US6599638B1 - Colloidally stabilized emulsions - Google Patents
Colloidally stabilized emulsions Download PDFInfo
- Publication number
- US6599638B1 US6599638B1 US09/657,707 US65770700A US6599638B1 US 6599638 B1 US6599638 B1 US 6599638B1 US 65770700 A US65770700 A US 65770700A US 6599638 B1 US6599638 B1 US 6599638B1
- Authority
- US
- United States
- Prior art keywords
- phenolics
- std
- dev
- polyvinyl alcohol
- phenol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1607—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
- B01D39/1623—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/18—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being cellulose or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/22—Emulsion polymerisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/04—Additives and treatments of the filtering material
- B01D2239/0464—Impregnants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31725—Of polyamide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31725—Of polyamide
- Y10T428/31779—Next to cellulosic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31725—Of polyamide
- Y10T428/31779—Next to cellulosic
- Y10T428/31783—Paper or wood
Definitions
- the present invention relates to colloidally stabilized emulsions, and particularly colloidally stabilized emulsions having reduced or no phenolics.
- Phenolics e.g., phenol-formaldehyde resins
- Phenolics have been used as adhesives, laminates, molding materials, paints and the like.
- phenolics are used in bonding of refractory shapes; fiber bonding such as in filters; felt bonding; binding of friction products such as brake pads; in papermaking; in insulation; in roofing products; and in the binding of foundry sands such as abrasives.
- filters are used in filters.
- the filter is provided by impregnating a continuous roll of paper with a phenolic resole in the form of an alcohol solution of a condensate of phenol with formaldehyde.
- the impregnated and saturated paper is heated to remove the solvent (alcohol) and corrugated to increase surface area.
- the resin is then cured in an oven and the paper is rolled again.
- the rolls of the impregnated paper are provided to the filter manufacturer for completion of the process which includes pleating and final curing.
- Such filters are used in the both air and oil filtering systems in stationary and mobile internal combustion engines.
- Phenolics however, have disadvantages such as high phenol and formaldehyde levels, brittleness when fully cured, slow curing characteristics, instability and poor shelf life. Moreover, phenolics, particularly water-based phenolics, are difficult to use to impregnate fiber substrates. In such impregnation, co-solvents such as alcohols, must be used and then removed.
- the present invention provides compositions wherein phenolics are substantially eliminated, substantially reduced or replaced by the use of a colloidally stabilized emulsion polymer.
- a colloidally stabilized polymer of the invention By using the colloidally stabilized polymer of the invention and eliminating or replacing the use of phenolics, a wide variety of polymers having crosslinkable functionality such as provided by crosslinkers such as epoxies, polyisocyanates, polyurethanes, N-methylol acrylamide, melaminelformaldehyde and the like, can be used or blended together while providing properties comparable to those of polymers having phenolics or of phenolics alone.
- crosslinkers such as epoxies, polyisocyanates, polyurethanes, N-methylol acrylamide, melaminelformaldehyde and the like
- the colloidally stabilized emulsion polymers when blended with phenolics, are more stable and compatible with phenolics as compared to surfactant stabilized emulsions.
- compatibility it is meant that the emulsion polymers, when blended with phenolics, remain stable without coagulating or gelling or becoming a paste over longer periods of time.
- the blended product can be used over extended periods of time without concern for instability or degradation of performance. Moreover, the need to use undesirable solvents is eliminated.
- polymers in emulsion form can be colloidally stabilized, particularly with polyvinyl alcohol, and optionally blended with phenolics.
- Specific polymers in emulsion form include polyvinylacetate, vinylacetate-ethylene(VAE), vinyl acrylics, epoxies, urethanes, acrylics, styrene acrylics, butadiene copolymers, and hybrid emulsions of combinations of the foregoing.
- VAE vinylacetate-ethylene
- vinyl acrylics vinyl acrylics
- epoxies vinyl acrylics
- urethanes acrylics
- acrylics styrene acrylics
- butadiene copolymers butadiene copolymers
- hybrid emulsions of combinations of the foregoing The present invention can be used in systems to replace phenolics wherein phenolics are used alone, or can be used in systems wherein phenolics are used with other polymers. In the latter, the phenolics can be substantially eliminated or can
- emulsion polymers that have high levels (i.e., greater than about 15 percent by weight) of nitrogen-containing monomers such as acrylonitrile.
- nitrogen-containing monomers such as acrylonitrile.
- the phenols employed in the formation of the phenolic resins generally include any phenol which as heretofore been employed in the formation of phenolic resins and which are not substituted at either the two ortho positions or at the one ortho and the para position. Such unsubstituted positions are necessary for the polymerization reaction to occur.
- Substituted phenols employed in the formation of the phenolic resins include: alkyl substituted phenols, aryl-substituted phenols, cycloalkyl-substituted phenols, alkenyl-substituted phenols, alkoxy substituted phenols, aryloxy substituted phenols, and halogen-substituted phenols.
- Suitable phenols include: phenol, o-cresol, m-cresol, p-cresol, 3,5-xylenol, 3-4-xylenol, 3,4,5-trimethylphenol, 3-ethyl phenol, 3,5-diethyl phenol, p-butyl phenol, 3,5-dibutyl phenol, p-amyl phenol, p-cyclohexyl phenol, p-octyl phenol, 3,5-dicyclohexyl phenol, p-phenyl phenol, p-crotyl phenol, 3,5-dimethoxy phenol, 3,4,5-trimethoxy phenol, p-ethoxy phenol, p-butoxy phenol, 3-methyl-4-methyoxy phenol, and p-phenoxy phenol.
- the aldehydes reacted with the phenol component can include any of the aldehydes heretofore employed in the formation of phenolic resins and include, for example, formaldehyde, and benzaldehyde.
- the aldehydes employed have the formula R′CHO wherein R′ is a hydrogen or hydrocarbon radical of 1-8 carbon atoms.
- R′ is a hydrogen or hydrocarbon radical of 1-8 carbon atoms.
- a particularly preferred phenolic is Resafen 8121 available from Resana, Sao Paulo, Brazil.
- Suitable aliphatic conjugated dienes are C 4 to C 9 dienes and include, for example, butadiene monomers such as 1,3-butadiene, 2-methyl-1,3-butadiene, 2-chloro-1,3-butadiene, and the like, such as described in U.S. Pat. No. 5,900,451 to Krishnan et al., the disclosure of which is incorporated herein by reference in its entirety. Blends or copolymers of the diene monomers can also be used.
- the aliphatic conjugated diene is used in an amount, based on total weight of the starting monomers, from about to 1 to about 99 percent by weight, preferably from about 5 to about 30 percent by weight, and most preferably from about 5 to about 15 percent by weight.
