US6794756B2 - Integrated circuit structure having low dielectric constant material and having silicon oxynitride caps over closely spaced apart metal lines - Google Patents
Integrated circuit structure having low dielectric constant material and having silicon oxynitride caps over closely spaced apart metal lines Download PDFInfo
- Publication number
- US6794756B2 US6794756B2 US10/153,011 US15301102A US6794756B2 US 6794756 B2 US6794756 B2 US 6794756B2 US 15301102 A US15301102 A US 15301102A US 6794756 B2 US6794756 B2 US 6794756B2
- Authority
- US
- United States
- Prior art keywords
- metal lines
- layer
- dielectric material
- silicon oxynitride
- silicon oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76822—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
- H01L21/76828—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76831—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76834—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76837—Filling up the space between adjacent conductive structures; Gap-filling properties of dielectrics
Definitions
- This invention relates to integrated circuit structures with reduced capacitance. More particularly, this invention relates to the formation of an integrated circuit structure with low dielectric constant dielectric material formed between horizontally closely spaced apart metal lines of an integrated circuit structure to reduce horizontal capacitance between closely spaced apart metal lines, while via poisoning in vias formed through dielectric material down to the metal lines is mitigated due to the presence of silicon oxynitride caps on the metal lines.
- the Trikon process is said to react methyl silane (CH 3 —SiH 3 ) with hydrogen peroxide (H 2 O 2 ) to form monosilicic acid which condenses on a cool wafer and is converted into an amorphous methyl-doped silicon oxide which is annealed at 400 C. to remove moisture.
- methyl silane CH 3 —SiH 3
- hydrogen peroxide H 2 O 2
- low k silicon oxide dielectric material having a high carbon doping level is formed in the high aspect ratio regions between closely spaced apart metal lines and then a second layer comprising a low k silicon oxide dielectric material having a lower carbon content is then deposited over the first layer and the metal lines.
- a void-free low k silicon oxide dielectric material is formed in the high aspect regions between closely spaced apart metal lines by one of several processes, including the process used to form the first low k silicon oxide dielectric material described in the previously cited Ser. No. 09/426,061 patent application.
- a second layer of low k silicon oxide dielectric material is then deposited over the first layer and the metal lines by a process which deposits at a rate higher than the deposition rate of the void-free dielectric material.
- both of the layers are formed in the same vacuum chamber without an intervening planarization step.
- a structure having a low k dielectric layer and a process for making same, wherein a dielectric layer is formed comprising low k silicon oxide dielectric material with void-free filling characteristics for high aspect ratio regions between closely spaced apart metal lines while mitigating the poisoning of vias subsequently formed in the dielectric layer down to the metal lines.
- a capping layer of silicon oxynitride is formed over horizontally closely spaced apart metal lines on an oxide layer of an integrated circuit structure formed on a semiconductor substrate.
- Low k silicon oxide dielectric material which exhibits void-free deposition properties in high aspect ratio regions between the closely spaced apart metal lines is then deposited over and between the metal lines and over the silicon oxynitride caps on the metal lines.
- the structure is planarized to bring the level of the low k material down to the level of the tops of the silicon oxynitride caps on the metal lines.
- a further layer of standard k dielectric material is then formed over the planarized void-free low k dielectric layer and the silicon oxynitride caps. Vias are then formed through the further dielectric layer and the silicon oxynitride caps down to the metal lines. Since the vias are not formed through the low k dielectric material, formation of the vias does not contribute to poisoning of the vias. However, the presence of the low k silicon oxide dielectric material between the horizontally closely spaced apart metal lines reduces the horizontal capacitance between such metal lines.
- FIG. 1 is a fragmentary vertical cross-sectional view of an integrated circuit structure with a composite layer formed on an oxide layer and a silicon oxynitride layer formed over the composite layer, with a resist mask formed over the silicon oxynitride layer.
- FIG. 2 is a fragmentary vertical cross-sectional view of the structure of FIG. 1 showing the silicon oxynitride layer etched through the resist mask.
- FIG. 3 is a fragmentary vertical cross-sectional view of the structure of FIG. 2 with the composite layer etched through the resist mask and the silicon oxynitride mask to form metal lines over the oxide layer.
- FIG. 4 is a fragmentary vertical cross-sectional view of the structure of FIG. 3 showing a low k silicon oxide dielectric material deposited over and between the metal lines after removal of the resist mask.
- FIG. 5 is a fragmentary vertical cross-sectional view of the structure of FIG. 4 after planarization of the low k silicon oxide dielectric material down to the top of the silicon oxynitride caps on the metal lines.
- FIG. 6 is a fragmentary vertical cross-sectional view of the structure of FIG. 5 after deposition of further dielectric material over the planarized low k silicon oxide dielectric material and the silicon oxynitride caps.
- FIG. 7 is a fragmentary vertical cross-sectional view of the structure of FIG. 6 after formation of vias through the further dielectric material and the silicon oxynitride caps down to the metal lines.
- FIG. 8 is a flow sheet illustrating the process of the invention.
- the invention provides a structure and process wherein horizontal capacitance developed between closely spaced apart metal lines of an integrated circuit structure can be reduced without contributing to poisoning of vias subsequently formed down to such metal lines through dielectric material formed over the metal lines.
- a capping layer of insulation material such as silicon oxynitride is formed over horizontally closely spaced apart metal lines on an oxide layer of an integrated circuit structure formed on a semiconductor substrate.
- Low k silicon oxide dielectric material which exhibits void-free deposition properties in high aspect ratio regions between the closely spaced apart metal lines is then deposited over and between the metal lines and over the silicon oxynitride caps on the metal lines.
- the structure is planarized to bring the level of the low k material down to the level of the tops of the silicon oxynitride caps on the metal lines.
- a further layer of standard dielectric material is then formed over the planarized void-free low k silicon oxide dielectric layer and the silicon oxynitride caps. Vias are then formed through the further dielectric layer and the silicon oxynitride caps down to the metal lines. Since the vias are not formed through the low k dielectric material, formation of the vias does not contribute to poisoning of the vias. However, the presence of the low k silicon oxide dielectric material between the horizontally closely spaced apart metal lines reduces the horizontal capacitance between such metal lines.
- low k is intended to define a dielectric constant of 3.5 or less, preferably 3.0 or less, while the term “standard k”, as used herein is intended to define a dielectric constant of over 3.5, typically about 4.0.
