US6756019B1 - Microfluidic devices and systems incorporating cover layers - Google Patents
Microfluidic devices and systems incorporating cover layers Download PDFInfo
- Publication number
- US6756019B1 US6756019B1 US09/544,711 US54471100A US6756019B1 US 6756019 B1 US6756019 B1 US 6756019B1 US 54471100 A US54471100 A US 54471100A US 6756019 B1 US6756019 B1 US 6756019B1
- Authority
- US
- United States
- Prior art keywords
- membrane
- microfluidic device
- cover layer
- apertures
- disposed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502715—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/508—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
- B01L3/5085—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/447—Systems using electrophoresis
- G01N27/44756—Apparatus specially adapted therefor
- G01N27/44791—Microapparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/02—Adapting objects or devices to another
- B01L2200/025—Align devices or objects to ensure defined positions relative to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/02—Adapting objects or devices to another
- B01L2200/026—Fluid interfacing between devices or objects, e.g. connectors, inlet details
- B01L2200/027—Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0605—Metering of fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0689—Sealing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/06—Auxiliary integrated devices, integrated components
- B01L2300/0681—Filter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0887—Laminated structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/16—Surface properties and coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0406—Moving fluids with specific forces or mechanical means specific forces capillary forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0415—Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0487—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00029—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
- G01N2035/00099—Characterised by type of test elements
- G01N2035/00148—Test cards, e.g. Biomerieux or McDonnel multiwell test cards
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
- Y10T436/25625—Dilution
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
- Y10T436/2575—Volumetric liquid transfer
Definitions
- miniaturization As has been the case in the electronics and computer industries, trends in analytical chemical and biochemical instrumentation have been toward miniaturization. In chemical and biochemical analyses, such miniaturization as achieved in e.g., microfluidic systems, provides numerous advantages, including significantly smaller reagent requirements, faster throughput, ready automatability, and in many cases, improved data.
- U.S. Pat. Nos. 5,498,392 and 5,587,128 describe the performance of amplification reactions in microfabricated devices including microscale flow systems and/or reaction chambers. Such systems substantially reduce the requirements for expensive reagents utilized in amplification reactions. Further, the small scale of these devices also provides for enhanced thermal transfer between heating sources and the reagents in the device.
- U.S. Pat. No. 5,637,469 describes the use of devices having extremely small internal dimensions for detecting an analyte in a sample via a binding assay. Again, the small scale of such devices provides advantages in terms of small reagent volumes.
- miniaturization can provide difficulties in the use of such system including user handling, reagent delivery or filtration, and system interfacing of such devices.
- microfluidic devices that capture the advantages associated with extremely small volumes and dimensions, without the problems associated with such small-scale devices.
- the present invention meets these and a variety of other needs.
- microfluidic devices that incorporate a body structure comprising at least a first microscale channel network disposed therein.
- the body structure has a plurality of ports disposed in it, where each port is in fluid communication with one or more channels in the first channel network.
- the devices also include a cover layer comprising a plurality of apertures disposed therethrough. The cover layer is mated with the body structure whereby each of the apertures is aligned with a separate one of the plurality of ports.
- each of the body structure and the cover layer separately comprises at least a first surface.
- the plurality of ports in the body structure are disposed in the first surface of the body structure, and the plurality of apertures in the cover layer are disposed in the first surface of the cover layer.
- the first surface of the cover layer is mated to the first surface of the body structure such that the apertures align with and are in fluid communication with the ports.
- the cover layer is fabricated from a polymeric material, and is preferably an injection molded polymeric part.
- the microfluidic devices include a plurality of rings disposed between the cover layer and the body structure with each such ring surrounding one pair of aligned ports and apertures.
- Each of the rings is optionally molded, e.g., around one or more of the plurality of apertures disposed in the surface of the cover layer and circumferentially around at least one of the plurality of ports aligned with the one or more apertures.
- the rings are molded around one or more of the plurality of ports disposed in the first surface of the body structure and circumferentially around at least one of the plurality of apertures aligned with the one or more ports.
- each of the rings is a separate component from either the cover layer or the body structure; e.g., the rings optionally include a gasket that is placed around one or more port and/or aperture.
- each of the rings is typically placed circumferentially around at least one of the plurality of apertures and circumferentially around at least one of the plurality of ports aligned with one or more of the plurality of apertures.
- the microfluidic devices of the present invention also optionally include a membrane (e.g., a semi-permeable membrane or the like) disposed between at least one pair of aligned apertures and ports, which together form wells, for sieving aggregations of material (e.g., aggregations of cells, molecules, etc.) and/or delivering various reagents to the devices.
- the membrane is also optionally disposed on or over the wells.
- the invention additionally includes embodiments in which at least a portion of the wells of the devices include a conductive coating. The use of conductive coatings, inter alia, minimizes cross-contamination between microfluidic devices.
- the invention also includes other embodiments in which rings, membranes, and/or conductive coatings are used in various combinations in the devices.
- the present invention also includes methods of controlling a material composition delivered into a microfluidic device which include flowing a solution that includes the material (e.g., particles, reagents, or the like) through a semi-permeable membrane portion disposed in one or more wells of the devices. Additionally, the methods optionally include immobilizing the material on the semi-permeable membrane prior to delivering the material into the device.
- a material composition delivered into a microfluidic device which include flowing a solution that includes the material (e.g., particles, reagents, or the like) through a semi-permeable membrane portion disposed in one or more wells of the devices. Additionally, the methods optionally include immobilizing the material on the semi-permeable membrane prior to delivering the material into the device.
- the present invention provides a microfluidic system that includes a microfluidic device in accordance with the present invention, where the device is further mounted on a controller/detector apparatus that is configured to receive the microfluidic device.
- the controller/detector apparatus comprises an optical detection system and a material transport system, where the detection system and transport system are operably interfaced with the microfluidic device when the device is mounted on the controller/detector.
- FIG. 1 schematically illustrates a microfluidic device body structure that incorporates a planar layered structure.
- FIGS. 2A-E illustrate from a number of perspectives an embodiment of a cover layer for incorporation in a microfluidic device in accordance with the present invention.
- FIG. 2F illustrates the interaction of a filling device with the microfluidic devices of the invention.
- FIG. 3A illustrates a fully assembled microfluidic device that includes the layered body structure of FIG. 1 and the cover layer of FIG. 2 mated together.
- FIG. 3B illustrates an alternate mechanism for joining the body structure to the cover layer in the fully assembled device.
- the present invention generally provides microfluidic devices and methods that take advantage of the extremely small-scale nature of microfluidic devices and systems, while at the same time, not suffering from some of the potential problems associated with such systems.
- the microfluidic devices and systems of the invention include an additional cover layer as a portion of the microfluidic device, e.g., overlaying and attached to the basic body structure of the device.
- the cover layer employed in the devices of the invention typically comprises a number of apertures disposed through it, which apertures mate with and/or form part of the reservoirs and/or access ports of the microfluidic device.
- microscale generally refer to one or more fluid passages, chambers or conduits which have at least one internal cross-sectional dimension, e.g., depth, width, length, diameter, etc., that is less than 500 ⁇ m, and typically between about 0.1 ⁇ m and about 500 ⁇ m.
- the microscale channels or chambers preferably have at least one cross-sectional dimension between about 0.1 ⁇ m and 200 ⁇ m, more preferably between about 0.1 ⁇ m and 100 ⁇ m, and often between about 0.1 ⁇ m and 20 ⁇ m.
- the microfluidic devices or systems prepared in accordance with the present invention typically include at least one microscale channel, usually at least two intersecting microscale channels, and often, three or more intersecting channels disposed within a single body structure.
- Channel intersections may exist in a number of formats, including cross intersections, “T” intersections, or any number of other structures whereby at least two channels are in fluid communication.
- the body structure of the microfluidic devices described herein can take a variety of shapes and/or conformations, provided the body structure includes at least one microfluidic channel element disposed within it.
- the body structure has a tubular conformation, e.g., as in capillary structures, such as fused silica or polymeric capillaries that include internal diameters in the microscale range, set forth above.
- body structures may incorporate non-uniform shapes and/or conformations, depending upon the application for which the device is to be used.
- the body structure of the microfluidic devices incorporates a planar or “chip” structure.
- the devices described herein typically comprise an aggregation of two or more separate layers which when appropriately mated or joined together, form the body structure of the microfluidic device of the invention, e.g., containing the channels and/or chambers described herein.
- the microfluidic devices described herein will comprise a top portion, a bottom portion, and an interior portion, wherein the interior portion substantially defines the channels and chambers of the device.
- FIG. 1 illustrates one example of the body structure of a microfluidic device that incorporates a planar, layered structure.
- the body structure 100 includes at least two layers, an upper layer 102 and a lower layer 110 .
- the upper surface 112 of the lower layer 110 is fabricated to include grooves and/or wells 114 .
- the lower surface 104 of the upper layer 102 is then mated to the upper surface 112 of the lower layer 110 such that the grooves and/or channels define channels or conduits, and chambers within the interior of the aggregate body structure.
- substrate materials may be employed as the bottom portion.
- substrate materials will be selected based upon their compatibility with known microfabrication techniques, e.g., photolithography, wet chemical etching, laser ablation, reactive ion etching (RIE), air abrasion techniques, injection molding, LIGA methods, metal electroforming, embossing, and other techniques.
- Suitable substrate materials are also generally selected for their compatibility with the full range of conditions to which the microfluidic devices may be exposed, including extremes of pH, temperature, salt concentration, and application of electric fields.
- the substrate material may include materials normally associated with the semiconductor industry in which such microfabrication techniques are regularly employed, including, e.g., silica based substrates, such as glass, quartz, silicon or polysilicon, as well as other substrate materials, such as gallium arsenide and the like.
- silica based substrates such as glass, quartz, silicon or polysilicon
- other substrate materials such as gallium arsenide and the like.
- an insulating coating or layer e.g., silicon oxide
- the substrates used to fabricate the body structure are silica-based, and more preferably glass or quartz, due to their inertness to the conditions described above, as well as the ease with which they are microfabricated.
- the substrate materials comprise polymeric materials, e.g., plastics, such as polymethylmethacrylate (PMMA), polycarbonate, polytetrafluoroethylene (TEFLONTM), polyvinylchloride (PVC), polydimethylsiloxane (PDMS), polysulfone, polystyrene, polymethylpentene, polypropylene, polyethylene, polyvinylidine fluoride, ABS (acrylonitrile-butadiene-styrene copolymer), and the like.
- plastics such as polymethylmethacrylate (PMMA), polycarbonate, polytetrafluoroethylene (TEFLONTM), polyvinylchloride (PVC), polydimethylsiloxane (PDMS), polysulfone, polystyrene, polymethylpentene, polypropylene, polyethylene, polyvinylidine fluoride, ABS (acrylonitrile-butadiene-styrene copolymer), and the like.
- Such polymeric substrates are readily manufactured using available microfabrication techniques, as described above, or from microfabricated masters, using well known molding techniques, such as injection molding, embossing or stamping, or by polymerizing the polymeric precursor material within the mold (See U.S. Pat. No. 5,512,131). Again, such polymeric substrate materials are preferred for their ease of manufacture, low cost and disposability, as well as their general inertness to most extreme reaction conditions. Again, these polymeric materials may include treated surfaces, e.g., derivatized or coated surfaces, to enhance their utility in the microfluidic system, e.g., provided enhanced fluid direction, e.g., as described in U.S. Pat. No. 5,885,470, and which is incorporated herein by reference in its entirety for all purposes.
- treated surfaces e.g., derivatized or coated surfaces
- the upper layer 102 of the body structure 100 includes a plurality of ports 106 disposed through it. These ports are positioned to communicate with specific points of the channels or grooves 114 , e.g., the termini, in the aggregate body structure when the upper and lower layers are mated.
- the ports 106 function to provide fluid access to the channels of the device, and in certain aspects, electrical access to the channels within the body structure.
- rings are optionally molded around (i.e., surround) one or more of the plurality of ports on the upper surface of the upper layer of the body structure.
- at least a portion of the ports also optionally includes a conductive coating so that electrical communication is optionally achieved in the device without placing electrodes directly into, e.g., the ports. The use of conductive coatings is also described further below.
- the microfluidic devices include an optical detection window 116 disposed across one or more channels and/or chambers of the device.
- Optical detection windows are typically transparent such that they are capable of transmitting an optical signal from the channel/chamber over which they are disposed.
- Optical detection windows may merely be a region of a transparent layer of the body structure, e.g., where the layer is glass or quartz, or a transparent polymer material, e.g., PMMA, polycarbonate, etc.
- transparent detection windows fabricated from the above materials may be separately manufactured into the device.
- Microfluidic devices may be used in a variety of applications, including, e.g., the performance of high throughput screening assays in drug discovery, immunoassays, diagnostics, genetic analysis, and the like.
- the devices described herein will often include multiple sample introduction ports or reservoirs, for the parallel or serial introduction and analysis of multiple samples.
- these devices may be coupled to a sample introduction port, e.g., a pipettor, which serially introduces multiple samples into the device for analysis. Examples of such sample introduction systems are described in e.g., U.S. patent application Ser. No. 08/761,575 which was filed on Dec. 6, 1996 and U.S. Pat. No.
- the invention also includes methods and devices that utilize membranes for sieving aggregations of material (e.g., clumps of cells, reagents, or other particles) and otherwise delivering reagents or other materials into the ports of the devices.
- material e.g., clumps of cells, reagents, or other particles
- the microfluidic devices of the present invention utilize electrokinetic material transport systems to direct and transport materials through the channels of the device.
- electrokinetic material transport generally refers to systems and methods for transporting and directing materials within an interconnected channel and/or chamber containing structure, through the application of electrical fields to the materials, thereby causing material movement through and among the channels and/or chambers, i.e., cations will move toward the negative electrode, while anions will move toward the positive electrode.
- electrokinetic material transport and direction systems include those systems that rely upon the electrophoretic mobility of charged species within the electric field applied to the structure. Such systems are more particularly referred to as electrophoretic material transport systems.
- Other electrokinetic material direction and transport systems rely upon the electroosmotic flow of fluid and material within a channel or chamber structure, either alone, or in conjunction with the electrophoretic forces previously described, which electroosmotic flow results from the application of an electric field across such structures.
- a fluid is placed into a channel which has a surface bearing charged functional groups, e.g., hydroxyl groups in etched glass channels or glass microcapillaries, those groups can ionize.
- this ionization results in the release of protons from the surface and into the fluid, producing a concentration of protons near the fluid/surface interface, and creating a positively charged sheath surrounding the bulk fluid in the channel.
- Application of a voltage gradient across the length of the channel causes the proton sheath to move in the direction of the voltage drop, i.e., toward the negative electrode.
- Flow in the opposite direction is achieved by either reversing the voltage gradient, or by providing a channel bearing positively charged ionizable groups, e.g., amino groups, etc.
- Controlled electrokinetic material transport and direction refers to electrokinetic systems as described above, which employ active control of the voltages applied at multiple, i.e., more than two, electrodes. Rephrased, such controlled electrokinetic systems concomitantly regulate voltage gradients applied across at least two intersecting channels. Controlled electrokinetic material transport is described in Published PCT Application No. WO 96/04547, to Ramsey, which is incorporated herein by reference in its entirety for all purposes.
- the preferred microfluidic devices and systems described herein include a body structure which includes at least two intersecting channels or fluid conduits, e.g., interconnected, enclosed chambers, which channels include at least three unintersected termini.
- intersection of two channels refers to a point at which two or more channels are in fluid communication with each other, and encompasses “T” intersections, cross intersections, “wagon wheel” intersections of multiple channels, or any other channel geometry where two or more channels are in such fluid communication.
- An unintersected terminus of a channel is a point at which a channel terminates not as a result of that channel's intersection with another channel, e.g., a “T” intersection.
- the devices will include at least three intersecting channels having at least four unintersected termini.
- controlled electrokinetic material transport operates to controllability direct material flow through the intersection, by providing constraining flows from the other channels at the intersection. For example, assuming one was desirous of transporting a first material through the horizontal channel, e.g., from left to right, across the intersection with the vertical channel. Simple electrokinetic material flow of this material across the intersection could be accomplished by applying a voltage gradient across the length of the horizontal channel, i.e., applying a first voltage to the left terminus of this channel, and a second, lower voltage to the right terminus of this channel, or by allowing the right terminus to float (applying no voltage). However, this type of material flow through the intersection would result in a substantial amount of diffusion at the intersection, resulting from both the natural diffusive properties of the material being transported in the medium used, as well as convective effects at the intersection.