- a particularly preferred aliphatic conjugated diene is 1,3-butadiene.
- Suitable non-aromatic unsaturated monocarboxylic ester monomers include acrylates and methacrylates.
- the acrylates and methacrylates may include functional groups such as amino groups, hydroxy groups, epoxy groups and the like.
- Exemplary acrylates and methacrylates include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate, glycidyl acrylate, glycidyl methacrylate, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, isobutyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, 3-chloro-2-hydroxybutyl methacrylate, n-propyl methacrylate and the like.
- Exemplary amino-functional methacrylates include t-butylamino ethyl methacrylate and dimethylamino ethyl methacrylate.
- Suitable non-aromatic dicarboxylic ester monomers are dialkyl fumarates, itaconates and maleates, with the alkyl group having two to eight carbons, with or without functional groups. Specific monomers include diethyl and dimethyl fumarates, itaconates and maleates.
- Other suitable non-aromatic dicarboxylic ester monomers include di(ethylene glycol) maleate, di(ethylene glycol) itaconate, bis(2-hydroxyethyl) maleate, 2-hydroxyethyl methyl fumarate, and the like.
- the non-aromatic unsaturated mono- or dicarboxylic ester monomer is used in an amount, based on total weight of the starting monomers, preferably from about 5 to about 95 percent by weight, and most preferably from about 20 to about 80 percent by weight.
- a particularly preferred non-aromatic unsaturated monocarboxylic ester monomer is methyl methacrylate.
- aromatic unsaturated monomers may be used and include, but are not limited to, styrene and styrene derivatives such as alphamethylstyrene, p-methyl styrene, vinyltoluene, ethylstyrene, tert-butyl styrene, monochlorostyrene, dichlorostyrene, vinyl benzyl chloride, fluorostyrene, alkoxystyrenes (e.g., paramethoxystyrene) and the like. Mixtures of the above may be used.
- styrene is employed.
- the aromatic unsaturated monomer is preferably used from about 5 to about 95 percent based on the total monomer weight, and more preferably from about 20 to about 80 percent by weight.
- Exemplary nitrogen-containing monomers which may be used include, for example, acrylonitrile, methacrylonitrile, acrylamide, and methacrylamide. Acrylonitrile is preferred. Mixtures of the above may be used.
- the nitrogen-containing monomer is preferably used, for example, in an amount ranging from about 5 to about 95 percent based on the total weight of the monomers, and more preferably from about 15 to about 80 percent by weight.
- Known and conventional protective colloids may be employed in the emulsion polymer such as partially and fully hydrolyzed polyvinyl alcohols; cellulose, ethers, e.g., hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, starch ad start derivatives, carboxymethyl cellulose (CMC); the natural and synthetic gums, e.g., gum tragacanth and gum Arabic, polyacrylic acid; acrylates; poly(vinyl alcohol)co(vinyl amine) copolymers and the like.
- CMC carboxymethyl cellulose
- Partially and fully hydrolyzed polyvinyl alcohols such as those available from Air Products, sold under the trademark AirvolTM are preferred and are preferably employed from about 0.1 to about 10 percent based on the weight of the total monomer, more preferably from about 0.5 to 5 percent, and most preferably from about 1 to about 4 percent.
- a polymerizable surfactant which contains ethylenic unsaturation is used and is copolymerized with the other monomers during emulsion polymerization.
- the surfactant is incorporated in to the backbone of the polymer and serves to stabilize the latex.
- suitable surfactants containing ethylenic unsaturation are provided in U.S. Pat. No. 5,296,627 to Tang et al., the disclosure of which is incorporated by reference herein in its entirety.
- polymerizable surfactants are also described in U.S. Pat. No. 5,900,451 to Krishnan et al.
- a preferred polymerizable surfactant is SAM 186NTM sold by PPG Industries, Inc. of Pittsburgh, Pa.
- the polymerizable surfactant may be used in various amounts.
- the stabilized emulsion polymer may include between about 0.1 and about 5 percent polymerizable surfactant based on the monomer weight, more preferably from about 1 to about 4 weight percent, and most preferably from about 2 to about 3 weight percent.
- surfactants may be used in conjunction with the surfactant having ethylenic unsaturation described herein.
- Such surfactants are preferably of the anionic and nonionic type.
- the selection of these surfactants is apparent to one skilled in the art.
- Preferred nonionic surfactants are selected from the family of alkylphenoxypoly(ethyleneoxy) ethanols where the alkyl group typically various from C 7 -C 18 and the ethylene oxide units vary from 4-100 moles.
- Various preferred surfactants in this class include the ethoxylated octyl and nonyl phenols, and in particular ethoxylated nonyl phenols with a hydrophobic/lipophilic balance (HLB) of 15-19.
- HLB hydrophobic/lipophilic balance
- Non-APE (alkylphenol ethoxylate) surfactants such as ethoxylated alcohols, for example, Abex 2525, are also preferred.
- Anionic surfactants can be selected from the broad class of sulfonates, sulfates, ethersulfates, sulfosuccinates, diphenyloxide disulfonates, and the like, and are readily apparent to anyone skilled in the art.
- An unsaturated mono- or dicarboxylic acid monomer may also be included in the stabilized emulsion polymer. These monomers include, but are not limited to, acrylic acid, methacrylic acid, itaconic acid, fumaric acid, and maleic acid. Derivatives, blends, and mixtures of the above may also be used.
- the unsaturated mono- or discarboxylic acid monomer may be used in an amount ranging from about 0 to about 15 percent based on the total monomer weight, and more preferably from about 0 to about 5 weight percent.
- Additional comonomers can be added to the stabilized emulsion polymer. Included among such additional comonomers are monoethylenically unsaturated substituted aliphatic hydrocarbons such as vinyl chloride, and vinylidene chloride; aliphatic vinyl esters such as vinyl formate, vinyl propionate, vinyl butyrate, vinyl versatate and vinyl neodecanoate.
- monoethylenically unsaturated substituted aliphatic hydrocarbons such as vinyl chloride, and vinylidene chloride
- aliphatic vinyl esters such as vinyl formate, vinyl propionate, vinyl butyrate, vinyl versatate and vinyl neodecanoate.
- the stabilized emulsion polymer can include additives to enhance its various physical and mechanical properties; the selection of which is readily apparent to one skilled in the art.
- crosslinking agents can be included such as vinylic compounds (e.g., divinyl benzene); allyllic compounds (e.g., allyl methacrylate, diallyl maleate); multifunctional acrylates (e.g., di, tri and tetra (meth)acrylates); self-crosslinking monomers such as N-methylol acrylamide, N-methylol methacrylamide and C 1 to C 4 ethers of these monomers respectively (e.g., N-iso[butoxymethoxy] methacrylamide), acrylamido glycolic acid and its esters, and alkyl acrylamido glycolate alkyl ethers (e.g., methylacrylamido glycolate methyl ether).