- high aspect ratio as used herein to define the space between closely spaced apart metal lines, is intended to define a height to width ratio of at least 2, and usually about 3.
- closely spaced apart metal lines as used herein is therefore intended to define metal lines on the same level having a horizontal space between them which has a “high aspect ratio”, as that term is defined above.
- an integrated circuit structure 2 is shown with an oxide layer 6 such as a layer of silicon oxide conventionally formed over integrated circuit structure 2 .
- Integrated circuit 2 includes semiconductor devices such as transistors formed in a semiconductor substrate, with contact openings (not shown) formed through oxide layer 6 from contacts on such devices.
- Structure 2 may further comprises lower layers of metal lines or interconnects formed therein with vias (not shown) formed through oxide layer 6 from such lower metal lines.
- a conventional electrically conductive composite layer 10 which typically may comprise a first layer 12 of a metal such as titanium to provide a conductive metal contact to underlying electrically conductive materials of the integrated circuit structure (such as metal-filled vias or contact openings), and a second layer 14 of a material such as titanium nitride which serves as a protective or barrier layer of electrically conductive material to isolate main electrically conductive metal layer 16 from interaction with underlying materials such as silicon or the titanium layer.
- main electrically conductive metal layer 16 will comprise a metal or metals such as aluminum or an aluminum/copper alloy.
- Top layer 18 also typically formed of titanium nitride in the illustrated embodiment, serves the same purpose as titanium nitride layer 14 , i.e., to provide an electrically conductive layer which will metallurgically isolate main aluminum layer 16 from other materials in the integrated circuit structure.
- composite layer 10 is illustrated and described as a typical four layer composite layer, as is well known to those skilled in the art, other combinations of layers of metals and electrically conductive metal compounds could be used for the formation of electrically conductive composite layer 10 in accordance with the invention, and the use of the term “composite layer” should not, therefore, be construed as limited to the four illustrated electrically conductive layers.
- a silicon oxynitride layer 20 is formed over composite layer 10 .
- Layer 20 serves multifunctional purposes in the formation of the metal lines and dielectric layer over and between the lines as will be described.
- silicon oxynitride layer 20 acts as an antireflective coating (ARC) layer for subsequent lithography used to form the metal lines. This is a very useful function for layer 20 since it permits the thinning of underlying titanium nitride layer 18 which previously served the dual function of metallurgically isolating main aluminum layer 16 from other materials and as an ARC layer.
- ARC antireflective coating
- Silicon oxynitride layer 20 preferably ranges in thickness either from about 20 nm to about 40 nm or from about 80 nm to about 100 nm. These ranges have been determined to be optimum for the desired optical properties of the silicon oxynitride layer. and also provide an adequate thickness for the CMP stop layer.
- Silicon oxynitride layer 20 may be formed over titanium nitride upper barrier layer 18 by PECVD using SiH 4 , N 2 O, and NH 3 as the sources of silicon, oxygen, and nitrogen. The deposition is carried out at an elevated temperature of about 400 C., and at a pressure of about 2-3 Torr.
- a resist mask 30 which is patterned to form a series of metal lines or interconnects from underlying composite layer 10 .
- silicon oxynitride layer 20 is first etched through the openings in resist mask 30 to reproduce the pattern of openings in silicon oxynitride layer 20 .
- a plasma etcher using a CHF 3 and O 2 etch system may be used for this selective etching of silicon oxynitride layer 20 .
- FIG. 2 shows the result of this etching step wherein the pattern in resist mask 30 has now been reproduced in silicon oxynitride layer 20 , as shown at 20 a - 20 d in FIG. 2 .
- silicon oxynitride portions 20 a - 20 d to act as an etch mask for composite layer 10 which constitutes the second advantage for the use of silicon oxynitride layer 20 in the structure of the invention.
- the use of silicon oxynitride layer 20 as an etch mask means that resist mask 30 can be initially constructed thinner (e.g., about 4000 ⁇ instead of about 6000 ⁇ ) than if only resist mask 30 were to be used for the etching of composite layer 10 .
- the formation of a thinner resist mask 30 results in more accurate formation of resist mask 30 .
- the underlying layers comprising composite layer 10 may be etched through resist mask 30 and the openings between remaining portions 20 a - 20 d of layer 20 (i.e., through the etch mask formed by the previous etching of layer 20 ).
- This etching of the four illustrated layers comprising composite layer 10 forms electrically conductive composite lines which will herein after be referred to and illustrated as metal lines 10 a - 10 d .
- Metal lines 10 a - 10 d are capped by silicon oxynitride portions or caps 20 a - 20 d , as shown in FIG. 3 .
- metal lines includes the presence of layers of electrically conductive metal compounds such as titanium nitride. Therefore, it will be understood that the term “metal lines”, as used herein, is not limited to only metals, but includes electrically conductive metal compounds as well.
- This etching of layers 12 , 14 , 16 , and 18 comprising composite layer 10 may be carried out by first etching titanium nitride layer 18 , using Cl 2 and BCl 3 etch chemistry, then etching aluminum layer 16 using the same etch chemistry, and then etching titanium nitride layer 14 with the same etchant chemistry, and then finally etching titanium layer 12 again using Cl 2 and BCl 3 etch chemistry, with the etch stopping at oxide layer 6 .
- Such a conventional etchant system which is selective to the resist mask is also selective to the silicon oxynitride mask as well. That is, for the etchant system just described, the respective materials (titanium nitride, aluminum, and titanium metal) will each etch at a much faster rate than will the silicon oxynitride etch mask.
- Resist layer 30 is then removed by a conventional ashing system, leaving on oxide layer 6 a system of metal lines, each capped with silicon oxynitride, as exemplified by the metal lines 10 a - 10 d capped by silicon oxynitride caps 20 a - 20 d shown in FIG. 3 .
- a protective or barrier layer 38 of conventional (standard k) dielectric material is deposited over the entire structure to protect the subsequently deposited low k silicon oxide dielectric material to be described below from direct contact with the underlying metal lines.
- Barrier layer 38 may range in thickness from about 3 nm (the minimum amount for the desired protection) up to a maximum thickness of about 10 nm (beyond which the benefits of the low k dielectric material to be formed thereover will be negatively impacted).
- Low k silicon oxide dielectric layer 40 comprises a silicon oxide dielectric material having a dielectric constant of 3.5 or less, preferably 3.0 or less, and capable of forming void-free dielectric material in the regions between closely spaced apart metal lines, i.e., in openings having a high aspect ratio of at least 2, usually at least 3.