- the material being transported across the intersection is constrained by low level flow from the side channels, e.g., the top and bottom channels. This is accomplished by applying a slight voltage gradient along the path of material flow, e.g., from the top or bottom termini of the vertical channel, toward the right terminus. The result is a “pinching” of the material flow at the intersection, which prevents the diffusion of the material into the vertical channel.
- the pinched volume of material at the intersection may then be injected into the vertical channel by applying a voltage gradient across the length of the vertical channel, i.e., from the top terminus to the bottom terminus.
- a low level of flow is directed back into the side channels, resulting in a “pull back” of the material from the intersection.
- controlled electrokinetic material transport is readily utilized to create virtual valves that include no mechanical or moving parts.
- flow of material from one channel segment to another e.g., the left arm to the right arm of the horizontal channel
- a controlled flow from the vertical channel e.g., from the bottom arm to the top arm of the vertical channel.
- the material is transported from the left arm, through the intersection and into the top arm by applying a voltage gradient across the left and top termini.
- a constraining flow is directed from the bottom arm to the top arm by applying a similar voltage gradient along this path (from the bottom terminus to the top terminus).
- Metered amounts of material are then dispensed from the left arm into the right arm of the horizontal channel by switching the applied voltage gradient from left:top, to left:right.
- the amount of time and the voltage gradient applied dictates the amount of material that will be dispensed in this manner.
- electrokinetic material transport is controlled through the application of appropriate currents through the channels of the system, in order to propagate material movement therethrough.
- current control in electrokinetic material transport systems is described in detail in commonly owned U.S. Pat. No. 5,800,690 and Published PCT Application No. 98/00707, both of which are incorporated herein by reference.
- the relative potentials at the intersections of the channels dictates the direction and velocity of material movement at those intersections. Control of these potentials has typically relies upon the calculation of applied voltages based upon the desired potential at the intersections and the resistance of the channel between the intersection and the electrodes at which voltages are applied. By monitoring and controlling the current, the potential at the intersection is maintained at the desired level, and the applied voltages are self-regulating.
- electrokinetic material transport systems can be readily adapted for more complex interconnected channel networks, e.g., arrays of interconnected parallel channels.
- electrokinetic material transport systems also optionally include the use of conductive coatings to achieve electrical communication.
- the channel networks that effectively define the functional space of a given microfluidic system become much smaller.
- the access points for these channel networks e.g., reservoirs, electrical access ports and the like, are drawn closer and closer together.
- microfluidic devices that include a cover layer that provides an effective barrier between neighboring reservoirs, to prevent fluid and/or electrical links from forming between neighboring electrodes.
- the barrier optionally includes a ridge around each of the reservoirs, e.g., an annular ridge surrounding a circular reservoir.
- the ridge has the effect of preventing fluid ‘spill-over’ from one well entering into another adjacent well.
- the ridge effectively creates a longer path length across which any electrical bridging current, e.g., short circuit, must travel.
- these ridges extend at least 0.1 mm from the surface of the cover layer, preferably, at least 1 mm and in some cases, at least 2 mm or more, from the upper surface of the cover layer.
- the barrier e.g., as provided by the ridge structure, will increase the effective path length between neighboring wells by at least 1.5 ⁇ , preferably at least 2 ⁇ , and often at least 3-5 ⁇ over that provided by the reservoirs in the body structure, alone.
- the upper surface comprises a hydrophobic material to prevent deposition/aggregation of fluids on that surface which might physically or electrically contaminate neighboring reservoirs.
- a hydrophobic material e.g., a polymer
- the cover layer itself is fabricated from a hydrophobic polymer material.
- the cover layer component of the microfluidic devices of the present invention also provides the capability to increase the volume capacity of the reservoirs of those devices.
- the apertures disposed in the cover layer can increase the total depth of the fluid reservoirs of the device by extending those reservoirs.
- fluid volume is not a critical limitation in many microfluidic applications, there are some instances where substantial variations in fluid volume from, e.g., evaporation, can have an effect on a particular operation. This is typically due to concentration of one or more solutes within the fluids, e.g., salts, enzymes, etc.
- By increasing the fluid volume capacity of the reservoirs one can substantially mitigate any effects resulting from a partial evaporation of fluids by reducing the percentage of evaporation.
- the apertures disposed in the cover layer add to the depth of the reservoirs in the body structure.
- the apertures are typically at least 1 mm deep, preferably at least 2 mm deep, and often at least 5 mm deep. This typically results in reservoirs in the overall device, e.g., from the combination of the ports in the body structure and the apertures in the cover layer, having volumes of at least 5 ⁇ l, preferably at least 10 ⁇ l, more preferably at least 20 ⁇ l, often at least 50 ⁇ l, and in some cases, at least 100 ⁇ l.
- the volume of the reservoirs of the overall device will typically fall in the range between about 1 and about 200 ⁇ l, preferably between about 2 and 100 ⁇ l, more preferably between about 5 and about 100 ⁇ l, and still more preferably, between about 5 and 50 ⁇ l.
- the cover layer aspect of the microfluidic devices described herein may generally be fabricated from any of a number of different materials using a number of different methods.
- the materials and methods described above in the manufacture of the microfluidic elements of the device may also be employed in the manufacture of the cover layer. While these methods are effective, in preferred aspects, more conventional manufacturing techniques are used to produce the cover layer.
- the cover layer does not need to be manufactured to the tolerances of the microfluidic elements of the devices of the invention, they can generally be manufactured using less precise and less expensive or time consuming methods and from less costly materials.
- fabrication of the ports or reservoirs in one layer can take a substantial amount of time. Further, the amount of time required for such fabrication increases in a non-linear, e.g., exponential, fashion with increasing substrate thickness. Conversely, reduction of substrate thickness reduces the amount of time required to fabricate the reservoirs, in an exponential fashion. Because a portion of the volume of the reservoirs in the final microfluidic device is optionally supplied by the cover layer element, the substrate layers used to fabricate the body structure of the microfluidic device can be substantially thinner. Specifically, less of the total desired volume of the reservoir is a function of substrate thickness. As a result, fabrication time and cost associated with the manufacturing of reservoirs in the body structure are substantially reduced.
- the cover layer comprises an injection molded polymeric or plastic part, fabricated from any of a number of different manufacturable plastics.
- the cover layer is typically fabricated from any of the polymeric materials described above for fabricating the body structure of the microfluidic device, e.g., polymethylmethacrylate (PMMA), polycarbonate, polytetrafluoroethylene (TEFLONTM), polyvinylchloride (PVC), polydimethylsiloxane (PDMS), polysulfone, polystyrene, polymethylpentene, polypropylene, polyethylene, polyvinylidine fluoride, ABS, and the like.
- the cover layer is optionally fabricated from non-polymeric materials, e.g., silica-based substrates, such as glass, quartz, silicon, as well as ceramics or metals.
- Attachment of the cover layer to the body structure of the device is also typically accomplished by well known methods, including adhesive bonding, ultrasonic welding, solvent welding, thermal bonding, and the like.
- the cover layer is attached to the body structure of the device using an adhesive material, and more preferably, U.V. curable adhesives are used to join the cover layer with the body structure.
- adhesives are generally commercially available, e.g., from 3M Corporation.
- the selected adhesive is electrically insulating, e.g., nonconductive, non-soluble and/or non-leaching in application buffers, low fluorescing, and the like.
- the microfluidic device includes a plurality of rings disposed around the reservoirs or ports in the microfluidic device underlying the cover layer.
- the rings are optionally molded around the apertures on the first surface of the cover layer and integral with the cover layer.
- the rings are molded around the ports disposed in the first surface of the body structure and integral with the body structure.
- the rings are separate from the cover layer and the body structure. Upon attachment of the cover layer to the body structure, a ring becomes disposed between each aperture aligned with each port.
- the rings also optionally include conductive coatings and/or membranes.
- rings act to prevent adhesive, e.g., U.V. curable adhesive (mentioned above), from getting into the ports and in turn from contacting any assay components that are in the ports.
- rings are optionally shaped as circular rings or as any other functionally equivalent forms, e.g., rectangular or polygonal rings.
- the terms “thick” and/or “thickness” refer to the distance from an inner edge to an outer edge of a ring.
- a ring has a single thickness, as in the case of circular rings, or multiple thicknesses when other ring shapes are selected. However, each ring typically has a thickness in the range of from about 1 ⁇ M to about 1,000 ⁇ M.
- the rings are optionally in the range of from about 50 ⁇ M to about 750 ⁇ M thick, e.g., about 500 ⁇ M thick. Larger rings typically result in the creation of voids around the ports/apertures. Narrower rings, e.g., in the range of from about 100 ⁇ M to about 500 ⁇ M are generally preferred.
- the rings are optionally fabricated from many different materials. For example, if they are integral with the cover layer or the body structure, they are made from the same material, and in the same step, as either of those two respective components. As discussed above, these optionally include a wide variety of polymeric and non-polymeric materials.
- the rings are separate from the cover layer and the body structure, they are also optionally fabricated from any of the polymeric or non-polymeric materials discussed above as well as others, including polymethylmethacrylate (PMMA), polycarbonate, polytetrafluoroethylene (TEFLONTM), polyvinylchloride (PVC), polydimethylsiloxane (PDMS), polysulfone, polystyrene, polymethylpentene, polypropylene, polyethylene, polyvinylidine fluoride, ABS (acrylonitrile-butadiene-styrene copolymer), glass, quartz, silicon, gallium arsenide, silicon oxide, ceramics, metals, latex, silicone, or the like.
- PMMA polymethylmethacrylate
- TEFLONTM polytetrafluoroethylene
- PVC polyvinylchloride
- PDMS polydimethylsiloxane
- polysulfone polystyrene
- polymethylpentene polyprop
- the body structure is attached to the cover layer via a clamping mechanism.
- an optional flexible gasket e.g., latex, silicone, etc.
- the flexible gaskets also optionally include the rings, discussed above, as integral components therein.
- the body structure is then compressively clamped against the cover layer forming a sealed, joined structure.
- Suitable clamping mechanisms may be separate from the body structure/cover layer assembly, i.e., screw clamps, clip-style clamps, e.g., that clamp the edges of the body structure and cover layer, and the like.
- integrated clamping mechanisms are provided as a portion of the cover layer, into which the body structure is snapped. Such clamping systems are described in greater detail below, with reference to FIG. 3 B.
- the process of developing operable and commercially valuable microfluidic devices typically includes overcoming various technical hurdles.
- one technical problem in the development of practical cell-based microfluidic assays has been eliminating cell clumps or aggregations that clog microscale channels, rendering the devices inoperable.
- Another challenge has been to create functional reagent delivery systems for integrating reagents into microfluidic devices such that they will dissolve, e.g., in a sample.
- An additional problem has been cross-contamination among microfluidic devices when, e.g., electrodes are used in multiple devices.
- the present invention provides various solutions to all of these technical problems; solutions which are optionally used alone or in combination in the same device.
- the present invention provides methods of controlling a material composition delivered into a microfluidic device.
- the methods include providing a channel network disposed in the microfluidic device and at least one well in fluid communication with the channel network.
- the well includes a semi-permeable membrane portion disposed therein or thereon.
- the methods also include flowing a first solution that includes a material (e.g., particles, reagents, or the like) into the well through the semi-permeable membrane portion.
- a second option includes immobilizing the material on the semi-permeable membrane portion and flowing a second solution into the well of the microfluidic device.
- the second option includes mixing the second solution and the material immobilized on the semi-permeable membrane portion such that at least some of the material dissolves in the second solution and enters the microfluidic device through the semi-permeable membrane portion.
- the mixing step optionally includes a physical technique, such as shaking, vortexing, centrifuging, etc. the microfluidic device to dissolve at least some of the material adhered to the semi-permeable membrane portion in the second solution.
- the material network is at least partially filled with a fluid prior to flowing the first or second solutions into the well, or the channel network is void of fluid prior to flowing the first or second solutions into the well.
- aggregations of the material are sieved and prevented from entering the channel network of the microfluidic device.
- the phrase “aggregations of material” refers to clumps or clusters of the material, such as a clump of cells, reagent molecules, or the like, which, if permitted to enter the device, would likely obstruct the channel network.
- the semi-permeable membranes utilized selectively exclude aggregations of material based upon size.
- the semi-permeable membrane portion includes a port size of at least about 0.1 nm.
- the semi-permeable membrane portion includes a pore size of between about 10 ⁇ m and about 100 ⁇ m, which will exclude clumps of cells.
- the membranes optionally cover at least a portion of a well and are disposed between the body structure and the cover layer so as to keep each well sealed from other wells. Alternatively, membranes are placed on or over wells.
- Suitable semi-permeable membrane portions optionally include, e.g. a woven mesh membrane, a microfluidic membrane, a nanofiltration membrane, a dialysis membrane, an electrodialysis membrane, a prevaporation membrane, a reverse osmosis membrane, an ultrafiltration membrane, a composite membrane, a charged membrane, a conductively-coated membrane, a hydrophilic membrane, a hydrophobic membrane, a polymer-based membrane, a non-polymer-based membrane, a porous plastic matrix membrane (e.g., POREX® Porous Plastic, etc.), a porous metal matrix membrane, a polyethylene membrane, a poly(vinylidene difluoride) membrane, a polyamide membrane, a nylon membrane, a ceramic membrane, a polyester membrane, a metal membrane, a polytetrafluoroethylene (TEFLONTM) membrane, a polyaramide membrane, a polycarbonate membrane, a powdered activated carbon membrane, a poly
- the materials of the present invention include various materials.
- the material includes a particle, such as a cell or a set of cells.
- the material flowed into the well typically includes a plurality of cells or sets of cells and the volume of the first solution flowed into the well is optionally between about 0.5 and about 20 ⁇ l, optionally in the range of from about 5 to about 15 ⁇ l, or, e.g., about 10 ⁇ l.
- Cell sample volumes loaded into wells in this range are vast improvements over the several hundreds of microliters typically used, e.g., in conventional cell filtration techniques.
- the material also optionally includes a reagent, such as an atom, a set of atoms, a molecule, a set of molecules, a bead, a set of beads, a functionalized bead, a set of functionalized beads, an antigen, a set of antigens, a protein, a set of proteins, a peptide, a set of peptides, an enzyme, a set of enzymes, a nucleic acid, a set of nucleic acids, a lipid, a set of lipids, a carbohydrate, a set of carbohydrates, an inorganic molecule, a set of inorganic molecules, an organic molecule, a set of organic molecules, a drug, a set of drugs, a receptor, a set of receptors, a ligand, a set of ligands, an antibody, a set of antibodies, a neurotransmitter, a set of neurotransmitters, a cytokine, a set of
- the methods of controlling material compositions optionally include immobilizing the material (e.g., a labeled antibody, a reagent, or other particle) on the semi-permeable membrane portion before delivering the material into the microfluidic device.
- Materials are alternately immobilized using various techniques or combinations of techniques.
- the immobilizing step is optionally performed prior to placing the semi-permeable membrane portion on the at least one well.
- the immobilizing step includes dehydrating the first solution that includes the material on the semi-permeable membrane portion such that at least some of the material adheres to the semi-permeable membrane portion.
- This immobilization approach optionally includes, e.g., air drying, heat drying, lyophilizing, using a drying reagent, or the like to dehydrate the first solution.
- this technique optionally includes, e.g., spotting and dehydrating the first solution containing the material on the semi-permeable membrane before placing the membrane over the well(s).
- the semi-permeable membrane portion includes a hydrophobic coating, or is composed of a hydrophobic substance, and the material is a hydrophobic material so that the material immobilizes on the semi-permeable membrane portion by hydrophobic attraction.
- the semi-permeable membrane portion optionally includes a hydrophilic coating, or is composed of a hydrophilic substance, and the material is a hydrophilic material so that the material immobilizes on the semi-permeable membrane portion by hydrophilic attraction.
- Many hydrophobic and hydrophilic coatings or substances are known and are optionally used in the methods and devices of the present invention.
