically active molecule. Examples of such molecules include steroids, for example prednisolone, neurotropes such as dothiepin, bacteriostatics such as chloramphenicol, vitamins such as vitamin A, vascular wall tonics such as esculin, and contrast agents for medical imaging such as 16-iodo-3-methylhexadecanoic acid.
Said inclusion complexes may be prepared using conventional methods, for example by adding to a solution or suspension of the formula I cyclodextrin used, a solution of hydrophobic compound in a suitable organic solvent, for example acetone.
The formula I cyclodextrin derivatives are characterised in that they organise themselves spontaneously in aqueous media to give nanoparticles from 25 to 30 Å of mean radius and perfectly spherical in shape. The mean number of monomers is 24 cyclodextrin derivative molecules per nanoparticle. In addition, the invention also relates to an aqueous solution of nanoparticles of a cyclodextrin derivative according to formula I alone or in the form of an inclusion complex with a hydrophobic compound.
Said nanoparticle solution may be prepared by forming an aqueous solution of the cyclodextrin derivative or an inclusion complex of said derivative having a derivative or complex concentration greater than the critical micellar concentration of the derivative.
The self-organisation of amphiphilic cyclodextrins into nanoparticles in an aqueous medium makes it possible to transport a hydrophobic molecule, for example an active ingredient, particularly by the transmembrane or parenteral route.
Moreover, the cyclodextrin derivatives according to the invention are of particular interest since they can be incorporated into organised surfactant systems such as small phospholipid vesicles or micellae. Said incorporation is intended to enable the solubilisation of organised systems, with a view to transporting active ingredients included in the cyclodextrin derivative.
In addition, the invention also relates to an organised surfactant system comprising a cyclodextrin derivative or an inclusion complex of said derivative according to the invention. The surfactants liable to form such organised systems may be of different types. Examples include the phospholipids complying with the following general formula:
-
- wherein R5 represents CH3—(CH2)p—CO where p is an integer ranging from 6 to 18. Said phospholipids are capable of forming small unilamellar vesicles. This particularly applies to dimyristoylphosphatidylcholine DMPC which complies with the above formula where p=12.
To incorporate the cyclodextrin derivative or an _inclusion complex of said derivative according to the invention in the organised surfactant system, it is possible to form small DMPC vesicles beforehand by sonication and then add in the aqueous solution the cyclodextrin derivative or the inclusion complex. The combined system obtained in this way then becomes perfectly soluble in water, resulting in a clear solution. The combined system obtained in this specific case is a combined micella of a mean radius of 60 Å.
In addition, the invention also relates to an aqueous solution comprising in solution a combined system formed from phospholipid or membrane protein vesicles, and at least one cyclodextrin derivative or at least one cyclodextrin derivative inclusion complex according to the invention.
Such solutions are beneficial since they enable the transport of hydrophobic molecules, for example an active ingredient, by the transmembrane or parenteral route, for pharmaceutical or cosmetic applications.
The invention's other characteristics and advantages will be seen more clearly upon reading the following examples, which are naturally illustrative and not exhaustive, with reference to the appended FIGS. 1 to 5.
This compound is the derivative according to formula I where R1 represents the group according to formula III, R2 is the methyl group, R3 represents H, all the R4 represent OCH3, m is equal to 2 and n is equal to 6.
a) Preparation of mono-6-azide-6-deoxy-2,2′,2″,2′″,2″″, 2′″″,2″″″,6,6′,6″,6′″,6″″, 6′″″,6″″″-trideca-O-methyl-cyclomaltoheptaose.
In a flask, 2 g (1.7 mmol) of mono-6-azide-6-deoxy-cyclomaltoheptaose (obtained for example according to the protocol described in Tetrahedron Lett. (1993), 34, pp. 2457-2460 [8] and J. Chem. Soc. Perkin Trans 2 (1995), pp. 723-730) [9]) is dissolved in 15 ml of anhydrous dimethylsulphoxide. This solution is supplemented with 15 ml of anhydrous dimethylformamide DMF. In a nitrogen atmosphere and under vigorous stirring, 3.8 g (˜12 mmol) of barium hydroxide octohydrate and 3.6 g (˜24 mmol) of barium oxide are then added. After homogenising the medium, 8 ml of dimethyl sulphate (˜84 mmol) is added, and the mixture is left under vigorous stirring, in a nitrogen atmosphere, for 30 hours at 8° C. The milky suspension is then supplemented with 5 ml of 20% ammonia and stirred for 3 hours at ambient temperature. The suspension is allowed to settle overnight in a refrigerator. After concentrating the supernatant at reduced pressure, the residual solid is taken up with 100 ml of dichloromethane, and two more times with 50 ml of dichloromethane. The organic phases are pooled, washed 3 times with 20 ml of an aqueous solution saturated with sodium chloride, twice with 20 ml of m water, dried on magnesium sulphate and concentrated at reduced pressure. The product is precipitated by adding 100 ml of n-hexane, filtered, washed with 100 ml of n-hexane and dried in a vacuum.
0.80 g (0.60 mmol) of mono-6-azide-6-deoxy-2,2′,2″,2′″,2″″,2′″″,2″″″,6′,6″,6′″, 6″″, 6′″″,6″″″-trideca-O-methyl-cyclomaltoheptaose, which is presented in the form of a white powder, is collected.
b) Preparation of mono-6-amino-6-deoxy-2,2′,2″,2′″,2″″,2′″″,2″″″,6′,6″,6′″, 6″″, 6′″″,6″″″-trideca-O-methyl-cyclomaltoheptaose.
0.75 g (0.56 mmol) of the compound obtained in a is dissolved in 30 ml of DMF. To this solution, 0.75 g (2.86 mmol) of triphenylphosphine in 5 ml of DMF is added drop by drop, under stirring at ambient temperature. The reaction medium is maintained at ambient temperature for 2 hours, cooled to 0° C. and treated with 14 ml of 20% ammonia. It is left for 18 hours at ambient temperature under stirring, and the solvent is then eliminated at reduced pressure and the residual solid is taken up with 30 ml of water. The insoluble excess of triphenylphosphine and the corresponding oxide is eliminated by filtration. The solution is concentrated in a vacuum and the product is purified by ion exchange resin column chromatography (Lewatit® SP 1080 resin in H+ form). 0.35 g (0.27 mmol) of mono-6-amino-6-deoxy-2,2′,2″,2′″,2″″,2′″″,2″″″, 6′,6″,6′″, 6″″,6′″″,6″″″-trideca-O-methyl-cyclomaltoheptaose, which is presented in the form of a white powder, is collected.
c) Preparation of mono-6-(cholest-5-en-3α-ylamide)succinylamide-6-deoxy-2,2′,2″,2′″,2″″, 2′″″,2″″″,6′,6″,6′″,6″″,6′″″,6″″″-trideca-O-methyl-cyclomaltoheptaose.
To a solution of 0.25 g (0.19 mmol) of the compound obtained in b in 6 ml of anhydrous DMF, 0.019 g (0.19 mmol) of succinic anhydride in 2 ml of anhydrous DMF is added in a nitrogen atmosphere under stirring. The reaction medium is maintained at ambient temperature for 5 hours, and then supplemented with 0.11 ml (0.76 mmol) of N,N′-diisopropylcarbodiimide and 0.028 g (0.19 mmol) of hydroxybenzotriazole in 2 ml of anhydrous DMF. After 30 minutes of stirring at ambient temperature, 0.089 g (0.23 mmol) of cholest-5-en-3α-ylamine (obtained in two steps from cholest-5-en-3β-ol according to the protocols described in Tetrahedron Lett. (1977), pp. 1977-1980 [10]) is added. The reaction medium is left under stirring at ambient temperature for 48 hours, hydrolysed by adding 0.30 ml of water and concentrated under reduced pressure. The residual solid is purified by silica gel column chromatography (60 Fluka silica gel; eluent: CH2Cl2—MeOH 95:5 followed by 9:1 (v/v)). 0.24 g of mono-6-(cholest-5-en-3α-ylamide)succinylamide-6-deoxy-2,2′,2″,2′″, 2″″,2′″″,2″″″,6′,6″,6′″,6″″,6′″″,6″″″-trideca-O-methyl-cyclomaltoheptaose is collected.
(71% final compound yield from mono-6-amino-6-deoxy-2,2′,2″,2′″,2″″,2′″″,2″″″,6′,6″,6′″, 6″″,6′″″, 6″″″-trideca-O-methyl-cyclomaltoheptaose).
The characteristics of this compound are as follows:
-
- Thin layer chromatography (Merck Silica Plates) Rf=0.50 in the 9:1 (v/v) CH2Cl2—MeOH mixture, detection with 10% H2SO4.
- Mass spectrometry: ESI-MS: m/z=1805.95 [M+Na]+ for C86H146 N2O36Na.
- NMR 1H (500 MHz, 25° C., 7 mM solution in CDCl3): attribution by COSY and relay COSY experiments: δ=6.49 (NH CD), 5.70 (NH Chol), 5.38 (H-6 Chol), 5.28-4.88 (H-1, OH-3 CD), 4.11 (H-3 Chol), 3.99-3.16 (H-2, H-3, H-4, H-5, H-6, H-6′, OCH3 CD), 2.60-2.48 (CH2 succ, H-4 Chol), 2.04-0.68 (H Chol).
The mono-6-(cholest-5-en-3α-ylamide)succinylamide-6-deoxy-2,2′,2″,2′″,2″″,2′″″,2″″″,6′,6″,6′″, 6″″,6′″″,6″″″-trideca-O-methyl-cyclomaltoheptaose nanoparticles are prepared simply by forming an aqueous solution of this cholesteryl-cyclodextrin at a concentration greater than its critical micellar concentration cmc.
The cmc of the cyclodextrin in example 1 was determined with surface tension measurements. The value of the cmc is 9.10−6 mol/l.
The mean hydrodynamic diameter of the nanoparticles was measured by quasi-elastic light diffusion. The mean diameter MD value calculated according to the Stokes-Einstein approximation based on the interaction-free perfect sphere model is 0.6 nm (60 Å). The static light diffusion analysis of aqueous solutions of nanoparticles at different concentrations (2.5.10−3, 5.10−3 and 10−2 mol/l) gives a mean aggregate mass of 43,000 g/mol, which is equivalent to a mean of 24 monomers per nanoparticle.
The perfectly spherical shape and the size of the nanoparticles were confirmed by neutron diffusion. The diffusion spectrum obtained from a 10−2 mol/l solution in D2O of the cyclodextrin derivative in example 1 is represented in FIG. 1 (spectrum 1).
In FIG. 1 , the theoretical spectra simulating spheres (spectrum 2), cylinders (spectrum 3) or lamellae (spectrum 4) formed from the cyclodextrin derivative in example 1, at a concentration of 10−2 mol/l in D2O, are also shown. Superimposing spectrum 2 simulating spheres with experimental spectrum 1 proves the spherical shape of the cholesteryl-cyclodextrin aggregates. These aggregates are lined on the surface with cyclodextrin cavities available for the inclusion of hydrophobic active molecules, the core being composed of cholesterol groups. The theoretical spectrum simulating spheres gives a mean diameter of 0.5 nm (50 Å) and a mean number of monomers per nanoparticle of 24.
An aqueous 15.10−3 mol/l DMPC solution is prepared either in the form of multilamellar large vesicles MLVs, or in the form of small unilamellar vesicles SUVs, by following the preparation protocols described for example in “Liposomes: a practical approach”, R.R.C. New Ed., IRL Press, Oxford University Press, 1990 [11]. To the DMPC MLV or SUV suspension, the cyclodextrin in example 1 is added such that the final cyclodextrin concentration in the aqueous cyclodextrin/DMPC mixture is 0.5.10−3 or 2.5.10−3 mol/l.
The different mixtures are examined by 31P NMR spectroscopy at 81 MHz.
The existence of small unilamellar DMPC vesicles in tube a is confirmed on the spectrum in FIG. 3 by the presence of two very thin peaks at around 0 ppm corresponding to the phosphors located inside and outside the vesicles.
The spectrum in FIG. 4 , which corresponds to sample d, which is perfectly transparent, is reduced to a single thin peak centred at 0 ppm, indicating the presence of smaller aggregates than the unilamellar vesicles in tube a. The spectrum corresponding to the “control” tube b indicates the formation of larger vesicles than the initial vesicles. There is no reorganisation of the medium with this cyclodextrin.
In tube c, the quantity of cyclodextrin according to the invention is too low with reference to the quantity of DMPC to produce a transparent solution as in tube d. A two-phase mixture is obtained.
The mean hydrodynamic diameter of the combined aggregates in sample d was measured by quasi-elastic light diffusion. The mean diameter MD value calculated according to the Stokes-Einstein approximation based on the interaction-free perfect sphere model is 13 nm (130 Å).
Sample d was then examined by neutron diffusion.
To an aqueous solution of mono-6-(cholest-5-en-3α-ylamide)succinylamide-6-deoxy-2,2′,2″,2′″,2″″,2′″″,2″″″,6′,6″,6′″, 6″″,6′″″,6″″″-trideca-O-methyl-cyclomaltoheptaose nanoparticles obtained as in example 2, the hydrophobic compound is simply added either directly, or in solution in a suitable organic solvent, for example acetone, which is allowed to evaporate slowly in air.
Various hydrophobic active molecules were tested and proved to be capable of forming inclusion complexes with the cyclodextrin in example 1. In this way, 16-iodo-3-methylhexadecanoic acid, a fatty acid used as a contrast agent for medical imaging, which had already been solubilised in cyclodextrins, as described in FR-A-2 726 765 [12], was solubilised in an aqueous medium by forming an inclusion complex.
-
- the solution of nanoparticles of cyclodextrin according to example 1 and the fatty acid (1:0.5 eq. mol) (spectrum 9);
- the solution of nanoparticles of cyclodextrin according to example 1 and the fatty acid (1:1 eg. mol) (spectrum 10); and
- the solution of nanoparticles of cyclodextrin alone (spectrum 11).
In this figure, the theoretical spectrum (spectrum 12) simulating spheres has also been represented.
In this figure, it can be seen that the incorporation of fatty acid molecules in the nanoparticles of the cyclodextrin according to example 1 results in marked modifications on the diffusion spectra. The intensity I(q) is increased. The Intensity I(q) is proportional to the volume of nanoparticles. The presence of additional molecules (fatty acid molecules) in the nanoparticles increases the value of the contrast and therefore the intensity.
The incorporation in mono-6-(cholest-5-en-3α-ylamide)succinylamide-6-deoxy-2,2′,2″,2′″,2″″,2′″″,2″″″,6′,6″,6′″, 6″″,6′″″,6″″″-trideca-O-methyl-cyclomaltoheptaose nanoparticles of the following hydrophobic compounds:
-
- dothiepin (neurotrope),
- chloramphenicol (bacteriostatic),
- vitamin A, and
- esculin (vascular wall tonic),
- were also detected by neutron diffusion.
References
[1]: D. Duchene “Pharmaceutical Applications of Cyclodextrins”, published in “Cyclodextrins and their industrial uses”, Editions de Santé, Paris 1987, pp. 213-257.
-
- [2]: A. Yabe et al, Thin Solid Films, (1988), 160, pp. 33-41.
- [3]: L. Julien et al, “J. Chem. Soc.
Perkin Trans 2”, 1993, pp. 1011-1022. - [4]: A. Gulik et al in Langmuir (1998), 14, pp. 1050-1057.
- [5]: FR-A-2 736 056.
[6]: J. Chem. Soc. Perkin Trans 2, (1998), pp. 2638-2646.
-
- [7]: Uekama and Irie in Chemical Review (1998), 98, pp. 2045-2076.
- [8]: Tetrahedron Lett. (1993), 34, pp. 2457-2460.
- [9]: J. Chem. Soc. Perkin Trans 2 (1995), pp. 723-730.
- [10]: Tetrahedron Lett. (1977), pp. 1977-1980.
- [11]: “Liposomes: a practical approach”, R.R.C. New Ed., IRL Press, Oxford University Press, 1990.
- [12]: FR-A-2 726 765.
Claims (18)
1. Amphiphilic cyclodextrin derivative complying with the formula:
wherein:
R1 represents a steroid,
R2 is selected from the group consisting of an alkyl group, an aryl group, an alkyl group having at least one substitution, and an aryl group having at least one substitution, wherein said substitution is a substituent group selected from the grout) consisting of a halogen atom, a hydroxyl, a carboxyl, and an amine,
R3 represents H or R2,
all the R4 represent OR2, or
one of the R4 represents —NHCO(CH2)mCONHR1, and the other R4 represent OR2 provided that there is at least one glucose unit where R4 represents OR2 between the two glucose units comprising the substituent —NHCO—(CH2)m—CONH—R1,
m is an integer ranging from 1 to 8, and
n is equal to 5, 6 or 7.
3. Cyclodextrin derivative according to claim 1 , wherein all the R4 represent OR2.
4. Cyclodextrin derivative according to claim 1 , wherein R2 represents a methyl group and R3 represents a hydrogen atom.
5. Cyclodextrin derivative according to claim 1 , wherein n is equal to 6.
6. Cyclodextrin derivative according to claim 1 , wherein m is equal to 2.
7. Cyclodextrin derivative according to claim 2 , wherein all the R4 represent OR2.
8. Cyclodextrin derivative according to claim 2 , wherein R2 represents a methyl group and R3 represents a hydrogen atom.
9. Cyclodextrin derivative according to claim 2 , wherein n is equal to 6.
10. Cyclodextrin derivative according to claim 2 , wherein m is equal to 2.
11. Mono-6-(cholest-5-en-3α-ylamide)succinylamide-6-deoxy-2,2′,2″,2′″,2″″,2′″″,2″″″,6′,6″,6′″, 6″″,6′″″,6″″″-trideca-O-methyl-cyclomaltoheptaose.
12. Method to prepare a cyclodextrin derivative according to the formula:
wherein:
R1 represents a steroid,
R2 is selected from the group consisting of an alkyl group, an aryl group, an alkyl group having at least one substitution, and an aryl group having at least one substitution, wherein said substitution is a substituent group selected from the group consisting of a halogen atom, a hydroxyl, a carboxyl, and an amine,
R3 represents H,
all the R4 represent OR2, or
one of the R4 represents —NHCO(CH2)mCONHR1, and the other R4 represent OR2 provided that there is at least one glucose unit where R4 represents OR2 between the two glucose units comprising the substituent —NHCO—(CH2)m—CONH—R1,
m is an integer ranging from 1 to 8, and
n is equal to 5, 6 or 7,
which comprises the following steps:
wherein all the R5 represent OH, or one of the R5 represents —N3 and the other R5 represent OH, provided that there is at least one glucose unit where R5 represents OH between the two glucose units comprising the N3 substituent, and n is equal to 5, 6 or 7,
with a dialkyl sulfate SO4R2 2 where R2 has the significance given above, in a basic medium to obtain the cyclodextrin derivative according to the formula:
wherein all the R6 represent OR2, or one of the R6 represents N3 and the other R6 represent OR2, and R2 and n are as defined above,
b) perform a Staudinger reaction on the derivative according to formula (V) using triphenylphosphine and ammonia to convert N3 into NH2 and obtain the derivative according to the formula:
wherein all the R7 represent OR2, or one of the R7 represents NH2 and the other R7 represent OR2, and R2 and n are as defined above,
wherein all the R8 represent OR2, or one of the R8 represents —NHCO—(CH2)m—COOH and the other R8 represent OR2, and R2, m and n are as defined above, and
d) react the derivative according to formula (VIII) with a compound according to the formula NH2—R1 to obtain the cyclodextrin derivative according to formula (I) defined above.
13. Method to prepare a cyclodextrin derivative according to the following formula:
wherein:
R2 is selected from the group consisting of an alkyl group, an aryl group an alkyl group having at least one substitution, and an aryl group having at least one substitution, wherein said substitution is a substituent group selected from the group consisting of a halogen atom, a hydroxyl, a carboxyl, and an amine,
R3 represents R2,
all the R4 represent OR2, or
one of the R4 represents —NHCO(CH2)mCONHR1, and the other R4 represent OR2 provided that there is at least one glucose unit where R4 represents OR2 between the two glucose units comprising the substituent —NHCO—(CH2)m—CONH—R1,
m is an integer ranging from 1 to 8, and
n is equal to 5, 6 or 7,
which comprises the following steps:
wherein all the R5 represent OH, or one of the R5 represents —N3 and the other R5 represent OH, provided that there is at least one glucose unit where R5 represents OH between the two glucose units comprising the N3 substituent, and n is equal to 5, 6 or 7,
with an iodoalkane according to the formula IR2 wherein R2 has the significance given above, in the presence of NaH to obtain the cyclodextrin derivative according to the formula:
wherein all the R6 represent OR2, or one of the R6 represents N3 and the other R6 represent OR2, and R2 and n are as defined above,
b) perform a Staudinger reaction on the derivative according to formula (IX) using triphenylphosphine and ammonia to convert N3 into NH2 and obtain the derivative according to the formula:
wherein all the R7 represent OR2, or one of the R7 represents NH2 and the other R7 represent OR2, and R2 and n are as defined above,
wherein all the R7 represent OR2, or one of the R7 represents —NHCO—(CH2)m—COOH and the other R7 represent OR2, and R2, m and n are as defined above, and
d) react the derivative according to formula (XI) with a compound according to the formula NH2—R1 to obtain the cyclodextrin derivative according to formula (I) defined above.
14. Inclusion complex comprising mono-6-(cholest-5-en-3α-ylamide)succinylamide-6-deoxy-2,2′,2″,2′″,2″″,2′″″,2″″″,6′, 6′″,6″″,6′″″,6″″″-trideca-O-methyl-cyclomaltoheptaose and a hydrophobic compound selected from the group consisting of 16-iodo-3-methylhexadecanoic acid, dothiepin, chloramphenicol, vitamin A and esculin.
15. Aqueous solution of solution comprising water and nanoparticles of mono-6-(cholest-5-en-3α-ylamide)succinylamide-6-deoxy-2,2′,2″,2′″,2″″,2′″″,2″″″,6′, 6″,6′″,6″″,6′″, 6″″″-trideca-O-methyl-cyclomaltoheptaose or an inclusion complex according to claim 14 .
16. Organized surfactant system comprising mono-6-(cholest-5-en-3α-ylamide)succinylamide-6-deoxy-2,2′,2″,2′″,2″″,2′″,2″″″,6′,6″,6′″,6″″,6′″,6″″″-trideca-O-methyl-cyclomaltoheptaose or an inclusion complex according to claim 14 and a surfactant.
17. System according to claim 16 wherein the surfactant is a phospholipid.
18. Aqueous solution comprising (a) water, and (b) a combined system formed from phospholipid or membrane protein vesicles, and mono-6-(cholest-5-en-3α-ylamide)succinylamide-6-deoxy-2,2′,2″″,2′″,2″″,2′″″,2″″″,6′,6″,6′″,6″″,6′″″,6″″″-trideca-O-methyl-cyclomaltoheptaose or an inclusion complex according to claim 14 .
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR9905460A FR2792942B1 (en) | 1999-04-29 | 1999-04-29 | AMPHIPHILIC CYCLODEXTRINS, THEIR PREPARATION AND THEIR USE FOR SOLUBILIZING ORGANIZED SYSTEMS AND INCORPORATING HYDROPHOBIC MOLECULES |
| FR9905460 | 1999-04-29 | ||
| PCT/FR2000/001102 WO2000066635A1 (en) | 1999-04-29 | 2000-04-26 | Amphiphile cyclodextrins, preparation and use thereof for solubilising organised systems and incorporating hydrophobic molecules |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US6858723B1 true US6858723B1 (en) | 2005-02-22 |
Family
ID=9545038
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/926,413 Expired - Fee Related US6858723B1 (en) | 1999-04-29 | 2000-04-26 | Amphiphile cyclodextrins, preparation and use thereof for solubilizing organized systems and incorporating hydrophobic molecules |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US6858723B1 (en) |
| EP (1) | EP1177217B1 (en) |
| JP (1) | JP4698842B2 (en) |
| AT (1) | ATE279446T1 (en) |
| DE (1) | DE60014885T2 (en) |
| FR (1) | FR2792942B1 (en) |
| WO (1) | WO2000066635A1 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060199785A1 (en) * | 2005-01-28 | 2006-09-07 | Pinnacle Pharmaceuticals | Beta-cyclodextrin derivatives as antibacterial agents |
| US20060247208A1 (en) * | 2004-01-29 | 2006-11-02 | Pinnacle Pharmaceuticals | B-cyclodextrin derivatives and their use against anthrax lethal toxin |
| US20070113356A1 (en) * | 2003-12-18 | 2007-05-24 | Ciba Specialty Chemicals Corp. | Reactive polysaccharide derivatives, their preparation and their use |
| US20070142324A1 (en) * | 2003-10-24 | 2007-06-21 | Commissariat A L'energie Atomique | Amphiphilic cyclodextrin derivatives, method for preparation thereof and uses thereof |
| US20100137437A1 (en) * | 2006-05-19 | 2010-06-03 | Viroblock S.A. | Composition for Inactivating an Enveloped Virus |
| US20140200290A1 (en) * | 2012-10-12 | 2014-07-17 | Empire Technology Development Llc | Paints and coatings containing cyclodextrin additives |
| WO2015021418A1 (en) * | 2013-08-09 | 2015-02-12 | Bio-Rad Laboratories, Inc. | Protein detection using modified cyclodextrins |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100518831C (en) * | 2002-08-15 | 2009-07-29 | 刘云清 | Solid nano-medicine and preparing method thereof |
| KR101476067B1 (en) | 2002-09-06 | 2014-12-23 | 인설트 테라페틱스, 인코퍼레이티드 | Cyclodextrin-based polymers for delivering the therapeutic agents covalently bound thereto |
| FR2850972B1 (en) * | 2003-02-07 | 2005-03-11 | Commissariat Energie Atomique | PER (3,6-ANHYDRO) CYCLODEXTRIN DERIVATIVES, THEIR PREPARATION AND USE FOR VEHICULATING METALLIC ELEMENTS TO BIOLOGICAL TARGETS OR FOR DECONTAMINATING BIOLOGICAL TARGETS OR FLUIDS |
| FR2907455A1 (en) * | 2006-10-18 | 2008-04-25 | Commissariat Energie Atomique | New cyclic oligosaccharide, amphiphilic cyclodextrin derivatives, substituted by natural polycyclic groups comprising saccharidic subunits, useful to make clathrate for pharmaceutical and/or agrofood field |
| US20080176958A1 (en) | 2007-01-24 | 2008-07-24 | Insert Therapeutics, Inc. | Cyclodextrin-based polymers for therapeutics delivery |
| FR2919872B1 (en) * | 2007-08-10 | 2009-12-18 | Commissariat Energie Atomique | CYCLODEXTRINS DERIVATIVES |
| JP5364923B2 (en) * | 2009-01-28 | 2013-12-11 | 学校法人福岡大学 | Multifunctional cyclodextrin derivatives, clathrate compounds thereof, and production methods thereof. |
| WO2014055493A1 (en) | 2012-10-02 | 2014-04-10 | Cerulean Pharma Inc. | Methods and systems for polymer precipitation and generation of particles |
| TW202009013A (en) * | 2018-08-14 | 2020-03-01 | 優你康光學股份有限公司 | Contact lenses with functional ingredients and their products |
| WO2021054063A1 (en) * | 2019-09-20 | 2021-03-25 | 公立大学法人北九州市立大学 | Particles, method for producing particles, drug, method for producing drug, and anti-cancer agent |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2681868B1 (en) | 1991-09-30 | 1995-06-02 | Sederma Sa | |
| FR2726765B1 (en) | 1994-11-14 | 1996-12-20 | Cis Bio Int | RADIOPHARMACEUTICAL COMPOSITIONS COMPRISING A COMPLEX INCLUDING A CYCLODEXTRIN AND A RADIOHALOGEN FATTY ACID |
| FR2736056B1 (en) | 1995-06-29 | 1997-08-08 | Commissariat Energie Atomique | CYCLODEXTRIN DERIVATIVES, THEIR PREPARATION AND THEIR USE FOR INCORPORATING HYDROPHOBIC MOLECULES IN ORGANIZED SURFACTANT SYSTEMS |
| US6610671B2 (en) * | 2001-01-11 | 2003-08-26 | Eastman Chemical Company | Cyclodextrin sulfonates, guest inclusion complexes methods of making the same and related materials |
-
1999
- 1999-04-29 FR FR9905460A patent/FR2792942B1/en not_active Expired - Fee Related
-
2000
- 2000-04-26 JP JP2000615663A patent/JP4698842B2/en not_active Expired - Fee Related
- 2000-04-26 DE DE60014885T patent/DE60014885T2/en not_active Expired - Lifetime
- 2000-04-26 AT AT00922751T patent/ATE279446T1/en not_active IP Right Cessation
- 2000-04-26 EP EP00922751A patent/EP1177217B1/en not_active Expired - Lifetime
- 2000-04-26 WO PCT/FR2000/001102 patent/WO2000066635A1/en active IP Right Grant
- 2000-04-26 US US09/926,413 patent/US6858723B1/en not_active Expired - Fee Related
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2681868B1 (en) | 1991-09-30 | 1995-06-02 | Sederma Sa | |
| FR2726765B1 (en) | 1994-11-14 | 1996-12-20 | Cis Bio Int | RADIOPHARMACEUTICAL COMPOSITIONS COMPRISING A COMPLEX INCLUDING A CYCLODEXTRIN AND A RADIOHALOGEN FATTY ACID |
| US5993776A (en) | 1994-11-14 | 1999-11-30 | Cis Bio International | Radiopharmaceutical compositions that include an inclusion complex of a cyclodextrin and a radio-halogenated fatty acid |
| FR2736056B1 (en) | 1995-06-29 | 1997-08-08 | Commissariat Energie Atomique | CYCLODEXTRIN DERIVATIVES, THEIR PREPARATION AND THEIR USE FOR INCORPORATING HYDROPHOBIC MOLECULES IN ORGANIZED SURFACTANT SYSTEMS |
| US5821349A (en) | 1995-06-29 | 1998-10-13 | Commissariat A L'energie Atomique | Derivatives of cyclodextrins, their preparation and their use for incorporating hydrophobic molecules into organized surfactant systems |
| EP0751150B1 (en) | 1995-06-29 | 2002-06-05 | Commissariat A L'energie Atomique | Cyclodextrin derivatives, their preparation and their use to incorporate hydrophobic molecules in organized surfactant systems |
| US6610671B2 (en) * | 2001-01-11 | 2003-08-26 | Eastman Chemical Company | Cyclodextrin sulfonates, guest inclusion complexes methods of making the same and related materials |
Non-Patent Citations (13)
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7812152B2 (en) | 2003-10-24 | 2010-10-12 | Commissariat A L'energie Atomique | Amphiphilic cyclodextrin derivatives, method for preparation thereof and uses thereof |
| US20070142324A1 (en) * | 2003-10-24 | 2007-06-21 | Commissariat A L'energie Atomique | Amphiphilic cyclodextrin derivatives, method for preparation thereof and uses thereof |
| US20070113356A1 (en) * | 2003-12-18 | 2007-05-24 | Ciba Specialty Chemicals Corp. | Reactive polysaccharide derivatives, their preparation and their use |
| US20060247208A1 (en) * | 2004-01-29 | 2006-11-02 | Pinnacle Pharmaceuticals | B-cyclodextrin derivatives and their use against anthrax lethal toxin |
| US20090005343A1 (en) * | 2004-01-29 | 2009-01-01 | Pinnacle Pharmaceuticals, Inc. | B-cyclodextrin derivatives and their use against anthrax lethal toxin |
| US7851457B2 (en) | 2004-01-29 | 2010-12-14 | Innovative Biologics, Inc. | β-Cyclodextrin derivatives |
| US7737132B2 (en) | 2005-01-28 | 2010-06-15 | Pinnacle Pharmaceuticals | β-cyclodextrin derivatives as antibacterial agents |
| US20060199785A1 (en) * | 2005-01-28 | 2006-09-07 | Pinnacle Pharmaceuticals | Beta-cyclodextrin derivatives as antibacterial agents |
| US20100137437A1 (en) * | 2006-05-19 | 2010-06-03 | Viroblock S.A. | Composition for Inactivating an Enveloped Virus |
| US8889398B2 (en) | 2006-05-19 | 2014-11-18 | Viroblock Sa | Composition for inactivating an enveloped virus |
| US20140200290A1 (en) * | 2012-10-12 | 2014-07-17 | Empire Technology Development Llc | Paints and coatings containing cyclodextrin additives |
| US9051479B2 (en) * | 2012-10-12 | 2015-06-09 | Empire Technology Development Llc | Paints and coatings containing cyclodextrin additives |
| WO2015021418A1 (en) * | 2013-08-09 | 2015-02-12 | Bio-Rad Laboratories, Inc. | Protein detection using modified cyclodextrins |
| US9285359B2 (en) | 2013-08-09 | 2016-03-15 | Bio-Rad Laboratories, Inc. | Protein detection using modified cyclodextrins |
Also Published As
| Publication number | Publication date |
|---|---|
| DE60014885D1 (en) | 2004-11-18 |
| EP1177217B1 (en) | 2004-10-13 |
| JP4698842B2 (en) | 2011-06-08 |
| JP2002543249A (en) | 2002-12-17 |
| EP1177217A1 (en) | 2002-02-06 |
| FR2792942B1 (en) | 2001-06-08 |
| DE60014885T2 (en) | 2005-10-27 |
| WO2000066635A1 (en) | 2000-11-09 |
| ATE279446T1 (en) | 2004-10-15 |
| FR2792942A1 (en) | 2000-11-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6858723B1 (en) | Amphiphile cyclodextrins, preparation and use thereof for solubilizing organized systems and incorporating hydrophobic molecules | |
| Auzély-Velty et al. | Micellization of hydrophobically modified cyclodextrins. 1. Micellar structure | |
| RU2099354C1 (en) | Purified derivative of cyclodextrine, clathrate complex of purified derivative of cyclodextrine with drug, pharmaceutical composition | |
| Irie et al. | Hydroxypropylcyclodextrins in parenteral use. I: Lipid dissolution and effects on lipid transfers in vitro | |
| Toomari et al. | Synthesis of the dendritic type β-cyclodextrin on primary face via click reaction applicable as drug nanocarrier | |
| US7786095B2 (en) | Amphiphilic macrocyclic derivatives and their analogues | |
| US20100093662A1 (en) | Novel amphiphilic cyclodextrin derivatives | |
| FR2808691A1 (en) | CYCLODEXTRINS SUBSTITUTED PREFERENTIALLY ON THEIR PRIMARY SURFACE BY ACID OR AMINE FUNCTIONS | |
| EP1241172B1 (en) | Polyalkylene oxide-modified phospholipid and production method thereof | |
| Toomari et al. | Fabrication of biodendrimeric β-cyclodextrin via click reaction with potency of anticancer drug delivery agent | |
| JPH09507086A (en) | Novel cyclodextrin derivative particularly usable for dissolving hydrophobic compounds such as drugs and method for preparing the same | |
| US7812152B2 (en) | Amphiphilic cyclodextrin derivatives, method for preparation thereof and uses thereof | |
| Mendez-Ardoy et al. | Monodisperse nanoparticles from self-assembling amphiphilic cyclodextrins: Modulable tools for the encapsulation and controlled release of pharmaceuticals | |
| JPH11240833A (en) | Droloxifene pharmaceutical composition | |
| Cohen et al. | Polycations. IX. Polyammonium derivatives of cyclodextrins: Syntheses and binding to organic oxyanions | |
| JP3604390B2 (en) | Use of mono-3,6-anhydrocyclodextrins for dissolving hydrophobic compounds and checking the purity of enantiomers and a process for the preparation of these cyclodextrins | |
| EP0689844A1 (en) | Complexes of vinpocetine formed with cyclodextrins, process for their preparation and pharmaceutical compositions containing them | |
| KR100394081B1 (en) | A water-soluble azacyclodextrinfullerene and preparation method of thereof | |
| JP3217450B2 (en) | Stabilizer for phospholipid endoplasmic reticulum | |
| Attama et al. | Studies on diclofenac β-cyclodextrin inclusion complexes | |
| KR101967326B1 (en) | Cationic cyclodextrin derivatives and drug delivery system using thereof | |
| FR2839313A1 (en) | New cyclodextrin derivatives and their preparation, useful in forming inclusion complexes with hydrophobic molecules to render then soluble in aqueous media | |
| JP3085485B2 (en) | Oligosaccharide derivatives | |
| KR100507763B1 (en) | Process for preparing novel phospholipid-containing polyampholytes | |
| JP3529058B2 (en) | Amino acid type glycolipid and ER stabilizer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AUZELY-VELTY, RACHEL;PERLY, BRUNO;DJEIDAINI-PILARD, FLORENCE;REEL/FRAME:012533/0924 Effective date: 20011010 |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20170222 |
