- Such void-free low k silicon oxide dielectric material may be deposited between metal lines 10 a - 10 d and over caps 20 a - 20 d by reacting hydrogen peroxide with a carbon-substituted silane such as methyl silane, as described in the aforementioned article by L. Peters, and described in general for silane and peroxide reactions in Dobson U.S. Pat. No. 5,874,367, the subject matter of which is hereby incorporated by reference.
- the void-free low k silicon oxide dielectric material may also be deposited by reacting a mild oxidant such as hydrogen peroxide with the carbon-substituted silane materials disclosed in Aronowitz et al. U.S. Pat. No. 6,303,047, assigned to the assignee of this application, the subject matter of which is also hereby incorporated by reference.
- Void-free low k silicon oxide dielectric layer 40 is deposited in sufficient quantity to completely fill all of the space between metal lines 10 a - 10 d . While it is not required that low k dielectric layer 40 cover silicon oxynitride caps 20 a - 20 d , the deposition of a sufficient amount of low k dielectric layer 40 to cover caps 20 a - 20 d insures that the spaces between metal lines 10 a - 10 d , i.e., the regions where it is desirable to suppress horizontal capacitance, are completely filled with the low k silicon oxide dielectric material. Otherwise, such portions between metal lines 10 a - 10 d not filled with low k dielectric material will be filled with conventional (standard k) dielectric material, as will be explained below, thus increasing the horizontal capacitance between the metal lines.
- the structure is subject to an anneal or heat-treatment prior to planarization, such as by chemical mechanical polishing (CMP).
- CMP chemical mechanical polishing
- the structure may be removed from the deposition reactor and heat treated at a temperature of between about 300 C. to about 500 C., typically from about 400 C. to about 450 C. for about 2-5 minutes, i.e., subject to a rapid thermal anneal (RTA).
- RTA rapid thermal anneal
- Conventional annealing, i.e., baking at the same temperature for up to 60 minutes, may also be used, but is not preferred due to the adverse effect on the thermal budget of the structure.
- the annealed structure is then moved to a planarization chamber or apparatus where all of the low k dielectric material on the upper surface of silicon oxynitride caps 20 a - 20 d is removed, leaving only low k silicon oxide dielectric material 40 a - 40 c in the respective regions between metal lines 10 a - 10 d , as shown in FIG. 5 .
- Such excess low k dielectric material can be removed by a chemical mechanical polishing (CMP) process, using a KOH-based oxide CMP slurry which is selective to silicon oxynitride, i.e., will etch the low k silicon oxide dielectric material of layer 40 in preference to silicon oxynitride.
- CMP chemical mechanical polishing
- the low k silicon oxide dielectric material is then removed by the CMP process until the top surface of the silicon oxynitride caps 20 a - 20 d is exposed which then functions as an etch stop. This constitutes yet a third function of silicon oxynitride caps 20 a - 20 d.
- the structure After planarization of the structure by removal of the excess low k dielectric material, the structure is moved to a deposition apparatus where a further layer 50 of conventional (standard k) silicon oxide dielectric material is deposited over the planarized low k silicon oxide dielectric material of layer 40 and over the tops of silicon oxynitride caps 20 a - 20 d , as shown in FIG. 6 .
- a further layer 50 of conventional (standard k) silicon oxide dielectric material is deposited over the planarized low k silicon oxide dielectric material of layer 40 and over the tops of silicon oxynitride caps 20 a - 20 d , as shown in FIG. 6 .
- standard k silicon oxide dielectric material is deposited over planarized low k dielectric layer 40 by any conventional deposition process including, by way of example only, TEOS (tetraethyl orthosilicate) and O 2 /O 3 , fluorinated silicon glass (FSG) using high density plasma (HDP), and plasma enhanced chemical vapor deposition (PECVD) using silane and O 2 .
- the thickness of layer 50 will depend upon the desired overall thickness of dielectric material separating metal lines 10 a - 10 d from the next layer of integrated circuit material such as another layer of metal lines.
- the thickness of standard k silicon oxide dielectric layer 50 deposited over the structure will range from about 300 nm to about 700 nm.
- an optional further planarization step may be carried out if the process chosen for deposition of dielectric layer 50 doe not result in a planarized top surface on layer 50 .
- a via resist mask (not shown) may then be formed over silicon oxide dielectric layer 50 and vias 60 may then be cut through dielectric layer 50 and underlying silicon oxynitride caps 20 a - 20 d to the tops of metal lines 10 a - 10 d , as shown in FIG. 7 .
- Vias 60 are etched using, for example, a CF 4 and CHF 3 plasma etch system to etch oxide layer 50 down to the top surface of silicon oxynitride caps 20 a - 20 d .
- the etchant is then changed to a CHF 3 and O 2 etchant system to etch through the exposed portions of silicon oxynitride caps 20 a - 20 d down to metal lines 10 a - 10 d .
- Vias 60 may then be filled with appropriate electrically conductive filler material, e.g, a titanium nitride liner and a tungsten filler material, as is well known to those skilled in the art.
- the resultant structure is formed with low k silicon oxide dielectric material occupying the entire region between the metal lines so that horizontal capacitance between the closely spaced apart metal lines is suppressed or reduced.
- the silicon oxynitride cap material on the upper surfaces of the metal lines, functioning as a buffer material between sidewalls of the vias and the low k silicon oxide dielectric material, the low k silicon oxide dielectric material can be deposited in the regions between closely spaced apart metal lines up to the very top of the metal lines without surfaces of such low k silicon oxide dielectric material becoming subsequently exposed by formation of the vias down to the metal lines.
- Via poisoning due to exposure of portions of the low k silicon oxide dielectric material during via formation is thereby suppressed or eliminated, because the sidewalls of the vias only cut through the layer of standard k silicon oxide material and the silicon oxynitride buffer material, i.e., the vias do not pass through the low k silicon oxide dielectric material.
- a 90 nm silicon oxynitride layer may be deposited over an electrically conductive composite layer previously formed over an oxide layer on an eight inch diameter silicon substrate by plasma enhanced chemical vapor deposition (PECVD), using SiH 4 , N 2 O, and NH 3 gases.
- the underlying composite layer can consist of a titanium bottom layer, a lower titanium nitride barrier layer over the titanium layer, a main aluminum/copper alloy layer, and a top titanium nitride barrier layer.
- a resist mask, patterned to form a series of metal lines or interconnects, is then formed over the silicon oxynitride layer.
- the silicon oxynitride layer is then etched through the resist mask using a CHF 3 and O 2 etch system to expose the underlying titanium nitride top barrier layer, i.e., the uppermost layer of the electrically conductive composite layer.
- the titanium nitride layer is then etched through to the aluminum/copper alloy layer, using a Cl 2 and BCl 3 etch system selective to silicon oxynitride to thereby permit the previously etched silicon oxynitride layer to function as a mask.
- the same etch system is then used to etch the aluminum/copper alloy layer, the lower titanium nitride barrier layer, and the titanium layer, with the etch stopping when the underlying oxide layer is reached.
- the result will be a pattern of silicon nitride-capped metal lines having a horizontal spacing there between of about 200 nm, and a height of about 500 nm, resulting in regions between the closely spaced apart metal lines having an aspect ratio of about 2.5.
- the resist mask can be removed with a conventional ashing process, i.e., using O 2 with a plasma.
- a thin barrier layer of silicon oxide can then be deposited over the structure by PECVD to a thickness of about 3 nm, again using SiH 4 , N 2 O, and NH 3 gases.
- a layer of low k silicon oxide dielectric material can then be deposited in the regions between the closely spaced apart metal lines by flowing carbon-doped silane and hydrogen peroxide into the deposition chamber, while the chamber is maintained at a temperature of 0 C. until the deposition of low k silicon oxide dielectric material reaches the top of the silicon oxynitride caps on the metal lines.
- the structure is then heat treated for 3 minutes at a temperature of between about 400-450° C., following which the structure can be planarized by CMP.
- a 500 nm layer of standard k silicon oxide dielectric material is then deposited over the structure using PECVD.
- the substrate is removed from the reactor.
- a via resist mask is then applied to the upper surface of the PECVD oxide layer. Vias are cut through the PECVD standard k silicon oxide layer, using CF 4 , and O 2 , stopping at the silicon oxynitride cap on the metal line.
- the etchant system is then changed to a CHF 3 and O 2 etch system to etch silicon oxynitride selective to titanium nitride until the bottom of the vias reaches the titanium nitride top barrier layer of the metal lines.
- the vias can then be filled by first sputtering a protective coating of titanium nitride over the surfaces of the vias and then filling the vias with tungsten.
- SEM scanning electron microscopy
- the invention provides a structure, and process for forming same wherein low k silicon oxide dielectric material occupies the entire region between closely spaced apart metal lines so that horizontal capacitance between the closely spaced apart metal lines is suppressed or reduced, while at the same time, via poisoning can also be suppressed or eliminated due to the presence of the silicon oxynitride cap material on the upper surfaces of the metal lines and the formation of standard k silicon oxide dielectric material above the silicon oxynitride caps.
- This silicon oxynitride cap layer on the metal lines functions as a buffer material between the sidewalls of the vias and the low k silicon oxide dielectric material.
- the low k silicon oxide dielectric material can be deposited in the regions between closely spaced apart metal lines up to the very top of the metal lines without surfaces of such low k silicon oxide dielectric material becoming subsequently exposed by formation of the vias down to the metal lines. Since the vias do not pass through the low k silicon oxide dielectric material, via poisoning due to exposure of portions of the low k silicon oxide dielectric material during via formation is thereby suppressed or eliminated, because the sidewalls of the vias only cut through the layer of standard k silicon oxide dielectric material and the silicon oxynitride buffer material.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/153,011 US6794756B2 (en) | 1999-10-22 | 2002-05-21 | Integrated circuit structure having low dielectric constant material and having silicon oxynitride caps over closely spaced apart metal lines |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/425,552 US6423628B1 (en) | 1999-10-22 | 1999-10-22 | Method of forming integrated circuit structure having low dielectric constant material and having silicon oxynitride caps over closely spaced apart metal lines |
US10/153,011 US6794756B2 (en) | 1999-10-22 | 2002-05-21 | Integrated circuit structure having low dielectric constant material and having silicon oxynitride caps over closely spaced apart metal lines |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/425,552 Division US6423628B1 (en) | 1999-10-22 | 1999-10-22 | Method of forming integrated circuit structure having low dielectric constant material and having silicon oxynitride caps over closely spaced apart metal lines |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020135040A1 US20020135040A1 (en) | 2002-09-26 |
US6794756B2 true US6794756B2 (en) | 2004-09-21 |
Family
ID=23687059
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/425,552 Expired - Lifetime US6423628B1 (en) | 1999-10-22 | 1999-10-22 | Method of forming integrated circuit structure having low dielectric constant material and having silicon oxynitride caps over closely spaced apart metal lines |
US10/153,011 Expired - Lifetime US6794756B2 (en) | 1999-10-22 | 2002-05-21 | Integrated circuit structure having low dielectric constant material and having silicon oxynitride caps over closely spaced apart metal lines |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/425,552 Expired - Lifetime US6423628B1 (en) | 1999-10-22 | 1999-10-22 | Method of forming integrated circuit structure having low dielectric constant material and having silicon oxynitride caps over closely spaced apart metal lines |
Country Status (1)
Country | Link |
---|---|
US (2) | US6423628B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030060039A1 (en) * | 1998-09-03 | 2003-03-27 | Micron Technology, Inc. | Method of passivating an oxide surface subjected to a conductive material anneal |
US20060038293A1 (en) * | 2004-08-23 | 2006-02-23 | Rueger Neal R | Inter-metal dielectric fill |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7015134B2 (en) * | 1999-11-02 | 2006-03-21 | Advanced Micro Devices, Inc. | Method for reducing anti-reflective coating layer removal during removal of photoresist |
JP2002075993A (en) * | 2000-06-15 | 2002-03-15 | Mitsubishi Electric Corp | Method of manufacturing semiconductor device |
US6653193B2 (en) * | 2000-12-08 | 2003-11-25 | Micron Technology, Inc. | Resistance variable device |
US6638820B2 (en) * | 2001-02-08 | 2003-10-28 | Micron Technology, Inc. | Method of forming chalcogenide comprising devices, method of precluding diffusion of a metal into adjacent chalcogenide material, and chalcogenide comprising devices |
US6727192B2 (en) | 2001-03-01 | 2004-04-27 | Micron Technology, Inc. | Methods of metal doping a chalcogenide material |
US6818481B2 (en) | 2001-03-07 | 2004-11-16 | Micron Technology, Inc. | Method to manufacture a buried electrode PCRAM cell |
US6734455B2 (en) | 2001-03-15 | 2004-05-11 | Micron Technology, Inc. | Agglomeration elimination for metal sputter deposition of chalcogenides |
US7102150B2 (en) | 2001-05-11 | 2006-09-05 | Harshfield Steven T | PCRAM memory cell and method of making same |
EP1271631A1 (en) * | 2001-06-29 | 2003-01-02 | Interuniversitair Micro-Elektronica Centrum Vzw | A method for producing semiconductor devices using chemical mechanical polishing |
US6737312B2 (en) | 2001-08-27 | 2004-05-18 | Micron Technology, Inc. | Method of fabricating dual PCRAM cells sharing a common electrode |
US6881623B2 (en) * | 2001-08-29 | 2005-04-19 | Micron Technology, Inc. | Method of forming chalcogenide comprising devices, method of forming a programmable memory cell of memory circuitry, and a chalcogenide comprising device |
US6784018B2 (en) * | 2001-08-29 | 2004-08-31 | Micron Technology, Inc. | Method of forming chalcogenide comprising devices and method of forming a programmable memory cell of memory circuitry |
US6955940B2 (en) | 2001-08-29 | 2005-10-18 | Micron Technology, Inc. | Method of forming chalcogenide comprising devices |
US6709958B2 (en) * | 2001-08-30 | 2004-03-23 | Micron Technology, Inc. | Integrated circuit device and fabrication using metal-doped chalcogenide materials |
US6646902B2 (en) | 2001-08-30 | 2003-11-11 | Micron Technology, Inc. | Method of retaining memory state in a programmable conductor RAM |
US6815818B2 (en) | 2001-11-19 | 2004-11-09 | Micron Technology, Inc. | Electrode structure for use in an integrated circuit |
US6791859B2 (en) * | 2001-11-20 | 2004-09-14 | Micron Technology, Inc. | Complementary bit PCRAM sense amplifier and method of operation |
US6909656B2 (en) * | 2002-01-04 | 2005-06-21 | Micron Technology, Inc. | PCRAM rewrite prevention |
US6791885B2 (en) | 2002-02-19 | 2004-09-14 | Micron Technology, Inc. | Programmable conductor random access memory and method for sensing same |
US6809362B2 (en) | 2002-02-20 | 2004-10-26 | Micron Technology, Inc. | Multiple data state memory cell |
US7151273B2 (en) | 2002-02-20 | 2006-12-19 | Micron Technology, Inc. | Silver-selenide/chalcogenide glass stack for resistance variable memory |
US6847535B2 (en) | 2002-02-20 | 2005-01-25 | Micron Technology, Inc. | Removable programmable conductor memory card and associated read/write device and method of operation |
US6849868B2 (en) | 2002-03-14 | 2005-02-01 | Micron Technology, Inc. | Methods and apparatus for resistance variable material cells |
US6751114B2 (en) * | 2002-03-28 | 2004-06-15 | Micron Technology, Inc. | Method for programming a memory cell |
US6864500B2 (en) * | 2002-04-10 | 2005-03-08 | Micron Technology, Inc. | Programmable conductor memory cell structure |
US6731528B2 (en) | 2002-05-03 | 2004-05-04 | Micron Technology, Inc. | Dual write cycle programmable conductor memory system and method of operation |
US6890790B2 (en) * | 2002-06-06 | 2005-05-10 | Micron Technology, Inc. | Co-sputter deposition of metal-doped chalcogenides |
US6825135B2 (en) | 2002-06-06 | 2004-11-30 | Micron Technology, Inc. | Elimination of dendrite formation during metal/chalcogenide glass deposition |
US7015494B2 (en) | 2002-07-10 | 2006-03-21 | Micron Technology, Inc. | Assemblies displaying differential negative resistance |
US6864521B2 (en) | 2002-08-29 | 2005-03-08 | Micron Technology, Inc. | Method to control silver concentration in a resistance variable memory element |
US6831019B1 (en) | 2002-08-29 | 2004-12-14 | Micron Technology, Inc. | Plasma etching methods and methods of forming memory devices comprising a chalcogenide comprising layer received operably proximate conductive electrodes |
US7364644B2 (en) | 2002-08-29 | 2008-04-29 | Micron Technology, Inc. | Silver selenide film stoichiometry and morphology control in sputter deposition |
US6867996B2 (en) * | 2002-08-29 | 2005-03-15 | Micron Technology, Inc. | Single-polarity programmable resistance-variable memory element |
US6813178B2 (en) * | 2003-03-12 | 2004-11-02 | Micron Technology, Inc. | Chalcogenide glass constant current device, and its method of fabrication and operation |
US7022579B2 (en) * | 2003-03-14 | 2006-04-04 | Micron Technology, Inc. | Method for filling via with metal |
US7050327B2 (en) | 2003-04-10 | 2006-05-23 | Micron Technology, Inc. | Differential negative resistance memory |
US6961277B2 (en) | 2003-07-08 | 2005-11-01 | Micron Technology, Inc. | Method of refreshing a PCRAM memory device |
US6903361B2 (en) * | 2003-09-17 | 2005-06-07 | Micron Technology, Inc. | Non-volatile memory structure |
US7012021B2 (en) * | 2004-01-29 | 2006-03-14 | Taiwan Semiconductor Mfg | Method for end point detection polysilicon chemical mechanical polishing in an anti-fuse memory device |
US7583551B2 (en) | 2004-03-10 | 2009-09-01 | Micron Technology, Inc. | Power management control and controlling memory refresh operations |
US7326950B2 (en) | 2004-07-19 | 2008-02-05 | Micron Technology, Inc. | Memory device with switching glass layer |
US7354793B2 (en) | 2004-08-12 | 2008-04-08 | Micron Technology, Inc. | Method of forming a PCRAM device incorporating a resistance-variable chalocogenide element |
US7365411B2 (en) | 2004-08-12 | 2008-04-29 | Micron Technology, Inc. | Resistance variable memory with temperature tolerant materials |
US7374174B2 (en) | 2004-12-22 | 2008-05-20 | Micron Technology, Inc. | Small electrode for resistance variable devices |
US7317200B2 (en) | 2005-02-23 | 2008-01-08 | Micron Technology, Inc. | SnSe-based limited reprogrammable cell |
US7709289B2 (en) | 2005-04-22 | 2010-05-04 | Micron Technology, Inc. | Memory elements having patterned electrodes and method of forming the same |
US7427770B2 (en) | 2005-04-22 | 2008-09-23 | Micron Technology, Inc. | Memory array for increased bit density |
US7274034B2 (en) | 2005-08-01 | 2007-09-25 | Micron Technology, Inc. | Resistance variable memory device with sputtered metal-chalcogenide region and method of fabrication |
US7332735B2 (en) | 2005-08-02 | 2008-02-19 | Micron Technology, Inc. | Phase change memory cell and method of formation |
US7579615B2 (en) | 2005-08-09 | 2009-08-25 | Micron Technology, Inc. | Access transistor for memory device |
US7251154B2 (en) | 2005-08-15 | 2007-07-31 | Micron Technology, Inc. | Method and apparatus providing a cross-point memory array using a variable resistance memory cell and capacitance |
US7560723B2 (en) | 2006-08-29 | 2009-07-14 | Micron Technology, Inc. | Enhanced memory density resistance variable memory cells, arrays, devices and systems including the same, and methods of fabrication |
US7833893B2 (en) * | 2007-07-10 | 2010-11-16 | International Business Machines Corporation | Method for forming conductive structures |
US8467236B2 (en) | 2008-08-01 | 2013-06-18 | Boise State University | Continuously variable resistor |
US8828861B2 (en) * | 2010-08-20 | 2014-09-09 | Macronix International Co., Ltd. | Method for fabricating conductive lines of a semiconductor device |
US10770562B1 (en) | 2019-03-01 | 2020-09-08 | International Business Machines Corporation | Interlayer dielectric replacement techniques with protection for source/drain contacts |
US11024536B2 (en) | 2019-04-18 | 2021-06-01 | International Business Machines Corporation | Contact interlayer dielectric replacement with improved SAC cap retention |
US11244914B2 (en) * | 2020-05-05 | 2022-02-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bond pad with enhanced reliability |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5302233A (en) | 1993-03-19 | 1994-04-12 | Micron Semiconductor, Inc. | Method for shaping features of a semiconductor structure using chemical mechanical planarization (CMP) |
US5708303A (en) | 1994-09-15 | 1998-01-13 | Texas Instruments Incorporated | Semiconductor device having damascene interconnects |
US5818111A (en) | 1997-03-21 | 1998-10-06 | Texas Instruments Incorporated | Low capacitance interconnect structures in integrated circuits using a stack of low dielectric materials |
US5821621A (en) | 1995-10-12 | 1998-10-13 | Texas Instruments Incorporated | Low capacitance interconnect structure for integrated circuits |
US5858870A (en) * | 1996-12-16 | 1999-01-12 | Chartered Semiconductor Manufacturing, Ltd. | Methods for gap fill and planarization of intermetal dielectrics |
US5913140A (en) | 1996-12-23 | 1999-06-15 | Lam Research Corporation | Method for reduction of plasma charging damage during chemical vapor deposition |
WO1999041423A2 (en) | 1998-02-11 | 1999-08-19 | Applied Materials, Inc. | Plasma processes for depositing low dielectric constant films |
US5990013A (en) | 1996-12-04 | 1999-11-23 | France Telecom | Process for treating a semiconductor substrate comprising a surface-treatment step |
US6057242A (en) * | 1996-03-29 | 2000-05-02 | Nec Corporation | Flat interlayer insulating film suitable for multi-layer wiring |
US6093966A (en) * | 1998-03-20 | 2000-07-25 | Motorola, Inc. | Semiconductor device with a copper barrier layer and formation thereof |
US6114766A (en) * | 1997-12-18 | 2000-09-05 | Advanced Micro Devices, Inc. | Integrated circuit with metal features presenting a larger landing area for vias |
US6191050B1 (en) | 1996-12-19 | 2001-02-20 | Intel Corporation | Interlayer dielectric with a composite dielectric stack |
US6303192B1 (en) * | 1998-07-22 | 2001-10-16 | Philips Semiconductor Inc. | Process to improve adhesion of PECVD cap layers in integrated circuits |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3012861A (en) | 1960-01-15 | 1961-12-12 | Du Pont | Production of silicon |
US3178392A (en) | 1962-04-09 | 1965-04-13 | Rohm & Haas | Heterocyclic and linear siliconmethylene and polysiloxane compounds containing siliconmethylene units and their preparation |
US3652331A (en) | 1968-03-22 | 1972-03-28 | Shumpei Yamazaki | Process for forming a film on the surface of a substrate by a gas phase |
US3920865A (en) | 1969-03-29 | 1975-11-18 | Degussa | Process of hydrophorizing highly dispersed metal or metalloid oxides |
US3832202A (en) | 1972-08-08 | 1974-08-27 | Motorola Inc | Liquid silica source for semiconductors liquid silica source for semiconductors |
US4771328A (en) | 1983-10-13 | 1988-09-13 | International Business Machine Corporation | Semiconductor device and process |
JPS633437A (en) | 1986-06-23 | 1988-01-08 | Sony Corp | Manufacture of semiconductor device |
US4705725A (en) | 1986-11-28 | 1987-11-10 | E. I. Du Pont De Nemours And Company | Substrates with sterically-protected, stable, covalently-bonded organo-silane films |
US5314845A (en) | 1989-09-28 | 1994-05-24 | Applied Materials, Inc. | Two step process for forming void-free oxide layer over stepped surface of semiconductor wafer |
JP2874297B2 (en) | 1989-12-18 | 1999-03-24 | 東ソー株式会社 | Packing material for reversed phase chromatography and method for producing the same |
JPH0677402A (en) | 1992-07-02 | 1994-03-18 | Natl Semiconductor Corp <Ns> | Dielectric structure for semiconductor device and its manufacture |
US5874367A (en) | 1992-07-04 | 1999-02-23 | Trikon Technologies Limited | Method of treating a semi-conductor wafer |
US5580429A (en) | 1992-08-25 | 1996-12-03 | Northeastern University | Method for the deposition and modification of thin films using a combination of vacuum arcs and plasma immersion ion implantation |
US5376595A (en) | 1992-08-28 | 1994-12-27 | Allied-Signal Inc. | Silicon carboxide ceramics from spirosiloxanes |
US5364800A (en) | 1993-06-24 | 1994-11-15 | Texas Instruments Incorporated | Varying the thickness of the surface silicon layer in a silicon-on-insulator substrate |
US5470801A (en) | 1993-06-28 | 1995-11-28 | Lsi Logic Corporation | Low dielectric constant insulation layer for integrated circuit structure and method of making same |
JP3391410B2 (en) | 1993-09-17 | 2003-03-31 | 富士通株式会社 | How to remove resist mask |
US5558718A (en) | 1994-04-08 | 1996-09-24 | The Regents, University Of California | Pulsed source ion implantation apparatus and method |
US5559367A (en) | 1994-07-12 | 1996-09-24 | International Business Machines Corporation | Diamond-like carbon for use in VLSI and ULSI interconnect systems |
US5625232A (en) | 1994-07-15 | 1997-04-29 | Texas Instruments Incorporated | Reliability of metal leads in high speed LSI semiconductors using dummy vias |
JPH08162528A (en) | 1994-10-03 | 1996-06-21 | Sony Corp | Interlayer insulating film structure of semiconductor device |
KR100209365B1 (en) | 1995-11-01 | 1999-07-15 | 김영환 | Fabricating method of s.o.i. semiconductor wafer |
US5882489A (en) | 1996-04-26 | 1999-03-16 | Ulvac Technologies, Inc. | Processes for cleaning and stripping photoresist from surfaces of semiconductor wafers |
US5939763A (en) | 1996-09-05 | 1999-08-17 | Advanced Micro Devices, Inc. | Ultrathin oxynitride structure and process for VLSI applications |
US5858879A (en) | 1997-06-06 | 1999-01-12 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for etching metal lines with enhanced profile control |
US5915203A (en) | 1997-06-10 | 1999-06-22 | Vlsi Technology, Inc. | Method for producing deep submicron interconnect vias |
US6037248A (en) | 1997-06-13 | 2000-03-14 | Micron Technology, Inc. | Method of fabricating integrated circuit wiring with low RC time delay |
DE19804375B4 (en) | 1997-06-26 | 2005-05-19 | Mitsubishi Denki K.K. | Method for producing an interlayer insulating film |
US6025263A (en) | 1997-07-15 | 2000-02-15 | Nanya Technology Corporation | Underlayer process for high O3 /TEOS interlayer dielectric deposition |
US5904154A (en) | 1997-07-24 | 1999-05-18 | Vanguard International Semiconductor Corporation | Method for removing fluorinated photoresist layers from semiconductor substrates |
GB2343550A (en) | 1997-07-29 | 2000-05-10 | Silicon Genesis Corp | Cluster tool method and apparatus using plasma immersion ion implantation |
US5874745A (en) | 1997-08-05 | 1999-02-23 | International Business Machines Corporation | Thin film transistor with carbonaceous gate dielectric |
US6143638A (en) * | 1997-12-31 | 2000-11-07 | Intel Corporation | Passivation structure and its method of fabrication |
US6051073A (en) | 1998-02-11 | 2000-04-18 | Silicon Genesis Corporation | Perforated shield for plasma immersion ion implantation |
JP3189781B2 (en) | 1998-04-08 | 2001-07-16 | 日本電気株式会社 | Method for manufacturing semiconductor device |
US6066574A (en) | 1998-11-06 | 2000-05-23 | Advanced Micro Devices, Inc. | Hot plate cure process for BCB low k interlevel dielectric |
JP4454713B2 (en) | 1999-03-17 | 2010-04-21 | 株式会社半導体エネルギー研究所 | Semiconductor device and manufacturing method thereof |
US6204192B1 (en) | 1999-03-29 | 2001-03-20 | Lsi Logic Corporation | Plasma cleaning process for openings formed in at least one low dielectric constant insulation layer over copper metallization in integrated circuit structures |
US6028015A (en) | 1999-03-29 | 2000-02-22 | Lsi Logic Corporation | Process for treating damaged surfaces of low dielectric constant organo silicon oxide insulation material to inhibit moisture absorption |
US6232658B1 (en) | 1999-06-30 | 2001-05-15 | Lsi Logic Corporation | Process to prevent stress cracking of dielectric films on semiconductor wafers |
US6114259A (en) | 1999-07-27 | 2000-09-05 | Lsi Logic Corporation | Process for treating exposed surfaces of a low dielectric constant carbon doped silicon oxide dielectric material to protect the material from damage |
US6147012A (en) | 1999-11-12 | 2000-11-14 | Lsi Logic Corporation | Process for forming low k silicon oxide dielectric material while suppressing pressure spiking and inhibiting increase in dielectric constant |
-
1999
- 1999-10-22 US US09/425,552 patent/US6423628B1/en not_active Expired - Lifetime
-
2002
- 2002-05-21 US US10/153,011 patent/US6794756B2/en not_active Expired - Lifetime
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5302233A (en) | 1993-03-19 | 1994-04-12 | Micron Semiconductor, Inc. | Method for shaping features of a semiconductor structure using chemical mechanical planarization (CMP) |
US5708303A (en) | 1994-09-15 | 1998-01-13 | Texas Instruments Incorporated | Semiconductor device having damascene interconnects |
US5821621A (en) | 1995-10-12 | 1998-10-13 | Texas Instruments Incorporated | Low capacitance interconnect structure for integrated circuits |
US6057242A (en) * | 1996-03-29 | 2000-05-02 | Nec Corporation | Flat interlayer insulating film suitable for multi-layer wiring |
US5990013A (en) | 1996-12-04 | 1999-11-23 | France Telecom | Process for treating a semiconductor substrate comprising a surface-treatment step |
US5858870A (en) * | 1996-12-16 | 1999-01-12 | Chartered Semiconductor Manufacturing, Ltd. | Methods for gap fill and planarization of intermetal dielectrics |
US6191050B1 (en) | 1996-12-19 | 2001-02-20 | Intel Corporation | Interlayer dielectric with a composite dielectric stack |
US5913140A (en) | 1996-12-23 | 1999-06-15 | Lam Research Corporation | Method for reduction of plasma charging damage during chemical vapor deposition |
US5818111A (en) | 1997-03-21 | 1998-10-06 | Texas Instruments Incorporated | Low capacitance interconnect structures in integrated circuits using a stack of low dielectric materials |
US6114766A (en) * | 1997-12-18 | 2000-09-05 | Advanced Micro Devices, Inc. | Integrated circuit with metal features presenting a larger landing area for vias |
WO1999041423A2 (en) | 1998-02-11 | 1999-08-19 | Applied Materials, Inc. | Plasma processes for depositing low dielectric constant films |
US6093966A (en) * | 1998-03-20 | 2000-07-25 | Motorola, Inc. | Semiconductor device with a copper barrier layer and formation thereof |
US6303192B1 (en) * | 1998-07-22 | 2001-10-16 | Philips Semiconductor Inc. | Process to improve adhesion of PECVD cap layers in integrated circuits |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030060039A1 (en) * | 1998-09-03 | 2003-03-27 | Micron Technology, Inc. | Method of passivating an oxide surface subjected to a conductive material anneal |