- suitable hydrophobic coatings or substances optionally include, e.g., hydrophobic polymers, fluorocarbon polymers, chlorinated polysiloxanes, polytetrafluoroethylenes (TEFLONTM), polyglycines, polyalanines, polyvalines, polyleucines, polyisoleucines, chlorine terminated polydimethylsiloxane telomers, bis(perfluorododecyl) terminated poly(dimethylsiloxane-co-dimer acids), derivatives thereof, or the like.
- TEFLONTM is generally preferred and is readily available from various commercial sources.
- hydrophilic coatings and substances optionally include, e.g., hydrophilic polymers, polyimides, polyethylene oxides, polyvinylpyrrolidone, polyacrylates, hydrophilic polysaccharides, hyaluronic acids, chondroitin sulfates, derivatives thereof, or the like.
- immobilization techniques include, e.g., providing the semi-permeable membrane portion to include a net charge.
- the material includes a net charge opposite from the semi-permeable membrane portion so that the material immobilizes on the semi-permeable membrane portion by electrostatic attraction.
- the present invention also relates to a microfluidic device that includes a membrane (e.g., a semi-permeable membrane portion) disposed between at least a portion of the first surface of the cover layer and the first surface of the body structure such that the membrane is disposed between at least one pair of aligned apertures and ports.
- a membrane e.g., a semi-permeable membrane portion
- the membrane is disposed between at least one pair of aligned apertures and ports.
- material e.g., reagents, cells, or other particles
- the type of semi-permeable membrane portion used, including the pore size optionally include any of those described above.
- the present invention optionally includes the use of conductive coatings that permit the use of dry contact electrodes to minimize this type of contamination.
- Conductive coatings are optionally deposited by, e.g., plating, electroforming, vapor deposition, or the like.
- a conductive coating also optionally includes, e.g., a pre-formed piece of metal or other conductive material pressed into one or more wells of a device such that the coating covers at least a portion of the internal surface of, and extends over the top rim of, one or more wells.
- the conductive coating optionally includes, e.g., a thin ring (or other functionally equivalent form) of conductive material pressed into one or more wells of a device so that conductive communication is optionally established between the microchannels of the device and a conductive source. Suitable conductive coatings are discussed further below.
- each of the plurality of ports includes a rim disposed circumferentially around each port in the first surface of the body structure and an internal surface in which at least a portion of the rim and the internal surface of at least one of the plurality of ports includes a conductive coating.
- conductive contact between the conductive coating and an electrode is optionally established, e.g., by modifying the cover layer to include a conductive inlet that is not in fluid communication with the well, yet which is in conductive communication with the conductive coating disposed on the rim and/or internal surface of a port.
- the rim typically includes at least one width that extends from an edge of each of the plurality of ports of, e.g., at least about 1 ⁇ m.
- a membrane e.g., a semi-permeable membrane portion
- a membrane is also optionally disposed between at least a portion of the first surface of the cover layer and the first surface of the body structure such that the membrane is disposed between a pair of aligned apertures and ports.
- a portion of the membrane disposed between the pair of aligned apertures and ports is optionally conductively connected to the conductive coating.
- the type of semi-permeable membrane portion used, including the pore size optionally includes any of those described above.
- the cover layer also optionally includes an inlet to permit a conductive source (e.g., an electrode) to conductively communicate with the conductive coating.
- the microfluidic device of the present invention also typically include a cover layer that includes a second surface opposite the first surface in which each of the plurality of apertures extends from the first surface to the second surface.
- the plurality of apertures include a rim disposed circumferentially around each aperture in the second surface of the cover layer and an internal surface in which at least a portion of the rim and the internal surface of at least one of the apertures optionally include a conductive coating.
- the rim generally includes at least one width that extends from an edge of each of the plurality of apertures of, e.g., at least 1 ⁇ m.
- a membrane is optionally disposed between at least a portion of the first surface of the cover layer and the first surface of the body structure such that the membrane is disposed between at least one pair of aligned apertures and ports. Furthermore, at least a portion of the membrane is also optionally conductively connected to the conductive coating.
- the microfluidic devices of the present invention optionally include a plurality of rings that act to prevent adhesive (e.g., U.V. curable adhesive) from getting into the ports and, in turn, from contacting assay components in the ports.
- the rings are optionally molded around the apertures on the first surface of the cover layer and are integral with the cover layer.
- the rings are molded around the ports disposed in the first surface of the body structure and are integral with the body structure.
- the rings are separate from the cover layer and the body structure.
- the device optionally includes a membrane (e.g., a semi-permeable membrane portion) disposed between at least a portion of the first surface of the cover layer and the first surface of the body structure.
- the membrane is typically disposed between at least one pair of aligned apertures and ports such that at least a portion of at least one surface of the plurality or rings includes the membrane.
- the type of semi-permeable membrane portion use including the pore size, optionally includes any of those described above.
- an aligned port, ring, and aperture define a well which includes a rim disposed circumferentially around the well in the annular ridge on a second surface of a cover layer and an internal surface.
- the rim and the internal surface of at least one well optionally include a conductive coating.
- conductive communication is optionally established simply by, e.g., contacting an electrode to the conductively coated rim of the well instead of inserting the electrode into the liquid in the well.
- the rim typically includes at least one width that extends from an edge of each well of, e.g., at least 1 ⁇ m.
- the cover layer optionally includes an inlet such that a conductive source (e.g., an electrode) is capable of conductively communicating with the conductive coating.
- a conductive source e.g., an electrode
- This device also optionally includes a membrane (e.g., semi-permeable membrane portion) disposed between at least a portion of the first surface of the cover layer and the first surface of the body structure.
- the membrane is optionally disposed, e.g., between a pair of aligned apertures and ports such that at least a portion of at least one surface of a ring includes the membrane.
- An additional option includes disposing the membrane over at least one annular ridge surrounding at least one aperture on the second surface.
- the type of semi-permeable membrane portion used, including the pore size optionally includes any of those described above. Additionally, at least a portion of the membrane disposed between the pair of aligned apertures and ports is optionally conductively connected to the conductive coating.
- a conductive coating e.g., single or multilayered coatings
- that coating optionally includes, e.g., a thermally conductive coating and/or an electrically conductive coating (including, e.g., semiconductive and/or superconductive coatings).
- any conductive coating is optionally used including, e.g., a metal-containing conductive coating, a metalloid-containing conductive coating, and/or a metal-metalloid-containing conductive coating.
- conductive coatings are optionally deposited by, e.g., plating, electroforming, vapor deposition, conductive particle dispersion, or the like. These and other techniques are generally known in the art.
- Suitable metals for use in conductive coatings include, e.g., Li, Be, Na, Mg, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Fr, Ra, Ac, the lanthanides, the actinides, and compounds and/or combinations thereof.
- Metalloids for use in, e.g., metalloid-containing conductive coatings optionally include, e.g., Al, Ge, As, Po, B, Si, Te, At, and compounds and/or combinations thereof.
- the coatings alternatively include alloys including both metals and metalloids (i.e., metal-metalloid-containing conductive coatings).
- Conductive coatings also optionally include, e.g., carbon and graphite, metal salts such as metal oxides and sulfides, metal hydrides, conductive organic polymers (e.g., polyacetylenes, polypyrroles, polyanilines, polythiophenes, derivatives thereof, etc.) or the like. Many such coatings are known in the art and are readily available from commercial sources.
- FIG. 2 One aspect of the cover layer used in conjunction with the microfluidic devices of the present invention is shown in FIG. 2, from the top (FIG. 2 A), side (FIG. 2 B), bottom (FIG. 2 C), top perspective (FIG. 2D) and bottom perspective views (FIG. 2 E).
- the cover layer 200 is planar in shape having an upper planar surface 202 and a lower planar surface 204 . Also included are a plurality of apertures 206 disposed through the cover layer, e.g., from the upper to lower planar surfaces. Apertures 206 are positioned within the cover so as to align with ports/reservoirs in the body structure of a microfluidic device (e.g., as shown in FIG.
- rings are also optionally disposed between and surrounding the aligned apertures and ports, to prevent adhesive, e.g., U.V. curable adhesive, from getting into the ports and in turn from contacting assay components that are in the ports, as described herein.
- adhesive e.g., U.V. curable adhesive
- membranes e.g., semi-permeable membranes
- Conductive coatings are also optionally used, e.g., to minimize cross-contamination among devices.
- the apertures 206 in cover layer 200 are provided in a gridded pattern to match a similar gridded pattern of ports on the body structure of the device.
- the gridded arrangement of apertures and ports are positioned on regular centers, e.g., 9 mm, 4.5 mm etc., to match the spacing of typical multi-well plates, e.g., 96-well, 384-well, 1536-well, etc.
- annular ridge 208 is provided on the upper surface 202 of the cover layer 200 , surrounding each separate aperture 206 .
- This ridge provides a barrier between neighboring reservoirs in the overall device and also functions to increase the effective volume of each reservoir in the resulting device.
- the apertures 206 in the cover layer are optionally provided with tapered walls 210 , which are wider at the upper surface and narrower at the lower surface. The tapered walls allow the apertures to perform a funnel-like function, in the introduction of fluids into the ports of the microfluidic devices. Specifically, wider openings facilitate introduction of fluids into the reservoir.
- the walls of an aperture and a rim disposed in an annular ridge also optionally include a conductive coating.
- the lower planar surface 204 of the cover layer 200 has fabricated thereon, a series of raised ridges 212 , which function as alignment structures to ensure the body structure of the microfluidic device 100 (from FIG. 1 ), is properly aligned with the cover layer during the bonding or mating process.
- a number of different alignment structures may be provided upon the lower planar surface for aligning the body structure of the device with the cover layer.
- a recessed region which is configured to fit the body structure may be used, whereby placement of the body structure into the recessed region positions the body structure to be appropriately aligned with the apertures in the cover layer.
- alignment pins may be provided extending from the lower surface, against which the body structure may rest, when appropriately aligned with the cover layer.
- the cover layer 200 includes side-walls 216 , which extend from the lower planar surface 204 , effectively creating a hollow-backed structure.
- This hollow-backed structure permits the mounting of a body structure of a microfluidic device to the lower surface of the cover layer without altering the overall profile of the cover layer, e.g., permitting the combined device-cover layer to be laid flat upon a surface or stacked with other like devices, as well as providing benefits in manufacturing, e.g., curing/hardening of molded parts, etc.
- the cover layer also includes additional alignment structures 218 and 220 .
- These alignment structures permit the appropriate alignment of the overall device into an appropriate base unit, such as a controller/detector instrument (not shown).
- alignment holes 218 provided disposed through the cover layer are complementary to alignment pins that are provided on a controller/detector instrument (not shown).
- the cover layer 200 also includes a beveled corner 220 , which further ensures proper alignment of the device in the controller/detector instrument.
- a number of different types of alignment structures may be used to accomplish this same purpose, including irregular edges, e.g., beveled, tabbed, etc., alignment pins, non-uniform shapes and the like.
- the cover layer also includes convenience features. For example, textured regions 222 are provided on side-walls 216 , to provide gripping surfaces for manual handling of the cover layer and assembled device. Also provided is registry port 224 disposed through the cover layer. Different numbers, sizes and/or shapes of registry ports are optionally provided in the cover layer to register the type of microfluidic device that has been inserted in a controller/detector instrument. This ensures that the proper interface is used, and/or the proper control program is being run.
- FIG. 3A illustrates the fully assembled microfluidic device 300 including the body structure 100 mated with the lower surface of the cover layer 200 , and bonded using, e.g., an adhesive, as described above. Rings are also optionally disposed between and surrounding the aligned apertures and ports of the cover layer and the body structure, as mentioned above. Furthermore, membranes are also optionally disposed between the aligned apertures and ports.
- planar devices e.g., as shown in FIG. 3A, can vary substantially depending upon the application for which the device is to be used.
- the fully assembled devices have a rectangular shape and range from about 5 mm to about 200 mm on a side, and preferably are in the range of from about 10 mm to about 100 mm, and still more preferably, in the range of from about 20 mm to about 70 mm, e.g., about 50 mm on a side.
- a square device approximately 50 mm on a side is shown.
- Such devices provide ease of handling as well as ready access to equipment already sized for handling substrates of this size, i.e., photographic slides.
- FIG. 3B illustrates a clamping mechanism integrated into the cover layer of the device.
- the cover layer 200 (partially shown), includes on its bottom surface, clip tabs 310 . These clips flex to allow insertion of the body structure 100 , then snap into place to lock the body structure 100 in position against the cover layer 200 with barbs 312 .
- Gasket 314 provides a seal between the two structures, as well as providing the necessary flexibility to permit the clips to compressively clamp the body structure against the cover layer.
- the gasket 314 is optionally fabricated from a flexible material, such as latex, silicone, or the like, or a semi-rigid material, such as polytetrafluoroethylene (TeflonTM), polypropylene, etc.
- the gaskets also optionally include the rings, discussed above, as integral components therein.
- an appropriate cover layer is optionally joined to a non-planar microfluidic system, e.g., a tubular capillary or the like.
- apertures in the cover layer are again fabricated to align with the ports, e.g., inlets and outlets of the capillary channel.
- the cover layers described for use in conjunction with the present invention also optionally include other useful features.
- the shape of the aperture in the cover layer is optionally configured to receive a complementary structure on a filling apparatus, e.g., syringe or pump.
- a positive pressure source to assist in filling the channel networks of a microfluidic device with fluid. This is typically useful where the filling solution, e.g., running buffer, separation matrix, etc., is slower at wicking into the channel network via capillary action, due to viscosity effects.
- the running buffer, separation matrix, etc. is placed into one reservoir of the microfluidic device. A positive pressure is then applied to that reservoir thereby forcing the fluid throughout the channel network.
- the filling device 250 includes a syringe 252 and a rigid tube 254 , e.g., a needle.
- the rigid tube/needle is inserted through a rubber, e.g., a silicone, latex, etc., ball stopper 256 that is selected to properly fit within the aperture 206 in the cover layer 200 .
- the conical shape of aperture 206 permits the ball stopper 256 to be inserted into the aperture 206 .
- the rigid tube/needle 254 is further positioned within the ball stopper 256 so as to be able to apply pressure to the reservoir 106 , without contacting the fluid within the reservoir 106 .
- the tube is inserted through the stopper such that little or no tube length extends beyond the surface of the stopper, e.g., less than 2 mm, preferably less than 1 mm and more preferably less than 0.5 mm of the tube extending beyond the surface of the stopper.
- shaped stoppers 258 and 260 are also shown for use in the filling device.
- the ball portion 262 of the stopper inserts into the aperture, and compression of the ball portion provides a positive seal.
- the ball shape allows one to insert the filling device at an angle of up to approximately 15° from normal to the plane of the cover layer 200 , without adversely effecting the sealing ability of the filling device.
- the ball can be inserted until the flat ledge 264 contacts the upper surface of the cover surrounding the aperture 106 . This provides a secondary seal for the filling device, in addition to the ball stopper.
- the stopper optionally includes a recessed region 266 at the top for receiving the syringe 252 or pump outlet.
- cover layer Additional functions are also optionally performed by the cover layer. For example, in some cases, it may be desirable to perform a separation function, e.g., a filtration, cell separation, molecular weight separation, affinity, charge-based or hydrophobic interaction type separations, on a sample that is to be introduced into the microfluidic device. Accordingly, an appropriate filtration or separation medium or membrane is optionally provided within or across the aperture on the cover layer.
- a separation function e.g., a filtration, cell separation, molecular weight separation, affinity, charge-based or hydrophobic interaction type separations
- the cover layer performs a fluid handling and direction function, e.g, a manifolding function, where an aperture in the cover layer communicates with more than one reservoir on the body structure of the device, e.g., 2, 3, 4, 5, 10 or even 20 different reservoirs.
- a fluid handling and direction function e.g., a manifolding function
- an aperture in the cover layer communicates with more than one reservoir on the body structure of the device, e.g., 2, 3, 4, 5, 10 or even 20 different reservoirs.
- the cover layer may include other components useful in the operation of the microfluidic device and system, including e.g., integrated optical elements, e.g., lenses, gratings, coatings, polished detection windows, etc., as described in commonly owned U.S. patent application Ser. No. 09/030,535, entitled “Microfluidic Devices and Systems Incorporating Integrated Optical Elements,” filed Feb. 24, 1998, which is incorporated herein by reference, in its entirety for all purposes. Such elements supplement or replace optical elements from an external detection system.