- vinylic compounds e.g., divinyl benzene
- allyllic compounds e
- the crosslinking agents can be included in amounts of up to about 15 percent by weight, and preferably from about 3 to about 8 percent by weight. Additional monomers such as silanes can be included to improve specific properties such as latex stability, solvent resistance, as well as adhesion and strength and are described, for example, in U.S. Pat. No. 5,830,934 to Krishnan, the disclosure of which is incorporated herein by reference in its entirety.
- Initiators which facilitate polymerization are typically used and include, for example, materials such as persulfates, organic peroxides, peresters, and azo compounds such as azobis(isobutyronitrile) (AIBN).
- Persulfate initiators are preferred and include, for example, potassium persulfate and ammonium persulfate.
- Reductants may be employed in the polymerization, and are typically employed in combination with the initiator as part of a redox system.
- Suitable reductants include sodium bisulfite, erythorbic acid, ascorbic acid, sodium thiosulfate, sodium formaldehyde sulfoxylate (SFS), and the like.
- additives which may be used include other natural and synthetic binders, fixing agents, wetting agents, plasticizers (e.g., diisodecyl phthalate), softeners, foam-inhibiting agents, froth aids, other crosslinking agents (e.g., melamine formaldehyde resin, epoxies, polyisocyanates, etc.), flame retardants, dispersing agents (e.g., tetrasodium pyrophosphate), pH adjusting components (e.g., ammonium hydroxide), sequestering or chelating agents (e.g., ethylene diaminetetraacetic acid (EDTA)) and other components.
- binders fixing agents, wetting agents, plasticizers (e.g., diisodecyl phthalate), softeners, foam-inhibiting agents, froth aids, other crosslinking agents (e.g., melamine formaldehyde resin, epoxies, polyiso
- One use of the reduced phenolic/butadiene blend is, for example, the fabrication of filters (e.g., oil filters).
- filters e.g., oil filters.
- a continuous roll of paper is conventionally impregnated with the binder in the form of an alcohol solution.
- the saturated paper is heated to remove the alcohol (solvent).
- the alcohol solution is not needed and this step is eliminated.
- the treated paper is then corrugated for the purpose of increasing surface area.
- the corrugated sheet is subsequently conveyed through an oven in order to advance the cure of the resinous impregnate to a fusible intermediate or B stage, and then the corrugated sheet is made into a filter.
- a polyvinyl alcohol stabilized butadiene emulsion comprising the following:
- Example 1 The testing was done on No. 4 Whatman Filter Paper. Each sheet had a 20 percent add on of the composition of Example 1 is diluted to 22 percent total solids, was dried for 4 minutes at 225° F. and was allowed to condition overnight in a constant temperature/humidity room. Then each sheet was cured at 350° F. in a forced air oven for the cure times of the tables.
- Example 1 Various amounts a phenolic available as Resafen 8121 from Resana, Sao Paulo Brazil, were added to Example 1, along with phenolic only, and the tensile strengths measured. The amounts added are as follows:
- a polyvinyl alcohol stabilized emulsion having more N-methylol acrylamide and no butylacrylate comprising the following:
- compositions having no phenolic or reduced phenolic can provide physical properties comparable to conventional emulsion compositions having phenolics.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
COMPONENT | GRAMS | ||
Deionized Water | 2560.00 | ||
EDTA Chelating Agent | 0.80 | ||
Dowfax 2A1 Surfactant | 3.20 | ||
Airvol 103 PVOH | 32.00 | ||
Abex 2525 Surfactant | 16.00 | ||
Tamol 731A Dispersing Agent | 0.80 | ||
Sam 186N Polymerizable Surfactant | 16.00 | ||
Methoxy polyethylene | 32.00 | ||
glycol methacrylate | |||
Ammonium Persulfate Initiator | 0.80 | ||
Butadiene | 160.00 | ||
Tertiary Dodecyl Mercaptan | 6.40 | ||
Acrylonitrile | 320.00 | ||
Styrene | 448.00 | ||
Acrylic Acid | 16.00 | ||
Methylmethacrylate | 480.00 | ||
Butylacrylate | 80.00 | ||
N-methylol arylamide | 64.00 | ||
Diammonium Phosphate | 4.00 | ||
Max Load (lbf) | Max Stn (elong) | Max Str (psi) | |
Cure Time | (std. dev.) | (std. dev.) | (std. dev.) |
Example 1 - Wet Tensile Strength |
1′ | 11.97 (1.07) | 4.027 (0.686) | 25.75 (7.25) |
2′ | 13.14 (0.16) | 4.210 (0.259) | 27.52 (3.1) |
3′ | 14.57 (0.47) | 4.487 (0.105) | 34.36 (1.25) |
4′ | 14.04 (0.52) | 4.257 (0.229) | 31.59 (3.17) |
5′ | 14.15 (0.63) | 4.211 (0.298) | 31.28 (4.50) |
10′ | 13.77 (0.79) | 3.846 (0.185) | 27.01 (2.74) |
Example 1 - Dry Tensile Strength |
1′ | 26.86 (1.57) | 2.929 (0.259) | 42.61 (9.17) |
2′ | 29.50 (1.22) | 3.022 (0.183) | 52.95 (4.99) |
3′ | 26.64 (1.17) | 2.792 (0.229) | 41.61 (6.13) |
4′ | 27.80 (2.03) | 2.747 (0.396) | 46.08 (11.37) |
5′ | 28.19 (0.68) | 2.746 (0.258) | 46.41 (6.43) |
10′ | 26.83 (2.01) | 2.471 (0.317) | 38.80 (9.68) |
Example | Amt (%) of Example 1 | Amt (%) of Phenolic |
2 | 98 | 2 |
3 | 96 | 4 |
4 | 94 | 6 |
5 | 92 | 8 |
6 | 90 | 10 |
7 | 50 | 50 |
8 | 0 | 100 |
Example 2 |
Cure Time | Max Load | Max elong | Max psi | |
% add-on | @ 350 F. | (std. dev.) | (std. dev.) | (std. dev.) |
19.2 | 1′ | 12.11 (0.38) | 4.394 (0.002) | 27.12 (1.40) |
19.2 | 2′ | 14.84 (0.19) | 4.669 (0.105) | 36.66 (1.29) |
19.2 | 3′ | 15.00 (0.81) | 4.441 (0.311) | 34.61 (4.06) |
