US6839586B2 - Use of multiphoton excitation through optical fibers for fluorescence spectroscopy in conjunction with optical biopsy needles and endoscopes - Google Patents
Use of multiphoton excitation through optical fibers for fluorescence spectroscopy in conjunction with optical biopsy needles and endoscopes Download PDFInfo
- Publication number
- US6839586B2 US6839586B2 US10429392 US42939203A US6839586B2 US 6839586 B2 US6839586 B2 US 6839586B2 US 10429392 US10429392 US 10429392 US 42939203 A US42939203 A US 42939203A US 6839586 B2 US6839586 B2 US 6839586B2
- Authority
- US
- Grant status
- Grant
- Patent type
- Prior art keywords
- optical
- tissue
- fluorescence
- fiber
- excitation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6486—Measuring fluorescence of biological material, e.g. DNA, RNA, cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/0059—Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0071—Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/0059—Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0075—Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/0059—Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
- A61B5/0084—Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/0059—Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
- A61B5/0084—Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
- A61B5/0086—Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters using infra-red radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6847—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
- A61B5/6848—Needles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
- A61B1/043—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/07—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N2021/6484—Optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
- G01N21/6458—Fluorescence microscopy
Abstract
Description
This application is a continuation of U.S. patent application Ser. No. 09/779,918, filed Feb. 7, 2001, now U.S. Pat. No. 6,580,941 which claims benefit o U.S Provisional Patent Application Ser. No. 60/181,012, filed on Feb. 8, 2000.
This invention was developed with government funding under National Science Foundation Grant No. BIR 8800278 and National Institutes of Health Grant No. RR04224. The U.S. Government may have certain rights in this invention.
The present invention relates to the use of multiphoton excitation in conjunction with optical biopsy needles and endoscopes.
Many crucial biological functions are mediated or accomplished by biomolecules and tissue structures that are intrinsically fluorescent. As a result, there is an opportunity to diagnose and study important biological events by measuring and localizing the spectra and tissue fluorescence emission. To investigate in vivo internal processes and structures in large organisms, such as human beings and agricultural animals, endoscopic procedures which penetrates body cavities or even solid tissue may be required.
Endoscopy video imaging in body cavities ordinarily utilizes back-scattered white light applied through the endoscope to form a low-resolution color image of the internal surfaces of these cavities. Physicians often use the changes in shapes and changes in local apparent color (which are often due to changes in blood distribution) to recognize disease states, such as malignant tumors or inflammation. Unfortunately, these clues are frequently not sufficient, especially for detection of the early onset of disease. Diagnostic improvements have been made by quantitative measurements of the light scattering and of tissue fluorescence emission.
Ordinarily, the light required to excite the fluorescence of tissue is delivered through an optical fiber or fiber bundle that is inserted through a small tube built into the endoscopic pipe to accommodate a mechanical biopsy wire. Small optical fibers or fiber bundles can be passed easily through the same tube. Some of the strongest tissue fluorescence usually seen in this procedure are due to NADH (nicotinamide adenine dinucleotide) and to collagen structures. Their fluorescence is excited by absorption of ultraviolet light of about 300 to 400 nm wavelength corresponding to photon energies of around 3 to 4 eV or sometimes slightly longer wavelength visible light.
A first problem is that this ultraviolet light is strongly absorbed by hemoglobin and oxyhemoglobin in the blood, which are not fluorescent, so that penetration of the illumination into the tissue depends on their concentration and distribution.
A second problem is that the illumination exiting the optical fibers into tissue fans out at an included angle determined by the numerical aperture (NA) of the optical fiber. Small lenses can focus the spread so that the light first converges to a focus but it then fans out beyond the focal plane. (Typically, the NA is about 0.2 and the included cone angle is ˜17°.) This angular spreading is a problem, because roughly equal total amounts of fluorescence are excited in every spherical section at each distance from the end of the fiber until attenuated by absorption. This effect is schematically illustrated in FIG. 1. Fluorescence excitation is similarly spread out. Scattering does not attenuate the fluorescence excitation but does distribute it even more broadly. Consequently, the volume observed is ill defined with its practical limits depending also on blood distribution and light scattering. It should be noted that these problems tend to persist even if lenses focus the illumination and/or prisms and mirrors deflect the light for side viewing.
The present invention is directed to overcoming these deficiencies in the art.
One aspect of the present invention relates to a method of detecting disease within a particular tissue of a plant or animal. This method involves activating the particular plant or animal tissue by application of radiation through at least one optical fiber under conditions effective to promote a simultaneous multiphoton excitation of the particular plant or animal tissue and to emit an intrinsic fluorescence characteristic. The intrinsic fluorescence characteristic is compared to fluorescence emitted by exciting healthy tissue of the particular plant or animal under the same conditions used to carry out the activating step. The particular tissue of a plant or animal where the intrinsic fluorescence characteristic differs from the fluorescence, emitted by exciting healthy tissue of the particular plant or animal under the same conditions used to carry out such activity, is then identified as potentially diseased.
Another aspect of the present invention involves a method of producing an image of an internal surface of a particular tissue within a plant or animal. In this method, the particular plant or animal tissue is activated with radiation applied through an optical fiber under conditions effective to promote a simultaneous multiphoton excitation of the internal surface of the particular tissue within the plant or animal and produce an autofluorescence. The autofluorescence is collected to produce an image of the internal surface.
The present invention also relates to a method of detecting and localizing fluorescence within a subject by applying radiation to an internal region of the subject through at least one optical fiber. Each fiber terminates in a tip proximate to the internal region. Radiation is applied under conditions effective to cause simultaneous multiphoton absorption of fluorophore molecules within the internal region and, as a result, fluorescent excitation proximate to the tip of the at least one optical fiber.
Another embodiment of the present invention relates to a method of detecting and localizing fluorescence within a body of penetrable material by applying radiation to an internal region of the body of penetrable material through at least one optical fiber. Each fiber terminates in a tip proximate to the internal region. Radiation is applied under conditions effective to cause simultaneous multiphoton absorption of fluorophore molecules within the internal region and, as a result, fluorescent excitation proximate to the tip of the at least one optical fiber.
The present invention utilizes multiphoton absorption to excite autofluorescence of tissue with good spatial resolution in order to recognize disease by autofluorescence spectroscopy. The most useful tissue fluorescence for this purpose is most likely to require absorption of ultraviolet energies for excitation. Multiphoton excitation provides the added convenience of infrared illumination to provide the necessary excitation energy by simultaneous absorption of two or more photons by the fluorescent molecules or structures.
The same advantages described above for internal multiphoton excitation of fluorescence spectroscopy through optical fibers penetrating a body cavity or tissue can be advantageously applied to probe other penetrable materials that are, or can be made, fluorescent. Some examples are: food products, polymeric structures or porous media.
One important advantage of multiphoton excitation is that the illumination is not absorbed by hemoglobin and myoglobin and, in fact, not strongly absorbed by any other common tissue components. Scattering of infrared light by tissue is also significantly less than scattering by ultraviolet wavelengths. The principal advantage of multiphoton excitation, however, for endoscopic fluorescence spectroscopy is that the effective focal volume within which fluorescence is strongly excited is well defined and highly localized (FIG. 2). The reason for this is that the rate of two-photon excitation of fluorescence is proportional to the square of the illumination intensity. For higher multiphoton processes, the power law exponent of the intensity is larger, cubic for three-photon excitation for example. In multiphoton laser scanning microscopy, this higher power law feature makes possible three-dimensional resolution without generating out-of-focus fluorescence that would have to be excluded by confocal spatial filtering.
Nearly the same illumination conditions are also suitable for generation of second and third harmonic generation in certain suitable tissues. The second and third harmonics are generated, respectively, at exactly one half and one third of the laser illumination wavelengths and can be used with the intrinsic fluorescence to help characterize the tissue.