- integrated optical elements e.g., lenses, gratings, coatings, polished detection windows, etc.
- controller instruments include material transport systems, for affecting material, e.g., fluid, movement within and among the channels and chambers of a microfluidic device.
- material transport systems for affecting material, e.g., fluid, movement within and among the channels and chambers of a microfluidic device.
- the controller instrument typically includes pressure sources as well as appropriate manifolds for delivering the appropriate pressures to complementary ports on the microfluidic device. The instrument then applies pressure/vacuum to activate the pumps and valves, or directly to fluids, to move those fluids through the channels of the device in a controlled fashion.
- the controller typically includes an electrical power supply that is capable of delivering voltage gradients across the length of channels within the microfluidic device, as described above, when the device is mounted in the controller.
- electrical power supply that is capable of delivering voltage gradients across the length of channels within the microfluidic device, as described above, when the device is mounted in the controller. Examples of particularly preferred power supplies are described in, e.g., Published International Application No. WO 98/00707, which is incorporated herein by reference in its entirety for all purposes.
- the controller typically includes an appropriate interface for delivering the voltage gradients to the channels of the device.
- interfaces are generally described in detail in commonly owned U.S. patent application Ser. No. 08/919,707, filed Oct. 9, 1997, and incorporated herein by reference for all purposes.
- such interfaces typically include a number of electrodes, operably coupled to electrical leads from the power supply.
- the controller also typically includes a nesting region, e.g., a well or platform, upon which the microfluidic device is mounted. The electrodes are positioned so as to be placed into electrical contact with the channels of the device. In preferred aspects, this is accomplished by providing a “clam shell” lid hinged to the nesting region so as to close over the top of the device.
- the device e.g., as shown in FIGS. 1-3, is mounted on the nesting region with the reservoirs facing upward.
- the electrodes protruding from the lower surface of the clam-shell lid then insert into the reservoirs on the upper surface of the microfluidic device when the clam-shell lid is closed, so as to be placed into electrical contact with fluids in those reservoirs.
- Environmental control elements are optionally included in the controller instrument, e.g., for maintaining the environmental conditions to which the microfluidic device is exposed, at optimal levels.
- the controller optionally includes a thermal control element, e.g., a heating block, peltier device, etc.
- the controller instrument also includes a detection system for detecting the results of an operation performed in the microfluidic device.
- the instrument is also referred to as a controller/detector instrument.
- Examples of particularly preferred detection systems include fluorescent detection systems.
- these detection systems include a light source, such as a laser, laser diode, LED or high intensity lamp, within the controller/detector instrument.
- the detection system also typically includes appropriate optics, e.g., lenses, beam splitters, filters, dichroics, and the like, for directing the light source at the detection window of a microfluidic device mounted on the controller/detector.
- the optics also gather emitted fluorescence emanating from the channel(s) of the device, separate out reflected excitation light, and detect the emitted fluorescence, e.g., using a photodiode or photomultiplier tube (PMT).
- Other optical detection systems are optionally included within the controller/detector instrument, e.g., absorbance or colorimetric detection systems, and the like. Both fluorescence based and absorbance based detection systems are well known in the art.
- the controller/detector instrument is also typically interfaced with an appropriate processor, e.g., an appropriately programmed computer, which instructs the operation of the material transport system, e.g., applied voltages, timing, etc.
- the processor also typically is operably linked to the detection system of the controller/detector instrument, so that the computer can receive, store and manipulate the data collected from the detection system.
- a piece of nylon mesh membrane (40 ⁇ m pore size) was placed on the first surface of a DNA 7500 LabChipTM cover layer. Thereafter, an ns88 chip was oriented on the cover layer and UV curing DYMAXTM adhesive was applied using standard manufacturing techniques. The adhesive wicked under the chip and through the membrane, but did not encroach upon the membrane disposed in the wells of the device. After the adhesive was cured, 5 ⁇ l of buffer were placed on the membrane in one of the wells. The buffer successfully passed through the membrane and filled the microchannels of the chip.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Physics & Mathematics (AREA)
- Electrochemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
Claims (83)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/544,711 US6756019B1 (en) | 1998-02-24 | 2000-04-06 | Microfluidic devices and systems incorporating cover layers |
AU2001251340A AU2001251340A1 (en) | 2000-04-06 | 2001-04-06 | Microfluidic devices and systems incorporating cover layers |
CA002406707A CA2406707A1 (en) | 2000-04-06 | 2001-04-06 | Microfluidic devices and systems incorporating cover layers |
JP2001574851A JP5046412B2 (en) | 2000-04-06 | 2001-04-06 | Microfluidic device and system incorporating a coating layer |
PCT/US2001/011095 WO2001077641A1 (en) | 2000-04-06 | 2001-04-06 | Microfluidic devices and systems incorporating cover layers |
EP01924711A EP1269141A4 (en) | 2000-04-06 | 2001-04-06 | Microfluidic devices and systems incorporating cover layers |
US10/792,020 US7497994B2 (en) | 1998-02-24 | 2004-03-03 | Microfluidic devices and systems incorporating cover layers |
JP2012133822A JP5124054B2 (en) | 2000-04-06 | 2012-06-13 | Microfluidic devices and systems incorporating protective layers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/028,965 US6251343B1 (en) | 1998-02-24 | 1998-02-24 | Microfluidic devices and systems incorporating cover layers |
US09/544,711 US6756019B1 (en) | 1998-02-24 | 2000-04-06 | Microfluidic devices and systems incorporating cover layers |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/028,965 Continuation-In-Part US6251343B1 (en) | 1998-02-24 | 1998-02-24 | Microfluidic devices and systems incorporating cover layers |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/792,020 Continuation-In-Part US7497994B2 (en) | 1998-02-24 | 2004-03-03 | Microfluidic devices and systems incorporating cover layers |
Publications (1)
Publication Number | Publication Date |
---|---|
US6756019B1 true US6756019B1 (en) | 2004-06-29 |
Family
ID=47298958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/544,711 Expired - Lifetime US6756019B1 (en) | 1998-02-24 | 2000-04-06 | Microfluidic devices and systems incorporating cover layers |
Country Status (1)
Country | Link |
---|---|
US (1) | US6756019B1 (en) |
Cited By (114)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020025280A1 (en) * | 2000-06-19 | 2002-02-28 | David Chazan | Methods and devices for enhancing bonded substrate yields and regulating temperature |
US20030077817A1 (en) * | 2001-04-10 | 2003-04-24 | Zarur Andrey J. | Microfermentor device and cell based screening method |
US20030102284A1 (en) * | 2000-01-31 | 2003-06-05 | Walter Schmidt | Method for fabricating micro-structures with various surface properties in multi-layer body by plasma etching |
US20030102219A1 (en) * | 2001-11-30 | 2003-06-05 | Shimadzu Corporation | Reservoir member for electrophoretic member and electrophoretic member |
US20040014239A1 (en) * | 2000-01-06 | 2004-01-22 | Caliper Technologies Corp. | Ultra high throughput sampling and analysis systems and methods |
US20040121454A1 (en) * | 2000-03-10 | 2004-06-24 | Bioprocessors Corp. | Microreactor |
US20040129676A1 (en) * | 2003-01-07 | 2004-07-08 | Tan Roy H. | Apparatus for transfer of an array of liquids and methods for manufacturing same |
US20040228770A1 (en) * | 1998-02-24 | 2004-11-18 | Caliper Life Sciences, Inc. | Microfluidic devices and systems incorporating cover layers |
US20050069949A1 (en) * | 2003-09-30 | 2005-03-31 | International Business Machines Corporation | Microfabricated Fluidic Structures |
US20050069462A1 (en) * | 2003-09-30 | 2005-03-31 | International Business Machines Corporation | Microfluidics Packaging |
US20050109396A1 (en) * | 2002-12-04 | 2005-05-26 | Piero Zucchelli | Devices and methods for programmable microscale manipulation of fluids |
US20050128479A1 (en) * | 2003-08-14 | 2005-06-16 | Cytonome, Inc. | Optical detector for a particle sorting system |
US20050221414A1 (en) * | 2004-03-31 | 2005-10-06 | Katalin Varadi | Kit for measuring the thrombin generation in a sample of a patient's blood or plasma |
US20050220675A1 (en) * | 2003-09-19 | 2005-10-06 | Reed Mark T | High density plate filler |
US20050226782A1 (en) * | 2003-09-19 | 2005-10-13 | Reed Mark T | High density plate filler |
US20050227350A1 (en) * | 2004-04-13 | 2005-10-13 | Agency For Science, Technology And Research | Device and method for studying cell migration and deformation |
US20050232820A1 (en) * | 2003-09-19 | 2005-10-20 | Reed Mark T | High density plate filler |
US20050232821A1 (en) * | 2003-09-19 | 2005-10-20 | Carrillo Albert L | High density plate filler |
US20060018797A1 (en) * | 2003-12-17 | 2006-01-26 | Inverness Medical Switzerland Gmbh | Microfluidic separation of particles from fluid |
US20060030036A1 (en) * | 2004-05-28 | 2006-02-09 | Victor Joseph | Chips for multiplex analyses |
US20060163070A1 (en) * | 2004-12-10 | 2006-07-27 | Bio-Rad Laboratories, Inc., A Corporation Of The State Of Delaware | Apparatus for priming microfluidics devices with feedback control |
US20060210445A1 (en) * | 2004-05-12 | 2006-09-21 | Osterfeld Sebastian J | Multilayer microfluidic device |
US20060233670A1 (en) * | 2003-09-19 | 2006-10-19 | Lehto Dennis A | High density plate filler |
US20060233672A1 (en) * | 2003-09-19 | 2006-10-19 | Reed Mark T | High density plate filler |
US20060233671A1 (en) * | 2003-09-19 | 2006-10-19 | Beard Nigel P | High density plate filler |
US20060233673A1 (en) * | 2003-09-19 | 2006-10-19 | Beard Nigel P | High density plate filler |
US20060272738A1 (en) * | 2003-09-19 | 2006-12-07 | Gary Lim | High density plate filler |
US20070014694A1 (en) * | 2003-09-19 | 2007-01-18 | Beard Nigel P | High density plate filler |
US20070110630A1 (en) * | 2005-11-14 | 2007-05-17 | Ids Co., Ltd. | Nozzle device for aliquoting and dispensing specimen incorporated reference |
US20080176290A1 (en) * | 2007-01-22 | 2008-07-24 | Victor Joseph | Apparatus for high throughput chemical reactions |
US20080194012A1 (en) * | 2007-02-08 | 2008-08-14 | Cellasic Corporation | Microfluidic particle analysis method, device and system |
US20080213134A1 (en) * | 2004-12-28 | 2008-09-04 | Hans-Jurgen Bigus | Device for Supplying Fluids, Method for Producing this Device, and Pipette Comprising Such a Device |
US20080217262A1 (en) * | 2000-08-28 | 2008-09-11 | Aquamarijn Holding B.V. | Nozzle device and nozzle for atomisation and/or filtration and methods for using the same |
US20080233446A1 (en) * | 2007-03-21 | 2008-09-25 | Joerg Zimmermann | Fluidic control system and method of manufacture |
US20080233011A1 (en) * | 2007-03-23 | 2008-09-25 | 3M Innovative Properties Company | Microfluidic devices |
WO2008113182A1 (en) * | 2007-03-21 | 2008-09-25 | Angstrom Power Incorporated | Fluid manifold and method therefor |
US20080248352A1 (en) * | 2007-03-21 | 2008-10-09 | Mclean Gerard F | Fluidic distribution system and related methods |
WO2008147428A1 (en) * | 2006-10-05 | 2008-12-04 | Nanopoint, Inc. | Systems and methods for active microfluidic cell handling |
US20090023608A1 (en) * | 2005-07-07 | 2009-01-22 | The Regents Of The University Of California | Methods and apparatus for cell culture array |
US20090045058A1 (en) * | 2005-12-14 | 2009-02-19 | Nec Corporation | Microchip and analysis method using the microchip |
US20090130746A1 (en) * | 2007-10-25 | 2009-05-21 | Canon U.S. Life Sciences, Inc. | Microchannel surface coating |
KR100900985B1 (en) | 2007-08-28 | 2009-06-04 | 한국기계연구원 | Method for fixation of micro structure inside using?lyophilization |
US20090139704A1 (en) * | 2005-04-06 | 2009-06-04 | Kabushiki Kaisha Toyota Jidoshokki | Heat sink device |
US20090191096A1 (en) * | 2004-07-29 | 2009-07-30 | Kyocera Corporation | Microchemical Chip |
US20090203126A1 (en) * | 2008-01-03 | 2009-08-13 | Cellasic | Cell culture array system for automated assays and methods of operation and manufacture thereof |
US20100092993A1 (en) * | 2008-10-09 | 2010-04-15 | Wen-Pin Hsieh | Quantitative analyzing method |
US20100099114A1 (en) * | 2008-10-17 | 2010-04-22 | Yi-Jen Wu | Analytical strip and detecting method using the same |
US20100196908A1 (en) * | 2009-01-30 | 2010-08-05 | Gen-Probe Incorporated | Systems and methods for detecting a signal and applying thermal energy to a signal transmission element |
US20100240120A1 (en) * | 2009-03-23 | 2010-09-23 | Hsieh Wei-Pin | Analytical strip and the manufacturing method thereof |
US20100255512A1 (en) * | 2008-10-17 | 2010-10-07 | Yi-Jen Wu | Analytical strip and detecting method using the same |
US20110044862A1 (en) * | 2003-12-18 | 2011-02-24 | Digital Bio Technology | Method for bonding plastic micro chip |
US20110143378A1 (en) * | 2009-11-12 | 2011-06-16 | CyVek LLC. | Microfluidic method and apparatus for high performance biological assays |
US8133671B2 (en) | 2007-07-13 | 2012-03-13 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US8163254B1 (en) * | 2003-04-02 | 2012-04-24 | Sandia Corporation | Micromanifold assembly |
US8182763B2 (en) | 2007-07-13 | 2012-05-22 | Handylab, Inc. | Rack for sample tubes and reagent holders |
US8216530B2 (en) | 2007-07-13 | 2012-07-10 | Handylab, Inc. | Reagent tube |
USD665095S1 (en) | 2008-07-11 | 2012-08-07 | Handylab, Inc. | Reagent holder |
US8273308B2 (en) | 2001-03-28 | 2012-09-25 | Handylab, Inc. | Moving microdroplets in a microfluidic device |
USD669191S1 (en) | 2008-07-14 | 2012-10-16 | Handylab, Inc. | Microfluidic cartridge |
US8287820B2 (en) | 2007-07-13 | 2012-10-16 | Handylab, Inc. | Automated pipetting apparatus having a combined liquid pump and pipette head system |
US8323584B2 (en) | 2001-09-12 | 2012-12-04 | Handylab, Inc. | Method of controlling a microfluidic device having a reduced number of input and output connections |
US8323900B2 (en) | 2006-03-24 | 2012-12-04 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US8324372B2 (en) | 2007-07-13 | 2012-12-04 | Handylab, Inc. | Polynucleotide capture materials, and methods of using same |