19.6 | 4′ | 14.28 (0.44) | 4.393 (0.183) | 32.35 (2.13) |
19.6 | 5′ | 14.38 (0.57) | 4.396 (0.183) | 32.89 (2.77) |
19.6 | 10′ | 14.26 (0.58) | 3.967 (0.107) | 29.32 (1.75) |
Example 3 |
Cure Time | Max Load | Max elong | Max psi | |
% add-on | @ 350 F. | (std. dev.) | (std. dev.) | (std. dev.) |
19.9 | 1′ | 14.12 (0.12) | 4.821 (0.28) | 36.62 (2.32) |
19.9 | 2′ | 15.38 (1.14) | 4.898 (0.345) | 39.14 (6.60) |
19.9 | 3′ | 14.88 (0.27) | 4.271 (0.106) | 31.13 (0.99) |
19.4 | 4′ | 16.35 (1.40) | 4.454 (0.529) | 38.14 (7.74) |
19.4 | 5′ | 16.33 (0.83) | 4.303 (0.184) | 36.45 (5.24) |
19.4 | 10′ | 16.11 (0.81) | 4.027 (0.258) | 31.90 (4.20) |
Example 4 |
Cure Time | Max Load | Max elong | Max psi | |
% add-on | @ 350 F. | (std. dev.) | (std. dev.) | (std. dev.) |
19.4 | 1′ | 14.00 (0.55) | 4.897 (0.311) | 36.02 (3.47) |
19.4 | 2′ | 17.65 (0.97) | 5.081 (0.406) | 45.86 (6.85) |
19.4 | 3′ | 17.52 (0.83) | 4.806 (0.433) | 43.47 (5.51) |
19.3 | 4′ | 19.10 (0.93) | 4.822 (0.280) | 47.26 (4.76) |
19.3 | 5′ | 18.50 (0.71) | 4.577 (0.183) | 43.58 (3.37) |
19.3 | 10′ | 19.14 (1.10) | 4.347 (0.313) | 41.73 (4.38) |
Example 5 |
Cure Time | Max Load | Max elong | Max psi | |
% add-on | @ 350 F. | (std. dev.) | (std. dev.) | (std. dev.) |
19.4 | 1′ | 13.35 (1.08) | 4.578 (0.539) | 32.29 (6.96) |
19.4 | 2′ | 18.63 (0.50) | 5.172 (0.175) | 49.29 (3.15) |
19.4 | 3′ | 19.49 (0.95) | 4.898 (0.405) | 48.49 (5.48) |
19.8 | 4′ | 20.02 (0.72) | 4.668 (0.317) | 48.06 (4.52) |
19.8 | 5′ | 22.05 (0.70) | 4.943 (0.335) | 57.85 (5.97) |
19.8 | 10′ | 20.79 (1.49) | 4.531 (0.347) | 48.06 (8.20) |
Example 6 |
Cure Time | Max Load | Max elong | Max psi | |
% add-on | @ 350 F. | (std. dev.) | (std. dev.) | (std. dev.) |
19.5 | 1′ | 15.84 (0.45) | 5.127 (0.259) | 42.05 (0.281) |
19.5 | 2′ | 19.36 (0.62) | 5.188 (0.212) | 50.93 (4.13) |
19.5 | 3′ | 20.16 (1.05) | 4.623 (0.231) | 48.82 (5.46) |
19.3 | 4′ | 22.59 (0.69) | 5.188 (0.212) | 60.15 (3.89) |
19.3 | 5′ | 23.05 (0.93) | 4.852 (0.235) | 58.31 (5.02) |
19.3 | 10′ | 22.55 (0.86) | 4.578 (0.150) | 54.30 (3.40) |
Example 7 |
Cure Time | Max Load | Max elong | Max psi | |
% add-on | @ 350 F. | (std. dev.) | (std. dev.) | (std. dev.) |
19.9 | 1′ | 13.84 (0.99) | 5.035 (0.57) | 33.45 (4.27) |
19.9 | 2′ | 21.98 (0.85) | 4.669 (0.235) | 54.29 (5.16) |
19.9 | 3′ | 23.79 (1.74) | 4.073 (0.347) | 52.04 (9.66) |
20.1 | 4′ | 26.68 (0.78) | 3.891 (0.229) | 57.95 (4.95) |
20.1 | 5′ | 15.26 (0.45) | 3.526 (0.092) | 49.22 (2.34) |
20.1 | 10′ | 26.06 (2.42) | 3.066 (0.525) | 44.42 (11.01) |
Example 8 |
Pro- | Cure Time | Max Load | Max elong | Max psi |
duct | @ 350 F. | (std. dev.) | (std. dev.) | (std. dev.) |
Re- | 1′ | 11.72 (1.6.29) | 1.466 (0.185) | 6.711 (2.118) |
safen | 2′ | 13.11 (1.11) | 1.190 (0.132) | 6.031 (0.937) |
8121 | 3′ | 13.00 (0.70) | 1.283 (0.00) | 5.490 (0.509) |
4′ | 9.7222 (1.440) | 0.9778 (0.1058) | 2.622 (0.618) | |
5′ | 12.24 (1.05) | 1.097 (0.183) | 4.955 (0.621) | |
10′ | 12.05 (0.73) | 1.160 (0.104) | 4.533 (0.598) | |
COMPONENT | GRAMS | ||
Deionized Water | 2560.00 | ||
EDTA Chelating Agent | 0.80 | ||
Dowfax 2A1 Surfactant | 3.20 | ||
Airvol 103 PVOH | 32.00 | ||
Abex 2525 Surfactant | 16.00 | ||
Tamol 731A Dispersing Agent | 0.80 | ||
Sam 186N Polymerizable Surfactant | 16.00 | ||
Methoxy polyethylene | 32.00 | ||
glycol methacrylate | |||
Ammonium Persulfate Initiator | 0.80 | ||
Butadiene | 240.00 | ||
Tertiary Dodecyl Mercaptan | 6.40 | ||
Acrylonitrile | 320.00 | ||
Styrene | 704.00 | ||
Acrylic Acid | 16.00 | ||
Methylmethacrylate | 176.00 | ||
N-methylol arylamide | 112.00 | ||
Diammonium Phosphate | 4.00 | ||
Cure Time 350° F. | Lbf (std. dev.) | Elong (std. dev.) | Psi (std. dev.) |
1′ | 17.41 (0.42 | 5.310 (0.299) | 45.57 (4.37) |
2′ | 17.58 (1.08) | 5.004 (0.212) | 44.59 (6.09) |
3′ | 17.47 (0.93) | 4.822 (0.279) | 41.23 (5.58) |
4′ | 16.89 (0.32) | 4.699 (0.106) | 38.49 (2.96) |
5′ | 17.32 (0.62) | 4.699 (0.212) | 40.55 (2.73) |
10′ | 16.99 (0.58) | 4.393 (0.183) | 38.19 (2.37) |
Claims (7)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/657,707 US6599638B1 (en) | 1999-09-10 | 2000-09-08 | Colloidally stabilized emulsions |
US10/600,883 US20040101700A1 (en) | 1999-09-10 | 2003-06-20 | Colloidally stabilized emulsions |
US11/195,501 US7776981B2 (en) | 1999-09-10 | 2005-08-02 | Colloidally stabilized emulsions |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15344199P | 1999-09-10 | 1999-09-10 | |
US09/657,707 US6599638B1 (en) | 1999-09-10 | 2000-09-08 | Colloidally stabilized emulsions |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/600,883 Continuation US20040101700A1 (en) | 1999-09-10 | 2003-06-20 | Colloidally stabilized emulsions |
US11/195,501 Continuation US7776981B2 (en) | 1999-09-10 | 2005-08-02 | Colloidally stabilized emulsions |
Publications (1)
Publication Number | Publication Date |
---|---|
US6599638B1 true US6599638B1 (en) | 2003-07-29 |
Family
ID=27616213
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/657,707 Expired - Fee Related US6599638B1 (en) | 1999-09-10 | 2000-09-08 | Colloidally stabilized emulsions |
US10/600,883 Abandoned US20040101700A1 (en) | 1999-09-10 | 2003-06-20 | Colloidally stabilized emulsions |
US11/195,501 Expired - Fee Related US7776981B2 (en) | 1999-09-10 | 2005-08-02 | Colloidally stabilized emulsions |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/600,883 Abandoned US20040101700A1 (en) | 1999-09-10 | 2003-06-20 | Colloidally stabilized emulsions |
