US6783296B2 - Screw-on structure - Google Patents

Screw-on structure Download PDF

Info

Publication number
US6783296B2
US6783296B2 US10/015,585 US1558501A US6783296B2 US 6783296 B2 US6783296 B2 US 6783296B2 US 1558501 A US1558501 A US 1558501A US 6783296 B2 US6783296 B2 US 6783296B2
Authority
US
United States
Prior art keywords
screw
hole
frame
ribs
plastic frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US10/015,585
Other versions
US20020076264A1 (en
Inventor
Nobuhiro Tamura
Kazuhiko Asahina
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lenovo Innovations Ltd Hong Kong
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Assigned to NEC CORPORATION reassignment NEC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASAHINA, KAZUHIKO, TAMURA, NOBUHIRO
Publication of US20020076264A1 publication Critical patent/US20020076264A1/en
Application granted granted Critical
Publication of US6783296B2 publication Critical patent/US6783296B2/en
Assigned to LENOVO INNOVATIONS LIMITED (HONG KONG) reassignment LENOVO INNOVATIONS LIMITED (HONG KONG) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEC CORPORATION
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/02Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of fastening members using screw-thread
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1417Mounting supporting structure in casing or on frame or rack having securing means for mounting boards, plates or wiring boards
    • H05K7/142Spacers not being card guides
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/16Joints and connections with adjunctive protector, broken parts retainer, repair, assembly or disassembly feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/16Joints and connections with adjunctive protector, broken parts retainer, repair, assembly or disassembly feature
    • Y10T403/1608Holding means or protector functioning only during transportation, assembly or disassembly