US8415103B2 (en) | 2007-07-13 | 2013-04-09 | Handylab, Inc. | Microfluidic cartridge |
US8420015B2 (en) | 2001-03-28 | 2013-04-16 | Handylab, Inc. | Systems and methods for thermal actuation of microfluidic devices |
US8440149B2 (en) | 2001-02-14 | 2013-05-14 | Handylab, Inc. | Heat-reduction methods and systems related to microfluidic devices |
US8473104B2 (en) | 2001-03-28 | 2013-06-25 | Handylab, Inc. | Methods and systems for control of microfluidic devices |
US8470586B2 (en) | 2004-05-03 | 2013-06-25 | Handylab, Inc. | Processing polynucleotide-containing samples |
TWI402500B (en) * | 2008-09-19 | 2013-07-21 | Actherm Inc | Testing strip |
USD692162S1 (en) | 2011-09-30 | 2013-10-22 | Becton, Dickinson And Company | Single piece reagent holder |
US8617905B2 (en) | 1995-09-15 | 2013-12-31 | The Regents Of The University Of Michigan | Thermal microvalves |
US8673625B2 (en) | 2006-01-04 | 2014-03-18 | Emd Millipore Corporation | Valved, microwell cell-culture device and method |
US8679831B2 (en) | 2003-07-31 | 2014-03-25 | Handylab, Inc. | Processing particle-containing samples |
US8709787B2 (en) | 2006-11-14 | 2014-04-29 | Handylab, Inc. | Microfluidic cartridge and method of using same |
WO2014145528A1 (en) * | 2013-03-15 | 2014-09-18 | President And Fellows Of Harvard College | Antifouling microfluidic devices and methods thereof |
US8852862B2 (en) | 2004-05-03 | 2014-10-07 | Handylab, Inc. | Method for processing polynucleotide-containing samples |
US20140318706A1 (en) * | 2011-11-30 | 2014-10-30 | Corning Incorporated | Method to align covers on structured layers and resulting devices |
US8883490B2 (en) | 2006-03-24 | 2014-11-11 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US8895311B1 (en) | 2001-03-28 | 2014-11-25 | Handylab, Inc. | Methods and systems for control of general purpose microfluidic devices |
US20150031052A1 (en) * | 2011-12-28 | 2015-01-29 | Denka Seiken Co., Ltd. | Method for reducing adsorption of bubbles |
US9040288B2 (en) | 2006-03-24 | 2015-05-26 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using the same |
US20150190762A1 (en) * | 2012-06-26 | 2015-07-09 | Fujifilm Manufacturing Europe Bv | Membranes |
US20150209733A1 (en) * | 2012-06-26 | 2015-07-30 | Fujifilm Manufacturing Europe Bv | Process for Preparing Membranes |
US9186677B2 (en) | 2007-07-13 | 2015-11-17 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US9206384B2 (en) | 2011-12-03 | 2015-12-08 | Emd Millipore Corporation | Micro-incubation systems for microfluidic cell culture and methods |
US9216412B2 (en) | 2009-11-23 | 2015-12-22 | Cyvek, Inc. | Microfluidic devices and methods of manufacture and use |
US9222954B2 (en) | 2011-09-30 | 2015-12-29 | Becton, Dickinson And Company | Unitized reagent strip |
US9229001B2 (en) | 2009-11-23 | 2016-01-05 | Cyvek, Inc. | Method and apparatus for performing assays |
US9260693B2 (en) | 2004-12-03 | 2016-02-16 | Cytonome/St, Llc | Actuation of parallel microfluidic arrays |
US9353342B2 (en) | 2010-01-21 | 2016-05-31 | Emd Millipore Corporation | Cell culture and gradient migration assay methods and devices |
US9388374B2 (en) | 2005-07-07 | 2016-07-12 | Emd Millipore Corporation | Microfluidic cell culture systems |
WO2016170126A1 (en) * | 2015-04-22 | 2016-10-27 | Stilla Technologies | Contact-less priming method for loading a solution in a microfluidic device and associated system |
US9500645B2 (en) | 2009-11-23 | 2016-11-22 | Cyvek, Inc. | Micro-tube particles for microfluidic assays and methods of manufacture |
US9546932B2 (en) | 2009-11-23 | 2017-01-17 | Cyvek, Inc. | Microfluidic assay operating system and methods of use |
US9618139B2 (en) | 2007-07-13 | 2017-04-11 | Handylab, Inc. | Integrated heater and magnetic separator |
US9637715B2 (en) | 2005-07-07 | 2017-05-02 | Emd Millipore Corporation | Cell culture and invasion assay method and system |
US9651568B2 (en) | 2009-11-23 | 2017-05-16 | Cyvek, Inc. | Methods and systems for epi-fluorescent monitoring and scanning for microfluidic assays |
USD787087S1 (en) | 2008-07-14 | 2017-05-16 | Handylab, Inc. | Housing |
US9700889B2 (en) | 2009-11-23 | 2017-07-11 | Cyvek, Inc. | Methods and systems for manufacture of microarray assay systems, conducting microfluidic assays, and monitoring and scanning to obtain microfluidic assay results |
US9759718B2 (en) | 2009-11-23 | 2017-09-12 | Cyvek, Inc. | PDMS membrane-confined nucleic acid and antibody/antigen-functionalized microlength tube capture elements, and systems employing them, and methods of their use |
US9765389B2 (en) | 2011-04-15 | 2017-09-19 | Becton, Dickinson And Company | Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection |
US9823252B2 (en) | 2004-12-03 | 2017-11-21 | Cytonome/St, Llc | Unitary cartridge for particle processing |
US9855735B2 (en) | 2009-11-23 | 2018-01-02 | Cyvek, Inc. | Portable microfluidic assay devices and methods of manufacture and use |
US10065403B2 (en) | 2009-11-23 | 2018-09-04 | Cyvek, Inc. | Microfluidic assay assemblies and methods of manufacture |
US10228367B2 (en) | 2015-12-01 | 2019-03-12 | ProteinSimple | Segmented multi-use automated assay cartridge |
US10526572B2 (en) | 2011-04-01 | 2020-01-07 | EMD Millipore Corporaticn | Cell culture and invasion assay method and system |
US10641772B2 (en) | 2015-02-20 | 2020-05-05 | Takara Bio Usa, Inc. | Method for rapid accurate dispensing, visualization and analysis of single cells |
US10822644B2 (en) | 2012-02-03 | 2020-11-03 | Becton, Dickinson And Company | External files for distribution of molecular diagnostic tests and determination of compatibility between tests |
US10900066B2 (en) | 2006-03-24 | 2021-01-26 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US11027278B2 (en) | 2002-04-17 | 2021-06-08 | Cytonome/St, Llc | Methods for controlling fluid flow in a microfluidic system |
US11453906B2 (en) | 2011-11-04 | 2022-09-27 | Handylab, Inc. | Multiplexed diagnostic detection apparatus and methods |
US11460405B2 (en) | 2016-07-21 | 2022-10-04 | Takara Bio Usa, Inc. | Multi-Z imaging and dispensing with multi-well devices |
US11806718B2 (en) | 2006-03-24 | 2023-11-07 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US12128405B2 (en) | 2020-07-10 | 2024-10-29 | Handylab, Inc. | Microfluidic valve and method of making same |
Citations (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4390403A (en) | 1981-07-24 | 1983-06-28 | Batchelder J Samuel | Method and apparatus for dielectrophoretic manipulation of chemical species |
US4908112A (en) | 1988-06-16 | 1990-03-13 | E. I. Du Pont De Nemours & Co. | Silicon semiconductor wafer for analyzing micronic biological samples |
US5126022A (en) | 1990-02-28 | 1992-06-30 | Soane Tecnologies, Inc. | Method and device for moving molecules by the application of a plurality of electrical fields |
US5342581A (en) * | 1993-04-19 | 1994-08-30 | Sanadi Ashok R | Apparatus for preventing cross-contamination of multi-well test plates |
US5474902A (en) * | 1990-10-08 | 1995-12-12 | Akzo Nobel N.V. | Semi-permeable capillary assay device |
WO1996004547A1 (en) | 1994-08-01 | 1996-02-15 | Lockheed Martin Energy Systems, Inc. | Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis |
US5498392A (en) | 1992-05-01 | 1996-03-12 | Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification device and method |
US5512131A (en) | 1993-10-04 | 1996-04-30 | President And Fellows Of Harvard College | Formation of microstamped patterns on surfaces and derivative articles |
US5571410A (en) | 1994-10-19 | 1996-11-05 | Hewlett Packard Company | Fully integrated miniaturized planar liquid sample handling and analysis device |
US5585069A (en) | 1994-11-10 | 1996-12-17 | David Sarnoff Research Center, Inc. | Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis |
US5587128A (en) | 1992-05-01 | 1996-12-24 | The Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification devices |
WO1997002357A1 (en) | 1995-06-29 | 1997-01-23 | Affymetrix, Inc. | Integrated nucleic acid diagnostic device |
US5603351A (en) | 1995-06-07 | 1997-02-18 | David Sarnoff Research Center, Inc. | Method and system for inhibiting cross-contamination in fluids of combinatorial chemistry device |
US5635358A (en) | 1992-05-01 | 1997-06-03 | Trustees Of The University Of Pennsylvania | Fluid handling methods for use in mesoscale analytical devices |
US5637469A (en) | 1992-05-01 | 1997-06-10 | Trustees Of The University Of Pennsylvania | Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems |
US5699157A (en) | 1996-07-16 | 1997-12-16 | Caliper Technologies Corp. | Fourier detection of species migrating in a microchannel |
WO1998000231A1 (en) | 1996-06-28 | 1998-01-08 | Caliper Technologies Corporation | High-throughput screening assay systems in microscale fluidic devices |
WO1998000705A1 (en) | 1996-06-28 | 1998-01-08 | Caliper Technologies Corporation | Electropipettor and compensation means for electrophoretic bias |
WO1998000707A1 (en) | 1996-07-03 | 1998-01-08 | Caliper Technologies Corporation | Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces |
WO1998005424A1 (en) | 1996-08-02 | 1998-02-12 | Caliper Technologies Corporation | Analytical system and method |
US5750015A (en) | 1990-02-28 | 1998-05-12 | Soane Biosciences | Method and device for moving molecules by the application of a plurality of electrical fields |
WO1998022811A1 (en) | 1996-11-19 | 1998-05-28 | Caliper Technologies Corporation | Improved microfluidic systems |
US5779868A (en) | 1996-06-28 | 1998-07-14 | Caliper Technologies Corporation | Electropipettor and compensation means for electrophoretic bias |
WO1998045481A1 (en) | 1997-04-04 | 1998-10-15 | Caliper Technologies Corporation | Closed-loop biochemical analyzers |
WO1998045929A1 (en) | 1997-04-04 | 1998-10-15 | Caliper Technologies Corporation | Methods and systems for enhanced fluid transport |
WO1998046438A1 (en) | 1997-04-14 | 1998-10-22 | Caliper Technologies Corporation | Controlled fluid transport in microfabricated polymeric substrates |
WO1998049548A1 (en) | 1997-04-25 | 1998-11-05 | Caliper Technologies Corporation | Microfluidic devices incorporating improved channel geometries |
US5842787A (en) | 1997-10-09 | 1998-12-01 | Caliper Technologies Corporation | Microfluidic systems incorporating varied channel dimensions |
WO1998055852A1 (en) | 1997-06-06 | 1998-12-10 | Caliper Technologies Corp. | Microfabricated structures for facilitating fluid introduction into microfluidic devices |
WO1998056956A1 (en) | 1997-06-09 | 1998-12-17 | Caliper Technologies Corporation | Apparatus and methods for correcting for variable velocity in microfluidic systems |
WO1999000649A1 (en) | 1997-06-27 | 1999-01-07 | Caliper Technologies Corp. | Method and apparatus for detecting low light levels |
US5869004A (en) | 1997-06-09 | 1999-02-09 | Caliper Technologies Corp. | Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems |
US5876675A (en) | 1997-08-05 | 1999-03-02 | Caliper Technologies Corp. | Microfluidic devices and systems |
WO1999010735A1 (en) | 1997-08-28 | 1999-03-04 | Caliper Technologies Corporation | Improved controller/detector interfaces for microfluidic systems |
WO1999012016A1 (en) | 1997-09-02 | 1999-03-11 | Caliper Technologies Corporation | Microfluidic system with electrofluidic and electrothermal controls |
US5882465A (en) | 1997-06-18 | 1999-03-16 | Caliper Technologies Corp. | Method of manufacturing microfluidic devices |
WO1999016162A1 (en) | 1997-09-25 | 1999-04-01 | Caliper Technologies Corporation | Micropump |
WO1999019516A1 (en) | 1997-10-16 | 1999-04-22 | Caliper Technologies Corporation | Apparatus and methods for sequencing nucleic acids in microfluidic systems |
WO1999029497A1 (en) | 1997-12-10 | 1999-06-17 | Caliper Technologies Corporation | Fabrication of microfluidic circuits by 'printing' techniques |
US5922615A (en) * | 1990-03-12 | 1999-07-13 | Biosite Diagnostics Incorporated | Assay devices comprising a porous capture membrane in fluid-withdrawing contact with a nonabsorbent capillary network |
US5928880A (en) | 1992-05-01 | 1999-07-27 | Trustees Of The University Of Pennsylvania | Mesoscale sample preparation device and systems for determination and processing of analytes |
US5942443A (en) | 1996-06-28 | 1999-08-24 | Caliper Technologies Corporation | High throughput screening assay systems in microscale fluidic devices |
US5948227A (en) | 1997-12-17 | 1999-09-07 | Caliper Technologies Corp. | Methods and systems for performing electrophoretic molecular separations |
US5965410A (en) | 1997-09-02 | 1999-10-12 | Caliper Technologies Corp. | Electrical current for controlling fluid parameters in microchannels |
US5976336A (en) | 1997-04-25 | 1999-11-02 | Caliper Technologies Corp. | Microfluidic devices incorporating improved channel geometries |
WO1999056954A1 (en) | 1998-05-06 | 1999-11-11 | Caliper Technologies Corp. | Methods of fabricating polymeric structures incorporating microscale fluidic elements |
US6001231A (en) | 1997-07-15 | 1999-12-14 | Caliper Technologies Corp. | Methods and systems for monitoring and controlling fluid flow rates in microfluidic systems |
WO2000009753A1 (en) | 1998-08-11 | 2000-02-24 | Caliper Technologies Corp. | Methods and systems for sequencing dna by distinguishing the decay times of fluorescent probes |
US6100541A (en) | 1998-02-24 | 2000-08-08 | Caliper Technologies Corporation | Microfluidic devices and systems incorporating integrated optical elements |
US6136610A (en) * | 1998-11-23 | 2000-10-24 | Praxsys Biosystems, Inc. | Method and apparatus for performing a lateral flow assay |
US6143496A (en) | 1997-04-17 | 2000-11-07 | Cytonix Corporation | Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly |
US6143576A (en) * | 1992-05-21 | 2000-11-07 | Biosite Diagnostics, Inc. | Non-porous diagnostic devices for the controlled movement of reagents |
US6251343B1 (en) | 1998-02-24 | 2001-06-26 | Caliper Technologies Corp. | Microfluidic devices and systems incorporating cover layers |
-
2000
- 2000-04-06 US US09/544,711 patent/US6756019B1/en not_active Expired - Lifetime
Patent Citations (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4390403A (en) | 1981-07-24 | 1983-06-28 | Batchelder J Samuel | Method and apparatus for dielectrophoretic manipulation of chemical species |
US4908112A (en) | 1988-06-16 | 1990-03-13 | E. I. Du Pont De Nemours & Co. | Silicon semiconductor wafer for analyzing micronic biological samples |
US5126022A (en) | 1990-02-28 | 1992-06-30 | Soane Tecnologies, Inc. | Method and device for moving molecules by the application of a plurality of electrical fields |
US5750015A (en) | 1990-02-28 | 1998-05-12 | Soane Biosciences | Method and device for moving molecules by the application of a plurality of electrical fields |
US5922615A (en) * | 1990-03-12 | 1999-07-13 | Biosite Diagnostics Incorporated | Assay devices comprising a porous capture membrane in fluid-withdrawing contact with a nonabsorbent capillary network |