US11/195,501 Expired - Fee Related US7776981B2 (en) | 1999-09-10 | 2005-08-02 | Colloidally stabilized emulsions |
Country Status (1)
Country | Link |
---|---|
US (3) | US6599638B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1304693C (en) * | 2005-01-04 | 2007-03-14 | 浙江大学 | Automobile engine filter paper immersion resin emusion and preparation method thereof |
US20100018533A1 (en) * | 2006-07-18 | 2010-01-28 | Kimberly Biedermann | Novel Device |
CN101230553B (en) * | 2008-01-08 | 2011-08-17 | 牡丹江恒丰纸业股份有限公司 | Automobile industry filter paper impregnation emulsion and method for modifying the same by using polymerizable emulsifier |
US10918976B2 (en) * | 2018-10-24 | 2021-02-16 | Pall Corporation | Support and drainage material, filter, and method of use |
Citations (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1265549A (en) | 1959-08-01 | 1961-06-30 | Hoechst Ag | Process for preparing dispersions of polymerizates |
US3365408A (en) | 1963-08-12 | 1968-01-23 | Kurashiki Rayon Co | Adhesives comprising polyvinyl alcohol bearing or mixed with substances bearing carboxyl groups, and a stabilizer |
US4045398A (en) | 1975-11-24 | 1977-08-30 | Monsanto Company | Resole resin binder composition |
US4170582A (en) | 1976-08-03 | 1979-10-09 | Dainippon Ink And Chemicals, Inc. | Process for preparing a polymer resin aqueous dispersion |
US4179537A (en) | 1978-01-04 | 1979-12-18 | Rykowski John J | Silane coupling agents |
US4257935A (en) | 1975-11-28 | 1981-03-24 | Sumitomo Naugatuck Co., Ltd. | Color developing sheet for pressure-sensitive recording systems |
US4265796A (en) | 1978-09-30 | 1981-05-05 | Basf Aktiengesellschaft | Preparation of aqueous polyacrylate dispersions having improved flow characteristics |
US4287329A (en) | 1979-01-22 | 1981-09-01 | National Distillers And Chemical Corp. | Emulsion process for preparing elastomeric vinyl acetate-ethylene copolymer and high Mooney viscosity low gel content elastomer obtained therefrom |
US4336172A (en) | 1979-07-02 | 1982-06-22 | Wacker-Chemie Gmbh | Aqueous dispersions of cross-linkable copolymers based on (meth)acrylates, their preparation and use as stoving enamels |
US4339552A (en) | 1978-09-18 | 1982-07-13 | National Starch & Chemical Corporation | Vinyl ester aqueous adhesive emulsions including acrylamide |
JPS57180061A (en) | 1981-04-16 | 1982-11-05 | Philips Nv | Reflector lamp and method of producing same |
GB2099000A (en) | 1981-04-06 | 1982-12-01 | Badische Yuka Co Ltd | Inorganic filler-containing vinyl monomer compositions and process for the production therefrom of polymer particles |
US4384096A (en) | 1979-08-27 | 1983-05-17 | The Dow Chemical Company | Liquid emulsion polymers useful as pH responsive thickeners for aqueous systems |
US4384661A (en) | 1982-04-07 | 1983-05-24 | Page Edward H | Aerosol water-based paint compositions |
US4397968A (en) | 1981-03-24 | 1983-08-09 | Wacker-Chemie Gmbh | Process for the manufacture of copolymers having increased resistance against hydrolysis, the copolymers and their use |
US4417016A (en) | 1982-02-19 | 1983-11-22 | Para-Chem Southern, Inc. | Frothing aid composition |
US4477613A (en) | 1983-08-01 | 1984-10-16 | Sylvachem Corporation | Stabilization of tackifying resin dispersions |
US4495329A (en) | 1983-03-28 | 1985-01-22 | Georgia-Pacific Resins, Inc. | Phenolic resin compounds |
US4510019A (en) | 1981-05-12 | 1985-04-09 | Papeteries De Jeand'heurs | Latex containing papers |
US4528315A (en) | 1982-07-20 | 1985-07-09 | Wacker-Chemie Gmbh | Process for the preparation of polymer dispersions and their application |
US4623462A (en) | 1984-10-29 | 1986-11-18 | The Bf Goodrich Company | Oil filters using water-based latex binders |
US4670181A (en) | 1984-06-25 | 1987-06-02 | The B. F. Goodrich Company | Process for pelletization of powder materials and products therefrom |
JPH0228203A (en) | 1988-07-15 | 1990-01-30 | Showa Highpolymer Co Ltd | Polyvinyl acetate-based emulsion composition |
US4904753A (en) | 1988-03-23 | 1990-02-27 | Ashland Oil, Inc. | Acid/oxidizer catalyst system for storage stable, quick-cure phenolic resins of the resole or benzylic ether resole type |
US4937284A (en) | 1983-02-17 | 1990-06-26 | Neste Oy | Modified polyolefin, method for making the same, and use thereof |
JPH02196880A (en) | 1989-01-25 | 1990-08-03 | Sekisui Chem Co Ltd | Tacky adhesive composition |
US4999239A (en) | 1989-03-20 | 1991-03-12 | Air Products And Chemicals, Inc. | Ethylene-vinyl chloride copolymer emulsions containing tetramethylol glycoluril for use as binder compositions |
US5001011A (en) | 1988-06-03 | 1991-03-19 | Dow Corning Corporation | Ionomeric silane coupling agents |
US5006573A (en) | 1985-11-29 | 1991-04-09 | Dow Corning Corporation | Silane coupling agents |
US5100948A (en) | 1988-10-14 | 1992-03-31 | Basf Aktiengesellschaft | Aqueous formulations suitable as sealing compounds of adhesives for ceramic tiles |
US5141983A (en) | 1988-05-30 | 1992-08-25 | Dainippon Ink & Chemicals, Inc. | Aqueous coating composition |
US5155193A (en) | 1990-07-02 | 1992-10-13 | Xerox Corporation | Suspension polymerization processes |
EP0516360A1 (en) | 1991-05-31 | 1992-12-02 | Lord Corporation | Stable butadiene polymer latices |
US5190997A (en) * | 1985-07-10 | 1993-03-02 | Sequa Chemicals, Inc. | Adhesive composition |
JPH0559106A (en) | 1991-09-03 | 1993-03-09 | Kuraray Co Ltd | Dispersion stabilizer for emulsion polymerization |
US5200459A (en) | 1991-05-31 | 1993-04-06 | Lord Corporation | Stable butadiene heteropolymer latices |
US5244695A (en) | 1992-03-17 | 1993-09-14 | Air Products And Chemicals, Inc. | Aqueous binder saturants used in a process for making nonwoven filters |
US5296627A (en) | 1988-06-20 | 1994-03-22 | Ppg Industries, Inc. | Ethylenically unsaturated poly(alkyleneoxy) surfactants |
US5300555A (en) | 1991-05-31 | 1994-04-05 | Lord Corporation | Stable butadiene homopolymers latices |
US5308910A (en) | 1991-06-25 | 1994-05-03 | Kuraray Co., Ltd. | Composition, adhesive and aqueous emulsion |
JPH06128443A (en) | 1992-10-21 | 1994-05-10 | Kuraray Co Ltd | Aqueous emulsion |
JPH06179705A (en) | 1992-12-15 | 1994-06-28 | Kuraray Co Ltd | Emulsifying and dispersion-stabilizing agent |
US5352720A (en) | 1992-04-29 | 1994-10-04 | Basf Aktiengesellschaft | Aqueous polymer dispersion containing a polydisperse particle size distribution |
US5354803A (en) | 1993-03-29 | 1994-10-11 | Sequa Chemicals, Inc. | Polyvinyl alcohol graft copolymer nonwoven binder emulsion |
US5385973A (en) | 1987-12-17 | 1995-01-31 | Vedril S.P.A. | Process for preparing flowable, stable and hardenable suspensions, and thus-obtained compositions |
EP0640629A1 (en) | 1993-08-30 | 1995-03-01 | Hüls Aktiengesellschaft | Process for the preparation of aquous silanol groups modified plastics |
JPH0770989A (en) | 1993-08-23 | 1995-03-14 | Kuraray Co Ltd | Emulsion for paper coating |
US5428095A (en) | 1992-06-09 | 1995-06-27 | Cal-West Automotive | Protective coating composition and method of using such composition |
US5434216A (en) | 1993-05-07 | 1995-07-18 | National Starch And Chemical Investment Holding Corporation | Woodworking latex adhesives with improved water, heat and creep resistance |
CA2182202A1 (en) | 1994-01-27 | 1995-08-03 | Herbert Eck | Redispersible silicon-modified dispersion powder composition, method of manufacturing it and its use |
US5444112A (en) | 1994-05-16 | 1995-08-22 | Cj's Distributing, Inc. | Sprayable nonionic neoprene latex adhesive and method of preparation |
US5451635A (en) | 1992-04-23 | 1995-09-19 | Rohm And Haas Company | Polymer blends |
US5461104A (en) | 1994-01-21 | 1995-10-24 | Shell Oil Company | Process for making water-based latexes of block copolymers |
US5470924A (en) | 1991-04-05 | 1995-11-28 | Ryan; Barry W. | Phenol formaldehyde resins |
US5491209A (en) | 1989-10-25 | 1996-02-13 | The Dow Chemical Company | Latex copolymers for paper coating compositions |
US5496884A (en) | 1993-11-12 | 1996-03-05 | Lord Corporation | Aqueous adhesive for bonding elastomers |
US5502089A (en) | 1993-08-27 | 1996-03-26 | Rohm And Haas Company | Polymer emulsion agent for cross-linking a polymer emulsion and method for making a polymer film |
US5519084A (en) | 1992-12-08 | 1996-05-21 | Air Products And Chemicals, Inc. | Redispersible acrylic polymer powder for cementitious compositions |
US5520997A (en) | 1994-11-17 | 1996-05-28 | The B. F. Goodrich Company | Formaldehyde-free latex for use as a binder or coating |
US5539015A (en) | 1991-07-25 | 1996-07-23 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Synthetic resin composition and interior material coated with the same |
US5629370A (en) | 1996-04-29 | 1997-05-13 | Reichhold Chemicals, Inc. | High solids vinyl acetate-ethylene emulsions |
US5830934A (en) | 1995-10-27 | 1998-11-03 | Reichhold Chemicals, Inc. | Colloidally stabilized emulsion polymer |
US5900451A (en) | 1997-05-15 | 1999-05-04 | Reichhold Chemicals, Inc. | Collaidally stabilized butadiene emulsions |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57180617A (en) | 1981-05-01 | 1982-11-06 | Japan Synthetic Rubber Co Ltd | Copolymer latex for chipping-resistant paint |
DE19633626A1 (en) * | 1996-08-21 | 1998-02-26 | Basf Ag | Process for producing a particulate polymer |
-
2000
- 2000-09-08 US US09/657,707 patent/US6599638B1/en not_active Expired - Fee Related
-
2003
- 2003-06-20 US US10/600,883 patent/US20040101700A1/en not_active Abandoned
-
2005
- 2005-08-02 US US11/195,501 patent/US7776981B2/en not_active Expired - Fee Related
Patent Citations (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1265549A (en) | 1959-08-01 | 1961-06-30 | Hoechst Ag | Process for preparing dispersions of polymerizates |
US3365408A (en) | 1963-08-12 | 1968-01-23 | Kurashiki Rayon Co | Adhesives comprising polyvinyl alcohol bearing or mixed with substances bearing carboxyl groups, and a stabilizer |
US4045398A (en) | 1975-11-24 | 1977-08-30 | Monsanto Company | Resole resin binder composition |
US4257935A (en) | 1975-11-28 | 1981-03-24 | Sumitomo Naugatuck Co., Ltd. | Color developing sheet for pressure-sensitive recording systems |
US4170582A (en) | 1976-08-03 | 1979-10-09 | Dainippon Ink And Chemicals, Inc. | Process for preparing a polymer resin aqueous dispersion |
US4179537A (en) | 1978-01-04 | 1979-12-18 | Rykowski John J | Silane coupling agents |
US4339552A (en) | 1978-09-18 | 1982-07-13 | National Starch & Chemical Corporation | Vinyl ester aqueous adhesive emulsions including acrylamide |
US4265796A (en) | 1978-09-30 | 1981-05-05 | Basf Aktiengesellschaft | Preparation of aqueous polyacrylate dispersions having improved flow characteristics |
US4287329A (en) | 1979-01-22 | 1981-09-01 | National Distillers And Chemical Corp. | Emulsion process for preparing elastomeric vinyl acetate-ethylene copolymer and high Mooney viscosity low gel content elastomer obtained therefrom |
US4336172A (en) | 1979-07-02 | 1982-06-22 | Wacker-Chemie Gmbh | Aqueous dispersions of cross-linkable copolymers based on (meth)acrylates, their preparation and use as stoving enamels |
US4384096A (en) | 1979-08-27 | 1983-05-17 | The Dow Chemical Company | Liquid emulsion polymers useful as pH responsive thickeners for aqueous systems |
US4397968A (en) | 1981-03-24 | 1983-08-09 | Wacker-Chemie Gmbh | Process for the manufacture of copolymers having increased resistance against hydrolysis, the copolymers and their use |
GB2099000A (en) | 1981-04-06 | 1982-12-01 | Badische Yuka Co Ltd | Inorganic filler-containing vinyl monomer compositions and process for the production therefrom of polymer particles |
JPS57180061A (en) | 1981-04-16 | 1982-11-05 | Philips Nv | Reflector lamp and method of producing same |
US4510019A (en) | 1981-05-12 | 1985-04-09 | Papeteries De Jeand'heurs | Latex containing papers |
US4417016A (en) | 1982-02-19 | 1983-11-22 | Para-Chem Southern, Inc. | Frothing aid composition |
US4384661A (en) | 1982-04-07 | 1983-05-24 | Page Edward H | Aerosol water-based paint compositions |
US4528315A (en) | 1982-07-20 | 1985-07-09 | Wacker-Chemie Gmbh | Process for the preparation of polymer dispersions and their application |
US4937284A (en) | 1983-02-17 | 1990-06-26 | Neste Oy | Modified polyolefin, method for making the same, and use thereof |
US4495329A (en) | 1983-03-28 | 1985-01-22 | Georgia-Pacific Resins, Inc. | Phenolic resin compounds |
US4477613A (en) | 1983-08-01 | 1984-10-16 | Sylvachem Corporation | Stabilization of tackifying resin dispersions |
US4670181A (en) | 1984-06-25 | 1987-06-02 | The B. F. Goodrich Company | Process for pelletization of powder materials and products therefrom |
US4623462A (en) | 1984-10-29 | 1986-11-18 | The Bf Goodrich Company | Oil filters using water-based latex binders |
US5190997A (en) * | 1985-07-10 | 1993-03-02 | Sequa Chemicals, Inc. | Adhesive composition |
US5006573A (en) | 1985-11-29 | 1991-04-09 | Dow Corning Corporation | Silane coupling agents |
US5385973A (en) | 1987-12-17 | 1995-01-31 | Vedril S.P.A. | Process for preparing flowable, stable and hardenable suspensions, and thus-obtained compositions |
US4904753A (en) | 1988-03-23 | 1990-02-27 | Ashland Oil, Inc. | Acid/oxidizer catalyst system for storage stable, quick-cure phenolic resins of the resole or benzylic ether resole type |
US5141983A (en) | 1988-05-30 | 1992-08-25 | Dainippon Ink & Chemicals, Inc. | Aqueous coating composition |
US5001011A (en) | 1988-06-03 | 1991-03-19 | Dow Corning Corporation | Ionomeric silane coupling agents |
US5296627A (en) | 1988-06-20 | 1994-03-22 | Ppg Industries, Inc. | Ethylenically unsaturated poly(alkyleneoxy) surfactants |
JPH0228203A (en) | 1988-07-15 | 1990-01-30 | Showa Highpolymer Co Ltd | Polyvinyl acetate-based emulsion composition |
US5100948A (en) | 1988-10-14 | 1992-03-31 | Basf Aktiengesellschaft | Aqueous formulations suitable as sealing compounds of adhesives for ceramic tiles |
JPH02196880A (en) | 1989-01-25 | 1990-08-03 | Sekisui Chem Co Ltd | Tacky adhesive composition |
US4999239A (en) | 1989-03-20 | 1991-03-12 | Air Products And Chemicals, Inc. | Ethylene-vinyl chloride copolymer emulsions containing tetramethylol glycoluril for use as binder compositions |
US5491209A (en) | 1989-10-25 | 1996-02-13 | The Dow Chemical Company | Latex copolymers for paper coating compositions |
US5155193A (en) | 1990-07-02 | 1992-10-13 | Xerox Corporation | Suspension polymerization processes |
US5470924A (en) | 1991-04-05 | 1995-11-28 | Ryan; Barry W. | Phenol formaldehyde resins |
US5200459A (en) | 1991-05-31 | 1993-04-06 | Lord Corporation | Stable butadiene heteropolymer latices |
US5300555A (en) | 1991-05-31 | 1994-04-05 | Lord Corporation | Stable butadiene homopolymers latices |
EP0516360A1 (en) | 1991-05-31 | 1992-12-02 | Lord Corporation | Stable butadiene polymer latices |
US5308910A (en) | 1991-06-25 | 1994-05-03 | Kuraray Co., Ltd. | Composition, adhesive and aqueous emulsion |
US5539015A (en) | 1991-07-25 | 1996-07-23 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Synthetic resin composition and interior material coated with the same |
JPH0559106A (en) | 1991-09-03 | 1993-03-09 | Kuraray Co Ltd | Dispersion stabilizer for emulsion polymerization |
US5244695A (en) | 1992-03-17 | 1993-09-14 | Air Products And Chemicals, Inc. | Aqueous binder saturants used in a process for making nonwoven filters |
US5451635A (en) | 1992-04-23 | 1995-09-19 | Rohm And Haas Company | Polymer blends |
US5352720A (en) | 1992-04-29 | 1994-10-04 | Basf Aktiengesellschaft | Aqueous polymer dispersion containing a polydisperse particle size distribution |
US5428095A (en) | 1992-06-09 | 1995-06-27 | Cal-West Automotive | Protective coating composition and method of using such composition |
JPH06128443A (en) | 1992-10-21 | 1994-05-10 | Kuraray Co Ltd | Aqueous emulsion |
US5519084A (en) | 1992-12-08 | 1996-05-21 | Air Products And Chemicals, Inc. | Redispersible acrylic polymer powder for cementitious compositions |
JPH06179705A (en) | 1992-12-15 | 1994-06-28 | Kuraray Co Ltd | Emulsifying and dispersion-stabilizing agent |
WO1994022671A1 (en) | 1993-03-29 | 1994-10-13 | Sequa Chemicals, Inc. | A polyvinyl alcohol graft copolymer non-woven binder emulsion |
US5354803A (en) | 1993-03-29 | 1994-10-11 | Sequa Chemicals, Inc. | Polyvinyl alcohol graft copolymer nonwoven binder emulsion |
US5434216A (en) | 1993-05-07 | 1995-07-18 | National Starch And Chemical Investment Holding Corporation | Woodworking latex adhesives with improved water, heat and creep resistance |
JPH0770989A (en) | 1993-08-23 | 1995-03-14 | Kuraray Co Ltd | Emulsion for paper coating |
US5502089A (en) | 1993-08-27 | 1996-03-26 | Rohm And Haas Company | Polymer emulsion agent for cross-linking a polymer emulsion and method for making a polymer film |
EP0640629A1 (en) | 1993-08-30 | 1995-03-01 | Hüls Aktiengesellschaft | Process for the preparation of aquous silanol groups modified plastics |
US5496884A (en) | 1993-11-12 | 1996-03-05 | Lord Corporation | Aqueous adhesive for bonding elastomers |
US5461104A (en) | 1994-01-21 | 1995-10-24 | Shell Oil Company | Process for making water-based latexes of block copolymers |
CA2182202A1 (en) | 1994-01-27 | 1995-08-03 | Herbert Eck | Redispersible silicon-modified dispersion powder composition, method of manufacturing it and its use |
US5444112A (en) | 1994-05-16 | 1995-08-22 | Cj's Distributing, Inc. | Sprayable nonionic neoprene latex adhesive and method of preparation |
US5520997A (en) | 1994-11-17 | 1996-05-28 | The B. F. Goodrich Company | Formaldehyde-free latex for use as a binder or coating |
US5830934A (en) | 1995-10-27 | 1998-11-03 | Reichhold Chemicals, Inc. | Colloidally stabilized emulsion polymer |
US5629370A (en) | 1996-04-29 | 1997-05-13 | Reichhold Chemicals, Inc. | High solids vinyl acetate-ethylene emulsions |
US5900451A (en) | 1997-05-15 | 1999-05-04 | Reichhold Chemicals, Inc. | Collaidally stabilized butadiene emulsions |
Non-Patent Citations (1)
Title |
---|
Yuki et al; "The Role of Polyvinyl Alcohol in Emulsion Polymerization", Polymer International 30:4 513-517 (1993). |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1304693C (en) * | 2005-01-04 | 2007-03-14 | 浙江大学 | Automobile engine filter paper immersion resin emusion and preparation method thereof |
US20100018533A1 (en) * | 2006-07-18 | 2010-01-28 | Kimberly Biedermann | Novel Device |
CN101230553B (en) * | 2008-01-08 | 2011-08-17 | 牡丹江恒丰纸业股份有限公司 | Automobile industry filter paper impregnation emulsion and method for modifying the same by using polymerizable emulsifier |
US10918976B2 (en) * | 2018-10-24 | 2021-02-16 | Pall Corporation | Support and drainage material, filter, and method of use |
Also Published As
Publication number | Publication date |
---|---|
US20050267281A1 (en) | 2005-12-01 |
US7776981B2 (en) | 2010-08-17 |
US20040101700A1 (en) | 2004-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5830934A (en) | Colloidally stabilized emulsion polymer | |
US8038014B2 (en) | Use of an aqueous polymer dispersion as a binding agent for cellulose fibers and for the production of filter materials | |
US7148270B2 (en) | Polymer-modified fiber-cement composition | |
US5520997A (en) | Formaldehyde-free latex for use as a binder or coating | |
US7776981B2 (en) | Colloidally stabilized emulsions | |
KR20140125850A (en) | Aqueous binder composition | |
US20070184732A1 (en) | High strength polyvinyl acetate binders | |
CN1923905B (en) | Polymer binding resins | |
US6897256B1 (en) | Polymer dispersions | |
KR101847482B1 (en) | Polymers derived from itaconic acid | |
JP2009534488A (en) | Use of aqueous polymer compositions as binders for fibrous or granular substrates | |
US20130095719A1 (en) | Mineral Wool Fiber Mats, Method for Producing Same, and Use | |
KR101005836B1 (en) | Dispersions of cross-linked latex polymer particles and a curable amino resin | |
JPS61111116A (en) | Oil filter using aqueous latex binder | |
WO2011029810A1 (en) | Method for producing an aqueous binding agent dispersion | |
US6051640A (en) | Use of cationically stabilized aqueous polymer emulsions as binders for moldings based on finely divided materials having a negative surface charge | |
JP2004269894A (en) | Using aqueous polymer dispersion as binder for producing filter material, and filter material | |
TWI724154B (en) | Fiber treatment agent, method for manufacturing fiber processed product, and fiber processed product | |
EP3176187B1 (en) | Formaldehyde-free thermally curable polymers | |
WO2015199985A1 (en) | Phosphorous-acid monomer containing emulsion polymer modified urea-formaldehyde resin compositions for making fiberglass products | |
EP1156156B1 (en) | High performance air and oil filters impregnated with a binder | |
CA2031120A1 (en) | Flooring composition having improved heat resistance | |
EP3901363A1 (en) | Binder for inorganic fibers and inorganic fiber mat | |
JP2532089B2 (en) | Fibrous sheet binder | |
US20190375867A1 (en) | Formaldehyde-free thermally curable polymers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DOW REICHHOLD SPECIALTY LATEX LLC, NORTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:REICHHOLD, INC.;REEL/FRAME:014164/0427 Effective date: 20030609 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: REICHHOLD, INC., NORTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KRISHNAN, VENKATARAM;REEL/FRAME:022050/0131 Effective date: 20010118 |
|
AS | Assignment |
Owner name: MALLARD CREEK POLYMERS, INC., NORTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOW REICHHOLD SPECIALTY LATEX LLC;REEL/FRAME:022086/0875 Effective date: 20080923 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20150729 |