Definitions

  • the present invention relates to a screw-on structure including a plastic frame, particularly to a screw-on structure that fastens a frame made up of plastic such as a cellular phone.
  • the frames of mobile equipment such as the cellular phone are made up of plastic having lightweight and superior moldability in many cases. Many of such frames consist of two partial frames and are formed by making the partial frames screwed on with each other by a screw.
  • FIG. 1 is a cross-sectional view showing the conventional screw-on structure
  • FIG. 2A is a plan view showing a plastic frame of the conventional screw-on structure
  • FIG. 2B is a cross-sectional view of FIG. 2 A. Note that grooves of a screw and a screw hole are not shown in FIG. 1 .
  • the conventional screw-on structure includes a plastic frame 11 provided with a through hole 15 , another frame 2 where a screw hole 4 is formed, and a screw 3 inserted into the through hole 15 to be screwed down the screw hole 4 .
  • the plastic frame 11 is a part of the frame that composes a non-display side of the cellular phone and the frame 2 is a part of the frame that composes a display side thereof. Then, the plastic frame 11 and the frame 2 are fastened with each other and fixed by the screw 3 . Accordingly, the frame of the cellular phone is formed.
  • the shape of the through hole 15 is circular.
  • the inner diameter of the through hole 15 is larger than the outer diameter d of a shaft section 7 of the screw 3 , and a clearance is thus provided between the plastic frame 11 and the shaft section 7 of the screw 3 .
  • the clearance can absorb a slippage between positions of the through hole 15 and the screw hole 4 when screwing on the plastic frame 11 and the frame 2 by the screw.
  • the clearance can absorb an inner diameter error of the through hole 15 and an outer diameter error of the shaft section 7 of the screw 3 .
  • the foregoing conventional screw-on structure has a problem that the screw comes loose when external force such as vibration and impact is applied to the screw-on structure, which is fastened each other by the screw 3 .
  • This problem is conspicuous with the mobile equipment such as the cellular phone because vibration and impact are constantly applied to the equipment. For this reason, the screw must be fixed by adding a part such as a spring washer or a method such as coating adhesive agent.
  • the object of the present invention is to provide a screw-on structure where the screw is prevented from coming loose without fastening the screw by adding the part such as the spring washer and coating the adhesive agent in the screw-on structure including the frame made of plastic.
  • the screw-on structure comprises: the plastic frame having the through hole; the frame where the screw hole is formed; the screw that is inserted into the through hole to be screwed down the screw hole and that fastens the plastic frame and the frame to each other; and ribs made of plastic provided on the inner surface of the through hole and protrude toward the center of the through hole to contact the shaft section of the screw.
  • the inventors enthusiastically performed experiments and research in order to find out a cause of occurring loosening of the screw in the foregoing conventional screw-on structure.
  • the inner diameter of the through hole 15 of the conventional plastic frame 11 shown in FIG. 1 is larger than the outer diameter d of the shaft section 7 of the screw 3 , and the clearance is provided between the plastic frame 11 and the screw 3 . Accordingly, the plastic frame 11 moves relatively against the screw 3 and the frame 2 when the external force such as vibration and impact is applied to the screw-on structure. As a result, the plastic frame 11 is wasted to be thin due to abrasion between the screw 3 and the frame 2 . Thus, the screw 3 cannot maintain a necessary fastening torque, and the screw 3 comes loose.
  • providing the rib, which protrudes toward the center of the through hole to contact the shaft section of the screw, on the inner surface of the through hole of the plastic frame can prevent the plastic frame from moving relatively against the screw and the frame when the external force such as vibration and impact is applied to the screw-on structure.
  • the fastening torque of the screw is maintained and the screw is prevented from coming loose. Therefore, there is no need to fix the screw by adding the part such as the spring washer or by coating the adhesive agent.
  • the rib is made up of plastic, the slippage between the positions of the through hole and the screw hole can be absorbed by distortion of the rib.
  • the shape of the far end of the rib may be a shape along a virtual cylinder surface whose diameter substantially equals the outer diameter of the shaft section of the screw and whose center axis substantially matches the center axis of the shaft section of the screw. Accordingly, an area where the rib contacts the screw becomes larger and movement of the plastic frame to the screw and the frame can be efficiently controlled. Even if the outer diameter of the screw or the shape of the rib has an error and the outer diameter of the screw is larger than the outer diameter of the virtual cylinder, the rib can absorb the error by deforming because the rib is made up of plastic.
  • three or more ribs may be provided, the shape of the ribs in a cross-section perpendicular to the center axis of the shaft section of the screw may form an arc, and the far end of each of the ribs may contact the virtual circle whose diameter substantially equals the outer diameter of the shaft section of the screw and whose center axis substantially matches the center axis of the shaft section of the screw.
  • the rib can be easily formed with this configuration. Further, the area where the ribs contact the screw becomes smaller, which makes it easier to absorb the slippage between the positions of the through hole and the screw and the error of the outer diameter of the shaft section of the screw or the shape of the rib.
  • FIG. 1 is a cross-sectional view showing a conventional screw-on structure.
  • FIG. 2A is a plan view showing a plastic frame of the conventional screw-on structure.
  • FIG. 2B is a cross-sectional view showing the conventional plastic frame.
  • FIG. 3 is a cross-sectional view showing a screw-on structure according to a first embodiment of the present invention.
  • FIG. 4A is a plan view showing the plastic frame of the screw-on structure of the first embodiment.