US6297060B1 (en) * | 1990-03-12 | 2001-10-02 | Biosite Diagnostics, Inc. | Assay devices comprising a porous capture membrane in fluid-withdrawing contact with a nonabsorbent capillary network |
US5474902A (en) * | 1990-10-08 | 1995-12-12 | Akzo Nobel N.V. | Semi-permeable capillary assay device |
US5928880A (en) | 1992-05-01 | 1999-07-27 | Trustees Of The University Of Pennsylvania | Mesoscale sample preparation device and systems for determination and processing of analytes |
US5587128A (en) | 1992-05-01 | 1996-12-24 | The Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification devices |
US5498392A (en) | 1992-05-01 | 1996-03-12 | Trustees Of The University Of Pennsylvania | Mesoscale polynucleotide amplification device and method |
US5635358A (en) | 1992-05-01 | 1997-06-03 | Trustees Of The University Of Pennsylvania | Fluid handling methods for use in mesoscale analytical devices |
US5637469A (en) | 1992-05-01 | 1997-06-10 | Trustees Of The University Of Pennsylvania | Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems |
US6143576A (en) * | 1992-05-21 | 2000-11-07 | Biosite Diagnostics, Inc. | Non-porous diagnostic devices for the controlled movement of reagents |
US5342581A (en) * | 1993-04-19 | 1994-08-30 | Sanadi Ashok R | Apparatus for preventing cross-contamination of multi-well test plates |
US5512131A (en) | 1993-10-04 | 1996-04-30 | President And Fellows Of Harvard College | Formation of microstamped patterns on surfaces and derivative articles |
WO1996004547A1 (en) | 1994-08-01 | 1996-02-15 | Lockheed Martin Energy Systems, Inc. | Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis |
US5571410A (en) | 1994-10-19 | 1996-11-05 | Hewlett Packard Company | Fully integrated miniaturized planar liquid sample handling and analysis device |
US5593838A (en) | 1994-11-10 | 1997-01-14 | David Sarnoff Research Center, Inc. | Partitioned microelectronic device array |
US5585069A (en) | 1994-11-10 | 1996-12-17 | David Sarnoff Research Center, Inc. | Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis |
US5603351A (en) | 1995-06-07 | 1997-02-18 | David Sarnoff Research Center, Inc. | Method and system for inhibiting cross-contamination in fluids of combinatorial chemistry device |
WO1997002357A1 (en) | 1995-06-29 | 1997-01-23 | Affymetrix, Inc. | Integrated nucleic acid diagnostic device |
US5922591A (en) | 1995-06-29 | 1999-07-13 | Affymetrix, Inc. | Integrated nucleic acid diagnostic device |
US5779868A (en) | 1996-06-28 | 1998-07-14 | Caliper Technologies Corporation | Electropipettor and compensation means for electrophoretic bias |
US5958203A (en) | 1996-06-28 | 1999-09-28 | Caliper Technologies Corportion | Electropipettor and compensation means for electrophoretic bias |
US6080295A (en) | 1996-06-28 | 2000-06-27 | Caliper Technologies Corporation | Electropipettor and compensation means for electrophoretic bias |
WO1998000705A1 (en) | 1996-06-28 | 1998-01-08 | Caliper Technologies Corporation | Electropipettor and compensation means for electrophoretic bias |
US5880071A (en) | 1996-06-28 | 1999-03-09 | Caliper Technologies Corporation | Electropipettor and compensation means for electrophoretic bias |
US5972187A (en) | 1996-06-28 | 1999-10-26 | Caliper Technologies Corporation | Electropipettor and compensation means for electrophoretic bias |
WO1998000231A1 (en) | 1996-06-28 | 1998-01-08 | Caliper Technologies Corporation | High-throughput screening assay systems in microscale fluidic devices |
US6046056A (en) | 1996-06-28 | 2000-04-04 | Caliper Technologies Corporation | High throughput screening assay systems in microscale fluidic devices |
US5942443A (en) | 1996-06-28 | 1999-08-24 | Caliper Technologies Corporation | High throughput screening assay systems in microscale fluidic devices |
US5800690A (en) | 1996-07-03 | 1998-09-01 | Caliper Technologies Corporation | Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces |
WO1998000707A1 (en) | 1996-07-03 | 1998-01-08 | Caliper Technologies Corporation | Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces |
US5965001A (en) | 1996-07-03 | 1999-10-12 | Caliper Technologies Corporation | Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces |
US5852495A (en) | 1996-07-16 | 1998-12-22 | Caliper Technologies Corporation | Fourier detection of species migrating in a microchannel |
US5699157A (en) | 1996-07-16 | 1997-12-16 | Caliper Technologies Corp. | Fourier detection of species migrating in a microchannel |
WO1998002728A1 (en) | 1996-07-16 | 1998-01-22 | Caliper Technologies Corporation | Fourier detection of species migrating in a microchannel |
US6071478A (en) | 1996-08-02 | 2000-06-06 | Caliper Technologies Corp. | Analytical system and method |
WO1998005424A1 (en) | 1996-08-02 | 1998-02-12 | Caliper Technologies Corporation | Analytical system and method |
US5955028A (en) | 1996-08-02 | 1999-09-21 | Caliper Technologies Corp. | Analytical system and method |
WO1998022811A1 (en) | 1996-11-19 | 1998-05-28 | Caliper Technologies Corporation | Improved microfluidic systems |
WO1998045481A1 (en) | 1997-04-04 | 1998-10-15 | Caliper Technologies Corporation | Closed-loop biochemical analyzers |
US5964995A (en) | 1997-04-04 | 1999-10-12 | Caliper Technologies Corp. | Methods and systems for enhanced fluid transport |
WO1998045929A1 (en) | 1997-04-04 | 1998-10-15 | Caliper Technologies Corporation | Methods and systems for enhanced fluid transport |
US5885470A (en) | 1997-04-14 | 1999-03-23 | Caliper Technologies Corporation | Controlled fluid transport in microfabricated polymeric substrates |
WO1998046438A1 (en) | 1997-04-14 | 1998-10-22 | Caliper Technologies Corporation | Controlled fluid transport in microfabricated polymeric substrates |
US6143496A (en) | 1997-04-17 | 2000-11-07 | Cytonix Corporation | Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly |
US5976336A (en) | 1997-04-25 | 1999-11-02 | Caliper Technologies Corp. | Microfluidic devices incorporating improved channel geometries |
US6068752A (en) | 1997-04-25 | 2000-05-30 | Caliper Technologies Corp. | Microfluidic devices incorporating improved channel geometries |
WO1998049548A1 (en) | 1997-04-25 | 1998-11-05 | Caliper Technologies Corporation | Microfluidic devices incorporating improved channel geometries |
WO1998055852A1 (en) | 1997-06-06 | 1998-12-10 | Caliper Technologies Corp. | Microfabricated structures for facilitating fluid introduction into microfluidic devices |
US5869004A (en) | 1997-06-09 | 1999-02-09 | Caliper Technologies Corp. | Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems |
WO1998056956A1 (en) | 1997-06-09 | 1998-12-17 | Caliper Technologies Corporation | Apparatus and methods for correcting for variable velocity in microfluidic systems |
US6004515A (en) | 1997-06-09 | 1999-12-21 | Calipher Technologies Corp. | Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems |
US5882465A (en) | 1997-06-18 | 1999-03-16 | Caliper Technologies Corp. | Method of manufacturing microfluidic devices |
WO1999000649A1 (en) | 1997-06-27 | 1999-01-07 | Caliper Technologies Corp. | Method and apparatus for detecting low light levels |
US5959291A (en) | 1997-06-27 | 1999-09-28 | Caliper Technologies Corporation | Method and apparatus for measuring low power signals |
US6011252A (en) | 1997-06-27 | 2000-01-04 | Caliper Technologies Corp. | Method and apparatus for detecting low light levels |
US6001231A (en) | 1997-07-15 | 1999-12-14 | Caliper Technologies Corp. | Methods and systems for monitoring and controlling fluid flow rates in microfluidic systems |
US5876675A (en) | 1997-08-05 | 1999-03-02 | Caliper Technologies Corp. | Microfluidic devices and systems |
WO1999010735A1 (en) | 1997-08-28 | 1999-03-04 | Caliper Technologies Corporation | Improved controller/detector interfaces for microfluidic systems |
US5989402A (en) | 1997-08-29 | 1999-11-23 | Caliper Technologies Corp. | Controller/detector interfaces for microfluidic systems |
US5965410A (en) | 1997-09-02 | 1999-10-12 | Caliper Technologies Corp. | Electrical current for controlling fluid parameters in microchannels |
WO1999012016A1 (en) | 1997-09-02 | 1999-03-11 | Caliper Technologies Corporation | Microfluidic system with electrofluidic and electrothermal controls |
WO1999016162A1 (en) | 1997-09-25 | 1999-04-01 | Caliper Technologies Corporation | Micropump |
US6012902A (en) | 1997-09-25 | 2000-01-11 | Caliper Technologies Corp. | Micropump |
US5842787A (en) | 1997-10-09 | 1998-12-01 | Caliper Technologies Corporation | Microfluidic systems incorporating varied channel dimensions |
WO1999019056A1 (en) | 1997-10-09 | 1999-04-22 | Caliper Technologies Corporation | Microfluidic systems incorporating varied channel depths |
US5957579A (en) | 1997-10-09 | 1999-09-28 | Caliper Technologies Corp. | Microfluidic systems incorporating varied channel dimensions |
US5958694A (en) | 1997-10-16 | 1999-09-28 | Caliper Technologies Corp. | Apparatus and methods for sequencing nucleic acids in microfluidic systems |
WO1999019516A1 (en) | 1997-10-16 | 1999-04-22 | Caliper Technologies Corporation | Apparatus and methods for sequencing nucleic acids in microfluidic systems |
US6074725A (en) | 1997-12-10 | 2000-06-13 | Caliper Technologies Corp. | Fabrication of microfluidic circuits by printing techniques |
WO1999029497A1 (en) | 1997-12-10 | 1999-06-17 | Caliper Technologies Corporation | Fabrication of microfluidic circuits by 'printing' techniques |
US6042710A (en) | 1997-12-17 | 2000-03-28 | Caliper Technologies Corp. | Methods and compositions for performing molecular separations |
US5948227A (en) | 1997-12-17 | 1999-09-07 | Caliper Technologies Corp. | Methods and systems for performing electrophoretic molecular separations |
US6251343B1 (en) | 1998-02-24 | 2001-06-26 | Caliper Technologies Corp. | Microfluidic devices and systems incorporating cover layers |
US6100541A (en) | 1998-02-24 | 2000-08-08 | Caliper Technologies Corporation | Microfluidic devices and systems incorporating integrated optical elements |
WO1999056954A1 (en) | 1998-05-06 | 1999-11-11 | Caliper Technologies Corp. | Methods of fabricating polymeric structures incorporating microscale fluidic elements |
WO2000009753A1 (en) | 1998-08-11 | 2000-02-24 | Caliper Technologies Corp. | Methods and systems for sequencing dna by distinguishing the decay times of fluorescent probes |
US6136610A (en) * | 1998-11-23 | 2000-10-24 | Praxsys Biosystems, Inc. | Method and apparatus for performing a lateral flow assay |
Non-Patent Citations (9)
Cited By (265)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8617905B2 (en) | 1995-09-15 | 2013-12-31 | The Regents Of The University Of Michigan | Thermal microvalves |
US20040228770A1 (en) * | 1998-02-24 | 2004-11-18 | Caliper Life Sciences, Inc. | Microfluidic devices and systems incorporating cover layers |
US7497994B2 (en) * | 1998-02-24 | 2009-03-03 | Khushroo Gandhi | Microfluidic devices and systems incorporating cover layers |
US20040014239A1 (en) * | 2000-01-06 | 2004-01-22 | Caliper Technologies Corp. | Ultra high throughput sampling and analysis systems and methods |
US7087181B2 (en) * | 2000-01-31 | 2006-08-08 | Diagnoswiss S.A. | Method for fabricating micro-structures with various surface properties in multi-layer body by plasma etching |
US20030102284A1 (en) * | 2000-01-31 | 2003-06-05 | Walter Schmidt | Method for fabricating micro-structures with various surface properties in multi-layer body by plasma etching |
US20040121454A1 (en) * | 2000-03-10 | 2004-06-24 | Bioprocessors Corp. | Microreactor |
US7351377B2 (en) * | 2000-06-19 | 2008-04-01 | Caliper Life Sciences, Inc. | Methods and devices for enhancing bonded substrate yields and regulating temperature |
US20020025280A1 (en) * | 2000-06-19 | 2002-02-28 | David Chazan | Methods and devices for enhancing bonded substrate yields and regulating temperature |
US20080217262A1 (en) * | 2000-08-28 | 2008-09-11 | Aquamarijn Holding B.V. | Nozzle device and nozzle for atomisation and/or filtration and methods for using the same |
US8936160B2 (en) | 2000-08-28 | 2015-01-20 | Aquamarijn Holding B.V. | Nozzle device and nozzle for atomisation and/or filtration and methods for using the same |
US8440149B2 (en) | 2001-02-14 | 2013-05-14 | Handylab, Inc. | Heat-reduction methods and systems related to microfluidic devices |
US9051604B2 (en) | 2001-02-14 | 2015-06-09 | Handylab, Inc. | Heat-reduction methods and systems related to microfluidic devices |
US9528142B2 (en) | 2001-02-14 | 2016-12-27 | Handylab, Inc. | Heat-reduction methods and systems related to microfluidic devices |
US8734733B2 (en) | 2001-02-14 | 2014-05-27 | Handylab, Inc. | Heat-reduction methods and systems related to microfluidic devices |
US8703069B2 (en) | 2001-03-28 | 2014-04-22 | Handylab, Inc. | Moving microdroplets in a microfluidic device |
US8273308B2 (en) | 2001-03-28 | 2012-09-25 | Handylab, Inc. | Moving microdroplets in a microfluidic device |
US8473104B2 (en) | 2001-03-28 | 2013-06-25 | Handylab, Inc. | Methods and systems for control of microfluidic devices |
US10619191B2 (en) | 2001-03-28 | 2020-04-14 | Handylab, Inc. | Systems and methods for thermal actuation of microfluidic devices |
US9259735B2 (en) | 2001-03-28 | 2016-02-16 | Handylab, Inc. | Methods and systems for control of microfluidic devices |
US8894947B2 (en) | 2001-03-28 | 2014-11-25 | Handylab, Inc. | Systems and methods for thermal actuation of microfluidic devices |
US8895311B1 (en) | 2001-03-28 | 2014-11-25 | Handylab, Inc. | Methods and systems for control of general purpose microfluidic devices |
US8768517B2 (en) | 2001-03-28 | 2014-07-01 | Handylab, Inc. | Methods and systems for control of microfluidic devices |
US8420015B2 (en) | 2001-03-28 | 2013-04-16 | Handylab, Inc. | Systems and methods for thermal actuation of microfluidic devices |
US10351901B2 (en) | 2001-03-28 | 2019-07-16 | Handylab, Inc. | Systems and methods for thermal actuation of microfluidic devices |
US9677121B2 (en) | 2001-03-28 | 2017-06-13 | Handylab, Inc. | Systems and methods for thermal actuation of microfluidic devices |
US10571935B2 (en) | 2001-03-28 | 2020-02-25 | Handylab, Inc. | Methods and systems for control of general purpose microfluidic devices |
US20030077817A1 (en) * | 2001-04-10 | 2003-04-24 | Zarur Andrey J. | Microfermentor device and cell based screening method |
US8323584B2 (en) | 2001-09-12 | 2012-12-04 | Handylab, Inc. | Method of controlling a microfluidic device having a reduced number of input and output connections |
US8685341B2 (en) | 2001-09-12 | 2014-04-01 | Handylab, Inc. | Microfluidic devices having a reduced number of input and output connections |
US9028773B2 (en) | 2001-09-12 | 2015-05-12 | Handylab, Inc. | Microfluidic devices having a reduced number of input and output connections |
US20030102219A1 (en) * | 2001-11-30 | 2003-06-05 | Shimadzu Corporation | Reservoir member for electrophoretic member and electrophoretic member |
US11027278B2 (en) | 2002-04-17 | 2021-06-08 | Cytonome/St, Llc | Methods for controlling fluid flow in a microfluidic system |