An analogous advantage applies to fluorescence multiphoton excited by laser light transmitted through an optical fiber as in application to endoscopic tissue fluorescence. Although the illumination intensity fans out just as for one-photon excitation with roughly equal total power at each value of radius from the end of the fiber or focal plane of any focusing lens, the excited fluorescence does not follow this fanned out illumination. In the case of two-photon excitation through a single mode optical fiber, the distribution of fluorescence is localized near the fiber tip in a shape resembling a candle flame beginning at the fiber tip. This effective focal volume is defined by the spatial distribution of the square of the illumination intensity for two-photon excitation. The square of the illumination intensity falls off roughly as the reciprocal fourth power of the distance from the fiber tip so that the fluorescence excitation is localized. Significant fluorescence is emitted only from this limited volume where the square of the excitation intensity is large, as illustrated in FIG. 3. Lenses, prisms, etc. can be used to shift the effective focal volume beyond the end of the optical fiber and/or to provide a side-looking orientation without losing the advantages of multiphoton excitation.
This effect provides a well-defined focal volume for the fluorescence excitation and allows useful spatial resolution which is sharp enough to resolve important anatomical structures. For example, in the colon, about 5 distinct layers should be distinguishable. At the surface of the endothelium, an array of crypts covers the area and is terminated in a cellular layer that closes the bottoms of the crypts, followed by several more layers including smooth muscle and connective tissue for a total of about 0.5 mm. These layers are readily resolved by multiphoton laser scanning microscopy exciting the intrinsic tissue fluorescence, which differs from layer to layer. Such layers and their perturbations by disease near the surface are thus distinguishable in the intact tissue by endoscopic spectroscopy of the tissue fluorescence with sufficient spatial resolution as provided by multiphoton excitation.
The multiphoton excitation of the present invention allows accurate spatial discrimination and permits quantification of fluorescence from small volumes whose locations are defined in three dimensions. This is especially important in cases where thicker layers of cells are to be studied. In this case, the fiber can penetrate the tissue to observe and resolve the multiphoton excited fluorescence of deeper layers, thus providing optical biopsy in situ. Furthermore, multiphoton excitation greatly reduces the background fluorescence and scattering artifacts.
One aspect of the present invention relates to a method of detecting disease within a particular tissue of a plant or animal. This method involves activating the particular plant or animal tissue by application of radiation through at least one optical fiber under conditions effective to promote a simultaneous multiphoton excitation of the particular plant or animal tissue and to emit an intrinsic fluorescence characteristic. The intrinsic fluorescence characteristic is compared to fluorescence emitted by exciting healthy tissue of the particular plant or animal under the same conditions used to carry out the activating step. The particular tissue of a plant or animal where the intrinsic fluorescence characteristic differs from the fluorescence, emitted by exciting healthy tissue of the particular plant or animal under the same conditions used to carry out such activity, is then identified as potentially diseased.
Another aspect of the present invention involves a method of producing an image of an internal surface of a particular tissue within a plant or animal. In this method, the particular plant or animal tissue is activated with radiation applied through an optical fiber under conditions effective to promote a simultaneous multiphoton excitation of the internal surface of the particular tissue within the plant or animal and produce an autofluorescence. The autofluorescence is collected to produce an image of the tissue under the internal surface by recording a set of adjacent volumes.
The present invention also relates to a method of detecting and localizing fluorescence within a subject by applying radiation to an internal region of the subject through at least one optical fiber. Each fiber terminates in a tip proximate to the internal region. Radiation is applied under conditions effective to cause simultaneous multiphoton absorption of fluorophore molecules within the internal region and, as a result, fluorescent excitation is proximate to the tip of the at least one optical fiber.
Another embodiment of the present invention relates to a method of detecting and localizing fluorescence within a body of penetrable material by applying radiation to an internal region of the body of penetrable material through at least one optical fiber. Each fiber terminates in a tip proximate to the internal region. Radiation is applied under conditions effective to cause simultaneous multiphoton absorption of fluorophore molecules within the internal region and, as a result, fluorescent excitation proximate to the tip of the at least one optical fiber.
One form of the present invention involves the use of multiphoton endoscopic autofluorescence spectroscopy of tissue surfaces inside the cavities of living organisms. Endoscopic inspection and imaging at low resolution of the internal surfaces of body cavities is already a well-established standard medical procedure. Multiphoton endoscopic autofluorescence spectroscopy through optical fibers allows resolution of surface autofluorescence separately from the autofluorescence of underlying layers of the tissue. There are potentially numerous future improvements. Already it is possible to steer, point, and focus optical fibers with control apparatus to detect the fluorescence of tissue regions of interest in the endoscopy of body cavities. Analogous techniques are applicable to achieve the advantages of multiphoton fluorescent excitation for endoscopy. It can be anticipated that scanning of fibers or successive illumination of individual fibers or clusters in a bundle can be used to form multiphoton intrinsic fluorescence images. This aspect of the present invention can be used to image the fluorescence of tissues in internal channels such as the colon, esophagus, stomach, intestine, bladder, uterus, vagina, lung, ovaries, and throat. As a result, malignancy can be detected by recognition of differences in the fluorescence excited with ultraviolet excitation energies.
Another form of the present invention is based on penetration of tissue itself with either at least one conventional optical fiber or with an optical biopsy needle. In this application, the optical fiber or optical biopsy needle is inserted in the tissue itself to sample the autofluorescence of the tissue at the end of the fiber or fibers. The fiber can function like a hypodermic syringe which can be inserted into the tissue as needed. Alternatively, the optical fiber's distal end can be configured to abut the surface of the plant or animal tissue being imaged. With multiphoton excitation, the volume at the end of the fiber where fluorescence is excited is well defined in principle. This can be carried out with a bundle of fibers wrapped around an initial fiber. Alternatively, a bundle of fibers which illuminate a larger volume can be utilized. In biopsy of dense tissue cancers, such as breast or liver cancer, the fiber can probe the fluorescence along insertion pathways. Note that in contrast with conventional biopsy, which generally requires time consuming tissue fixing and staining procedures, the optical biopsy with multiphoton excited fluorescence spectroscopy provides immediate diagnostic spectral data as the probe is inserted and moved within the patient.
These forms of the present invention can also be carried out in combination where an endoscopic is inserted into a body cavity of a patient to provide a route for fibers to reach an internal surface of a body cavity from which the fibers can be inserted into the tissue to sample its successive layers. For example, in the search for the onset of cancer in the wall of the colon, the tissue has about 5 layers, each with its own characteristic optical properties and autofluorescence. Successive optical probing of each layer can distinguish them and recognize their changes by disease.
Detection of the multiphoton excited fluorescence and the second and third harmonic of the laser excitation generated in the tissue can be accomplished by endoscopy and optical biopsy through the optical fiber that provides the excitation and of course through surrounding fibers in a bundle or through thick optical tubes for efficient collection of light excited near the tip of the single mode excitation fiber or fibers. There is a significant advantage in fluorescence collection efficiency for multiphoton endoscopic tissue fluorescence over single photon excitation, because the emission is localized near the fiber tip where it is most accessible to collection optics. The same advantage applies in optical biopsy. Desirably, the present invention is carried out with a plurality of optical fibers, including a single excitation fiber surrounded by a plurality of collection fibers.
Effective multiphoton molecular excitation is made possible, in accordance with the present invention, by the combination of (a) the very high, local, instantaneous intensity and (b) the temporal concentration of a pulsed laser. A high intensity, long wavelength, monochromatic light source which is focusable to the diffraction limit such as a titanium sapphire mode locked solid state laser, with each pulse having a duration of about 100 femtoseconds (100×10−15 seconds) at a repetition rate of about 80 MHz. Other lasers that are also effective for multiphoton excitation and harmonic generation can also be used. These fast pulses are directed through the endoscope or optical biopsy needle to target tissue within a living plant or animal or, alternatively, a tissue specimen. Because of the high instantaneous power provided by the very short duration intense pulses focused to the diffraction limit, there is an appreciable probability that a fluorophore (a fluorescent dye), contained in the target, and normally excitable by a single high energy photon having a short wavelength, typically ultraviolet, will absorb two long wavelength photons from the laser source simultaneously. This absorption combines the energy of the two photons in the fluorophore molecule, thereby raising the fluorophore to its excited state. When the fluorophore returns to its normal state, it emits light, and this light then passes back through the endoscope or optical biopsy needle to a suitable detector.
The multiphoton excitation of fluorophores by highly intense, short pulses of light constitutes a general fluorescence microscopy technique for imaging which provides improved background discrimination and reduces photobleaching of the fluorophores. This is because the focused illumination provided in the microscope fills a converging cone as it passes into the specimen. All of the light which reaches the plane of focus at the apex of the converging cone, except the tiny fraction which is absorbed in the fluorophore, then passes out the opposite side of the specimen through a diverging cone. Only in the region of the focal point on the object plane at the waist formed by the converging and diverging cones is the intensity sufficiently high to produce multiphoton absorption in the specimen fluorophore, and this intensity dependence enables long wavelength excitation only in the small local volume of the specimen surrounding the focal point. This absorption is produced by means of a stream of fast, high intensity, femtosecond pulses of relatively long wavelength which retains a moderate average illumination intensity of long wavelength light throughout the remainder of the specimen outside the region of the focal point. As a result, photobleaching of the fluorophore outside the plane of focus is virtually eliminated. One-photon absorption of the long wavelength light is negligible, and outside the plane of focus the instantaneous intensity is too low for appreciable two-photon absorption and excitation, even though the time average illumination is in reality nearly uniform throughout the depth of the specimen. This effect also significantly reduces the damage to living cells.
In order to obtain three dimensional resolution, the present invention can utilize two-photon excitation of a fluorophore which has a one-photon absorption peak at a wavelength which overlaps or exceeds one-half that of the exciting light. For three-photon excitation, the one-photon absorption overlaps one-third that of the exciting light. To accomplish this, the laser produces a very short pulsed laser beam of high instantaneous power and of a relatively long wavelength, for example in the visible red of the infrared range. This light is directed to a specimen containing a fluorophore normally excited by a single photon having a short wavelength (e.g., ultraviolet radiation) range so that two low energy (red) photons must combine their energy to provide the same excitation of the specimen that would be provided by a single high energy (ultraviolet) photon. Both the excitation and hence the fluorescence rates in the specimen are proportional to the square of the intensity of the incident light. In the focused excitation laser beam, the intensity of the long wavelength incident light becomes high enough to excite the fluorophores in the specimen only in the region of the focal point. This focal point may be adjustably positioned within the specimen so that fluorescence and/or photolysis of the specimen are produced only in a selected ellipsoidal volume around the focus. Thus, in accordance with the present invention, only long wavelength excitation light has to pass through the specimen, and this long wavelength light is focused to produce sufficient intensity to excite fluorescence only in a very small region. This fluorescence is produced even if the fluorophore normally absorbs only in the ultraviolet. Since the focal point can be selectively positioned in the specimen, three-dimensional resolution is provided in both scanning fluorescence microscopy and in photolysis, including photolysis of photon-activatable reagents which can be released by photolysis.
In accordance with the present invention, the necessary excitation intensity is provided from a radiation light source which may be, for example, a titanium sapphire mode locked laser generating pulses of light having a wavelength in the red region of the spectrum, for example about 700-1000 nm, or with the pulses having a width of 10−9 seconds to 10−15 seconds, conveniently at about 80 MHz repetition rate. Other bright pulsed lasers may also be used to produce light at different relatively long wavelengths in the infrared or visible red region of the spectrum, for example, to generate the necessary excitation photon energies which will add up to the appropriate absorption energy band required by the fluorophores in the spectrum which normally would be excited by absorption of a single photon in the spectral region having wavelengths about one-half the wavelength of the incident light. If shorter excitation wavelengths are needed, the laser wavelengths can be divided by 2, 3, or 4 by external harmonic generation. Thus, for example, two photons in the visible red region at 750 nm would combine to excite a fluorophore which normally absorbs light in the ultraviolet region at or above 375 nm, while two photons in the infrared region of, for example, 1070 nm, would excite a fluorophore which absorbs at or above 535 nm in the visible light region.
In a modified form of the invention, the single wavelength light source can be replaced by two different long wavelength laser sources so that the incident light beam consists of two superimposed pulsed light beams of high instantaneous power and of different wavelengths. The wavelengths of the incident beam are selected to excite a fluorophore which is absorbent at a short wavelength which may be described as:
1/λabs=1/λ1+1λ2
where λabs is the short wavelength of the absorber, and λ1 and λ2 are the laser incident beam wavelengths.
In two-photon excitation, with a typical two-photon cross section δ of:
δ=10−58 m 4 s/photon
with the pulse parameters given above (100 fsec. pulses at a repetition rate of 80 MHz), and with the beam focused by a lens of numerical aperture A-1.4, the average incident laser power (P0) of approximately 50 mW saturates the fluorescence output of a fluorophore at the limit of one absorbed photon per pulse per fluorophore. The number na of photons absorbed per fluorophore per pulse depends on the following relationship:
where
-
- τ is the pulse duration;
- f is the repetition rate;
- P0 is the average incident laser power;
- δ is the photon absorption cross section;
- h is the Planck quantum of action;
- c is the speed of light; and
- A is the numerical aperture of the focusing lens.
The fluorescence emission could be increased, however, by increasing the pulse repetition frequency up to the inverse fluorescence lifetime, which typically is:
τf −1=109 S −1
For comparison, one-photon fluorescence saturation occurs at incident powers of about 3 mW.
In addition to measurement of intrinsic tissue fluorescence with multiphoton excitation, it is possible to utilize the fluorescence of drugs to detect their location in tissue. Often, such drugs segregate to particular tissue structures or disease products, such as tumors. Multiphoton excitation can be used to identify them. Many important drugs absorb ultraviolet light to become fluorescent and are, therefore, effectively excited by multiphoton excitation. As a result, all of the advantages of multiphoton excitation of intrinsic tissue fluorescence together with the labeling features provided by the selective segregation or binding of fluorescence drugs are achieved. For example, the principal drug used to treat colitis, 5-amino salicylic acid, can be imaged in all of the layers of living colon tissue explants as the drug is metabolized. It can be located relative to complex tissue structure by imaging tissue autofluorescence due to collagen, nicotinamide adenine dinucleotide (NADH), and other structures. Multiphoton excitation of such drugs can be observed in vivo within tissues by multiphoton endoscopy and/or multiphoton optical biopsy.
Photoactive agents including fluorescent dyes are commonly used in multiphoton microscopy to image properties of cells and tissues. Suitable photoactive agents include dyes which are excited by multiphoton excitation such as, organic molecules whose fluorescence changes when they bind metal ions such as Ca2+, Mg2+, Na+ or K+ or H+. Dyes which bind to the DNA double helix such as DAPI (4′,6-diamidino-2-phenylindoledihydrochloride) are particularly useful. Many such dyes are suitable for application in vivo.
Fluorescence distribution could be probed by multiphoton absorption endoscopic spectroscopy in living animals, including humans, to recognize inflammatory disease such as colitis and to follow the progress of its treatment. The distribution of fluorescent protoporphyrin IX, the metabolic product of aminolevulinic acid, which accumulates in cancer cells, would similarly be useful in cancer detection. NADH fluorescence may be the most promising cancer signal accessible by multiphoton absorption endoscopic spectroscopy, but it must be spatially localized by multiphoton absorption to distinguish it from collagen, which is similarly fluorescent in adjacent tissues. It has been known for many years that certain tissues and tissue components, particularly collagen, an important structural component of tissue that appears in many forms, are very effective at generating the second harmonic of bright coherent illumination. The second harmonic of illumination has exactly half of the wavelength and thus twice the photon energy of the fundamental illumination. Similarly, the third harmonic of illumination has exactly one third of the wavelength and, therefore, three times the photon energy. Generation of second harmonic radiation has, in fact, been demonstrated to be a useful phenomenon for microscopic imaging of cells. Because the illumination conditions required to excite second or third harmonic in complex tissue are nearly the same as for multiphoton fluorescence excitation, it is possible to take advantage of second or third harmonic generation, in tissues such as collagen, to complement multiphoton excitation of intrinsic tissue fluorescence. In complex tissues, the second or third harmonic radiation is frequently radiated through broad angles which makes it detectable along with the multiphoton excited fluorescence. The present invention can be used for a variety of purposes. For example, histological and clinical composition, structure, metabolic state, and vitality in the region of the subject can be determined. Alternatively, functional response to physiological and pharmacological stimuli and disease states can be detected in the region of the subject. Lastly, tissue or drug fluorescence excitation and emission spectra, luminosity, fluorescence lifetime, and temporal fluctuations in the region of the subject can be determined.
Although preferred embodiments have been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various modifications, additions, substitutions and the like can be made without departing from the spirit of the invention and these are therefore considered to be within the scope of the invention as defined in the claims which follow.
Claims (52)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18101200 true | 2000-02-08 | 2000-02-08 | |
US09779918 US6580941B2 (en) | 2000-02-08 | 2001-02-07 | Use of multiphoton excitation through optical fibers for fluorescence spectroscopy in conjunction with optical biopsy needles and endoscopes |
US10429392 US6839586B2 (en) | 2000-02-08 | 2003-05-05 | Use of multiphoton excitation through optical fibers for fluorescence spectroscopy in conjunction with optical biopsy needles and endoscopes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10429392 US6839586B2 (en) | 2000-02-08 | 2003-05-05 | Use of multiphoton excitation through optical fibers for fluorescence spectroscopy in conjunction with optical biopsy needles and endoscopes |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date | |
---|---|---|---|---|
US09779918 Continuation US6580941B2 (en) | 2000-02-08 | 2001-02-07 | Use of multiphoton excitation through optical fibers for fluorescence spectroscopy in conjunction with optical biopsy needles and endoscopes |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030191397A1 true US20030191397A1 (en) | 2003-10-09 |
US6839586B2 true US6839586B2 (en) | 2005-01-04 |
Family
ID=22662511
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09779918 Active US6580941B2 (en) | 2000-02-08 | 2001-02-07 | Use of multiphoton excitation through optical fibers for fluorescence spectroscopy in conjunction with optical biopsy needles and endoscopes |
US10429392 Active US6839586B2 (en) | 2000-02-08 | 2003-05-05 | Use of multiphoton excitation through optical fibers for fluorescence spectroscopy in conjunction with optical biopsy needles and endoscopes |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09779918 Active US6580941B2 (en) | 2000-02-08 | 2001-02-07 | Use of multiphoton excitation through optical fibers for fluorescence spectroscopy in conjunction with optical biopsy needles and endoscopes |
Country Status (5)
Country | Link |
---|---|
US (2) | US6580941B2 (en) |
EP (1) | EP1259163A4 (en) |
JP (1) | JP2004500197A (en) |
CA (1) | CA2398029A1 (en) |
WO (1) | WO2001059423A3 (en) |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050043636A1 (en) * | 2003-08-19 | 2005-02-24 | Gaeta Alexander L. | Optical fiber delivery and collection system for biological applications such as multiphoton microscopy, spectroscopy, and endoscopy |
US20050171433A1 (en) * | 2004-01-08 | 2005-08-04 | Boppart Stephen A. | Multi-functional plasmon-resonant contrast agents for optical coherence tomography |
US20050168735A1 (en) * | 2003-01-24 | 2005-08-04 | Boppart Stephen A. | Nonlinear interferometric vibrational imaging |
US20050259249A1 (en) * | 2004-01-27 | 2005-11-24 | Dombeck Daniel A | Nonlinear optical detection of fast cellular electrical activity |
WO2007084915A2 (en) * | 2006-01-17 | 2007-07-26 | University Of Washington | Scanning fiber-optic nonlinear optical imaging and spectroscopy endoscope |
US20070216908A1 (en) * | 2006-03-17 | 2007-09-20 | University Of Washington | Clutter rejection filters for optical doppler tomography |
US20070236782A1 (en) * | 2006-04-05 | 2007-10-11 | Pentax Corporation | Confocal endoscope system |
US20070299309A1 (en) * | 2005-02-28 | 2007-12-27 | University Of Washington | Monitoring disposition of tethered capsule endoscope in esophagus |
US20080058629A1 (en) * | 2006-08-21 | 2008-03-06 | University Of Washington | Optical fiber scope with both non-resonant illumination and resonant collection/imaging for multiple modes of operation |
US20080132834A1 (en) * | 2006-12-04 | 2008-06-05 | University Of Washington | Flexible endoscope tip bending mechanism using optical fibers as tension members |
US20080212867A1 (en) * | 2007-03-02 | 2008-09-04 | Provenzano Paolo P | Use of Endogenous Fluorescence to Identify Invading Metastatic Breast Tumor Cells |
US20080243030A1 (en) * | 2007-04-02 | 2008-10-02 | University Of Washington | Multifunction cannula tools |
US20090012406A1 (en) * | 2007-07-03 | 2009-01-08 | Llewellyn Michael E | Method and system of using intrinsic-based photosensing with high-speed line scanning for characterization of biological thick tissue including muscle |
US20090024191A1 (en) * | 2006-03-03 | 2009-01-22 | University Of Washington | Multi-cladding optical fiber scanner |
US20090137893A1 (en) * | 2007-11-27 | 2009-05-28 | University Of Washington | Adding imaging capability to distal tips of medical tools, catheters, and conduits |
US7586618B2 (en) | 2005-02-28 | 2009-09-08 | The Board Of Trustees Of The University Of Illinois | Distinguishing non-resonant four-wave-mixing noise in coherent stokes and anti-stokes Raman scattering |
US20090235396A1 (en) * | 2000-06-19 | 2009-09-17 | University Of Washington | Integrated optical scanning image acquisition and display |
US20090258423A1 (en) * | 2006-07-26 | 2009-10-15 | Dugas Jason | Cell cycle regulation and differentiation |
US20090323076A1 (en) * | 2007-05-03 | 2009-12-31 | University Of Washington | High resolution optical coherence tomography based imaging for intraluminal and interstitial use implemented with a reduced form factor |
US20100081927A1 (en) * | 2008-09-29 | 2010-04-01 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Histological facilitation systems and methods |
US20100081926A1 (en) * | 2008-09-29 | 2010-04-01 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Histological facilitation systems and methods |
US20100081916A1 (en) * | 2008-09-29 | 2010-04-01 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware. | Histological facilitation systems and methods |
US20100081915A1 (en) * | 2008-09-29 | 2010-04-01 | Searete Llc, Alimited Liability Corporation Of The State Of Delaware | Histological facilitation systems and methods |
US20100081928A1 (en) * | 2008-09-29 | 2010-04-01 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Histological Facilitation systems and methods |
US20100081924A1 (en) * | 2008-09-29 | 2010-04-01 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Histological facilitation systems and methods |
US7725169B2 (en) | 2005-04-15 | 2010-05-25 | The Board Of Trustees Of The University Of Illinois | Contrast enhanced spectroscopic optical coherence tomography |
US7751057B2 (en) | 2008-01-18 | 2010-07-06 | The Board Of Trustees Of The University Of Illinois | Magnetomotive optical coherence tomography |
US7787129B2 (en) | 2006-01-31 | 2010-08-31 | The Board Of Trustees Of The University Of Illinois | Method and apparatus for measurement of optical properties in tissue |
US7805183B2 (en) | 2006-06-22 | 2010-09-28 | Wisconsin Alumni Research Foundation | Stromal collagen in the diagnosis and characterization of breast cancer |
US20100286674A1 (en) * | 2008-01-22 | 2010-11-11 | Board Of Regents, The University Of Texas System | Systems, devices and methods for imaging and surgery |
US20100299770A1 (en) * | 2007-06-12 | 2010-11-25 | Selkirk Stephen M | Targeted cell death |
US20100305436A1 (en) * | 2007-09-14 | 2010-12-02 | Light Sciences Oncology , Inc. | Systems, devices, and methods for photoactive assisted resection |
US8115934B2 (en) | 2008-01-18 | 2012-02-14 | The Board Of Trustees Of The University Of Illinois | Device and method for imaging the ear using optical coherence tomography |
US8382662B2 (en) | 2003-12-12 | 2013-02-26 | University Of Washington | Catheterscope 3D guidance and interface system |
US8537203B2 (en) | 2005-11-23 | 2013-09-17 | University Of Washington | Scanning beam with variable sequential framing using interrupted scanning resonance |
US8840566B2 (en) | 2007-04-02 | 2014-09-23 | University Of Washington | Catheter with imaging capability acts as guidewire for cannula tools |
US8897858B2 (en) | 2007-07-03 | 2014-11-25 | The Board Of Trustees Of The Leland Stanford Junior Univerity | System and method useful for sarcomere imaging via objective-based microscopy |
US8983580B2 (en) | 2008-01-18 | 2015-03-17 | The Board Of Trustees Of The University Of Illinois | Low-coherence interferometry and optical coherence tomography for image-guided surgical treatment of solid tumors |
US9333036B2 (en) | 2010-01-22 | 2016-05-10 | Board Of Regents, The University Of Texas System | Systems, devices and methods for imaging and surgery |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6589809B1 (en) * | 2001-07-16 | 2003-07-08 | Micron Technology, Inc. | Method for attaching semiconductor components to a substrate using local UV curing of dicing tape |
US7336988B2 (en) | 2001-08-08 | 2008-02-26 | Lucent Technologies Inc. | Multi-photon endoscopy |
US20050267326A1 (en) * | 2001-10-02 | 2005-12-01 | Alfred E. Mann Institute For Biomedical Eng. At The University Of Southern California | Percutaneous chemical sensor based on fluorescence resonant energy transfer (FRET) |
US6643071B2 (en) | 2001-12-21 | 2003-11-04 | Lucent Technologies Inc. | Graded-index lens microscopes |
US7019309B2 (en) | 2002-09-30 | 2006-03-28 | Swinburne University Of Technology | Tripartite fiber-coupled fluorescence instrument |
US7192783B2 (en) * | 2003-02-05 | 2007-03-20 | Research Foundation Of The City University Of New York | Stokes shift emission spectroscopy for detection of disease and physiological state of specimen |
US7787728B2 (en) * | 2004-03-31 | 2010-08-31 | Zolo Technologies, Inc. | Optical mode noise averaging device |
US7248755B2 (en) * | 2003-03-31 | 2007-07-24 | Zolo Technologies, Inc. | Method and apparatus for the monitoring and control of combustion |
US7091500B2 (en) | 2003-06-20 | 2006-08-15 | Lucent Technologies Inc. | Multi-photon endoscopic imaging system |
US7379769B2 (en) | 2003-09-30 | 2008-05-27 | Sunnybrook Health Sciences Center | Hybrid imaging method to monitor medical device delivery and patient support for use in the method |
US7908690B2 (en) * | 2003-09-30 | 2011-03-22 | Sentinelle Medical, Inc. | Supine patient support for medical imaging |
US20080077005A1 (en) * | 2004-08-12 | 2008-03-27 | Piron Cameron A | System and Method for Multimodality Breast Imaging |
US7970452B2 (en) * | 2003-09-30 | 2011-06-28 | Hologic, Inc. | Open architecture imaging apparatus and coil system for magnetic resonance imaging |
US7854705B2 (en) * | 2004-12-16 | 2010-12-21 | Olga Pawluczyk | Ex vivo verification of biopsy tissue samples |
US8788021B1 (en) | 2005-01-24 | 2014-07-22 | The Board Of Trustees Of The Leland Stanford Junior Univerity | Live being optical analysis system and approach |
US8346346B1 (en) * | 2005-01-24 | 2013-01-01 | The Board Of Trustees Of The Leland Stanford Junior University | Optical analysis system and approach therefor |
US7307774B1 (en) | 2005-01-24 | 2007-12-11 | The Board Of Trustees Of The Leland Standford Junior University | Micro-optical analysis system and approach therefor |
US7872748B2 (en) * | 2005-01-27 | 2011-01-18 | Vizi Szilveszter E | Real-time, 3D, non-linear microscope measuring system and method for application of the same |
US9423397B2 (en) * | 2006-03-10 | 2016-08-23 | Indx Lifecare, Inc. | Waveguide-based detection system with scanning light source |
WO2007132378A3 (en) * | 2006-05-09 | 2008-01-24 | Bernardus Hendrikus W Hendriks | Imaging system for three-dimensional imaging of the interior of an object |
US20080281159A1 (en) * | 2007-05-08 | 2008-11-13 | University Of Washington | Coordinating image acquisition among multiple endoscopes |
WO2008144831A1 (en) * | 2007-05-30 | 2008-12-04 | Invision Medical Technologies Pty Ltd | Method and apparatus for inspecting tissue |
US9411149B2 (en) * | 2007-07-17 | 2016-08-09 | The Board Of Trustees Of The Leland Stanford Junior University | Microendoscopy with corrective optics |
US20100270479A1 (en) * | 2007-11-12 | 2010-10-28 | Cornell University | Non-imaging, weakly focused fluorescence emission apparatus and method |
US8290569B2 (en) * | 2007-11-23 | 2012-10-16 | Hologic, Inc. | Open architecture tabletop patient support and coil system |
JP5864105B2 (en) * | 2008-01-04 | 2016-02-17 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | The optical probe |
CA2724973C (en) | 2008-05-20 | 2015-08-11 | University Health Network | Device and method for fluorescence-based imaging and monitoring |
DE102008039666B3 (en) * | 2008-08-26 | 2010-01-21 | Olympus Winter & Ibe Gmbh | Endoscope i.e. video endoscope, has radiation source generating UV light that is coupled to UV-permeable image guide in proximal region and directed to coloring material whose radiated light is guided in observation direction of endoscope |
DE102008049922A1 (en) | 2008-10-02 | 2010-04-08 | Karl Storz Gmbh & Co. Kg | endoscope |
JP5576399B2 (en) | 2009-01-09 | 2014-08-20 | ゾロ テクノロジーズ,インコーポレイティド | Monitoring method and monitoring device for monitoring the combustion characteristics in the interior space of the boiler |
US8747331B2 (en) * | 2009-06-23 | 2014-06-10 | Hologic, Inc. | Variable angle guide holder for a biopsy guide plug |
KR101716917B1 (en) | 2009-08-10 | 2017-03-15 | 졸로 테크놀러지스, 아이엔씨. | Mitigation of optical signal noise using a multimode transmit fiber |
US9332926B2 (en) | 2010-11-25 | 2016-05-10 | Invivo Corporation | MRI imaging probe |
US8780362B2 (en) | 2011-05-19 | 2014-07-15 | Covidien Lp | Methods utilizing triangulation in metrology systems for in-situ surgical applications |
EP2839265B1 (en) | 2012-04-19 | 2017-07-26 | Zolo Technologies, Inc. | In-furnace retro-reflectors with steerable tunable diode laser absorption spectrometer |
WO2014150274A1 (en) | 2013-03-15 | 2014-09-25 | Hologic, Inc. | System and method for reviewing and analyzing cytological specimens |
RU2632993C2 (en) * | 2016-04-04 | 2017-10-11 | Владимир Алексеевич Шульгин | Fibre-optic switch of laser spectrometer |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4576173A (en) | 1982-06-28 | 1986-03-18 | The Johns Hopkins University | Electro-optical device and method for monitoring instanteous singlet oxygen concentration produced during photoradiation using a CW excitation source |
US4592361A (en) | 1982-06-28 | 1986-06-03 | The Johns Hopkins University | Electro-optical device and method for monitoring instantaneous singlet oxygen concentration produced during photoradiation using pulsed excitation and time domain signal processing |
US4895156A (en) | 1986-07-02 | 1990-01-23 | Schulze John E | Sensor system using fluorometric decay measurements |
US5034613A (en) | 1989-11-14 | 1991-07-23 | Cornell Research Foundation, Inc. | Two-photon laser microscopy |
US5115137A (en) | 1989-02-22 | 1992-05-19 | Spectraphos Ab | Diagnosis by means of fluorescent light emission from tissue |
US5119815A (en) | 1988-12-21 | 1992-06-09 | Nim, Incorporated | Apparatus for determining the concentration of a tissue pigment of known absorbance, in vivo, using the decay characteristics of scintered electromagnetic radiation |
US5127405A (en) | 1990-02-16 | 1992-07-07 | The Boc Group, Inc. | Biomedical fiber optic probe with frequency domain signal processing |
EP0512965A1 (en) | 1991-05-08 | 1992-11-11 | Xillix Technologies Corporation | Endoscopic imaging system for diseased tissue |
US5197470A (en) | 1990-07-16 | 1993-03-30 | Eastman Kodak Company | Near infrared diagnostic method and instrument |
US5311013A (en) | 1992-10-15 | 1994-05-10 | Abbott Laboratories | Optical fiber distribution system for an optical fiber sensor in a luminescent sensor system |
US5323775A (en) | 1991-09-13 | 1994-06-28 | Allergan, Inc. | Diagnostic method for determining precorneal retention time of ophthalmic formulations |
US5333044A (en) | 1992-11-24 | 1994-07-26 | The United States Of America As Represented By The Department Of Energy | Fluorescent image tracking velocimeter |
US5341805A (en) | 1993-04-06 | 1994-08-30 | Cedars-Sinai Medical Center | Glucose fluorescence monitor and method |
US5353790A (en) | 1992-01-17 | 1994-10-11 | Board Of Regents, The University Of Texas System | Method and apparatus for optical measurement of bilirubin in tissue |
US5419323A (en) | 1988-12-21 | 1995-05-30 | Massachusetts Institute Of Technology | Method for laser induced fluorescence of tissue |
US5421337A (en) * | 1989-04-14 | 1995-06-06 | Massachusetts Institute Of Technology | Spectral diagnosis of diseased tissue |
US5579773A (en) | 1994-09-30 | 1996-12-03 | Martin Marietta Energy Systems, Inc. | Laser-induced differential normalized fluorescence method for cancer diagnosis |
US5590660A (en) | 1994-03-28 | 1997-01-07 | Xillix Technologies Corp. | Apparatus and method for imaging diseased tissue using integrated autofluorescence |
US5628310A (en) | 1995-05-19 | 1997-05-13 | Joseph R. Lakowicz | Method and apparatus to perform trans-cutaneous analyte monitoring |
US5697373A (en) | 1995-03-14 | 1997-12-16 | Board Of Regents, The University Of Texas System | Optical method and apparatus for the diagnosis of cervical precancers using raman and fluorescence spectroscopies |
US5699795A (en) | 1995-03-31 | 1997-12-23 | Board Of Regents, The University Of Texas System | Optical probe for the detection of cervical neoplasia using fluorescence spectroscopy and apparatus incorporating same |
US5986271A (en) | 1997-07-03 | 1999-11-16 | Lazarev; Victor | Fluorescence imaging system |
US6070096A (en) | 1996-03-06 | 2000-05-30 | Fuji Photo Film Co., Ltd. | Fluorescence detecting apparatus |
US6178041B1 (en) | 1996-06-04 | 2001-01-23 | Carl Zeiss Jena Gmbh | Device for coupling the radiation of short-pulse lasers in an optical beam path of a microscope |
US6201989B1 (en) | 1997-03-13 | 2001-03-13 | Biomax Technologies Inc. | Methods and apparatus for detecting the rejection of transplanted tissue |
US6212425B1 (en) | 1995-09-26 | 2001-04-03 | Karl Storz Gmbh & Co., Kg | Apparatus for photodynamic diagnosis |
US6238348B1 (en) | 1997-07-22 | 2001-05-29 | Scimed Life Systems, Inc. | Miniature spectrometer system and method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0723146B1 (en) * | 1992-09-14 | 2004-05-06 | Sri International | Up-converting reporters for biological and other assays using laser excitation techniques |
US5720894A (en) * | 1996-01-11 | 1998-02-24 | The Regents Of The University Of California | Ultrashort pulse high repetition rate laser system for biological tissue processing |
DE69838813T2 (en) * | 1997-10-10 | 2008-11-27 | Boston Scientific Limited | Miniature spectrometer Formation |
US6110106A (en) * | 1998-06-24 | 2000-08-29 | Biomax Technologies, Inc. | Endoscopes and methods relating to direct viewing of a target tissue |
Patent Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4592361A (en) | 1982-06-28 | 1986-06-03 | The Johns Hopkins University | Electro-optical device and method for monitoring instantaneous singlet oxygen concentration produced during photoradiation using pulsed excitation and time domain signal processing |
US4576173A (en) | 1982-06-28 | 1986-03-18 | The Johns Hopkins University | Electro-optical device and method for monitoring instanteous singlet oxygen concentration produced during photoradiation using a CW excitation source |
US4895156A (en) | 1986-07-02 | 1990-01-23 | Schulze John E | Sensor system using fluorometric decay measurements |
US5119815A (en) | 1988-12-21 | 1992-06-09 | Nim, Incorporated | Apparatus for determining the concentration of a tissue pigment of known absorbance, in vivo, using the decay characteristics of scintered electromagnetic radiation |
US5419323A (en) | 1988-12-21 | 1995-05-30 | Massachusetts Institute Of Technology | Method for laser induced fluorescence of tissue |
US5115137A (en) | 1989-02-22 | 1992-05-19 | Spectraphos Ab | Diagnosis by means of fluorescent light emission from tissue |
US5421337A (en) * | 1989-04-14 | 1995-06-06 | Massachusetts Institute Of Technology | Spectral diagnosis of diseased tissue |
US5034613A (en) | 1989-11-14 | 1991-07-23 | Cornell Research Foundation, Inc. | Two-photon laser microscopy |
US5127405A (en) | 1990-02-16 | 1992-07-07 | The Boc Group, Inc. | Biomedical fiber optic probe with frequency domain signal processing |
US5197470A (en) | 1990-07-16 | 1993-03-30 | Eastman Kodak Company | Near infrared diagnostic method and instrument |
EP0512965A1 (en) | 1991-05-08 | 1992-11-11 | Xillix Technologies Corporation | Endoscopic imaging system for diseased tissue |
US5323775A (en) | 1991-09-13 | 1994-06-28 | Allergan, Inc. | Diagnostic method for determining precorneal retention time of ophthalmic formulations |
US5353790A (en) | 1992-01-17 | 1994-10-11 | Board Of Regents, The University Of Texas System | Method and apparatus for optical measurement of bilirubin in tissue |
US5311013A (en) | 1992-10-15 | 1994-05-10 | Abbott Laboratories | Optical fiber distribution system for an optical fiber sensor in a luminescent sensor system |
US5333044A (en) | 1992-11-24 | 1994-07-26 | The United States Of America As Represented By The Department Of Energy | Fluorescent image tracking velocimeter |
US5341805A (en) | 1993-04-06 | 1994-08-30 | Cedars-Sinai Medical Center | Glucose fluorescence monitor and method |
EP0920831A1 (en) | 1994-03-28 | 1999-06-09 | Xillix Technologies Corporation | Apparatus and method for imaging diseased tissue using integrated autofluorescence |
US5827190A (en) | 1994-03-28 | 1998-10-27 | Xillix Technologies Corp. | Endoscope having an integrated CCD sensor |
US5590660A (en) | 1994-03-28 | 1997-01-07 | Xillix Technologies Corp. | Apparatus and method for imaging diseased tissue using integrated autofluorescence |
US5579773A (en) | 1994-09-30 | 1996-12-03 | Martin Marietta Energy Systems, Inc. | Laser-induced differential normalized fluorescence method for cancer diagnosis |
US5697373A (en) | 1995-03-14 | 1997-12-16 | Board Of Regents, The University Of Texas System | Optical method and apparatus for the diagnosis of cervical precancers using raman and fluorescence spectroscopies |
US5699795A (en) | 1995-03-31 | 1997-12-23 | Board Of Regents, The University Of Texas System | Optical probe for the detection of cervical neoplasia using fluorescence spectroscopy and apparatus incorporating same |
US5628310A (en) | 1995-05-19 | 1997-05-13 | Joseph R. Lakowicz | Method and apparatus to perform trans-cutaneous analyte monitoring |
US6212425B1 (en) | 1995-09-26 | 2001-04-03 | Karl Storz Gmbh & Co., Kg | Apparatus for photodynamic diagnosis |
US6070096A (en) | 1996-03-06 | 2000-05-30 | Fuji Photo Film Co., Ltd. | Fluorescence detecting apparatus |
US6178041B1 (en) | 1996-06-04 | 2001-01-23 | Carl Zeiss Jena Gmbh | Device for coupling the radiation of short-pulse lasers in an optical beam path of a microscope |
US6201989B1 (en) | 1997-03-13 | 2001-03-13 | Biomax Technologies Inc. | Methods and apparatus for detecting the rejection of transplanted tissue |
US5986271A (en) | 1997-07-03 | 1999-11-16 | Lazarev; Victor | Fluorescence imaging system |
US6238348B1 (en) | 1997-07-22 | 2001-05-29 | Scimed Life Systems, Inc. | Miniature spectrometer system and method |
Non-Patent Citations (31)
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090235396A1 (en) * | 2000-06-19 | 2009-09-17 | University Of Washington | Integrated optical scanning image acquisition and display |
US8396535B2 (en) | 2000-06-19 | 2013-03-12 | University Of Washington | Integrated optical scanning image acquisition and display |
US7623908B2 (en) | 2003-01-24 | 2009-11-24 | The Board Of Trustees Of The University Of Illinois | Nonlinear interferometric vibrational imaging |
US20050168735A1 (en) * | 2003-01-24 | 2005-08-04 | Boppart Stephen A. | Nonlinear interferometric vibrational imaging |
US7702381B2 (en) | 2003-08-19 | 2010-04-20 | Cornell Research Foundation, Inc. | Optical fiber delivery and collection method for biological applications such as multiphoton microscopy, spectroscopy, and endoscopy |
US20050043636A1 (en) * | 2003-08-19 | 2005-02-24 | Gaeta Alexander L. | Optical fiber delivery and collection system for biological applications such as multiphoton microscopy, spectroscopy, and endoscopy |
US9554729B2 (en) | 2003-12-12 | 2017-01-31 | University Of Washington | Catheterscope 3D guidance and interface system |
US8382662B2 (en) | 2003-12-12 | 2013-02-26 | University Of Washington | Catheterscope 3D guidance and interface system |
US9226687B2 (en) | 2003-12-12 | 2016-01-05 | University Of Washington | Catheterscope 3D guidance and interface system |
US20050171433A1 (en) * | 2004-01-08 | 2005-08-04 | Boppart Stephen A. | Multi-functional plasmon-resonant contrast agents for optical coherence tomography |
US7610074B2 (en) | 2004-01-08 | 2009-10-27 | The Board Of Trustees Of The University Of Illinois | Multi-functional plasmon-resonant contrast agents for optical coherence tomography |
US20050259249A1 (en) * | 2004-01-27 | 2005-11-24 | Dombeck Daniel A | Nonlinear optical detection of fast cellular electrical activity |
US9161684B2 (en) | 2005-02-28 | 2015-10-20 | University Of Washington | Monitoring disposition of tethered capsule endoscope in esophagus |
US9872613B2 (en) | 2005-02-28 | 2018-01-23 | University Of Washington | Monitoring disposition of tethered capsule endoscope in esophagus |
US20070299309A1 (en) * | 2005-02-28 | 2007-12-27 | University Of Washington | Monitoring disposition of tethered capsule endoscope in esophagus |
US7586618B2 (en) | 2005-02-28 | 2009-09-08 | The Board Of Trustees Of The University Of Illinois | Distinguishing non-resonant four-wave-mixing noise in coherent stokes and anti-stokes Raman scattering |
US7725169B2 (en) | 2005-04-15 | 2010-05-25 | The Board Of Trustees Of The University Of Illinois | Contrast enhanced spectroscopic optical coherence tomography |
US8537203B2 (en) | 2005-11-23 | 2013-09-17 | University Of Washington | Scanning beam with variable sequential framing using interrupted scanning resonance |
WO2007084915A2 (en) * | 2006-01-17 | 2007-07-26 | University Of Washington | Scanning fiber-optic nonlinear optical imaging and spectroscopy endoscope |
WO2007084915A3 (en) * | 2006-01-17 | 2007-12-21 | Xingde Li | Scanning fiber-optic nonlinear optical imaging and spectroscopy endoscope |
US20070213618A1 (en) * | 2006-01-17 | 2007-09-13 | University Of Washington | Scanning fiber-optic nonlinear optical imaging and spectroscopy endoscope |
US7787129B2 (en) | 2006-01-31 | 2010-08-31 | The Board Of Trustees Of The University Of Illinois | Method and apparatus for measurement of optical properties in tissue |
US9561078B2 (en) | 2006-03-03 | 2017-02-07 | University Of Washington | Multi-cladding optical fiber scanner |
US20090024191A1 (en) * | 2006-03-03 | 2009-01-22 | University Of Washington | Multi-cladding optical fiber scanner |
US20070216908A1 (en) * | 2006-03-17 | 2007-09-20 | University Of Washington | Clutter rejection filters for optical doppler tomography |
US20070236782A1 (en) * | 2006-04-05 | 2007-10-11 | Pentax Corporation | Confocal endoscope system |
US7892168B2 (en) * | 2006-04-05 | 2011-02-22 | Hoya Corporation | Confocal endoscope system |
US7805183B2 (en) | 2006-06-22 | 2010-09-28 | Wisconsin Alumni Research Foundation | Stromal collagen in the diagnosis and characterization of breast cancer |
US7993921B2 (en) | 2006-07-26 | 2011-08-09 | National Institutes Of Health (Nih) | Cell cycle regulation and differentiation |
US20110085980A1 (en) * | 2006-07-26 | 2011-04-14 | The Board Of Trustees Of The Leland Stanford Junior University | Cell cycle regulation and differentiation |
US20090258423A1 (en) * | 2006-07-26 | 2009-10-15 | Dugas Jason | Cell cycle regulation and differentiation |
US7897359B2 (en) | 2006-07-26 | 2011-03-01 | Leland Standford Junior Univsersity | Cell cycle regulation and differentiation |
US20080058629A1 (en) * | 2006-08-21 | 2008-03-06 | University Of Washington | Optical fiber scope with both non-resonant illumination and resonant collection/imaging for multiple modes of operation |
US20080132834A1 (en) * | 2006-12-04 | 2008-06-05 | University Of Washington | Flexible endoscope tip bending mechanism using optical fibers as tension members |
US20080212867A1 (en) * | 2007-03-02 | 2008-09-04 | Provenzano Paolo P | Use of Endogenous Fluorescence to Identify Invading Metastatic Breast Tumor Cells |
US8144966B2 (en) | 2007-03-02 | 2012-03-27 | Wisconsin Alumni Research Foundation | Use of endogenous fluorescence to identify invading metastatic breast tumor cells |
US8840566B2 (en) | 2007-04-02 | 2014-09-23 | University Of Washington | Catheter with imaging capability acts as guidewire for cannula tools |
US20080243030A1 (en) * | 2007-04-02 | 2008-10-02 | University Of Washington | Multifunction cannula tools |
US20090323076A1 (en) * | 2007-05-03 | 2009-12-31 | University Of Washington | High resolution optical coherence tomography based imaging for intraluminal and interstitial use implemented with a reduced form factor |
US7952718B2 (en) | 2007-05-03 | 2011-05-31 | University Of Washington | High resolution optical coherence tomography based imaging for intraluminal and interstitial use implemented with a reduced form factor |
US20100299770A1 (en) * | 2007-06-12 | 2010-11-25 | Selkirk Stephen M | Targeted cell death |
US8704037B2 (en) | 2007-06-12 | 2014-04-22 | Case Western Reserve University | Targeted cell death |
US20090012406A1 (en) * | 2007-07-03 | 2009-01-08 | Llewellyn Michael E | Method and system of using intrinsic-based photosensing with high-speed line scanning for characterization of biological thick tissue including muscle |
US8897858B2 (en) | 2007-07-03 | 2014-11-25 | The Board Of Trustees Of The Leland Stanford Junior Univerity | System and method useful for sarcomere imaging via objective-based microscopy |
US8068899B2 (en) | 2007-07-03 | 2011-11-29 | The Board Of Trustees Of The Leland Stanford Junior University | Method and system of using intrinsic-based photosensing with high-speed line scanning for characterization of biological thick tissue including muscle |
US20100305436A1 (en) * | 2007-09-14 | 2010-12-02 | Light Sciences Oncology , Inc. | Systems, devices, and methods for photoactive assisted resection |
US20090137893A1 (en) * | 2007-11-27 | 2009-05-28 | University Of Washington | Adding imaging capability to distal tips of medical tools, catheters, and conduits |
US8983580B2 (en) | 2008-01-18 | 2015-03-17 | The Board Of Trustees Of The University Of Illinois | Low-coherence interferometry and optical coherence tomography for image-guided surgical treatment of solid tumors |
US7751057B2 (en) | 2008-01-18 | 2010-07-06 | The Board Of Trustees Of The University Of Illinois | Magnetomotive optical coherence tomography |
US8115934B2 (en) | 2008-01-18 | 2012-02-14 | The Board Of Trustees Of The University Of Illinois | Device and method for imaging the ear using optical coherence tomography |
US8894637B2 (en) | 2008-01-22 | 2014-11-25 | Board Of Regents, The University Of Texas System | Systems, devices and methods for imaging and surgery |
US20100286674A1 (en) * | 2008-01-22 | 2010-11-11 | Board Of Regents, The University Of Texas System | Systems, devices and methods for imaging and surgery |
US20100081915A1 (en) * | 2008-09-29 | 2010-04-01 | Searete Llc, Alimited Liability Corporation Of The State Of Delaware | Histological facilitation systems and methods |
US20100081927A1 (en) * | 2008-09-29 | 2010-04-01 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Histological facilitation systems and methods |
US20100081926A1 (en) * | 2008-09-29 | 2010-04-01 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Histological facilitation systems and methods |
US20100081924A1 (en) * | 2008-09-29 | 2010-04-01 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Histological facilitation systems and methods |
US20100081928A1 (en) * | 2008-09-29 | 2010-04-01 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Histological Facilitation systems and methods |
US20100081916A1 (en) * | 2008-09-29 | 2010-04-01 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware. | Histological facilitation systems and methods |
US9333036B2 (en) | 2010-01-22 | 2016-05-10 | Board Of Regents, The University Of Texas System | Systems, devices and methods for imaging and surgery |
Also Published As
Publication number | Publication date | Type |
---|---|---|
CA2398029A1 (en) | 2001-08-16 | application |
EP1259163A2 (en) | 2002-11-27 | application |
JP2004500197A (en) | 2004-01-08 | application |
US6580941B2 (en) | 2003-06-17 | grant |
WO2001059423A2 (en) | 2001-08-16 | application |
US20030191397A1 (en) | 2003-10-09 | application |
EP1259163A4 (en) | 2006-05-03 | application |
US20010029316A1 (en) | 2001-10-11 | application |
WO2001059423A3 (en) | 2002-02-28 | application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Novak et al. | In vivo flow cytometer for real-time detection and quantification of circulating cells | |
Monici | Cell and tissue autofluorescence research and diagnostic applications | |
Schomacker et al. | Ultraviolet laser-induced fluorescence of colonic polyps | |
Manoharan et al. | Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging | |
Dacosta et al. | New optical technologies for earlier endoscopic diagnosis of premalignant gastrointestinal lesions | |
US6405070B1 (en) | Detection of cancer using cellular autofluorescence | |
Loschenov et al. | Photodynamic therapy and fluorescence diagnostics | |
US20080312540A1 (en) | System and Method for Normalized Flourescence or Bioluminescence Imaging | |
US6665556B1 (en) | Method and apparatus for examining a tissue using the spectral wing emission therefrom induced by visible to infrared photoexcitation | |
US6240312B1 (en) | Remote-controllable, micro-scale device for use in in vivo medical diagnosis and/or treatment | |
US4541438A (en) | Localization of cancerous tissue by monitoring infrared fluorescence emitted by intravenously injected porphyrin tumor-specific markers excited by long wavelength light | |
US20080015446A1 (en) | Systems and methods for generating fluorescent light images | |
De Palma | Confocal laser endomicroscopy in the “in vivo” histological diagnosis of the gastrointestinal tract | |
Zavaleta et al. | A Raman-based endoscopic strategy for multiplexed molecular imaging | |
US20020049386A1 (en) | Multi-spectral fluorescence imaging and spectroscopy device | |
US20040162489A1 (en) | Method and apparatus for probabilistically classifying tissue in vitro and in vivo using fluorescence spectroscopy | |
US6201989B1 (en) | Methods and apparatus for detecting the rejection of transplanted tissue | |
Perry et al. | Two-photon and second harmonic microscopy in clinical and translational cancer research | |
König | Clinical multiphoton tomography | |
US6825928B2 (en) | Depth-resolved fluorescence instrument | |
Sun et al. | Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery | |
US5562100A (en) | Method for laser induced fluorescence of tissue | |
US20050107694A1 (en) | Method and system for ultrasonic tagging of fluorescence | |
US5842995A (en) | Spectroscopic probe for in vivo measurement of raman signals | |
US7346387B1 (en) | Methods for improved selectivity in photo-activation and detection of molecular diagnostic agents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: EXECUTIVE ORDER 9424, CONFIRMATORY LICENSE;ASSIGNOR:CORNELL UNIVERSITY;REEL/FRAME:021433/0256 Effective date: 20030616 |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 11 |
|
FPAY | Fee payment |
Year of fee payment: 12 |