  • FIG. 4B is a cross-sectional view showing the plastic frame of the first embodiment.
  • FIG. 5A is a plan view showing a plastic frame of a screw-on structure according to a second embodiment of the present invention.
  • FIG. 5B is a cross-sectional view showing the plastic frame of the second embodiment.
  • FIG. 3 is the cross-sectional view showing the screw-on structure according to this embodiment
  • FIG. 4A is the plan view showing the plastic frame of the screw-on structure of this embodiment
  • FIG. 4B is the cross-sectional view showing the plastic frame. Note that the grooves of the screw and the screw hole are not shown in FIG. 3 .
  • a plastic frame 1 and the frame 2 are provided in the screw-on structure of this embodiment.
  • a through hole 5 is formed in the plastic frame 1 .
  • the screw hole 4 is provided in the frame 2 at a position corresponding to the through hole 5 .
  • the screw 3 is provided for the screw-on structure, the screw 3 is inserted into the through hole 5 to be screwed down the screw hole 4 .
  • the plastic frame 1 and the frame 2 are screwed on and fixed with each other with the screw 3 .
  • the maximum inner diameter of the through hole 5 is larger than the outer diameter d of the shaft section 7 of the screw 3 .
  • Three ribs 6 a protruding toward the center of the through hole 5 are formed on the inner surface of the through hole 5 of the plastic frame 1 .
  • the ribs 6 a are arranged along a circumference of the through hole 5 in substantially the same distance.
  • the far end of the ribs 6 a is in a shape along the outer surface of a virtual cylinder 9 whose diameter equals the outer diameter of the shaft section 7 of the screw 3 and whose center axis matches a center axis 8 of the screw 3 .
  • the far end of the ribs 6 a has a recess of a cylindrical shape so as to contact along the outer surface of the shaft section 7 of the screw 3 .
  • the ribs 6 a are integrally formed with the plastic frame 1 .
  • the plastic frame 1 is a frame that composes the non-display side of the cellular phone
  • the frame 2 is a frame that composes the display side thereof
  • the plastic frame 1 and the frame 2 are fixed and unified by the screw 3 , and the frame of the cellular phone is thus formed.
  • the frame 2 may be made up of either plastic or metal.
  • the screw 3 also may be made up of either plastic or metal.
  • the three ribs 6 a contact the shaft section 7 of the screw 3 when screwing on the plastic frame 1 and the frame 2 with the screw 3 . Accordingly, the plastic frame 1 is prevented from moving in a direction perpendicular to the center axis 8 against the screw 3 and the frame 2 , and the plastic frame 1 can be fixedly maintained against the screw 3 and the frame 2 .
  • the ribs 6 a function to control the movement of the plastic frame 1 against frame 2 and the screw 3 when vibration, impact or the like is applied to the screw-on structure from the outside.
  • the plastic frame 1 does not waste, the fastening torque of the screw 3 is maintained, and the screw 3 is prevented from coming loose. Therefore, there is no need to fix the screw by adding the part such as the spring washer or by coating the adhesive agent.
  • the slippage can be absorbed by distortion of the ribs 6 a due to fastening of the screw 3 because the ribs 6 a are made up of plastic.
  • the outer diameter of the shaft section 7 of the screw 3 is slightly larger than the outer diameter of the virtual cylinder 9 .
  • the number of the ribs 6 a is three in this embodiment, but the ribs 6 a may be four or more. Sufficient effect is exerted by providing at least three ribs 6 a.
  • FIG. 5A is the plan view showing a plastic frame of the screw-on structure according to this embodiment
  • FIG. 5B is the cross-sectional view thereof.
  • a through hole 25 is provided in a plastic frame 21 instead of the through hole 5 (refer to FIG. 2 A).
  • the shape of the through hole 25 is different from the shape of the through hole 15 in the foregoing first embodiment.
  • the through hole 25 is provided in the plastic frame 21 of this embodiment.
  • Four ribs 6 b are protruded toward the center of the through hole 25 of the plastic frame 21 .
  • the ribs 6 b are arranged along the circumference of the through hole 25 in the same distance.
  • the shape of the ribs 6 b at the cross-section perpendicular to the center axis 8 of the screw 3 (refer to FIG. 3) forms an arc.
  • the far ends of the four ribs 6 b contact a virtual circle 10 common to the ribs, and the diameter of the circle 10 equals the outer diameter d of the shaft section 7 of the screw 3 .
  • a configuration other than the foregoing in the screw-on structure of this embodiment is the same as the one other than the plastic frame 1 in the screw-on structure according to the first embodiment.
  • the plastic frame 21 can be prevented from relatively moving against the screw 3 and the frame 2 .
  • the screw 3 can be prevented from coming loose due to vibration or impact from the outside.
  • the shape of the ribs 6 b forms an arc, molding of the ribs is easier comparing to the first embodiment.
  • the area where each of the ribs 6 b contacts the shaft section 7 of the screw 3 is smaller comparing to the first embodiment.
  • the ribs 6 b are easily deformed, which is greatly effective in absorbing the slippage between the central positions of the through hole 25 and the screw hole 4 .
  • the ribs 6 b are also greatly effective in absorbing the error.
  • the screw-on structure according to the first embodiment is more effective in fixing the plastic frame 1 to the screw 3 and the frame 2 comparing to the screw-on structure of this embodiment.
  • the number of the ribs 6 b is four in this embodiment. But, the number of the ribs may be three, or five or more.
  • the same effect is exerted when the diameter of the circle that contacts the far ends of the ribs substantially equals the outer diameter of the shaft section 7 of the screw 3 even if the number of the ribs is changed.
  • the effect of the present invention can be obtained by changing the distance between the ribs and the size of the ribs in accordance with the number of the ribs. In this case, it is preferable that the ribs are arranged in the same distance along the circumference of the through hole 25 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connection Of Plates (AREA)
  • Casings For Electric Apparatus (AREA)
  • Bolts, Nuts, And Washers (AREA)

Abstract

A plastic frame and a frame are provided in a screw-on structure. A through hole is formed in the plastic frame and a screw hole is provided in the frame at a position corresponding to the through hole. Furthermore, a screw is provided, the screw is inserted in the through hole to be screwed down the screw hole. The maximum inner diameter of the through hole is made larger than the outer diameter of a shaft section of the screw. Three ribs, which protrude toward the center of the through hole to contact the shaft section of the screw, are integrally formed with the plastic frame on an inner surface of the through hole. A far end shape of the ribs is formed in a shape along an outer surface of a virtual cylinder whose diameter equals the outer diameter of the shaft section of the screw and whose center axis matches the center axis of the screw.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a screw-on structure including a plastic frame, particularly to a screw-on structure that fastens a frame made up of plastic such as a cellular phone.
2. Description of the Related Art
The frames of mobile equipment such as the cellular phone are made up of plastic having lightweight and superior moldability in many cases. Many of such frames consist of two partial frames and are formed by making the partial frames screwed on with each other by a screw.
Description will be made for a conventional screw-on structure with reference to FIG. 1, FIG. 2A and FIG. 2B. FIG. 1 is a cross-sectional view showing the conventional screw-on structure, FIG. 2A is a plan view showing a plastic frame of the conventional screw-on structure, and FIG. 2B is a cross-sectional view of FIG. 2A. Note that grooves of a screw and a screw hole are not shown in FIG. 1.
As shown in FIG. 1, FIG. 2A and FIG. 2B, the conventional screw-on structure includes a plastic frame 11 provided with a through hole 15, another frame 2 where a screw hole 4 is formed, and a screw 3 inserted into the through hole 15 to be screwed down the screw hole 4. For example, the plastic frame 11 is a part of the frame that composes a non-display side of the cellular phone and the frame 2 is a part of the frame that composes a display side thereof. Then, the plastic frame 11 and the frame 2 are fastened with each other and fixed by the screw 3. Accordingly, the frame of the cellular phone is formed.
Further, the shape of the through hole 15 is circular. The inner diameter of the through hole 15 is larger than the outer diameter d of a shaft section 7 of the screw 3, and a clearance is thus provided between the plastic frame 11 and the shaft section 7 of the screw 3. The clearance can absorb a slippage between positions of the through hole 15 and the screw hole 4 when screwing on the plastic frame 11 and the frame 2 by the screw. Furthermore, the clearance can absorb an inner diameter error of the through hole 15 and an outer diameter error of the shaft section 7 of the screw 3.
However, there exist problems shown below in the conventional screw-on structure. The foregoing conventional screw-on structure has a problem that the screw comes loose when external force such as vibration and impact is applied to the screw-on structure, which is fastened each other by the screw 3. This problem is conspicuous with the mobile equipment such as the cellular phone because vibration and impact are constantly applied to the equipment. For this reason, the screw must be fixed by adding a part such as a spring washer or a method such as coating adhesive agent.
However, there exists a problem of increasing a manufacturing cost of the screw-on structure when the part such as the spring washer is added and the adhesive agent is coated. There also exists a problem that an external appearance is impaired due to existence of the part such as the spring washer or coating of the adhesive agent when the screw-on structure is applied to the mobile equipment such as the cellular phone. Furthermore, there exists a problem that it is difficult to remove a once fastened screw without hurting the plastic frame when the adhesive agent is coated on the screw-on structure.
SUMMARY OF THE INVENTION
The object of the present invention is to provide a screw-on structure where the screw is prevented from coming loose without fastening the screw by adding the part such as the spring washer and coating the adhesive agent in the screw-on structure including the frame made of plastic.
The screw-on structure according to the present invention comprises: the plastic frame having the through hole; the frame where the screw hole is formed; the screw that is inserted into the through hole to be screwed down the screw hole and that fastens the plastic frame and the frame to each other; and ribs made of plastic provided on the inner surface of the through hole and protrude toward the center of the through hole to contact the shaft section of the screw.
The inventors enthusiastically performed experiments and research in order to find out a cause of occurring loosening of the screw in the foregoing conventional screw-on structure. As a result, the inventors obtained the following findings. The inner diameter of the through hole 15 of the conventional plastic frame 11 shown in FIG. 1 is larger than the outer diameter d of the shaft section 7 of the screw 3, and the clearance is provided between the plastic frame 11 and the screw 3. Accordingly, the plastic frame 11 moves relatively against the screw 3 and the frame 2 when the external force such as vibration and impact is applied to the screw-on structure. As a result, the plastic frame 11 is wasted to be thin due to abrasion between the screw 3 and the frame 2. Thus, the screw 3 cannot maintain a necessary fastening torque, and the screw 3 comes loose.
In the present invention, providing the rib, which protrudes toward the center of the through hole to contact the shaft section of the screw, on the inner surface of the through hole of the plastic frame can prevent the plastic frame from moving relatively against the screw and the frame when the external force such as vibration and impact is applied to the screw-on structure. With this configuration, the fastening torque of the screw is maintained and the screw is prevented from coming loose. Therefore, there is no need to fix the screw by adding the part such as the spring washer or by coating the adhesive agent. Furthermore, since the rib is made up of plastic, the slippage between the positions of the through hole and the screw hole can be absorbed by distortion of the rib.
In addition, the shape of the far end of the rib may be a shape along a virtual cylinder surface whose diameter substantially equals the outer diameter of the shaft section of the screw and whose center axis substantially matches the center axis of the shaft section of the screw. Accordingly, an area where the rib contacts the screw becomes larger and movement of the plastic frame to the screw and the frame can be efficiently controlled. Even if the outer diameter of the screw or the shape of the rib has an error and the outer diameter of the screw is larger than the outer diameter of the virtual cylinder, the rib can absorb the error by deforming because the rib is made up of plastic.
Moreover, three or more ribs may be provided, the shape of the ribs in a cross-section perpendicular to the center axis of the shaft section of the screw may form an arc, and the far end of each of the ribs may contact the virtual circle whose diameter substantially equals the outer diameter of the shaft section of the screw and whose center axis substantially matches the center axis of the shaft section of the screw. The rib can be easily formed with this configuration. Further, the area where the ribs contact the screw becomes smaller, which makes it easier to absorb the slippage between the positions of the through hole and the screw and the error of the outer diameter of the shaft section of the screw or the shape of the rib.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a cross-sectional view showing a conventional screw-on structure.
FIG. 2A is a plan view showing a plastic frame of the conventional screw-on structure.
FIG. 2B is a cross-sectional view showing the conventional plastic frame.
FIG. 3 is a cross-sectional view showing a screw-on structure according to a first embodiment of the present invention.
FIG. 4A is a plan view showing the plastic frame of the screw-on structure of the first embodiment.
FIG. 4B is a cross-sectional view showing the plastic frame of the first embodiment.
FIG. 5A is a plan view showing a plastic frame of a screw-on structure according to a second embodiment of the present invention.
FIG. 5B is a cross-sectional view showing the plastic frame of the second embodiment.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Embodiments of the present invention will be specifically described with reference to the accompanying drawings. However, the embodiments of the invention shown below do not limit the present invention. Firstly, description will be made for the screw-on structure according to a first embodiment of the present invention referring to FIG. 3, FIG. 4A and FIG. 4B. FIG. 3 is the cross-sectional view showing the screw-on structure according to this embodiment, FIG. 4A is the plan view showing the plastic frame of the screw-on structure of this embodiment, and FIG. 4B is the cross-sectional view showing the plastic frame. Note that the grooves of the screw and the screw hole are not shown in FIG. 3.
As shown in FIG. 3, a plastic frame 1 and the frame 2 are provided in the screw-on structure of this embodiment. A through hole 5 is formed in the plastic frame 1. Further, the screw hole 4 is provided in the frame 2 at a position corresponding to the through hole 5. Moreover, the screw 3 is provided for the screw-on structure, the screw 3 is inserted into the through hole 5 to be screwed down the screw hole 4. Thus, the plastic frame 1 and the frame 2 are screwed on and fixed with each other with the screw 3.
As shown in FIG. 4A, the maximum inner diameter of the through hole 5 is larger than the outer diameter d of the shaft section 7 of the screw 3. Three ribs 6 a protruding toward the center of the through hole 5 are formed on the inner surface of the through hole 5 of the plastic frame 1. The ribs 6 a are arranged along a circumference of the through hole 5 in substantially the same distance. The far end of the ribs 6 a is in a shape along the outer surface of a virtual cylinder 9 whose diameter equals the outer diameter of the shaft section 7 of the screw 3 and whose center axis matches a center axis 8 of the screw 3. In other words, the far end of the ribs 6 a has a recess of a cylindrical shape so as to contact along the outer surface of the shaft section 7 of the screw 3. The ribs 6 a are integrally formed with the plastic frame 1.
For example, the plastic frame 1 is a frame that composes the non-display side of the cellular phone, the frame 2 is a frame that composes the display side thereof, the plastic frame 1 and the frame 2 are fixed and unified by the screw 3, and the frame of the cellular phone is thus formed. The frame 2 may be made up of either plastic or metal. The screw 3 also may be made up of either plastic or metal.
In this embodiment, the three ribs 6 a contact the shaft section 7 of the screw 3 when screwing on the plastic frame 1 and the frame 2 with the screw 3. Accordingly, the plastic frame 1 is prevented from moving in a direction perpendicular to the center axis 8 against the screw 3 and the frame 2, and the plastic frame 1 can be fixedly maintained against the screw 3 and the frame 2.
As described above, the ribs 6 a function to control the movement of the plastic frame 1 against frame 2 and the screw 3 when vibration, impact or the like is applied to the screw-on structure from the outside. As a result, the plastic frame 1 does not waste, the fastening torque of the screw 3 is maintained, and the screw 3 is prevented from coming loose. Therefore, there is no need to fix the screw by adding the part such as the spring washer or by coating the adhesive agent.
Furthermore, even if the slippage occurs between the central positions of the through hole 5 and the screw hole 4, the slippage can be absorbed by distortion of the ribs 6 a due to fastening of the screw 3 because the ribs 6 a are made up of plastic. The same applies to the case where the outer diameter of the shaft section 7 of the screw 3 is slightly larger than the outer diameter of the virtual cylinder 9.
Moreover, since the ribs 6 a are integrally formed with the plastic frame 1, additional molding cost is not necessary.
Note that the number of the ribs 6 a is three in this embodiment, but the ribs 6 a may be four or more. Sufficient effect is exerted by providing at least three ribs 6 a.
Next, a screw-on structure according to a second embodiment of the present invention will be described referring to FIG. 5A and FIG. 5B. FIG. 5A is the plan view showing a plastic frame of the screw-on structure according to this embodiment, and FIG. 5B is the cross-sectional view thereof. In this embodiment, comparing to the first embodiment, a through hole 25 is provided in a plastic frame 21 instead of the through hole 5 (refer to FIG. 2A). The shape of the through hole 25 is different from the shape of the through hole 15 in the foregoing first embodiment.
As shown in FIG. 5A and FIG. 5B, the through hole 25 is provided in the plastic frame 21 of this embodiment. Four ribs 6 b are protruded toward the center of the through hole 25 of the plastic frame 21. The ribs 6 b are arranged along the circumference of the through hole 25 in the same distance. The shape of the ribs 6 b at the cross-section perpendicular to the center axis 8 of the screw 3 (refer to FIG. 3) forms an arc. The far ends of the four ribs 6 b contact a virtual circle 10 common to the ribs, and the diameter of the circle 10 equals the outer diameter d of the shaft section 7 of the screw 3. A configuration other than the foregoing in the screw-on structure of this embodiment is the same as the one other than the plastic frame 1 in the screw-on structure according to the first embodiment.
In this embodiment, since the ribs 6 b contact the shaft section 7 of the screw 3 (refer to FIG. 3), the plastic frame 21 can be prevented from relatively moving against the screw 3 and the frame 2. Thus, the screw 3 can be prevented from coming loose due to vibration or impact from the outside.
Furthermore, in this embodiment, since the shape of the ribs 6 b forms an arc, molding of the ribs is easier comparing to the first embodiment. In addition, the area where each of the ribs 6 b contacts the shaft section 7 of the screw 3 is smaller comparing to the first embodiment. For this reason, the ribs 6 b are easily deformed, which is greatly effective in absorbing the slippage between the central positions of the through hole 25 and the screw hole 4. In the case where the outer diameter of the shaft section 7 of the screw 3 or the diameter of the virtual circle 10 has an error and the outer diameter d of the shaft section 7 is larger than the diameter of the circle 10, the ribs 6 b are also greatly effective in absorbing the error. However, the screw-on structure according to the first embodiment is more effective in fixing the plastic frame 1 to the screw 3 and the frame 2 comparing to the screw-on structure of this embodiment.
Note that the number of the ribs 6 b is four in this embodiment. But, the number of the ribs may be three, or five or more. The same effect is exerted when the diameter of the circle that contacts the far ends of the ribs substantially equals the outer diameter of the shaft section 7 of the screw 3 even if the number of the ribs is changed. The effect of the present invention can be obtained by changing the distance between the ribs and the size of the ribs in accordance with the number of the ribs. In this case, it is preferable that the ribs are arranged in the same distance along the circumference of the through hole 25.

Claims (2)

What is claimed is:
1. A screw-on structure comprising:
a plastic frame having a through hole;
a frame where a screw hole is formed;
a screw that is inserted into said through hole to be screwed down said screw hole and that fastens said plastic frame and said frame to each other; and
ribs made of plastic provide on an inner surface of said through hole and protrude toward the center of said through hole to contact a shaft section of said screw,
where said plastic frame and said frame form a frame of a cellular phone by screwing on with each other.
2. The screw-on structure according to claim 1, wherein said plastic frame is a part that composes a non-display side of said cellular phone, and said frame is a part that composes a display side of said cellular phone.
US10/015,585 2000-12-15 2001-12-17 Screw-on structure Expired - Lifetime US6783296B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-381355 2000-12-15
JP2000381355A JP2002181024A (en) 2000-12-15 2000-12-15 Screwing structure

Publications (2)

Publication Number Publication Date
US20020076264A1 US20020076264A1 (en) 2002-06-20
US6783296B2 true US6783296B2 (en) 2004-08-31

Family

ID=18849367

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/015,585 Expired - Lifetime US6783296B2 (en) 2000-12-15 2001-12-17 Screw-on structure

Country Status (5)

Country Link
US (1) US6783296B2 (en)
JP (1) JP2002181024A (en)
CN (1) CN1122395C (en)
GB (1) GB2370620B (en)
HK (1) HK1049039B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005030596A1 (en) * 2005-06-30 2007-01-11 Siemens Ag casing
JP4966377B2 (en) * 2006-07-28 2012-07-04 パーカー.ハニフィン.コーポレイション Electronic component mounting assembly, its use and manufacturing method
CN102465785A (en) * 2010-11-08 2012-05-23 光阳工业股份有限公司 cylinder head cover
US11901261B2 (en) 2019-02-22 2024-02-13 Illinois Tool Works Inc. Reusable holding component for heatsink
US11903157B2 (en) * 2019-02-22 2024-02-13 Illinois Tool Works Inc. Reusable holding component for heatsink
JP7488105B2 (en) * 2020-05-15 2024-05-21 ナブテスコ株式会社 Door leaf for railway vehicle, fastening structure, and method for manufacturing door leaf for railway vehicle

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3137336A (en) 1960-05-12 1964-06-16 Hi Shear Rivet Tool Company Two-part panel fastener having resilient retaining means for retaining a screw
US4434917A (en) 1981-05-26 1984-03-06 Yoshino Kogyosho Co., Ltd. Trigger-actuated atomizer
US4721325A (en) 1986-11-19 1988-01-26 General Motors Corporation Suspension strut with quick take-apart upper mount
US5054953A (en) 1990-01-24 1991-10-08 Videoplastic S.P.A. Self-adjusting device for mutual locking of two bodies, having a variable distance between fastening points
US5426831A (en) * 1994-02-03 1995-06-27 Morton International, Inc. Push-on wire retainer tab
JPH08307498A (en) 1995-05-11 1996-11-22 Nec Corp Enclosure of portable telephone set
US5577860A (en) 1994-10-21 1996-11-26 Hilti Aktiengesellschaft Attachment device for securing structural components to shaped rails
USRE36164E (en) 1993-10-13 1999-03-23 H. Thad Johnson Convoluted bolt retainer
US6036198A (en) 1999-04-01 2000-03-14 Kramer; Hy Coupling for attaching a tool to a chuck
US6089723A (en) * 1995-08-14 2000-07-18 Kabushiki Kaisha Tokai Rika Denki Seisakusho Mounting structure of base and base cover in door mirror for automobile
US6142525A (en) 1999-04-15 2000-11-07 Breed Automotive Technology, Inc. Anchor for seat belt component

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3137336A (en) 1960-05-12 1964-06-16 Hi Shear Rivet Tool Company Two-part panel fastener having resilient retaining means for retaining a screw
US4434917A (en) 1981-05-26 1984-03-06 Yoshino Kogyosho Co., Ltd. Trigger-actuated atomizer
US4721325A (en) 1986-11-19 1988-01-26 General Motors Corporation Suspension strut with quick take-apart upper mount
US5054953A (en) 1990-01-24 1991-10-08 Videoplastic S.P.A. Self-adjusting device for mutual locking of two bodies, having a variable distance between fastening points
USRE36164E (en) 1993-10-13 1999-03-23 H. Thad Johnson Convoluted bolt retainer
US5426831A (en) * 1994-02-03 1995-06-27 Morton International, Inc. Push-on wire retainer tab
US5577860A (en) 1994-10-21 1996-11-26 Hilti Aktiengesellschaft Attachment device for securing structural components to shaped rails
JPH08307498A (en) 1995-05-11 1996-11-22 Nec Corp Enclosure of portable telephone set
US6089723A (en) * 1995-08-14 2000-07-18 Kabushiki Kaisha Tokai Rika Denki Seisakusho Mounting structure of base and base cover in door mirror for automobile
US6036198A (en) 1999-04-01 2000-03-14 Kramer; Hy Coupling for attaching a tool to a chuck
US6142525A (en) 1999-04-15 2000-11-07 Breed Automotive Technology, Inc. Anchor for seat belt component

Also Published As

Publication number Publication date
HK1049039A1 (en) 2003-04-25
CN1122395C (en) 2003-09-24
GB2370620A (en) 2002-07-03
GB0130106D0 (en) 2002-02-06
US20020076264A1 (en) 2002-06-20
GB2370620B (en) 2003-01-08
JP2002181024A (en) 2002-06-26
CN1366148A (en) 2002-08-28
HK1049039B (en) 2004-06-18

Similar Documents

Publication Publication Date Title
US20020190450A1 (en) Damper mechanism for steering device
US6783296B2 (en) Screw-on structure
US5653145A (en) External circulation type ball thread device
US20070176343A1 (en) Rotary bracket system
US11346473B2 (en) Sleeve
US20070182175A1 (en) Bumper assembly with fog lamp bezel
US8250709B2 (en) Rotating mechanism for an electronic device and an electronic device with the same
US7051887B2 (en) Supporting column and cassette using the same
US6428074B1 (en) Construction for fastening members together
US20070069572A1 (en) Wheel Rim with Hollow Flanges for Mounting of a Tire
JP2773004B2 (en) Cylindrical anti-vibration rubber
US6553634B2 (en) Clamp for elongated member
US7301760B2 (en) Flat panel display module
US20100031474A1 (en) Hinge
KR20040088909A (en) Head lamp assembly
JP3972458B2 (en) Locking structure and component fixture
KR100449297B1 (en) Structure for mounting a side glass of an automobile
KR100412466B1 (en) Clip structure for fixing trim of automobile
KR102527131B1 (en) Fender insulator
JP3561308B2 (en) How to connect crowns for writing instruments
US20030185644A1 (en) Fastener for plastic structure
US20050078040A1 (en) Antenna structure
KR950010622Y1 (en) Lead of video tape cassette
WO2008149262A1 (en) A television
KR100440921B1 (en) Movable mounting structure for fixed housing

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAMURA, NOBUHIRO;ASAHINA, KAZUHIKO;REEL/FRAME:012385/0554

Effective date: 20011210

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: LENOVO INNOVATIONS LIMITED (HONG KONG), HONG KONG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEC CORPORATION;REEL/FRAME:033720/0767

Effective date: 20140618

FPAY Fee payment

Year of fee payment: 12