US20050109396A1 (en) * | 2002-12-04 | 2005-05-26 | Piero Zucchelli | Devices and methods for programmable microscale manipulation of fluids |
US7152616B2 (en) | 2002-12-04 | 2006-12-26 | Spinx, Inc. | Devices and methods for programmable microscale manipulation of fluids |
US20040129676A1 (en) * | 2003-01-07 | 2004-07-08 | Tan Roy H. | Apparatus for transfer of an array of liquids and methods for manufacturing same |
US8163254B1 (en) * | 2003-04-02 | 2012-04-24 | Sandia Corporation | Micromanifold assembly |
US8679831B2 (en) | 2003-07-31 | 2014-03-25 | Handylab, Inc. | Processing particle-containing samples |
US9670528B2 (en) | 2003-07-31 | 2017-06-06 | Handylab, Inc. | Processing particle-containing samples |
US11078523B2 (en) | 2003-07-31 | 2021-08-03 | Handylab, Inc. | Processing particle-containing samples |
US10731201B2 (en) | 2003-07-31 | 2020-08-04 | Handylab, Inc. | Processing particle-containing samples |
US10865437B2 (en) | 2003-07-31 | 2020-12-15 | Handylab, Inc. | Processing particle-containing samples |
US20060274313A1 (en) * | 2003-08-14 | 2006-12-07 | Cytonome, Inc. | Optical detector for a particle sorting system |
US20050128479A1 (en) * | 2003-08-14 | 2005-06-16 | Cytonome, Inc. | Optical detector for a particle sorting system |
US10520421B2 (en) | 2003-08-14 | 2019-12-31 | Cytonome/St, Llc | Optical detector for a particle sorting system |
US7298478B2 (en) | 2003-08-14 | 2007-11-20 | Cytonome, Inc. | Optical detector for a particle sorting system |
US9752976B2 (en) | 2003-08-14 | 2017-09-05 | Cytonome/St, Llc | Optical detector for a particle sorting system |
US20110168871A1 (en) * | 2003-08-14 | 2011-07-14 | Gilbert John R | Optical detector for a particle sorting system |
US11002659B2 (en) | 2003-08-14 | 2021-05-11 | Cytonome/St, Llc | Optical detector for a particle sorting system |
US8964184B2 (en) | 2003-08-14 | 2015-02-24 | Cytonome/St, Llc | Optical detector for a particle sorting system |
US7355699B2 (en) | 2003-08-14 | 2008-04-08 | Cytonome, Inc. | Optical detector for a particle sorting system |
US7576861B2 (en) | 2003-08-14 | 2009-08-18 | Cytonome/St, Llc | Optical detector for a particle sorting system |
US20090168053A1 (en) * | 2003-08-14 | 2009-07-02 | Cytonome, Inc. | Optical detector for a particle sorting system |
US7998435B2 (en) | 2003-09-19 | 2011-08-16 | Life Technologies Corporation | High density plate filler |
US20060233673A1 (en) * | 2003-09-19 | 2006-10-19 | Beard Nigel P | High density plate filler |
US20050232821A1 (en) * | 2003-09-19 | 2005-10-20 | Carrillo Albert L | High density plate filler |
US20050232820A1 (en) * | 2003-09-19 | 2005-10-20 | Reed Mark T | High density plate filler |
US20070014694A1 (en) * | 2003-09-19 | 2007-01-18 | Beard Nigel P | High density plate filler |
US20060272738A1 (en) * | 2003-09-19 | 2006-12-07 | Gary Lim | High density plate filler |
US20050220675A1 (en) * | 2003-09-19 | 2005-10-06 | Reed Mark T | High density plate filler |
US20060233670A1 (en) * | 2003-09-19 | 2006-10-19 | Lehto Dennis A | High density plate filler |
US20060233671A1 (en) * | 2003-09-19 | 2006-10-19 | Beard Nigel P | High density plate filler |
US20060233672A1 (en) * | 2003-09-19 | 2006-10-19 | Reed Mark T | High density plate filler |
US20050226782A1 (en) * | 2003-09-19 | 2005-10-13 | Reed Mark T | High density plate filler |
US8277760B2 (en) | 2003-09-19 | 2012-10-02 | Applied Biosystems, Llc | High density plate filler |
US20050069462A1 (en) * | 2003-09-30 | 2005-03-31 | International Business Machines Corporation | Microfluidics Packaging |
US20050069949A1 (en) * | 2003-09-30 | 2005-03-31 | International Business Machines Corporation | Microfabricated Fluidic Structures |
US20060018797A1 (en) * | 2003-12-17 | 2006-01-26 | Inverness Medical Switzerland Gmbh | Microfluidic separation of particles from fluid |
US8900531B2 (en) | 2003-12-18 | 2014-12-02 | Nanoentek Inc. | Method for bonding plastic micro chip |
US20110044862A1 (en) * | 2003-12-18 | 2011-02-24 | Digital Bio Technology | Method for bonding plastic micro chip |
US8735086B2 (en) | 2004-03-31 | 2014-05-27 | Baxter International Inc. | Kit for measuring the thrombin generation in a sample of a patient's blood or plasma |
US20050221414A1 (en) * | 2004-03-31 | 2005-10-06 | Katalin Varadi | Kit for measuring the thrombin generation in a sample of a patient's blood or plasma |
US20050227350A1 (en) * | 2004-04-13 | 2005-10-13 | Agency For Science, Technology And Research | Device and method for studying cell migration and deformation |
US11441171B2 (en) | 2004-05-03 | 2022-09-13 | Handylab, Inc. | Method for processing polynucleotide-containing samples |
US10604788B2 (en) | 2004-05-03 | 2020-03-31 | Handylab, Inc. | System for processing polynucleotide-containing samples |
US10443088B1 (en) | 2004-05-03 | 2019-10-15 | Handylab, Inc. | Method for processing polynucleotide-containing samples |
US8852862B2 (en) | 2004-05-03 | 2014-10-07 | Handylab, Inc. | Method for processing polynucleotide-containing samples |
US10494663B1 (en) | 2004-05-03 | 2019-12-03 | Handylab, Inc. | Method for processing polynucleotide-containing samples |
US8470586B2 (en) | 2004-05-03 | 2013-06-25 | Handylab, Inc. | Processing polynucleotide-containing samples |
US10364456B2 (en) | 2004-05-03 | 2019-07-30 | Handylab, Inc. | Method for processing polynucleotide-containing samples |
US20060210445A1 (en) * | 2004-05-12 | 2006-09-21 | Osterfeld Sebastian J | Multilayer microfluidic device |
US7419639B2 (en) | 2004-05-12 | 2008-09-02 | The Board Of Trustees Of The Leland Stanford Junior University | Multilayer microfluidic device |
US20060030035A1 (en) * | 2004-05-28 | 2006-02-09 | Victor Joseph | Thermo-controllable chips for multiplex analyses |
US20060073491A1 (en) * | 2004-05-28 | 2006-04-06 | Victor Joseph | Apparatus and method for multiplex analysis |
US20060027317A1 (en) * | 2004-05-28 | 2006-02-09 | Victor Joseph | Methods of sealing micro wells |
US20060030037A1 (en) * | 2004-05-28 | 2006-02-09 | Victor Joseph | Thermo-controllable high-density chips for multiplex analyses |
US20100233698A1 (en) * | 2004-05-28 | 2010-09-16 | Wafergen, Inc. | Apparatus and method for multiplex analysis |
US7622296B2 (en) | 2004-05-28 | 2009-11-24 | Wafergen, Inc. | Apparatus and method for multiplex analysis |
US9228933B2 (en) | 2004-05-28 | 2016-01-05 | Wafergen, Inc. | Apparatus and method for multiplex analysis |
US9909171B2 (en) | 2004-05-28 | 2018-03-06 | Takara Bio Usa, Inc. | Thermo-controllable high-density chips for multiplex analyses |
US7311794B2 (en) | 2004-05-28 | 2007-12-25 | Wafergen, Inc. | Methods of sealing micro wells |
US20060030036A1 (en) * | 2004-05-28 | 2006-02-09 | Victor Joseph | Chips for multiplex analyses |
US10718014B2 (en) | 2004-05-28 | 2020-07-21 | Takara Bio Usa, Inc. | Thermo-controllable high-density chips for multiplex analyses |
US7833709B2 (en) | 2004-05-28 | 2010-11-16 | Wafergen, Inc. | Thermo-controllable chips for multiplex analyses |
US20090191096A1 (en) * | 2004-07-29 | 2009-07-30 | Kyocera Corporation | Microchemical Chip |
US10222378B2 (en) | 2004-12-03 | 2019-03-05 | Cytonome/St, Llc | Unitary cartridge for particle processing |
US9260693B2 (en) | 2004-12-03 | 2016-02-16 | Cytonome/St, Llc | Actuation of parallel microfluidic arrays |
US10065188B2 (en) | 2004-12-03 | 2018-09-04 | Cytonome/St, Llc | Actuation of parallel microfluidic arrays |
US10994273B2 (en) | 2004-12-03 | 2021-05-04 | Cytonome/St, Llc | Actuation of parallel microfluidic arrays |
US10794913B2 (en) | 2004-12-03 | 2020-10-06 | Cytonome/St, Llc | Unitary cartridge for particle processing |
US9823252B2 (en) | 2004-12-03 | 2017-11-21 | Cytonome/St, Llc | Unitary cartridge for particle processing |
US7727477B2 (en) * | 2004-12-10 | 2010-06-01 | Bio-Rad Laboratories, Inc. | Apparatus for priming microfluidics devices with feedback control |
US20060163070A1 (en) * | 2004-12-10 | 2006-07-27 | Bio-Rad Laboratories, Inc., A Corporation Of The State Of Delaware | Apparatus for priming microfluidics devices with feedback control |
US20080213134A1 (en) * | 2004-12-28 | 2008-09-04 | Hans-Jurgen Bigus | Device for Supplying Fluids, Method for Producing this Device, and Pipette Comprising Such a Device |
US20090139704A1 (en) * | 2005-04-06 | 2009-06-04 | Kabushiki Kaisha Toyota Jidoshokki | Heat sink device |
US9969963B2 (en) | 2005-07-07 | 2018-05-15 | The Regents Of The University Of California | Methods and apparatus for cell culture array |
US10843189B2 (en) | 2005-07-07 | 2020-11-24 | The Regents Of The University Of California | Methods and apparatus for cell culture array |
US10190085B2 (en) | 2005-07-07 | 2019-01-29 | Emd Millipore Corporation | Micro-incubation systems for microfluidic cell culture and methods |
US10138453B2 (en) | 2005-07-07 | 2018-11-27 | Emd Millipore Corporation | Cell culture array system for automated assays and methods of operation and manufacture |
US20090023608A1 (en) * | 2005-07-07 | 2009-01-22 | The Regents Of The University Of California | Methods and apparatus for cell culture array |
US9637715B2 (en) | 2005-07-07 | 2017-05-02 | Emd Millipore Corporation | Cell culture and invasion assay method and system |
US9388374B2 (en) | 2005-07-07 | 2016-07-12 | Emd Millipore Corporation | Microfluidic cell culture systems |
US9260688B2 (en) | 2005-07-07 | 2016-02-16 | The Regents Of The University Of California | Methods and apparatus for cell culture array |
US7595027B2 (en) * | 2005-11-14 | 2009-09-29 | Ids Co., Ltd. | Nozzle device for aliquoting and dispensing specimen incorporated reference |
US20070110630A1 (en) * | 2005-11-14 | 2007-05-17 | Ids Co., Ltd. | Nozzle device for aliquoting and dispensing specimen incorporated reference |
US20090045058A1 (en) * | 2005-12-14 | 2009-02-19 | Nec Corporation | Microchip and analysis method using the microchip |
US9371929B2 (en) | 2006-01-04 | 2016-06-21 | Emd Millipore Corporation | Valved, microwell cell-culture device and method |
US8673625B2 (en) | 2006-01-04 | 2014-03-18 | Emd Millipore Corporation | Valved, microwell cell-culture device and method |
US8709790B2 (en) | 2006-01-04 | 2014-04-29 | Emd Millipore Corporation | Valved, microwell cell-culture device and method |
US10174278B2 (en) | 2006-01-04 | 2019-01-08 | Emd Millipore Corporation | Valved, microwell cell-culture device and method |
US11666903B2 (en) | 2006-03-24 | 2023-06-06 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using same |
US11142785B2 (en) | 2006-03-24 | 2021-10-12 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US10913061B2 (en) | 2006-03-24 | 2021-02-09 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using the same |
US11806718B2 (en) | 2006-03-24 | 2023-11-07 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US10695764B2 (en) | 2006-03-24 | 2020-06-30 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US11141734B2 (en) | 2006-03-24 | 2021-10-12 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US9040288B2 (en) | 2006-03-24 | 2015-05-26 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using the same |
US8323900B2 (en) | 2006-03-24 | 2012-12-04 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US11959126B2 (en) | 2006-03-24 | 2024-04-16 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US9080207B2 (en) | 2006-03-24 | 2015-07-14 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US10799862B2 (en) | 2006-03-24 | 2020-10-13 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using same |
US11085069B2 (en) | 2006-03-24 | 2021-08-10 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US9802199B2 (en) | 2006-03-24 | 2017-10-31 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US8883490B2 (en) | 2006-03-24 | 2014-11-11 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US10821436B2 (en) | 2006-03-24 | 2020-11-03 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using the same |
US10900066B2 (en) | 2006-03-24 | 2021-01-26 | Handylab, Inc. | Microfluidic system for amplifying and detecting polynucleotides in parallel |
US10857535B2 (en) | 2006-03-24 | 2020-12-08 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using same |
US10821446B1 (en) | 2006-03-24 | 2020-11-03 | Handylab, Inc. | Fluorescence detector for microfluidic diagnostic system |
US10843188B2 (en) | 2006-03-24 | 2020-11-24 | Handylab, Inc. | Integrated system for processing microfluidic samples, and method of using the same |
US20100159590A1 (en) * | 2006-10-05 | 2010-06-24 | Nanopoint, Inc. | Systems and methods for active microfluidic cell handling |
WO2008147428A1 (en) * | 2006-10-05 | 2008-12-04 | Nanopoint, Inc. | Systems and methods for active microfluidic cell handling |
US9815057B2 (en) | 2006-11-14 | 2017-11-14 | Handylab, Inc. | Microfluidic cartridge and method of making same |
US8709787B2 (en) | 2006-11-14 | 2014-04-29 | Handylab, Inc. | Microfluidic cartridge and method of using same |
US10710069B2 (en) | 2006-11-14 | 2020-07-14 | Handylab, Inc. | Microfluidic valve and method of making same |
US8765076B2 (en) | 2006-11-14 | 2014-07-01 | Handylab, Inc. | Microfluidic valve and method of making same |
US12030050B2 (en) | 2006-11-14 | 2024-07-09 | Handylab, Inc. | Microfluidic cartridge and method of making same |
US9132427B2 (en) | 2007-01-22 | 2015-09-15 | Wafergen, Inc. | Apparatus for high throughput chemical reactions |
US11643681B2 (en) | 2007-01-22 | 2023-05-09 | Takara Bio Usa, Inc. | Apparatus for high throughput chemical reactions |
US8252581B2 (en) | 2007-01-22 | 2012-08-28 | Wafergen, Inc. | Apparatus for high throughput chemical reactions |
US20080176290A1 (en) * | 2007-01-22 | 2008-07-24 | Victor Joseph | Apparatus for high throughput chemical reactions |
US9951381B2 (en) | 2007-01-22 | 2018-04-24 | Takara Bio Usa, Inc. | Apparatus for high throughput chemical reactions |
US10900886B2 (en) | 2007-02-08 | 2021-01-26 | Emd Millipore Corporation | Microfluidic particle analysis method, device and system |
US9354156B2 (en) | 2007-02-08 | 2016-05-31 | Emd Millipore Corporation | Microfluidic particle analysis method, device and system |
US20080194012A1 (en) * | 2007-02-08 | 2008-08-14 | Cellasic Corporation | Microfluidic particle analysis method, device and system |
US10054536B2 (en) | 2007-02-08 | 2018-08-21 | Emd Millipore Corporation | Microfluidic particle analysis method, device and system |
US9118042B2 (en) | 2007-03-21 | 2015-08-25 | Intelligent Energy Limited | Fluidic distribution system and related methods |
US9728796B2 (en) | 2007-03-21 | 2017-08-08 | Intelligent Energy Limited | Fluidic distribution system and related methods |
US20080233446A1 (en) * | 2007-03-21 | 2008-09-25 | Joerg Zimmermann | Fluidic control system and method of manufacture |
WO2008113182A1 (en) * | 2007-03-21 | 2008-09-25 | Angstrom Power Incorporated | Fluid manifold and method therefor |
US20080248352A1 (en) * | 2007-03-21 | 2008-10-09 | Mclean Gerard F | Fluidic distribution system and related methods |
US20080311458A1 (en) * | 2007-03-21 | 2008-12-18 | Angstrom Power Inc. | Fluid manifold and method therefor |
US8133629B2 (en) | 2007-03-21 | 2012-03-13 | SOCIéTé BIC | Fluidic distribution system and related methods |