US6930029B2 (en) * | 1998-09-03 | 2005-08-16 | Micron Technology, Inc. | Method of passivating an oxide surface subjected to a conductive material anneal |
US20060038293A1 (en) * | 2004-08-23 | 2006-02-23 | Rueger Neal R | Inter-metal dielectric fill |
US20060246719A1 (en) * | 2004-08-23 | 2006-11-02 | Micron Technology, Inc | Inter-metal dielectric fill |
US20060265868A1 (en) * | 2004-08-23 | 2006-11-30 | Rueger Neal R | Inter-metal dielectric fill |
Also Published As
Publication number | Publication date |
---|---|
US6423628B1 (en) | 2002-07-23 |
US20020135040A1 (en) | 2002-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6794756B2 (en) | Integrated circuit structure having low dielectric constant material and having silicon oxynitride caps over closely spaced apart metal lines | |
US6492732B2 (en) | Interconnect structure with air gap compatible with unlanded vias | |
US6800940B2 (en) | Low k dielectric composite layer for integrated circuit structure which provides void-free low k dielectric material between metal lines while mitigating via poisoning | |
US6423630B1 (en) | Process for forming low K dielectric material between metal lines | |
CN100349281C (en) | Method for forming interconnection line in semiconductor device and interconnection line structure | |
US6806203B2 (en) | Method of forming a dual damascene structure using an amorphous silicon hard mask | |
US5880026A (en) | Method for air gap formation by plasma treatment of aluminum interconnects | |
KR100672823B1 (en) | Method of forming conductive pattern in a semiconductor device | |
JPH10154712A (en) | Manufacturing method of semiconductor device | |
JP2003045969A (en) | Wiring forming method utilizing dual damascene | |
US6537923B1 (en) | Process for forming integrated circuit structure with low dielectric constant material between closely spaced apart metal lines | |
US7202160B2 (en) | Method of forming an insulating structure having an insulating interlayer and a capping layer and method of forming a metal wiring structure using the same | |
US6559033B1 (en) | Processing for forming integrated circuit structure with low dielectric constant material between closely spaced apart metal lines | |
JP2007110119A (en) | Method for forming electrical isolation related to wiring lines arranged on semiconductor wafer | |
US7087515B2 (en) | Method for forming flowable dielectric layer in semiconductor device | |
US6492731B1 (en) | Composite low dielectric constant film for integrated circuit structure | |
US6756674B1 (en) | Low dielectric constant silicon oxide-based dielectric layer for integrated circuit structures having improved compatibility with via filler materials, and method of making same | |
KR100780680B1 (en) | Method for forming metal wiring of semiconductor device | |
JP2001118928A (en) | Method for manufacturing integrated circuit | |
US6277732B1 (en) | Method of planarizing inter-metal dielectric layer | |
JP2000200786A (en) | Forming method of insulating film | |
US6713379B1 (en) | Method for forming a damascene structure | |
US6399284B1 (en) | Sub-lithographic contacts and vias through pattern, CVD and etch back processing | |
JP2001144180A (en) | Multilayer wiring structure and manufacturing method therefor | |
US7901976B1 (en) | Method of forming borderless contacts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:LSI CORPORATION;AGERE SYSTEMS LLC;REEL/FRAME:032856/0031 Effective date: 20140506 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LSI CORPORATION;REEL/FRAME:035390/0388 Effective date: 20140814 |
|
AS | Assignment |
Owner name: LSI CORPORATION, CALIFORNIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS (RELEASES RF 032856-0031);ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:037684/0039 Effective date: 20160201 Owner name: AGERE SYSTEMS LLC, PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS (RELEASES RF 032856-0031);ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:037684/0039 Effective date: 20160201 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:037808/0001 Effective date: 20160201 Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:037808/0001 Effective date: 20160201 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD., SINGAPORE Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041710/0001 Effective date: 20170119 Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041710/0001 Effective date: 20170119 |
|
AS | Assignment |
Owner name: BELL SEMICONDUCTOR, LLC, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;BROADCOM CORPORATION;REEL/FRAME:044886/0001 Effective date: 20171208 Owner name: BELL SEMICONDUCTOR, LLC, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;BROADCOM CORPORATION;REEL/FRAME:044886/0608 Effective date: 20171208 |
|
AS | Assignment |
Owner name: CORTLAND CAPITAL MARKET SERVICES LLC, AS COLLATERA Free format text: SECURITY INTEREST;ASSIGNORS:HILCO PATENT ACQUISITION 56, LLC;BELL SEMICONDUCTOR, LLC;BELL NORTHERN RESEARCH, LLC;REEL/FRAME:045216/0020 Effective date: 20180124 |
|
AS | Assignment |
Owner name: BELL NORTHERN RESEARCH, LLC, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:CORTLAND CAPITAL MARKET SERVICES LLC;REEL/FRAME:060885/0001 Effective date: 20220401 Owner name: BELL SEMICONDUCTOR, LLC, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:CORTLAND CAPITAL MARKET SERVICES LLC;REEL/FRAME:060885/0001 Effective date: 20220401 Owner name: HILCO PATENT ACQUISITION 56, LLC, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:CORTLAND CAPITAL MARKET SERVICES LLC;REEL/FRAME:060885/0001 Effective date: 20220401 Owner name: BELL NORTHERN RESEARCH, LLC, ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CORTLAND CAPITAL MARKET SERVICES LLC;REEL/FRAME:059720/0719 Effective date: 20220401 Owner name: BELL SEMICONDUCTOR, LLC, ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CORTLAND CAPITAL MARKET SERVICES LLC;REEL/FRAME:059720/0719 Effective date: 20220401 Owner name: HILCO PATENT ACQUISITION 56, LLC, ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CORTLAND CAPITAL MARKET SERVICES LLC;REEL/FRAME:059720/0719 Effective date: 20220401 |