US8679694B2 (en) | 2007-03-21 | 2014-03-25 | Societe Bic | Fluidic control system and method of manufacture |
US9214687B2 (en) | 2007-03-21 | 2015-12-15 | Intelligent Energy Limited | Fluid manifold and method therefor |
US10056625B2 (en) | 2007-03-21 | 2018-08-21 | Intelligent Energy Limited | Fluid manifold attached by interface to fuel storage for fuel cell system |
US20080233011A1 (en) * | 2007-03-23 | 2008-09-25 | 3M Innovative Properties Company | Microfluidic devices |
US10625261B2 (en) | 2007-07-13 | 2020-04-21 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US10844368B2 (en) | 2007-07-13 | 2020-11-24 | Handylab, Inc. | Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly |
US9701957B2 (en) | 2007-07-13 | 2017-07-11 | Handylab, Inc. | Reagent holder, and kits containing same |
US11845081B2 (en) | 2007-07-13 | 2023-12-19 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US10179910B2 (en) | 2007-07-13 | 2019-01-15 | Handylab, Inc. | Rack for sample tubes and reagent holders |
US11549959B2 (en) | 2007-07-13 | 2023-01-10 | Handylab, Inc. | Automated pipetting apparatus having a combined liquid pump and pipette head system |
US11466263B2 (en) | 2007-07-13 | 2022-10-11 | Handylab, Inc. | Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly |
US8415103B2 (en) | 2007-07-13 | 2013-04-09 | Handylab, Inc. | Microfluidic cartridge |
US9347586B2 (en) | 2007-07-13 | 2016-05-24 | Handylab, Inc. | Automated pipetting apparatus having a combined liquid pump and pipette head system |
US9259734B2 (en) | 2007-07-13 | 2016-02-16 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US9238223B2 (en) | 2007-07-13 | 2016-01-19 | Handylab, Inc. | Microfluidic cartridge |
US8324372B2 (en) | 2007-07-13 | 2012-12-04 | Handylab, Inc. | Polynucleotide capture materials, and methods of using same |
US11266987B2 (en) | 2007-07-13 | 2022-03-08 | Handylab, Inc. | Microfluidic cartridge |
US11254927B2 (en) | 2007-07-13 | 2022-02-22 | Handylab, Inc. | Polynucleotide capture materials, and systems using same |
US10632466B1 (en) | 2007-07-13 | 2020-04-28 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US8287820B2 (en) | 2007-07-13 | 2012-10-16 | Handylab, Inc. | Automated pipetting apparatus having a combined liquid pump and pipette head system |
US9217143B2 (en) | 2007-07-13 | 2015-12-22 | Handylab, Inc. | Polynucleotide capture materials, and methods of using same |
US10625262B2 (en) | 2007-07-13 | 2020-04-21 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US10065185B2 (en) | 2007-07-13 | 2018-09-04 | Handylab, Inc. | Microfluidic cartridge |
US10590410B2 (en) | 2007-07-13 | 2020-03-17 | Handylab, Inc. | Polynucleotide capture materials, and methods of using same |
US8216530B2 (en) | 2007-07-13 | 2012-07-10 | Handylab, Inc. | Reagent tube |
US10071376B2 (en) | 2007-07-13 | 2018-09-11 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US11060082B2 (en) | 2007-07-13 | 2021-07-13 | Handy Lab, Inc. | Polynucleotide capture materials, and systems using same |
US10100302B2 (en) | 2007-07-13 | 2018-10-16 | Handylab, Inc. | Polynucleotide capture materials, and methods of using same |
US8182763B2 (en) | 2007-07-13 | 2012-05-22 | Handylab, Inc. | Rack for sample tubes and reagent holders |
US8710211B2 (en) | 2007-07-13 | 2014-04-29 | Handylab, Inc. | Polynucleotide capture materials, and methods of using same |
US10139012B2 (en) | 2007-07-13 | 2018-11-27 | Handylab, Inc. | Integrated heater and magnetic separator |
US9186677B2 (en) | 2007-07-13 | 2015-11-17 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US10717085B2 (en) | 2007-07-13 | 2020-07-21 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US9618139B2 (en) | 2007-07-13 | 2017-04-11 | Handylab, Inc. | Integrated heater and magnetic separator |
US8133671B2 (en) | 2007-07-13 | 2012-03-13 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US10875022B2 (en) | 2007-07-13 | 2020-12-29 | Handylab, Inc. | Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples |
US10234474B2 (en) | 2007-07-13 | 2019-03-19 | Handylab, Inc. | Automated pipetting apparatus having a combined liquid pump and pipette head system |
KR100900985B1 (en) | 2007-08-28 | 2009-06-04 | 한국기계연구원 | Method for fixation of micro structure inside using?lyophilization |
US20090130746A1 (en) * | 2007-10-25 | 2009-05-21 | Canon U.S. Life Sciences, Inc. | Microchannel surface coating |
US9376658B2 (en) | 2008-01-03 | 2016-06-28 | Emd Millipore Corporation | Cell culture array system for automated assays and methods of operation and manufacture thereof |
US20090203126A1 (en) * | 2008-01-03 | 2009-08-13 | Cellasic | Cell culture array system for automated assays and methods of operation and manufacture thereof |
USD665095S1 (en) | 2008-07-11 | 2012-08-07 | Handylab, Inc. | Reagent holder |
USD669191S1 (en) | 2008-07-14 | 2012-10-16 | Handylab, Inc. | Microfluidic cartridge |
USD787087S1 (en) | 2008-07-14 | 2017-05-16 | Handylab, Inc. | Housing |
TWI402500B (en) * | 2008-09-19 | 2013-07-21 | Actherm Inc | Testing strip |
US20100092993A1 (en) * | 2008-10-09 | 2010-04-15 | Wen-Pin Hsieh | Quantitative analyzing method |
US8372660B2 (en) | 2008-10-09 | 2013-02-12 | Actherm Inc | Quantitative analyzing method |
US8133718B2 (en) | 2008-10-17 | 2012-03-13 | Actherm Inc | Analytical strip and detecting method using the same |
US20100099114A1 (en) * | 2008-10-17 | 2010-04-22 | Yi-Jen Wu | Analytical strip and detecting method using the same |
US20100255512A1 (en) * | 2008-10-17 | 2010-10-07 | Yi-Jen Wu | Analytical strip and detecting method using the same |
US7964370B2 (en) | 2008-10-17 | 2011-06-21 | Actherm Inc | Analytical strip and detecting method using the same |
US20100196908A1 (en) * | 2009-01-30 | 2010-08-05 | Gen-Probe Incorporated | Systems and methods for detecting a signal and applying thermal energy to a signal transmission element |
US8368882B2 (en) | 2009-01-30 | 2013-02-05 | Gen-Probe Incorporated | Systems and methods for detecting a signal and applying thermal energy to a signal transmission element |
US20100240120A1 (en) * | 2009-03-23 | 2010-09-23 | Hsieh Wei-Pin | Analytical strip and the manufacturing method thereof |
US8367015B2 (en) | 2009-03-23 | 2013-02-05 | Actherm Inc | Analytical strip and the manufacturing method thereof |
US20110143378A1 (en) * | 2009-11-12 | 2011-06-16 | CyVek LLC. | Microfluidic method and apparatus for high performance biological assays |
US9700889B2 (en) | 2009-11-23 | 2017-07-11 | Cyvek, Inc. | Methods and systems for manufacture of microarray assay systems, conducting microfluidic assays, and monitoring and scanning to obtain microfluidic assay results |
US9855735B2 (en) | 2009-11-23 | 2018-01-02 | Cyvek, Inc. | Portable microfluidic assay devices and methods of manufacture and use |
US9500645B2 (en) | 2009-11-23 | 2016-11-22 | Cyvek, Inc. | Micro-tube particles for microfluidic assays and methods of manufacture |
US10065403B2 (en) | 2009-11-23 | 2018-09-04 | Cyvek, Inc. | Microfluidic assay assemblies and methods of manufacture |
US9651568B2 (en) | 2009-11-23 | 2017-05-16 | Cyvek, Inc. | Methods and systems for epi-fluorescent monitoring and scanning for microfluidic assays |
US9546932B2 (en) | 2009-11-23 | 2017-01-17 | Cyvek, Inc. | Microfluidic assay operating system and methods of use |
US10022696B2 (en) | 2009-11-23 | 2018-07-17 | Cyvek, Inc. | Microfluidic assay systems employing micro-particles and methods of manufacture |
US9216412B2 (en) | 2009-11-23 | 2015-12-22 | Cyvek, Inc. | Microfluidic devices and methods of manufacture and use |
US9759718B2 (en) | 2009-11-23 | 2017-09-12 | Cyvek, Inc. | PDMS membrane-confined nucleic acid and antibody/antigen-functionalized microlength tube capture elements, and systems employing them, and methods of their use |
US9229001B2 (en) | 2009-11-23 | 2016-01-05 | Cyvek, Inc. | Method and apparatus for performing assays |
US10179897B2 (en) | 2010-01-21 | 2019-01-15 | Emd Millipore Corporation | Cell culture and gradient migration assay methods and devices |
US9353342B2 (en) | 2010-01-21 | 2016-05-31 | Emd Millipore Corporation | Cell culture and gradient migration assay methods and devices |
US9353343B2 (en) | 2010-01-21 | 2016-05-31 | Emd Millipore Corporation | Cell culture and gradient migration assay methods and devices |
US10526572B2 (en) | 2011-04-01 | 2020-01-07 | EMD Millipore Corporaticn | Cell culture and invasion assay method and system |
US11034925B2 (en) | 2011-04-01 | 2021-06-15 | Emd Millipore Corporation | Cell culture and invasion assay method and system |
US11788127B2 (en) | 2011-04-15 | 2023-10-17 | Becton, Dickinson And Company | Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection |
US10781482B2 (en) | 2011-04-15 | 2020-09-22 | Becton, Dickinson And Company | Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection |
US9765389B2 (en) | 2011-04-15 | 2017-09-19 | Becton, Dickinson And Company | Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection |
US10076754B2 (en) | 2011-09-30 | 2018-09-18 | Becton, Dickinson And Company | Unitized reagent strip |
USD692162S1 (en) | 2011-09-30 | 2013-10-22 | Becton, Dickinson And Company | Single piece reagent holder |
USD742027S1 (en) | 2011-09-30 | 2015-10-27 | Becton, Dickinson And Company | Single piece reagent holder |
USD831843S1 (en) | 2011-09-30 | 2018-10-23 | Becton, Dickinson And Company | Single piece reagent holder |
US9480983B2 (en) | 2011-09-30 | 2016-11-01 | Becton, Dickinson And Company | Unitized reagent strip |
USD1029291S1 (en) | 2011-09-30 | 2024-05-28 | Becton, Dickinson And Company | Single piece reagent holder |
US9222954B2 (en) | 2011-09-30 | 2015-12-29 | Becton, Dickinson And Company | Unitized reagent strip |
USD905269S1 (en) | 2011-09-30 | 2020-12-15 | Becton, Dickinson And Company | Single piece reagent holder |
US11453906B2 (en) | 2011-11-04 | 2022-09-27 | Handylab, Inc. | Multiplexed diagnostic detection apparatus and methods |
US20140318706A1 (en) * | 2011-11-30 | 2014-10-30 | Corning Incorporated | Method to align covers on structured layers and resulting devices |
US9206384B2 (en) | 2011-12-03 | 2015-12-08 | Emd Millipore Corporation | Micro-incubation systems for microfluidic cell culture and methods |
US9428723B2 (en) | 2011-12-03 | 2016-08-30 | Emd Millipore Corporation | Micro-incubation systems for microfluidic cell culture and methods |
US20150031052A1 (en) * | 2011-12-28 | 2015-01-29 | Denka Seiken Co., Ltd. | Method for reducing adsorption of bubbles |
US10822644B2 (en) | 2012-02-03 | 2020-11-03 | Becton, Dickinson And Company | External files for distribution of molecular diagnostic tests and determination of compatibility between tests |
US20150190762A1 (en) * | 2012-06-26 | 2015-07-09 | Fujifilm Manufacturing Europe Bv | Membranes |
US20150209733A1 (en) * | 2012-06-26 | 2015-07-30 | Fujifilm Manufacturing Europe Bv | Process for Preparing Membranes |
US9586182B2 (en) * | 2012-06-26 | 2017-03-07 | Fujifilm Manufacturing Europe Bv | Process for preparing membranes |
US9586183B2 (en) * | 2012-06-26 | 2017-03-07 | Fujifilm Manufacturing Europe Bv | Membranes |
WO2014145528A1 (en) * | 2013-03-15 | 2014-09-18 | President And Fellows Of Harvard College | Antifouling microfluidic devices and methods thereof |
US10641772B2 (en) | 2015-02-20 | 2020-05-05 | Takara Bio Usa, Inc. | Method for rapid accurate dispensing, visualization and analysis of single cells |
US11125752B2 (en) | 2015-02-20 | 2021-09-21 | Takara Bio Usa, Inc. | Method for rapid accurate dispensing, visualization and analysis of single cells |
US10632465B2 (en) | 2015-04-22 | 2020-04-28 | Stilla Technologies | Contact-less priming method for loading a solution in a microfluidic device and associated system |
US11577242B2 (en) | 2015-04-22 | 2023-02-14 | Stilla Technologies | Contact-less priming method for loading a solution in a microfluidic device and associated system |
WO2016170126A1 (en) * | 2015-04-22 | 2016-10-27 | Stilla Technologies | Contact-less priming method for loading a solution in a microfluidic device and associated system |
EP3708256A1 (en) * | 2015-04-22 | 2020-09-16 | Stilla Technologies | Contact-less priming method for loading a solution in a microfluidic device and associated system |
US10228367B2 (en) | 2015-12-01 | 2019-03-12 | ProteinSimple | Segmented multi-use automated assay cartridge |
US11460405B2 (en) | 2016-07-21 | 2022-10-04 | Takara Bio Usa, Inc. | Multi-Z imaging and dispensing with multi-well devices |
US12128405B2 (en) | 2020-07-10 | 2024-10-29 | Handylab, Inc. | Microfluidic valve and method of making same |
US12128402B2 (en) | 2022-03-03 | 2024-10-29 | Handylab, Inc. | Microfluidic cartridge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6756019B1 (en) | Microfluidic devices and systems incorporating cover layers | |
US7497994B2 (en) | Microfluidic devices and systems incorporating cover layers | |
US6488897B2 (en) | Microfluidic devices and systems incorporating cover layers | |
JP5124054B2 (en) | Microfluidic devices and systems incorporating protective layers | |
AU2002329526B2 (en) | Microfluidic chemical assay apparatus and method | |
US6979424B2 (en) | Integrated sample analysis device | |
US7192559B2 (en) | Methods and devices for high throughput fluid delivery | |
EP1409989B1 (en) | Method for separating components of a mixture | |
EP1064090B1 (en) | Device for analyzing a sample | |
AU2002329526A1 (en) | Microfluidic chemical assay apparatus and method | |
US20060147344A1 (en) | Fully packed capillary electrophoretic separation microchips with self-assembled silica colloidal particles in microchannels and their preparation methods | |
US20020187564A1 (en) | Microfluidic library analysis | |
CA2768779A1 (en) | Microfluidic assay platforms | |
AU764319B2 (en) | Chemical processing device | |
US20070240773A1 (en) | Methods and devices for high throughput fluid delivery | |
US20160341694A1 (en) | Method and apparatus to concentrate and detect an analyte in a sample | |
RU200301U1 (en) | MICROFLUID CHIP FOR MULTI-PARAMETRIC IMMUNO ASSAY | |
Khandurina | Micropreparative Applications and On-Line Sample Treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CALIPER TECHNOLOGIES CORP., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUBROW, ROBERT S.;KENNEDY, COLIN B.;NAGLE, ROBERT;AND OTHERS;REEL/FRAME:010943/0154;SIGNING DATES FROM 20000519 TO 20000614 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: CALIPER LIFE SCIENCES, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:CALIPER TECHNOLOGIES CORP.;REEL/FRAME:014326/0407 Effective date: 20040123 Owner name: CALIPER LIFE SCIENCES, INC.,CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:CALIPER TECHNOLOGIES CORP.;REEL/FRAME:014326/0407 Effective date: 20040123 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
AS | Assignment |
Owner name: CALIPER LIFE SCIENCES, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNORS:DUBROW, ROBERT S., MR.;KENNEDY, COLIN B., MR.;NAGLE, ROBERT, MR.;AND OTHERS;REEL/FRAME:020325/0755;SIGNING DATES FROM 20000519 TO 20000614 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |