US6420387B1 - Farnesyl protein transferase inhibiting (imidazol-5-yl) methyl-2-quinolinone derivatives - Google Patents
Farnesyl protein transferase inhibiting (imidazol-5-yl) methyl-2-quinolinone derivatives Download PDFInfo
- Publication number
- US6420387B1 US6420387B1 US09/689,211 US68921100A US6420387B1 US 6420387 B1 US6420387 B1 US 6420387B1 US 68921100 A US68921100 A US 68921100A US 6420387 B1 US6420387 B1 US 6420387B1
- Authority
- US
- United States
- Prior art keywords
- alkyl
- formula
- methyl
- chlorophenyl
- compounds
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 0 *=C1c([17*])c(C2=CC=CC=C2)C2=C(C=CC(C([8*])(C3=CC=CC=C3)C3=CN=CN3)=C2)N1[1*].*C.[16*]C.[18*]C.[19*]C.[2*]C.[3*]C.[4*]C.[5*]C.[6*]C Chemical compound *=C1c([17*])c(C2=CC=CC=C2)C2=C(C=CC(C([8*])(C3=CC=CC=C3)C3=CN=CN3)=C2)N1[1*].*C.[16*]C.[18*]C.[19*]C.[2*]C.[3*]C.[4*]C.[5*]C.[6*]C 0.000 description 27
- OTMSDBZUPAUEDD-UHFFFAOYSA-N CC Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- HZRZMHNRCSIQFT-UHFFFAOYSA-N CC1=NC(C)(C)CO1 Chemical compound CC1=NC(C)(C)CO1 HZRZMHNRCSIQFT-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
- C07D231/02—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
- C07D231/10—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D231/12—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/56—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/08—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/06—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D407/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
- C07D407/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Definitions
- the present invention is concerned with novel (imidazol-5-yl)methyl-2-quinolinone derivatives, the preparation thereof, pharmaceutical compositions comprising said novel compounds and the use of these compounds as a medicine as well as methods of treatment by administering said compounds.
- Oncogenes frequently encode protein components of signal transduction pathways which lead to stimulation of cell growth and mitogenesis. Oncogene expression in cultured cells leads to cellular transformation, characterized by the ability of cells to grow in soft agar and the growth of cells as dense foci lacking the contact inhibition exhibited by non-transformed cells. Mutation and/or overexpression of certain oncogenes is frequently associated with human cancer.
- a particular group of oncogenes is known as ras which have been identified in mammals, birds, insects, mollusks, plants, fungi and yeasts.
- the family of mammalian ras oncogenes consists of three major members (“isoforms”): H-ras, K-ras and N-ras oncogenes.
- ras oncogenes code for highly related proteins generically known as p21 ras .
- the mutant or oncogenic forms of p21 ras will provide a signal for the transformation and uncontrolled growth of malignant tumor cells.
- the precursor of the p21 ras oncoprotein must undergo an enzymatically catalyzed farnesylation of the cysteine residue located in a carboxyl-terminal tetrapeptide. Therefore, inhibitors of the enzyme that catalyzes this modification, farnesyl protein transferase, will prevent the membrane attachment of p21 ras and block the aberrant growth of ras-transformed tumors.
- farnesyl transferase inhibitors can be very useful as anticancer agents for tumors in which ras contributes to transformation.
- the present invention encompasses compounds of formula (I)
- the dotted line represents an optional bond
- X is oxygen or sulfur
- R 1 is hydrogen, C 1-12 alkyl, Ar 1 , Ar 2 C 1-6 alkyl, quinolinylC 1-6 alkyl, pyridylC 1-6 alkyl, hydroxyC 1-6 alkyl, C 1-6 alkyloxyC 1-6 alkyl, mono- or di(C 1-6 alkyl)aminoC 1-6 alkyl, aminoC 1-6 alkyl,
- Alk 1 is C 1-6 alkanediyl
- R 9 is hydroxy, C 1-6 alkyl, C 1-6 alkyloxy, amino, C 1-8 alkylamino or C 1-8 alkylamino substituted with C 1-6 alkyloxycarbonyl;
- R 2 , R 3 and R 16 each independently are hydrogen, hydroxy, halo, cyano, C 1-6 alkyl, C 1-6 alkyloxy, hydroxyC 1-6 alkyloxy, C 1-6 alkyloxyC 1-6 alkyloxy, aminoC 1-6 alkyloxy, mono- or di(C 1-6 alkyl)aminoC 1-6 alkyloxy, Ar 1 , Ar 2 C 1-6 alkyl, Ar 2 oxy, Ar 2 C 1-6 alkyloxy, hydroxycarbonyl, C 1-6 alkyloxycarbonyl, trihalomethyl, trihalomethoxy, C 2-6 alkenyl, 4,4-dimethyloxazolyl; or
- R 4 and R 5 each independently are hydrogen, halo, Ar 1 , C 1-6 alkyl, hydroxyC 1-6 alkyl, C 1-6 alkyloxyC 1-6 alkyl, C 1-6 alkyloxy, C 1-6 alkylthio, amino, hydroxycarbonyl, C 1-6 alkyloxycarbonyl, C 1-6 alkylS(O)C 1-6 alkyl or C 1-6 alkylS(O) 2 C 1-6 alkyl;
- R 6 and R 7 each independently are hydrogen, halo, cyano, C 1-6 alkyl, C 1-6 alkyloxy, Ar 2 oxy, trihalomethyl, C 1-6 alkylthio, di(C 1-6 alkyl)amino, or
- R 8 is hydrogen, C 1-6 alkyl, cyano, hydroxycarbonyl, C 1-6 alkyloxycarbonyl, C 1-6 alkylcarbonylC 1-6 alkyl, cyanoC 1-6 alkyl, C 1-6 alkyloxycarbonylC 1-6 alkyl, carboxyC 1-6 alkyl, hydroxyC 1-6 alkyl, aminoC 1-6 alkyl, mono- or di(C 1-6 alkyl)aminoC 1-6 alkyl, imidazolyl, haloC 1-6 alkyl, C 1-6 alkyloxyC 1-6 alkyl, aminocarbonylC 1-6 alkyl, or a radical of formula
- R 10 is hydrogen, C 1-6 alkyl, C 1-6 alkylcarbonyl, Ar 1 , Ar 2 C 1-6 alkyl, C 1-6 alkyloxycarbonylC 1-6 alkyl, or a radical or formula —Alk 2 —OR 13 or —Alk 2 —NR 14 R 15 ;
- R 11 is hydrogen, C 1-12 alkyl, Ar 1 or Ar 2 C 1-6 alkyl;
- R 12 is hydrogen, C 1-6 alkyl, C 1-6 alkylcarbonyl, C 1-6 alkyloxycarbonyl, C 1-6 alkylaminocarbonyl, Ar 1 , Ar 2 C 1-6 alkyl, C 1-6 alkylcarbonylC 1-6 alkyl, a natural amino acid, Ar 1 carbonyl, Ar 2 C 1-6 alkylcarbonyl, aminocarbonylcarbonyl, C 1-6 alkyloxyC 1-6 alkylcarbonyl, hydroxy, C 1-6 alkyloxy, aminocarbonyl, di(C 1-6 alkyl)aminoC 1-6 alkylcarbonyl, amino, C 1-6 alkylamino, C 1-6 alkylcarbonylamino, or a radical or formula —Alk 2 —OR 13 or —Alk 2 —NR 14 R 15 ;
- Alk 2 is C 1-6 alkanediyl
- R 13 is hydrogen, C 1-6 alkyl, C 1-6 alkylcarbonyl, hydroxyC 1-6 alkyl, Ar 1 or Ar 2 C 1-6 alkyl;
- R 14 is hydrogen, C 1-6 alkyl, Ar 1 or Ar 2 C 1-6 alkyl;
- R 15 is hydrogen, C 1-6 alkyl, C 1-6 alkylcarbonyl, Ar 1 or Ar 2 C 1-6 alkyl;
- R 17 is hydrogen, halo, cyano, C 1-6 alkyl, C 1-6 alkyloxycarbonyl, Ar 1 ;
- R 18 is hydrogen, C 1-6 alkyl, C 1-6 alkyloxy or halo
- R 19 is hydrogen or C 1-6 alkyl
- Ar 1 is phenyl or phenyl substituted with C 1-6 alkyl, hydroxy, amino, C 1-6 alkyloxy or halo;
- Ar 2 is phenyl or phenyl substituted with C 1-6 alkyl, hydroxy, amino, C 1-6 alkyloxy or halo.
- R 4 or R 5 may also be bound to one of the nitrogen atoms in the imidazole ring.
- the hydrogen on the nitrogen is replaced by R 4 or R 5 and the meaning of R 4 and R 5 when bound to the nitrogen is limited to hydrogen, Ar 1 , C 1-6 alkyl, hydroxyC 1-6 alkyl, C 1-6 alkyloxyC 1-6 alkyl, C 1-6 alkyloxycarbonyl, C 1-6 alkylS(O)C 1-6 alkyl, C 1-6 alkylS(O) 2 C 1-6 alkyl.
- halo defines fluoro, chloro, bromo and iodo
- C 1-6 alkyl defines straight and branched chained saturated hydrocarbon radicals having from 1 to 6 carbon atoms such as, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl and the like
- C 1-8 alkyl encompasses the straight and branched chained saturated hydrocarbon radicals as defined in C 1-6 alkyl as well as the higher homologues thereof containing 7 or 8 carbon atoms such as, for example heptyl or octyl
- C 1-12 alkyl again encompasses C 1-8 alkyl and the higher homologues thereof containing 9 to 12 carbon atoms, such as, for example, nonyl, decyl, undecyl, dodecyl
- C 1-16 alkyl again encompasses C 1-12 alkyl and the higher homologues thereof containing 13 to 16
- C( ⁇ O) refers to a carbonyl group
- S(O) refers to a sulfoxide
- S(O) 2 to a sulfon.
- natural amino acid refers to a natural amino acid that is bound via a covalent amide linkage formed by loss of a molecule of water between the carboxyl group of the amino acid and the amino group of the remainder of the molecule.
- Examples of natural amino acids are glycine, alanine, valine, leucine, isoleucine, methionine, proline, phenylanaline, tryptophan, serine, threonine, cysteine, tyrosine, asparagine, glutamine, aspartic acid, glutamic acid, lysine, arginine, histidine.
- the pharmaceutically acceptable acid or base addition salts as mentioned hereinabove are meant to comprise the therapeutically active non-toxic acid and non-toxic base addition salt forms which the compounds of formula (I) are able to form.
- the compounds of formula (I) which have basic properties can be converted in their pharmaceutically acceptable acid addition salts by treating said base form with an appropriate acid.
- Appropriate acids comprise, for example, inorganic acids such as hydrohalic acids, e.g. hydrochloric or hydrobromic acid; sulfuric; nitric; phosphoric and the like acids; or organic acids such as, for example, acetic, propanoic, hydroxyacetic, lactic, pyruvic, oxalic, malonic, succinic (i.e.
- butanedioic acid maleic, fumaric, malic, tartaric, citric, methanesulfonic, ethanesulfonic, benzenesulfonic, p-toluenesulfonic, cyclamic, salicylic, p-aminosalicylic, pamoic and the like acids.
- the compounds of formula (I) which have acidic properties may be converted in their pharmaceutically acceptable base addition salts by treating said acid form with a suitable organic or inorganic base.
- suitable organic or inorganic base e.g. the ammonium salts, the alkali and earth alkaline metal salts, e.g. the lithium, sodium, potassium, magnesium, calcium salts and the like, salts with organic bases, e.g. the benzathine, N-methyl-D-glucamine, hydrabamine salts, and salts with amino acids such as, for example, arginine, lysine and the like.
- acid or base addition salt also comprise the hydrates and the solvent addition forms which the compounds of formula (I) are able to form. Examples of such forms are e.g. hydrates, alcoholates and the like.
- stereochemically isomeric forms of compounds of formula (I), as used hereinbefore, defines all possible compounds made up of the same atoms bonded by the same sequence of bonds but having different three-dimensional structures which are not interchangeable, which the compounds of formula (I) may possess.
- chemical designation of a compound encompasses the mixture of all possible stereochemically isomeric forms which said compound may possess. Said mixture may contain all diastereomers and/or enantiomers of the basic molecular structure of said compound.
- All stereochemically isomeric forms of the compounds of formula (I) both in pure form or in admixture with each other are intended to be embraced within the scope of the present invention.
- substituent R 18 is situated on the 5 or 7 position of the quinolinone moiety and substituent R 19 is situated on the 8 position when R 18 is on the 7-position.
- R 1 is hydrogen, C 1-6 alkyl, C 1-6 alkyloxyC 1-6 alkyl, di(C 1-6 alkyl)aminoC 1-6 alkyl, or a radical of formula —Alk 1 —C( ⁇ O)—R 9 , wherein Alk 1 is methylene and R 9 is C 1-8 alkylamino substituted with C 1-6 alkyloxycarbonyl.
- Still another group of interesting compounds are those compounds of formula (I) wherein R 3 is hydrogen or halo; and R 2 is halo, C 1-6 alkyl, C 2-6 alkenyl, C 1-6 alkyloxy, trihalomethoxy or hydroxyC 1-6 alkyloxy.
- a further group of interesting compounds are those compounds of formula (I) wherein R 2 and R 3 are on adjacent positions and taken together to form a bivalent radical of formula (a-1), (a-2) or (a-3).
- a still further group of interesting compounds are those compounds of formula (I) wherein R 5 is hydrogen and R 4 is hydrogen or C 1-6 alkyl.
- Yet another group of interesting compounds are those compounds of formula (I) wherein R 7 is hydrogen; and R 6 is C 1-6 alkyl or halo, preferably chloro, especially 4-chloro.
- a particular group of compounds are those compounds of formula (I) wherein R 8 is hydrogen, hydroxy, haloC 1-6 alkyl, hydroxyC 1-6 alkyl, cyanoC 1-6 alkyl, C 1-6 alkyloxycarbonylC 1-6 alkyl, imidazolyl, or a radical of formula —NR 11 R 12 wherein R 11 is hydrogen or C 1-12 alkyl and R 12 is hydrogen, C 1-6 alkyl, C 1-6 alkyloxy, hydroxy, C 1-6 alkyloxyC 1-6 alkylcarbonyl, or a radical of formula —Alk 2 —OR 13 wherein R 13 is hydrogen or C 1-6 alkyl.
- Preferred compounds are those compounds wherein R 1 is hydrogen, C 1-6 alkyl, C 1-6 alkyloxyC 1-6 alkyl, di(C 1-6 alkyl)aminoC 1-6 alkyl, or a radical of formula —Alk 1 —C( ⁇ O)—R 9 , wherein Alk 1 is methylene and R 9 is C 1-8 alkylamino substituted with C 1-6 alkyloxycarbonyl; R 2 is halo, C 1-6 alkyl, C 2-6 alkenyl, C 1-6 alkyloxy, trihalomethoxy, hydroxyC 1-6 alkyloxy or Ar 1 ; R 3 is hydrogen; R 4 is methyl bound to the nitrogen in 3-position of the imidazole; R 5 is hydrogen; R 6 is chloro; R 7 is hydrogen; R 8 is hydrogen, hydroxy, haloC 1-6 alkyl, hydroxyC 1-6 alkyl, cyanoC 1-6 alkyl, C 1-6 alkyloxycarbonylC 1-6 alky
- the compounds of formula (I), wherein X is oxygen, said compounds being represented by formula (I-a), may be prepared by hydrolysing an intermediate ether of formula (II), wherein R is C 1-6 alkyl, according to art-known methods, such as stirring the intermediate of formula (II) in an aqueous acid solution.
- An appropriate acid is for instance hydrochloric acid.
- the resulting quinolinone wherein R 1 is hydrogen may be transformed into a quinolinone, wherein R 1 has a meaning as defined hereinabove apart from hydrogen, by art-known N-alkylation.
- the compounds of formula (I), wherein R 8 is hydroxy, said compounds being referred to as compounds of formula (I-b) may be prepared by reacting an intermediate ketone of formula (III) with a intermediate of formula (IV-a), wherein P is an optional protective group such as, for example, a sulfonyl group, e.g. a dimethylamino sulfonyl group, which can be removed after the addition reaction.
- Said reaction requires the presence of a suitable strong base, such as, for example, butyl lithium in an appropriate solvent, such as, for example, tetrahydrofuran and the presence an appropriate silanederivative, such as, for example, triethylchlorosilane.
- a suitable strong base such as, for example, butyl lithium in an appropriate solvent, such as, for example, tetrahydrofuran
- silanederivative such as, for example, triethylchlorosilane.
- R 17 CH 2 COCl or R 17 CH 2 COOC 2 H 5 yields either directly a compound of formula (I-b-1) or an intermediate which can be converted to a compound of formula (I-b-1) by treatment with a base such as, e.g. potassium tert-butoxide.
- Compounds of formula (I) wherein R 8 is a radical of formula —N—R 11 R 12 , said compounds being represented by formula (I-g) may be prepared by reacting an intermediate of formula (XIII), wherein W is an appropriate leaving group such as, for example, halo, with a reagent of formula (XIV). Said reaction may be performed by stirring the reactants in an appropriate solvent such as, for example, tetrahydrofuran.
- the compounds of formula (I) may also be prepared by converting compounds of formula (I) into other compounds of formula (I).
- W is a suitable leaving group, such as, for example, halo or a sulfonylgroup.
- compounds of formula (I-c) may also be prepared by reacting an intermediate of formula (I-b) with a reagent of formula R 8a —OH in acidic medium.
- Compounds of formula (I-b) may also be converted into compounds of formula (I-g), wherein R 11 is hydrogen and R 12 is C 1-16 alkylcarbonyl, by reacting compounds of formula (I-b) in acidic medium, such as sulfuric acid, with C 1-16 alkyl-CN in a Ritter type reaction. Further, compounds of formula (I-b) may also be converted into compounds of formula (I-g), wherein R 11 and R 12 are hydrogen, by reacting compounds (I-b) with ammonium acetate and subsequent treatment with NH 3 (aq.).
- Compounds of formula (I-b) may also be converted into compounds of formula (I-d), wherein R 8 is hydrogen, by submitting the compounds of formula (I-b) to appropriate reducing conditions, such as, stirring in trifluoroacetic acid in the presence of an appropriate reducing agent, such as sodium borohydride or alternatively stirring the compounds of formula (I-b) in acetic acid in the presence of form amide.
- appropriate reducing conditions such as, stirring in trifluoroacetic acid in the presence of an appropriate reducing agent, such as sodium borohydride or alternatively stirring the compounds of formula (I-b) in acetic acid in the presence of form amide.
- compounds of formula (I-d) wherein R 8 is hydrogen may be converted into compounds of formula (I-e) wherein R 8b is C 1-6 alkyl by reacting compounds of formula (I-d) with a reagent of formula (V) in an appropriate solvent, such as, for instance, diglyme in the presence of a base such as, for example, potassium butoxide.
- an appropriate solvent such as, for instance, diglyme in the presence of a base such as, for example, potassium butoxide.
- a compound of formula (I-f), defined as a compound of formula (I) wherein X is sulfur may be prepared by reacting the corresponding compound of formula (I-a), with a reagent like phosphorus pentasulfide or Lawesson's reagent in a suitable solvent such as, for example, pyridine.
- Compounds of formula of formula (I), wherein R 1 is hydrogen and X is oxygen, said compounds being defined as compounds of formula (I-a-1) may be prepared by reacting a nitrone of formula (VI) with the anhydride of a carboxylic acid, such as, for example, acetic anhydride, thus forming the corresponding ester on the 2 position of the quinoline moiety.
- Said quinoline ester can be hydrolyzed in situ to the corresponding quinolinone using a base such as, for example, potassium carbonate.
- compounds of formula (I-a-1) can be prepared by reacting a nitrone of formula (VI) with a sulfonyl containing electrophilic reagent such as, for example, p-toluenesulfonylchloride in the presence of a base such as, for example, aqueous potassium carbonate.
- a sulfonyl containing electrophilic reagent such as, for example, p-toluenesulfonylchloride
- a base such as, for example, aqueous potassium carbonate.
- the reaction initially involves the formation of a 2-hydroxyquinoline derivative which is subsequently tautomerized to the desired quinolinone derivative.
- phase transfer catalysis may enhance the rate of the reaction.
- Compounds of formula (I-a-1) may also be prepared by an intramolecular photochemical rearrangement of compounds of formula (VI). Said rearrangement can be carried out by dissolving the reagents in a reaction-inert solvent and irradiating at a wavelength of 366 nm. It is advantageous to use degassed solutions and to conduct the reaction under an inert atmosphere such as, for example, oxygen free argon or nitrogen gas, in order to minimize undesired side reactions or reduction of quantum yield.
- an inert atmosphere such as, for example, oxygen free argon or nitrogen gas
- the compounds of formula (I) may also be converted into each other via art-known reactions or functional group transformations.
- a number of such transformations are already described hereinabove.
- Other examples are hydrolysis of carboxylic esters to the corresponding carboxylic acid or alcohol; hydrolysis of amides to the corresponding carboxylic acids or amines; hydrolysis of nitriles to the corresponding amides; amino groups on imidazole or phenyl may be replaced by a hydrogen by art-known diazotation reactions and subsequent replacement of the diazo-group by hydrogen; alcohols may be converted into esters and ethers; primary amines may be converted into secondary or tertiary amines; double bonds may be hydrogenated to the corresponding single bond.
- Intermediates of formula (III) may be prepared by reacting a quinolinone derivative of formula (VIII) with an intermediate of formula (IX) or a functional derivative thereof under appropriate conditions, such as, for example, a strong acid, e.g. polyphosphoric acid in an appropriate solvent.
- the intermediate of formula (VIII) may be formed by cyclization of an intermediate of formula (VII) by stirring in the presence of a strong acid, e.g. polyphosphoric acid.
- said cyclization reaction may be followed by an oxidation step, which can be performed by stirring the intermediate formed after cyclization in an appropriate solvent, such as, for example, a halogenated aromatic solvent, e.g. bromobenzene, in the presence of a oxidizing agent, e.g. bromine or iodine.
- an appropriate solvent such as, for example, a halogenated aromatic solvent, e.g. bromobenzene, in the presence of a oxidizing agent, e.g. bromine
- Intermediates of formula (III-a-1), being intermediates of formula (III) wherein the dotted line is a bond, R 1 and R 17 are hydrogen and X is oxygen, can be prepared starting from an intermediate of formula (XVII), which is conveniently prepared by protecting the corresponding ketone.
- Said intermediate of formula (XVII) is stirred with an intermediate of formula (XVIII) in the presence of a base such as sodium hydroxide, in an appropriate solvent, such as an alcohol, e.g. methanol.
- a base such as sodium hydroxide
- an appropriate solvent such as an alcohol, e.g. methanol.
- the thus obtained intermediate of formula (XVI) undergoes hydrolysis of the ketal and ring opening of the isoxazole moiety by stirring the intermediate of formula (XVI) with an acid, such as for example, TiCl 3 , in the presence of water.
- acetic anhydride is used to prepare an intermediate of formula (XV), which undergoes ring closure in the presence of
- Intermediates of formula (III-a-1) can easily be converted to intermediates of formula (III-a), defined as intermediates of formula (III) wherein the dotted line represents a bond, X is oxygen, R 17 is hydrogen and R 1 is other than hydrogen, using art-known N-alkylation procedures.
- Intermediates of formula (XIX) are converted to intermediates of formula (XX) by submitting intermediates (XIX) to an acetylation reaction, e.g. by treatment with the anhydride of a carboxylic acid, e.g. acetic anhydride in a reaction-inert solvent, e.g.
- Intermediates of formula (II) may be prepared by reacting an intermediate of formula (X), wherein W is an appropriate leaving group, such as, for example, halo, with an intermediate ketone of formula (XI).
- This reaction is performed by converting the intermediate of formula (X) into a organometallic compound, by stirring it with a strong base such as butyl lithium and subsequently adding the intermediate ketone of formula (XI).
- a strong base such as butyl lithium
- this reaction gives at first instance a hydroxy derivative (i.e. R 8 is hydroxy)
- said hydroxy derivative can be converted into other intermediates wherein R 8 has another definition by performing art-known (functional group) transformations.
- the intermediate nitrones of formula (VI) may be prepared by N-oxidizing quinoline derivatives of formula (XII) with an appropriate oxidizing agent such as, for example, chloro-peroxybenzoic acid or H 2 O 2 in an appropriate solvent such as, for example, dichloromethane.
- an appropriate oxidizing agent such as, for example, chloro-peroxybenzoic acid or H 2 O 2 in an appropriate solvent such as, for example, dichloromethane.
- Said N-oxidation may also be carried out on a precursor of a quinoline of formula (XII).
- intermediates of formula (XII) are supposed to be metabolized in vivo into compounds of formula (I) via intermediates of formula (VI). Hence, intermediates of formula (XII) and (VI) may act as prodrugs of compounds of formula (I).
- the compounds of formula (I) and some of the intermediates have at least one stereogenic center in their structure.
- This stereogenic center may be present in a R or a S configuration.
- the compounds of formula (I) as prepared in the hereinabove described processes are generally racemic mixtures of enantiomers which can be separated from one another following art-known resolution procedures.
- the racemic compounds of formula (I) may be converted into the corresponding diastereomeric salt forms by reaction with a suitable chiral acid. Said diastereomeric salt forms are subsequently separated, for example, by selective or fractional crystallization and the enantiomers are liberated therefrom by alkali.
- An alternative manner of separating the enantiomeric forms of the compounds of formula (I) involves liquid chromatography using a chiral stationary phase.
- Said pure stereochemically isomeric forms may also be derived from the corresponding pure stereochemically isomeric forms of the appropriate starting materials, provided that the reaction occurs stereospecifically.
- said compound will be synthesized by stereospecific methods of preparation. These methods will advantageously employ enantiomerically pure starting materials.
- This invention provides a method for inhibiting the abnormal growth of cells, including transformed cells, by administering an effective amount of a compound of the invention.
- Abnormal growth of cells refers to cell growth independent of normal regulatory mechanisms (e.g. loss of contact inhibition). This includes the abnormal growth of: (1) tumor cells (tumors) expressing an activated ras oncogene; (2) tumor cells in which the ras protein is activated as a result of oncogenic mutation of another gene; (3) benign and malignant cells of other proliferative diseases in which aberrant ras activation occurs.
- tumor cells tumor cells expressing an activated ras oncogene
- tumor cells in which the ras protein is activated as a result of oncogenic mutation of another gene
- benign and malignant cells of other proliferative diseases in which aberrant ras activation occurs.
- ras oncogenes not only contribute to the growth of of tumors in vivo by a direct effect on tumor cell growth but also indirectly, i
- This invention also provides a method for inhibiting tumor growth by administering an effective amount of a compound of the present invention, to a subject, e.g. a mammal (and more particularly a human) in need of such treatment.
- this invention provides a method for inhibiting the growth of tumors expressing an activated ras oncogene by the administration of an effective amount of the compounds of the present invention.
- tumors which may be inhibited, but are not limited to, lung cancer (e.g. adenocarcinoma), pancreatic cancers (e.g. pancreatic carcinoma such as, for example exocrine pancreatic carcinoma), colon cancers (e.g.
- colorectal carcinomas such as, for example, colon adenocarcinoma and colon adenoma
- hematopoietic tumors of lymphoid lineage e.g. acute lymphocytic leukemia, B-cell lymphoma, Burkitt's lymphoma
- myeloid leukemias for example, acute myelogenous leukemia (AML)
- thyroid follicular cancer myelodysplastic syndrome (MDS)
- tumors of mesenchymal origin e.g. fibrosarcomas and rhabdomyosarcomas
- melanomas teratocarcinomas
- neuroblastomas gliomas
- benign tumor of the skin e.g. keratoacanthomas
- breast carcinoma e.g. keratoacanthomas
- kidney carninoma ovary carcinoma
- bladder carcinoma e.g. keratoacanthomas
- This invention may also provide a method for inhibiting proliferative diseases, both benign and malignant, wherein ras proteins are aberrantly activated as a result of oncogenic mutation in genes, i.e. the ras gene itself is not activated by mutation to an oncogenic mutation to an oncogenic form, with said inhibition being accomplished by the administration of an effective amount of the compounds described herein, to a subject in need of such a treatment.
- the benign proliferative disorder neurofibromatosis, or tumors in which ras is activated due to mutation or overexpression of tyrosine kinase oncogenes may be inhibited by the compounds of this invention.
- the present invention discloses the compounds of formula (I) for use as a medicine as well as the use of these compounds of formula (I) for the manufacture of a medicament for treating one or more of the above mentioned conditions.
- the subject compounds may be formulated into various pharmaceutical forms for administration purposes.
- an effective amount of a particular compound, in base or acid addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration.
- a pharmaceutically acceptable carrier which carrier may take a wide variety of forms depending on the form of preparation desired for administration.
- These pharmaceutical compositions are desirably in unitary dosage form suitable, preferably, for administration orally, rectally, percutaneously, or by parenteral injection.
- any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs; and solutions; or solid carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed.
- the carrier will usually comprise sterile water, at least in large part, though other ingredients, to aid solubility for example, may be included.
- Injectable solutions may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed.
- the carrier optionally comprises a penetration enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not cause a significant deleterious effect to the skin. Said additives may facilitate the administration to the skin and/or may be helpful for preparing the desired compositions.
- These compositions may be administered in various ways, e.g., as a transdermal patch, as a spot-on, as an ointment.
- Dosage unit form as used in the specification and claims herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- dosage unit forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers, injectable solutions or suspensions, teaspoonfuls, tablespoonfuls and the like, and segregated multiples thereof.
- an effective amount would be from 0.0001 mg/kg to 100 mg/kg body weight, and in particular from 0.001 mg/kg to 10 mg/kg body weight. It may be appropriate to administer the required dose as two, three, four or more sub-doses at appropriate intervals throughout the day. Said sub-doses may be formulated as unit dosage forms, for example, containing 0.01 to 500 mg, and in particular 0.1 mg to 200 mg of active ingredient per unit dosage form.
- THF tetrahydrofuran
- DIPE diisopropylether
- DCM dichloromethane
- DMF N,N-dimethylformamide
- ACN acetonitrile
- Butyllithium in hexane (1.6 M) (12.75 ml) was added dropwise at ⁇ 20° C. under N 2 to a solution of 6-bromo-4-(3-chlorophenyl)-2-methoxyquinoline (6.7 g) in THF (60 ml) and the mixture was stirred at ⁇ 20° C. for 30 minutes.
- a solution of (1-butyl-1H-imidazol-5-yl)(4-chlorophenyl)methanone (3.35 g) in tetrahydrofuran (30 ml) was added at ⁇ 20° C. under N 2 and the mixture was stirred at room temperature for one night. Water was added and the mixture was extracted with ethyl acetate.
- Methyl iodide (1.58 ml) was added to a solution of interm. (5-f) (7.6 g) and benzyltriethylammonium chloride (BTEAC) (2.23 g) in THF (80 ml) and sodium hydroxide (40%, 80 ml). The mixture was stirred at room temperature for 2 hours. Water was added and the mixture was extracted with ethyl acetate. The organic layer was dried (MgSO 4 ), filtered, and the solvent was evaporated. The residue was purified by flash column chromatography over silica gel (eluent: DCM 100%).
- the product was converted into the ethanedioic acid salt (1:1) in 2-propanone and filtered off. The residue was crystallized from 2-propanone, diethyl ether and DIPE. The precipitate was filtered off, washed with diethyl ether, dried and recrystallized from 2-propanone, methanol and DIPE.
- Iodomethane (1.4 ml) was added to a mixture of ( ⁇ )-6-[(4-chlorophenyl)-1H-imidazol-4-ylmethyl]-1-methyl-4-phenyl-2(1H)-quinolinone (7.5 g) and benzyltriethylammonium chloride (2 g) in THF (75 ml) and sodium hydroxide (75 ml) and the mixture was stirred at room temperature for 1 hour. Water was added and the mixture was extracted with ethyl acetate. The organic layer was dried (MgSO 4 ), filtered off and evaporated till dryness.
- Tables 1 to 8 list the compounds that were prepared according to one of the above Examples and table 9 lists both the experimental (column heading “exp.”) and theoretical (column heading “theor.”) elemental analysis values for carbon, hydrogen and nitrogen of the compounds as prepared in the experimental part hereinabove.
- KHOS Kirsten virus transformed human osteosarcoma
- the homogenates were centrifuged 28,000 ⁇ g for 60 min and the supernatants collected. A 30-50% ammonium sulfate fraction was prepared, and the resulting precipitate was resuspended in a small (10 to 20 ml) volume of dialysis buffer containing 20 mM Tris 1 mM dithiothreitol and 20 ⁇ M ZnCl 2 . The ammonium sulfate fraction was dialyzed overnight against two changes of the same buffer.
- the dialyzed material was applied to a 10 ⁇ 1 cm Q Fast Flow Sepharose (Pharmacia LKB Biotechnology Inc., Piscataway, N.J., USA) which had been preequilibrated with 100 ml of dialysis buffer supplemented with 0.05 M NaCl.
- the column was washed with an additional 50 ml of dialysis buffer plus 0.05 M NaCl followed by a gradient from 0.05 M to 0.25 M NaCl prepared in dialysis buffer.
- the enzyme activity was eluted with a linear gradient of 0.25 to 1.0 M NaCl prepared in the dialysis buffer. Fractions containing 4 to 5 ml volumes of column eluate were collected and analyzed for farnesyl protein transferase activity. Fractions with enzyme activity were pooled and supplemented with 100 ⁇ M ZnCl 2 . Enzyme samples were stored frozen at ⁇ 70° C.
- the activity of farnesyl protein transferase was measured using the Farnesyl Transferase [ 3 H] Scintillation Proximity Assay (Amersham International plc., England) under the conditions specified by the manufacturer.
- To assay for inhibitors of the enzyme 0.20 ⁇ Ci of the [ 3 H]-famesylpyrophosphate substrate and the biotinylated lamin B peptide substrate (biotin-YRASNRSCAIM) were mixed with test compounds in a reaction buffer consisting of 50 mM HEPES, 30 mM MgCl 2 , 20 mM KCl, 5 mM dithiothreitol, 0.01% Triton X-100.
- Test compounds were delivered in a 10 ⁇ l volume of dimethylsulfoxide (DMSO) to achieve concentrations of 1 and 10 ⁇ g/ml in a final volume of 100 ⁇ l.
- DMSO dimethylsulfoxide
- the reaction mixture was warmed to 37° C.
- the enzyme reaction was started by adding 20 ⁇ l of diluted human farnesyl protein transferase. Sufficient enzyme preparation was added to produce between 4000 to 15000 cpm of reaction product during the 60 min of reaction incubation at 37° C. Reactions were terminated by the addition of STOP/scintillation proximity bead reagent (Amersham).
- the reaction product [ 3 H]-farnesyl-(Cys)-biotin lamin B peptide was captured on the streptavidin linked scintillation proximity bead.
- the amount of [ 3 H]-farnesyl-(Cys)-biotin lamin B peptide synthesized in the presence or absence of test compounds was quantified as cpm by counting on a Wallac Model 1480 Microbeta Liquid Scintillation Counter.
- the cpm of product was considered to be farnesyl protein transferase activity.
- the protein farnesyl transferase activity observed in the presence of test compound was normalized to farnesyl transferase activity in the presence of 10% DMSO and expressed as per cent inhibition.
- test compounds exhibiting 50% or greater inhibition of farnesyl protein transferase activity were evaluated for concentration-dependent inhibition of enzyme activity.
- the effects of test compounds in these studies were calculated as IC 50 (concentration of test compound producing 50% inhibition of enzyme activity) using the LGICV50 computer program written by the Science Information Division of R. W. Johnson Pharmaceutical Research Institute (Spring House, Pa., USA) on a VAX computer.
- Insertion of activated oncogenes such as the mutant ras gene into mouse NIH 3T3 cells converts the cells to a transformed phenotype.
- the cells become tumorigenic, display anchorage independent growth in semi-solid medium and lose contact inhibition. Loss of contact inhibition produces cell cultures which no longer form uniform monolayers. Rather, the cells pile up into multicellular nodules and grow to very high saturation densities in plastic tissue culture dishes.
- Agents such as protein farnesyl transferase inhibitors which revert the ras transformed phenotype restore the uniform monolayer growth pattern to cells in culture. This reversion is easily monitored by counting the number of cells in tissue culture plates. Transformed cells will achieve higher cell numbers than cells which have reverted to an untransformed phenotype. Compounds which revert the transformed phenotype should produce antitumor effects in tumors bearing ras gene mutations.
- Compounds are screened in tissue culture in NIH 3T3 cells transformed by the T24 activated human H-ras gene.
- Cells are seeded at an initial density of 200,000 cells per well (9.6 cm 2 surface area) in six-well cluster tissue culture plates.
- Test compounds are immediately added to 3.0 ml cell growth medium in a 3.0 ⁇ l volume of DMSO, with a final concentration of DMSO in the cell growth medium of 0.1%.
- the test compounds are run at concentrations of 5, 10, 50, 100, and 500 nM along with a DMSO treated vehicle control. (In case a high activity is observed at 5 nM, the test compound is tested at even lower concentrations.)
- the cells are allowed to proliferate for 72 hours. Then the cells are detached in 1.0 ml trypsin-EDTA cell dissociation medium and counted on a Coulter particle counter.
- Cell numbers expressed as cells per well are measured using a Coulter Particle Counter.
- Control cell counts [cell counts from cells incubated with DMSO vehicle ⁇ 200,000].
- Test compound cell counts [cell counts from cells incubated with test compound ⁇ 200,000].
- Test ⁇ ⁇ compound ⁇ ⁇ % ⁇ ⁇ inhibition [ 1 - test ⁇ ⁇ compound ⁇ ⁇ cell ⁇ ⁇ counts control ⁇ ⁇ cell ⁇ ⁇ counts ] ⁇ 100 ⁇ % .
- IC 50 i.e. the test compound concentration required to inhibit enzyme activity by 50%
- farnesyl protein transferase catalyzes the covalent attachment of a farnesyl moiety derived from farnesyl pyrophosphate to the oncogene product p21 ras . This directs p21 ras to attach to plasma membranes. Once attached to plasma membranes, mutant or oncogenic forms of p21 ras will provide a signal for the transformation and uncontrolled growth of malignant tumor cells. Therefore, inhibitors of protein farnesyl transferase will prevent the membrane attachment of p21 ras and inhibit growth of ras-transformed tumors.
- T24 activated human H-ras gene transformed NIH 3T3 fibroblast cells T24 cells
- T24 cells T24 activated human H-ras gene transformed NIH 3T3 fibroblast cells
- the “mean vehicle treated tumor weight” is defined as the mean tumor weight from 10 to 15 mice treated with the test compound.
- the “mean tumor weight” is defined as the mean tumor weight from 10 to 15 mice not treated with the test compound.
- % Reduction final tumor weight [ 1 - mean tumor weight mean vehicle treated tumor weight ] ⁇ 100 ⁇ % .
- compositions in dosage unit form suitable for systemic or topical administration to warm-blooded animals in accordance with the present invention.
- Active ingredient as used throughout these examples relates to a compound of formula (I), a pharmaceutically acceptable acid or base addition salt or a stereochemically isomeric form thereof.
- a mixture of 100 g of the A.I., 570 g lactose and 200 g starch is mixed well and thereafter humidified with a solution of 5 g sodium dodecyl sulfate and 10 g polyvinyl-pyrrolidone in about 200 ml of water.
- the wet powder mixture is sieved, dried and sieved again.
- 100 g microcrystalline cellulose and 15 g hydrogenated vegetable oil are added. The whole is mixed well and compressed into tablets, giving 10,000 tablets, each comprising 10 mg of the active ingredient.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
wherein the dotted line represents an optional bond; X is oxygen or sulfur; R1 is hydrogen, C1-12alkyl, Ar1, Ar2C1-6alkyl, quinolinylC1-6alkyl, pyridylC1-6alkyl, hydroxyC1-6alkyl, C1-6alkyloxyC1-6alkyl, mono- or di(C1-6alkyl)aminoC1-6alkyl, aminoC1-6alkyl, or a radical of formula —Alk1—C(═O)—R9, —Alk1—S(O)—R9 or —Alk1—S(O)2—R9; R2, R3 and R16 each independently are hydrogen, hydroxy, halo, cyano, C1-6alkyl, C1-6alkyloxy, hydroxyC1-6akyloxy, C1-6alkyloxyC1-6alkyloxy, aminoC1-6alkyloxy, mono- or di(C1-6alkyl)aminoC1-6alkyloxy, Ar1, Ar2C1-6alkyl, Ar2oxy, Ar2C1-6alkyloxy, hydroxycarbonyl, C1-6alkyloxycarbonyl, trihalomethyl, trihalomethoxy, C2-6alkenyl; R4 and R5 each independently are hydrogen, halo, Ar1, C1-6alkyl, hydroxyC1-6alkyl, C1-6alkyloxyC1-6alkyl, C1-6alkyloxy, C1-6alkylthio, amino, hydroxycarbonyl, C1-6alkyloxycarbonyl, C1-6alkylS(O)C1-6alkyl or C1-6alkylS(O)2C1-6alkyl; R6 and R7 each independently are hydrogen, halo, cyano, C1-6alkyl, 4,4-dimethyl-oxazolyl, C1-6alkyloxy or Ar2oxy; R8 is hydrogen, C1-6alkyl, cyano, hydroxycarbonyl, C1-6alkyloxycarbonyl, C1-6alkylcarbonylC1-6alkyl; cyanoC1-6alkyl, C1-6alkyloxycarbonylC1-6alkyl, carboxyC1-6alkyl, hydroxyC1-6alkyl, aminoC1-6alkyl, mono- or di(C1-6alkyl)aminoC1-6alkyl, imidazolyl, haloC1-6alkyl, C1-6alkyloxyC1-6alkyl, aminocarbonylC1-6alkyl, or a radical of formula —O—R10, —SR10, —N—R11R12; R17 is hydrogen, halo, cyano, C1-6alkyl, C1-6alkyloxycarbonyl, Ar1; R18 is hydrogen, C1-6alkyl, C1-6alkyloxy or halo; R19 is hydrogen or C1-6alkyl; having farnesyl transferase inhibiting activity; their preparation, compositions containing them and their use as a medicine.
Description
This application is a continuation of U.S. application Ser. No. 09/363,353, filed Jul. 29, 1999 which is continuation of U.S. application Ser. No. 09/084,717, filed May 26, 1997 now U.S. Pat. No. 6,037,350, which was the National Stage application under 35 U.S.C. §371 of International Application No. PCT/EP96/04515 filed Oct. 16, 1996, which claims priority from EP95.203.427.0, filed Dec. 8, 1995, the contents of all of which are hereby incorporated by reference.
The present invention is concerned with novel (imidazol-5-yl)methyl-2-quinolinone derivatives, the preparation thereof, pharmaceutical compositions comprising said novel compounds and the use of these compounds as a medicine as well as methods of treatment by administering said compounds.
Oncogenes frequently encode protein components of signal transduction pathways which lead to stimulation of cell growth and mitogenesis. Oncogene expression in cultured cells leads to cellular transformation, characterized by the ability of cells to grow in soft agar and the growth of cells as dense foci lacking the contact inhibition exhibited by non-transformed cells. Mutation and/or overexpression of certain oncogenes is frequently associated with human cancer. A particular group of oncogenes is known as ras which have been identified in mammals, birds, insects, mollusks, plants, fungi and yeasts. The family of mammalian ras oncogenes consists of three major members (“isoforms”): H-ras, K-ras and N-ras oncogenes. These ras oncogenes code for highly related proteins generically known as p21ras. Once attached to plasma membranes, the mutant or oncogenic forms of p21ras will provide a signal for the transformation and uncontrolled growth of malignant tumor cells. To acquire this transforming potential, the precursor of the p21ras oncoprotein must undergo an enzymatically catalyzed farnesylation of the cysteine residue located in a carboxyl-terminal tetrapeptide. Therefore, inhibitors of the enzyme that catalyzes this modification, farnesyl protein transferase, will prevent the membrane attachment of p21ras and block the aberrant growth of ras-transformed tumors. Hence, it is generally accepted in the art that farnesyl transferase inhibitors can be very useful as anticancer agents for tumors in which ras contributes to transformation.
Since mutated, oncogenic forms of ras are frequently found in many human cancers, most notably in more than 50% of colon and pancreatic carcinomas (Kohl et al., Science, vol 260, 1834-1837, 1993), it has been suggested that farnesyl tranferase inhibitors can be very useful against these types of cancer.
In EP-0,371,564 there are described (1H-azol-1-ylmethyl) substituted quinoline and quinolinone derivatives which suppress the plasma elimination of retinoic acids. Some of these compounds also have the ability to inhibit the formation of androgens from progestines and/or inhibit the action of the aromatase enzyme complex.
Unexpectedly, it has been found that the present novel compounds, all having a phenyl substituent on the 4-position of the 2-quinolinone-moiety and wherein the imidazole moiety is bound via a carbon atom to the rest of the molecule, show farnesyl protein transferase inhibiting activity.
the pharmaceutically acceptable acid or base addition salts and the stereochemically isomeric forms thereof, wherein
the dotted line represents an optional bond;
X is oxygen or sulfur;
R1 is hydrogen, C1-12alkyl, Ar1, Ar2C1-6alkyl, quinolinylC1-6alkyl, pyridylC1-6alkyl, hydroxyC1-6alkyl, C1-6alkyloxyC1-6alkyl, mono- or di(C1-6alkyl)aminoC1-6alkyl, aminoC1-6alkyl,
or a radical of formula —Alk1—C(═O)—R9, —Alk1—S(O)—R9 or —Alk1—S(O)2—R9,
wherein Alk1 is C1-6alkanediyl,
R9 is hydroxy, C1-6alkyl, C1-6alkyloxy, amino, C1-8alkylamino or C1-8alkylamino substituted with C1-6alkyloxycarbonyl;
R2, R3 and R16 each independently are hydrogen, hydroxy, halo, cyano, C1-6alkyl, C1-6alkyloxy, hydroxyC1-6alkyloxy, C1-6alkyloxyC1-6alkyloxy, aminoC1-6alkyloxy, mono- or di(C1-6alkyl)aminoC1-6alkyloxy, Ar1, Ar2C1-6alkyl, Ar2oxy, Ar2C1-6alkyloxy, hydroxycarbonyl, C1-6alkyloxycarbonyl, trihalomethyl, trihalomethoxy, C2-6alkenyl, 4,4-dimethyloxazolyl; or
when on adjacent positions R2 and R3 taken together may form a bivalent radical of formula
—O—CH2—CH2— (a-4),
R4 and R5 each independently are hydrogen, halo, Ar1, C1-6alkyl, hydroxyC1-6alkyl, C1-6alkyloxyC1-6alkyl, C1-6alkyloxy, C1-6alkylthio, amino, hydroxycarbonyl, C1-6alkyloxycarbonyl, C1-6alkylS(O)C1-6alkyl or C1-6alkylS(O)2C1-6alkyl;
R6 and R7 each independently are hydrogen, halo, cyano, C1-6alkyl, C1-6alkyloxy, Ar2oxy, trihalomethyl, C1-6alkylthio, di(C1-6alkyl)amino, or
when on adjacent positions R6 and R7 taken together may form a bivalent radical of formula
R8 is hydrogen, C1-6alkyl, cyano, hydroxycarbonyl, C1-6alkyloxycarbonyl, C1-6alkylcarbonylC1-6alkyl, cyanoC1-6alkyl, C1-6alkyloxycarbonylC1-6alkyl, carboxyC1-6alkyl, hydroxyC1-6alkyl, aminoC1-6alkyl, mono- or di(C1-6alkyl)aminoC1-6alkyl, imidazolyl, haloC1-6alkyl, C1-6alkyloxyC1-6alkyl, aminocarbonylC1-6alkyl, or a radical of formula
wherein R10 is hydrogen, C1-6alkyl, C1-6alkylcarbonyl, Ar1, Ar2C1-6alkyl, C1-6alkyloxycarbonylC1-6alkyl, or a radical or formula —Alk2—OR13 or —Alk2—NR14R15;
R11 is hydrogen, C1-12alkyl, Ar1 or Ar2C1-6alkyl;
R12 is hydrogen, C1-6alkyl, C1-6alkylcarbonyl, C1-6alkyloxycarbonyl, C1-6alkylaminocarbonyl, Ar1, Ar2C1-6alkyl, C1-6alkylcarbonylC1-6alkyl, a natural amino acid, Ar1carbonyl, Ar2C1-6alkylcarbonyl, aminocarbonylcarbonyl, C1-6alkyloxyC1-6alkylcarbonyl, hydroxy, C1-6alkyloxy, aminocarbonyl, di(C1-6alkyl)aminoC1-6alkylcarbonyl, amino, C1-6alkylamino, C1-6alkylcarbonylamino, or a radical or formula —Alk2—OR13 or —Alk2—NR14R15;
wherein Alk2 is C1-6alkanediyl;
R13 is hydrogen, C1-6alkyl, C1-6alkylcarbonyl, hydroxyC1-6alkyl, Ar1 or Ar2C1-6alkyl;
R14 is hydrogen, C1-6alkyl, Ar1 or Ar2C1-6alkyl;
R15 is hydrogen, C1-6alkyl, C1-6alkylcarbonyl, Ar1 or Ar2C1-6alkyl;
R17 is hydrogen, halo, cyano, C1-6alkyl, C1-6alkyloxycarbonyl, Ar1;
R18 is hydrogen, C1-6alkyl, C1-6alkyloxy or halo;
R19 is hydrogen or C1-6alkyl;
Ar1 is phenyl or phenyl substituted with C1-6alkyl, hydroxy, amino, C1-6alkyloxy or halo; and
Ar2 is phenyl or phenyl substituted with C1-6alkyl, hydroxy, amino, C1-6alkyloxy or halo.
R4 or R5 may also be bound to one of the nitrogen atoms in the imidazole ring. In that case the hydrogen on the nitrogen is replaced by R4 or R5 and the meaning of R4 and R5 when bound to the nitrogen is limited to hydrogen, Ar1, C1-6alkyl, hydroxyC1-6alkyl, C1-6alkyloxyC1-6alkyl, C1-6alkyloxycarbonyl, C1-6alkylS(O)C1-6alkyl, C1-6alkylS(O)2C1-6alkyl.
As used in the foregoing definitions and hereinafter halo defines fluoro, chloro, bromo and iodo; C1-6alkyl defines straight and branched chained saturated hydrocarbon radicals having from 1 to 6 carbon atoms such as, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl and the like; C1-8alkyl encompasses the straight and branched chained saturated hydrocarbon radicals as defined in C1-6alkyl as well as the higher homologues thereof containing 7 or 8 carbon atoms such as, for example heptyl or octyl; C1-12alkyl again encompasses C1-8alkyl and the higher homologues thereof containing 9 to 12 carbon atoms, such as, for example, nonyl, decyl, undecyl, dodecyl; C1-16alkyl again encompasses C1-12alkyl and the higher homologues thereof containing 13 to 16 carbon atoms, such as, for example, tridecyl, tetradecyl, pentedecyl and hexadecyl; C2-6alkenyl defines straight and branched chain hydrocarbon radicals containing one double bond and having from 2 to 6 carbon atoms such as, for example, ethenyl, 2-propenyl, 3-butenyl, 2-pentenyl, 3-pentenyl, 3-methyl-2-butenyl, and the like; C1-6alkanediyl defines bivalent straight and branched chained saturated hydrocarbon radicals having from 1 to 6 carbon atoms, such as, for example, methylene, 1,2-ethanediyl, 1,3-propanediyl, 1,4-butanediyl, 1,5-pentanediyl, 1,6-hexanediyl and the branched isomers thereof. The term “C(═O)” refers to a carbonyl group, “S(O)” refers to a sulfoxide and “S(O)2” to a sulfon. The term “natural amino acid” refers to a natural amino acid that is bound via a covalent amide linkage formed by loss of a molecule of water between the carboxyl group of the amino acid and the amino group of the remainder of the molecule. Examples of natural amino acids are glycine, alanine, valine, leucine, isoleucine, methionine, proline, phenylanaline, tryptophan, serine, threonine, cysteine, tyrosine, asparagine, glutamine, aspartic acid, glutamic acid, lysine, arginine, histidine.
The pharmaceutically acceptable acid or base addition salts as mentioned hereinabove are meant to comprise the therapeutically active non-toxic acid and non-toxic base addition salt forms which the compounds of formula (I) are able to form. The compounds of formula (I) which have basic properties can be converted in their pharmaceutically acceptable acid addition salts by treating said base form with an appropriate acid. Appropriate acids comprise, for example, inorganic acids such as hydrohalic acids, e.g. hydrochloric or hydrobromic acid; sulfuric; nitric; phosphoric and the like acids; or organic acids such as, for example, acetic, propanoic, hydroxyacetic, lactic, pyruvic, oxalic, malonic, succinic (i.e. butanedioic acid), maleic, fumaric, malic, tartaric, citric, methanesulfonic, ethanesulfonic, benzenesulfonic, p-toluenesulfonic, cyclamic, salicylic, p-aminosalicylic, pamoic and the like acids.
The compounds of formula (I) which have acidic properties may be converted in their pharmaceutically acceptable base addition salts by treating said acid form with a suitable organic or inorganic base. Appropriate base salt forms comprise, for example, the ammonium salts, the alkali and earth alkaline metal salts, e.g. the lithium, sodium, potassium, magnesium, calcium salts and the like, salts with organic bases, e.g. the benzathine, N-methyl-D-glucamine, hydrabamine salts, and salts with amino acids such as, for example, arginine, lysine and the like.
The terms acid or base addition salt also comprise the hydrates and the solvent addition forms which the compounds of formula (I) are able to form. Examples of such forms are e.g. hydrates, alcoholates and the like.
The term stereochemically isomeric forms of compounds of formula (I), as used hereinbefore, defines all possible compounds made up of the same atoms bonded by the same sequence of bonds but having different three-dimensional structures which are not interchangeable, which the compounds of formula (I) may possess. Unless otherwise mentioned or indicated, the chemical designation of a compound encompasses the mixture of all possible stereochemically isomeric forms which said compound may possess. Said mixture may contain all diastereomers and/or enantiomers of the basic molecular structure of said compound. All stereochemically isomeric forms of the compounds of formula (I) both in pure form or in admixture with each other are intended to be embraced within the scope of the present invention.
Some of the compounds of formula (I) may also exist in their tautomeric forms. Such forms although not explicitly indicated in the above formula are intended to be included within the scope of the present invention.
Whenever used hereinafter, the term “compounds of formula (I)” is meant to include also the pharmaceutically acceptable acid or base addition salts and all stereoisomeric forms.
Preferably the substituent R18 is situated on the 5 or 7 position of the quinolinone moiety and substituent R19 is situated on the 8 position when R18 is on the 7-position.
Interesting compounds are these compounds of formula (I) wherein X is oxygen.
Also interesting compounds are these compounds of formula (I) wherein the dotted line represents a bond, so as to form a double bond.
Another group of interesting compounds are those compounds of formula (I) wherein R1 is hydrogen, C1-6alkyl, C1-6alkyloxyC1-6alkyl, di(C1-6alkyl)aminoC1-6alkyl, or a radical of formula —Alk1—C(═O)—R9, wherein Alk1 is methylene and R9 is C1-8alkylamino substituted with C1-6alkyloxycarbonyl.
Still another group of interesting compounds are those compounds of formula (I) wherein R3 is hydrogen or halo; and R2 is halo, C1-6alkyl, C2-6alkenyl, C1-6alkyloxy, trihalomethoxy or hydroxyC1-6alkyloxy.
A further group of interesting compounds are those compounds of formula (I) wherein R2 and R3 are on adjacent positions and taken together to form a bivalent radical of formula (a-1), (a-2) or (a-3).
A still further group of interesting compounds are those compounds of formula (I) wherein R5 is hydrogen and R4 is hydrogen or C1-6alkyl.
Yet another group of interesting compounds are those compounds of formula (I) wherein R7 is hydrogen; and R6 is C1-6alkyl or halo, preferably chloro, especially 4-chloro.
A particular group of compounds are those compounds of formula (I) wherein R8 is hydrogen, hydroxy, haloC1-6alkyl, hydroxyC1-6alkyl, cyanoC1-6alkyl, C1-6alkyloxycarbonylC1-6alkyl, imidazolyl, or a radical of formula —NR11R12 wherein R11 is hydrogen or C1-12alkyl and R12 is hydrogen, C1-6alkyl, C1-6alkyloxy, hydroxy, C1-6alkyloxyC1-6alkylcarbonyl, or a radical of formula —Alk2—OR13 wherein R13 is hydrogen or C1-6alkyl.
Preferred compounds are those compounds wherein R1 is hydrogen, C1-6alkyl, C1-6alkyloxyC1-6alkyl, di(C1-6alkyl)aminoC1-6alkyl, or a radical of formula —Alk1—C(═O)—R9, wherein Alk1 is methylene and R9 is C1-8alkylamino substituted with C1-6alkyloxycarbonyl; R2 is halo, C1-6alkyl, C2-6alkenyl, C1-6alkyloxy, trihalomethoxy, hydroxyC1-6alkyloxy or Ar1; R3 is hydrogen; R4 is methyl bound to the nitrogen in 3-position of the imidazole; R5 is hydrogen; R6 is chloro; R7 is hydrogen; R8 is hydrogen, hydroxy, haloC1-6alkyl, hydroxyC1-6alkyl, cyanoC1-6alkyl, C1-6alkyloxycarbonylC1-6alkyl, imidazolyl, or a radical of formula —NR11R12 wherein R11 is hydrogen or C1-12alkyl and R12 is hydrogen, C1-6alkyl, C1-6alkyloxy, C1-6alkyloxyC1-6alkylcarbonyl, or a radical of formula —Alk2—OR13 wherein R13 is C1-6alkyl; R17 is hydrogen and R18 is hydrogen.
Most preferred compounds are
4-(3-chlorophenyl)-6-[(4-chlorophenyl)hydroxy(1-methyl-1H-imidazol-5-yl)methyl]-1-methyl-2(1H)-quinolinone,
6-[amino(4-chlorophenyl)-1-methyl-1H-imidazol-5-ylmethyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone;
6-[(4-chlorophenyl)hydroxy(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-ethoxyphenyl)-1-methyl-2(1H)-quinolinone;
6-[(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-ethoxyphenyl)-1-methyl-2(1H)-quinolinone monohydrochloride.monohydrate;
6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-ethoxyphenyl)-1-methyl-2(1H)-quinolinone,
6-amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-1-methyl-4-(3-propylphenyl)-2(1H)-quinolinone; a stereoisomeric form thereof or a pharmaceutically acceptable acid or base addition salt; and
(B)-6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone; or a pharmaceutically acceptable acid addition salt thereof.
The compounds of formula (I), wherein X is oxygen, said compounds being represented by formula (I-a), may be prepared by hydrolysing an intermediate ether of formula (II), wherein R is C1-6alkyl, according to art-known methods, such as stirring the intermediate of formula (II) in an aqueous acid solution. An appropriate acid is for instance hydrochloric acid. Subsequently the resulting quinolinone wherein R1 is hydrogen may be transformed into a quinolinone, wherein R1 has a meaning as defined hereinabove apart from hydrogen, by art-known N-alkylation.
The compounds of formula (I), wherein R8 is hydroxy, said compounds being referred to as compounds of formula (I-b) may be prepared by reacting an intermediate ketone of formula (III) with a intermediate of formula (IV-a), wherein P is an optional protective group such as, for example, a sulfonyl group, e.g. a dimethylamino sulfonyl group, which can be removed after the addition reaction. Said reaction requires the presence of a suitable strong base, such as, for example, butyl lithium in an appropriate solvent, such as, for example, tetrahydrofuran and the presence an appropriate silanederivative, such as, for example, triethylchlorosilane. During the work-up procedure an intermediate silane derivative is hydrolyzed. Other procedures with protective groups analogous to silanederivatives can also be applied.
Compounds of formula (I-b-1), being compounds of formula (I-b) wherein the dotted line is a bond and R1 is hydrogen, can be prepared by reacting an intermediate of formula (XXI) with an intermediate of formula (IV-a), as described hereinabove for the synthesis of compounds of formula (I-b). The thus obtained intermediate of formula (XXII) undergoes ring opening of the isoxazole moiety by stirring it with an acid, such as, e.g. TiCl3, in the presence of water. Subsequent treatment of an intermediate of formula (XXIII) with a suitable reagent such as, e.g. R17CH2COCl or R17CH2COOC2H5, yields either directly a compound of formula (I-b-1) or an intermediate which can be converted to a compound of formula (I-b-1) by treatment with a base such as, e.g. potassium tert-butoxide.
Intermediates of formula (XXI) can conveniently be prepared by treating an intermediate of formula (XVI), described hereinafter, under acidic conditions.
Compounds of formula (I) wherein R8 is a radical of formula —N—R11R12, said compounds being represented by formula (I-g) may be prepared by reacting an intermediate of formula (XIII), wherein W is an appropriate leaving group such as, for example, halo, with a reagent of formula (XIV). Said reaction may be performed by stirring the reactants in an appropriate solvent such as, for example, tetrahydrofuran.
The compounds of formula (I) may also be prepared by converting compounds of formula (I) into other compounds of formula (I).
Compounds wherein the dotted line represents a bond can be converted into compounds wherein the dotted line does not represent a bond, by art-known hydrogenation methods. Vice versa, compounds wherein the dotted line does not represent a bond may be converted into compounds wherein the dotted line represents a bond by art-known oxidation reactions.
Compounds of formula (I) wherein R8 is hydroxy, said compounds being represented by formula (I-b) may be converted into compounds of formula (I-c), wherein R8a has the meaning of R10 except for hydrogen, by art-know O-alkylation or O-acylation reactions; such as, for instance, reacting the compound of formula (I-b) with an alkylating reagent such as R8a—W in appropriate conditions, such as, for example, a dipolar aprotic solvent, e.g. DMF, in the presence of a base, e.g. sodium hydride. W is a suitable leaving group, such as, for example, halo or a sulfonylgroup.
As an alternative to the above reaction procedure, compounds of formula (I-c) may also be prepared by reacting an intermediate of formula (I-b) with a reagent of formula R8a—OH in acidic medium.
Compounds of formula (I-b) may also be converted into compounds of formula (I-g), wherein R11 is hydrogen and R12 is C1-16alkylcarbonyl, by reacting compounds of formula (I-b) in acidic medium, such as sulfuric acid, with C1-16alkyl-CN in a Ritter type reaction. Further, compounds of formula (I-b) may also be converted into compounds of formula (I-g), wherein R11 and R12 are hydrogen, by reacting compounds (I-b) with ammonium acetate and subsequent treatment with NH3 (aq.).
Compounds of formula (I-b) may also be converted into compounds of formula (I-d), wherein R8 is hydrogen, by submitting the compounds of formula (I-b) to appropriate reducing conditions, such as, stirring in trifluoroacetic acid in the presence of an appropriate reducing agent, such as sodium borohydride or alternatively stirring the compounds of formula (I-b) in acetic acid in the presence of form amide. Furthermore, compounds of formula (I-d) wherein R8 is hydrogen may be converted into compounds of formula (I-e) wherein R8b is C1-6alkyl by reacting compounds of formula (I-d) with a reagent of formula (V) in an appropriate solvent, such as, for instance, diglyme in the presence of a base such as, for example, potassium butoxide.
A compound of formula (I-f), defined as a compound of formula (I) wherein X is sulfur may be prepared by reacting the corresponding compound of formula (I-a), with a reagent like phosphorus pentasulfide or Lawesson's reagent in a suitable solvent such as, for example, pyridine.
Compounds of formula of formula (I), wherein R1 is hydrogen and X is oxygen, said compounds being defined as compounds of formula (I-a-1) may be prepared by reacting a nitrone of formula (VI) with the anhydride of a carboxylic acid, such as, for example, acetic anhydride, thus forming the corresponding ester on the 2 position of the quinoline moiety. Said quinoline ester can be hydrolyzed in situ to the corresponding quinolinone using a base such as, for example, potassium carbonate.
Alternatively, compounds of formula (I-a-1) can be prepared by reacting a nitrone of formula (VI) with a sulfonyl containing electrophilic reagent such as, for example, p-toluenesulfonylchloride in the presence of a base such as, for example, aqueous potassium carbonate. The reaction initially involves the formation of a 2-hydroxyquinoline derivative which is subsequently tautomerized to the desired quinolinone derivative. The application of art-known conditions of phase transfer catalysis may enhance the rate of the reaction.
Compounds of formula (I-a-1) may also be prepared by an intramolecular photochemical rearrangement of compounds of formula (VI). Said rearrangement can be carried out by dissolving the reagents in a reaction-inert solvent and irradiating at a wavelength of 366 nm. It is advantageous to use degassed solutions and to conduct the reaction under an inert atmosphere such as, for example, oxygen free argon or nitrogen gas, in order to minimize undesired side reactions or reduction of quantum yield.
The compounds of formula (I) may also be converted into each other via art-known reactions or functional group transformations. A number of such transformations are already described hereinabove. Other examples are hydrolysis of carboxylic esters to the corresponding carboxylic acid or alcohol; hydrolysis of amides to the corresponding carboxylic acids or amines; hydrolysis of nitriles to the corresponding amides; amino groups on imidazole or phenyl may be replaced by a hydrogen by art-known diazotation reactions and subsequent replacement of the diazo-group by hydrogen; alcohols may be converted into esters and ethers; primary amines may be converted into secondary or tertiary amines; double bonds may be hydrogenated to the corresponding single bond.
Intermediates of formula (III) may be prepared by reacting a quinolinone derivative of formula (VIII) with an intermediate of formula (IX) or a functional derivative thereof under appropriate conditions, such as, for example, a strong acid, e.g. polyphosphoric acid in an appropriate solvent. The intermediate of formula (VIII) may be formed by cyclization of an intermediate of formula (VII) by stirring in the presence of a strong acid, e.g. polyphosphoric acid. Optionally said cyclization reaction may be followed by an oxidation step, which can be performed by stirring the intermediate formed after cyclization in an appropriate solvent, such as, for example, a halogenated aromatic solvent, e.g. bromobenzene, in the presence of a oxidizing agent, e.g. bromine or iodine. At this stage it may also be appropriate to change the R1 substituent by art-known functional group transformation reaction.
Intermediates of formula (III-a-1), being intermediates of formula (III) wherein the dotted line is a bond, R1 and R17 are hydrogen and X is oxygen, can be prepared starting from an intermediate of formula (XVII), which is conveniently prepared by protecting the corresponding ketone. Said intermediate of formula (XVII) is stirred with an intermediate of formula (XVIII) in the presence of a base such as sodium hydroxide, in an appropriate solvent, such as an alcohol, e.g. methanol. The thus obtained intermediate of formula (XVI) undergoes hydrolysis of the ketal and ring opening of the isoxazole moiety by stirring the intermediate of formula (XVI) with an acid, such as for example, TiCl3, in the presence of water. Subsequently acetic anhydride is used to prepare an intermediate of formula (XV), which undergoes ring closure in the presence of a base such as, for example, potassium tert-butoxide.
Intermediates of formula (III-a-1) can easily be converted to intermediates of formula (III-a), defined as intermediates of formula (III) wherein the dotted line represents a bond, X is oxygen, R17 is hydrogen and R1 is other than hydrogen, using art-known N-alkylation procedures.
An alternative way to prepare intermediates of formula (III-a-1), wherein X is oxygen and R1 is hydrogen, starts from an intermediate of formula (XVI), which is conveniently converted to intermediates of formula (XIX) using catalytic hydrogenation conditions, e.g. by using hydrogen gas and palladium on carbon in a reaction-inert solvent such as, e.g. tetrahydrofuran. Intermediates of formula (XIX) are converted to intermediates of formula (XX) by submitting intermediates (XIX) to an acetylation reaction, e.g. by treatment with the anhydride of a carboxylic acid, e.g. acetic anhydride in a reaction-inert solvent, e.g. toluene, and subsequent treatment with a base such as, e.g. potassium tert-butoxide in a reaction-inert solvent, e.g. 1,2-dimethoxyethane. Intermediates of formula (III-a-1) can be obtained by treating intermediates of formula (XX) in acidic conditions.
Intermediates of formula (II) may be prepared by reacting an intermediate of formula (X), wherein W is an appropriate leaving group, such as, for example, halo, with an intermediate ketone of formula (XI). This reaction is performed by converting the intermediate of formula (X) into a organometallic compound, by stirring it with a strong base such as butyl lithium and subsequently adding the intermediate ketone of formula (XI). Although this reaction gives at first instance a hydroxy derivative (i.e. R8 is hydroxy), said hydroxy derivative can be converted into other intermediates wherein R8 has another definition by performing art-known (functional group) transformations.
The intermediate nitrones of formula (VI) may be prepared by N-oxidizing quinoline derivatives of formula (XII) with an appropriate oxidizing agent such as, for example, chloro-peroxybenzoic acid or H2O2 in an appropriate solvent such as, for example, dichloromethane.
Said N-oxidation may also be carried out on a precursor of a quinoline of formula (XII).
The intermediates of formula (XII) are supposed to be metabolized in vivo into compounds of formula (I) via intermediates of formula (VI). Hence, intermediates of formula (XII) and (VI) may act as prodrugs of compounds of formula (I).
The compounds of formula (I) and some of the intermediates have at least one stereogenic center in their structure. This stereogenic center may be present in a R or a S configuration.
The compounds of formula (I) as prepared in the hereinabove described processes are generally racemic mixtures of enantiomers which can be separated from one another following art-known resolution procedures. The racemic compounds of formula (I) may be converted into the corresponding diastereomeric salt forms by reaction with a suitable chiral acid. Said diastereomeric salt forms are subsequently separated, for example, by selective or fractional crystallization and the enantiomers are liberated therefrom by alkali. An alternative manner of separating the enantiomeric forms of the compounds of formula (I) involves liquid chromatography using a chiral stationary phase. Said pure stereochemically isomeric forms may also be derived from the corresponding pure stereochemically isomeric forms of the appropriate starting materials, provided that the reaction occurs stereospecifically. Preferably if a specific stereoisomer is desired, said compound will be synthesized by stereospecific methods of preparation. These methods will advantageously employ enantiomerically pure starting materials.
This invention provides a method for inhibiting the abnormal growth of cells, including transformed cells, by administering an effective amount of a compound of the invention. Abnormal growth of cells refers to cell growth independent of normal regulatory mechanisms (e.g. loss of contact inhibition). This includes the abnormal growth of: (1) tumor cells (tumors) expressing an activated ras oncogene; (2) tumor cells in which the ras protein is activated as a result of oncogenic mutation of another gene; (3) benign and malignant cells of other proliferative diseases in which aberrant ras activation occurs. Furthermore, it has been suggested in literature that ras oncogenes not only contribute to the growth of of tumors in vivo by a direct effect on tumor cell growth but also indirectly, i.e. by facilitating tumor-induced angiogenesis (Rak. J. et al, Cancer Research, 55, 4575-4580, 1995). Hence, pharmacologically targetting mutant ras oncogenes could conceivably suppress solid tumor growth in vivo, in part, by inhibiting tumor-induced angiogenesis.
This invention also provides a method for inhibiting tumor growth by administering an effective amount of a compound of the present invention, to a subject, e.g. a mammal (and more particularly a human) in need of such treatment. In particular, this invention provides a method for inhibiting the growth of tumors expressing an activated ras oncogene by the administration of an effective amount of the compounds of the present invention. Examples of tumors which may be inhibited, but are not limited to, lung cancer (e.g. adenocarcinoma), pancreatic cancers (e.g. pancreatic carcinoma such as, for example exocrine pancreatic carcinoma), colon cancers (e.g. colorectal carcinomas, such as, for example, colon adenocarcinoma and colon adenoma), hematopoietic tumors of lymphoid lineage (e.g. acute lymphocytic leukemia, B-cell lymphoma, Burkitt's lymphoma), myeloid leukemias (for example, acute myelogenous leukemia (AML)), thyroid follicular cancer, myelodysplastic syndrome (MDS), tumors of mesenchymal origin (e.g. fibrosarcomas and rhabdomyosarcomas), melanomas, teratocarcinomas, neuroblastomas, gliomas, benign tumor of the skin (e.g. keratoacanthomas), breast carcinoma, kidney carninoma, ovary carcinoma, bladder carcinoma and epidermal carcinoma.
This invention may also provide a method for inhibiting proliferative diseases, both benign and malignant, wherein ras proteins are aberrantly activated as a result of oncogenic mutation in genes, i.e. the ras gene itself is not activated by mutation to an oncogenic mutation to an oncogenic form, with said inhibition being accomplished by the administration of an effective amount of the compounds described herein, to a subject in need of such a treatment. For example, the benign proliferative disorder neurofibromatosis, or tumors in which ras is activated due to mutation or overexpression of tyrosine kinase oncogenes may be inhibited by the compounds of this invention.
Hence, the present invention discloses the compounds of formula (I) for use as a medicine as well as the use of these compounds of formula (I) for the manufacture of a medicament for treating one or more of the above mentioned conditions.
Some of the intermediates of formula (XIII), wherein W is halo may also show farnesyl protein transferase inhibiting activity.
In view of their useful pharmacological properties, the subject compounds may be formulated into various pharmaceutical forms for administration purposes. To prepare the pharmaceutical compositions of this invention, an effective amount of a particular compound, in base or acid addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirably in unitary dosage form suitable, preferably, for administration orally, rectally, percutaneously, or by parenteral injection. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed, such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs; and solutions; or solid carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, though other ingredients, to aid solubility for example, may be included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. In the compositions suitable for percutaneous administration, the carrier optionally comprises a penetration enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not cause a significant deleterious effect to the skin. Said additives may facilitate the administration to the skin and/or may be helpful for preparing the desired compositions. These compositions may be administered in various ways, e.g., as a transdermal patch, as a spot-on, as an ointment. It is especially advantageous to formulate the aforementioned pharmaceutical compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used in the specification and claims herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such dosage unit forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers, injectable solutions or suspensions, teaspoonfuls, tablespoonfuls and the like, and segregated multiples thereof.
Those skilled in the art could easily determine the effective amount from the test results presented hereinafter. In general it is contemplated that an effective amount would be from 0.0001 mg/kg to 100 mg/kg body weight, and in particular from 0.001 mg/kg to 10 mg/kg body weight. It may be appropriate to administer the required dose as two, three, four or more sub-doses at appropriate intervals throughout the day. Said sub-doses may be formulated as unit dosage forms, for example, containing 0.01 to 500 mg, and in particular 0.1 mg to 200 mg of active ingredient per unit dosage form.
Hereinafter “THF” means tetrahydrofuran, “DIPE” means diisopropylether, “DCM” means dichloromethane, “DMF” means N,N-dimethylformamide and “ACN” means acetonitrile. Of some compounds of formula (I) the absolute stereochemical configuration was not experimentally determined. In those cases the stereochemically isomeric form which was first isolated is designated as “A” and the second as “B”, without further reference to the actual stereochemical configuration.
1a) N-Phenyl-3-(3-chlorophenyl)-2-propenamide (58.6 g) and polyphosphoric acid (580 g) were stirred at 100° C. overnight. The product was used without further purification, yielding quant. (±)-4-(3-chlorophenyl)-3,4-dihydro-2(1H)-quinolinone (interm. 1-a).
1b) Intermediate (1-a) (58.6 g), 4-chlorobenzoic acid (71.2 g) and polyphosphoric acid (580 g) were stirred at 140° C. for 48 hours. The mixture was poured into ice water and filtered off. The precipitate was washed with water, then with a diluted NH4OH solution and taken up in DCM. The organic layer was dried (MgSO4), filtered off and evaporated. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 99/1/0.1). The pure fractions were collected and evaporated, and recrystallized from CH2Cl2/CH3OH/DIPE, yielding 2.2g of (±)-6-(4-chlorobenzoyl)-4(3-chlorophenyl)-3,4-dihydro-2(1H)-quinolinone (interm. 1-b, mp. 194.8° C.).
1c) Bromine (3.4 ml) in bromobenzene (80 ml) was added dropwise at room temperature to a solution of intermediate (I-b) (26 g) in bromobenzene (250 ml) and the mixture was stirred at 160° C. overnight. The mixture was cooled to room temperature and basified with NH4OH. The mixture was evaporated, the residue was taken up in ACN and filtered off. The precipitate was washed with water and air dried, yielding 24 g (92.7%) of product. A sample was recrystallized from CH2Cl2/CH3OH/DIPE, yielding 2.8 g of 6-(4-chlorobenzoyl)-4-(3-chlorophenyl)-2(1H)-quinolinone; mp. 234.8° C. (interm. 1-c).
1d) Iodomethane (6.2 ml) was added to a mixture of intermediate (1-c) (20 g) and benzyltriethylammonium chloride (5.7 g) in tetrahydrofuran (200 ml) and sodium hydroxide (10N) (200 ml) and the mixture was stirred at room temperature overnight, ethyl acetate was added and the mixture was decanted. The organic layer was washed with water, dried (MgSO4), filtered off and evaporated till dryness. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OOH/NH4OH 99.75/0.25/0.1). The pure fractions were collected and evaporated, yielding 12.3 g (75%) of 6-(4-chlorobenzoyl)-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone; mp. 154.7° C. (interm. 1-d).
In a similar way, but starting from intermediate (1-b), (±)-6-(4-chlorobenzoyl)-4-(3-chlorophenyl)-3,4-dihydro-1-methyl-2(1H)-quinolinone (interm 1-e) was prepared.
Butyllithium in hexane (1.6 M) (12.75 ml) was added dropwise at −20° C. under N2 to a solution of 6-bromo-4-(3-chlorophenyl)-2-methoxyquinoline (6.7 g) in THF (60 ml) and the mixture was stirred at −20° C. for 30 minutes. A solution of (1-butyl-1H-imidazol-5-yl)(4-chlorophenyl)methanone (3.35 g) in tetrahydrofuran (30 ml) was added at −20° C. under N2 and the mixture was stirred at room temperature for one night. Water was added and the mixture was extracted with ethyl acetate. The organic layer was dried (MgSO4), filtered off and evaporated. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 97/3/0.1). The pure fractions were collected and evaporated, yielding 2.5 g (total 48%) of (±)-α-(1-butyl-1H-imidazol-5-yl)-4-(3-chlorophenyl)-α-(4-chlorophenyl)-2-methoxy-6-quinolinemethanol (interm. 2).
3a) Butyllithium (30.1 ml) was added slowly at −78° C. to a solution of N,N-dimethyl-1H-imidazol-1-sulfonamide (8,4 g) in tetrahydrofuran (150 ml) and the mixture was stirred at −78° C. for 15 minutes. Chlorotriethylsilane (8.1 ml) was added and the mixture was stirred till the temperature reached 20° C. The mixture was cooled till −78° C., butyllithium (30.1 ml) was added, the mixture was stirred at −78° C. for 1 hour and allowed to reach −15° C. The mixture was cooled again till −78° C., a solution of 6-(4-chlorobenzoyl)-1-methyl-4-phenyl-2(1H)-quinolinone (15 g) in tetrahydrofuran (30 ml) was added and the mixture was stirred till the temperature reached 20° C. The mixture was hydrolized and extracted with ethyl acetate. The organic layer was dried (MgSO4), filtered off and evaporated till dryness. The product was used without further purification, yielding 26 g (100%) of (±)-4-[(4-chlorophenyl)(1,2-dihydro-1-methyl-2-oxo-4-phenyl-6-quinolinyl)hydroxymethyl]-N,N-dimethyl-2-(triethylsilyl)-1H-imidazole-1-sulfonamide (interm. 3-a).
A mixture of intermediate (3-a) (26 g) in sulfuric acid (2.5 ml) and water (250 ml) was stirred and heated at 110° C. for 2 hours. The mixture was poured into ice, basified with NH4OH and extracted with DCM. The organic layer was dried (MgSO4), filtered off and evaporated till dryness. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 99/1/0.2). The pure fractions were collected and evaporated, yielding 2.4 g (11%) of (±)-4-[(4-chlorophenyl)(1,2-dihydro-1-methyl-2-oxo-4-phenyl-6-quinolinyl)hydroxymethyl]-N,N-dimethyl-1H-imidazole-1-sulfonamide (interm. 3-b).
Compound (3) (3 g) was added at room temperature to thionyl chloride (25 ml). The mixture was stirred and refluxed at 40° C. overnight. The solvent was evaporated till dryness. The product was used without further purification, yielding 3.49 g of (±)-4-(3-chlorophenyl)-1-methyl-6-[1-(4-methylphenyl)-1-(4-methyl-4-pyrrol-3-yl)ethyl]-2(1H)-quinolinone hydrochloride (interm. 4).
a) Toluene (1900 ml) was stirred in a round-bottom flask (5 l) using a water separator. (4-Chlorophenyl)(4-nitrophenyl)methanone (250 g) was added portionwise. p-Toluene-sulfonic acid (54.5 g) was added portionwise. Ethylene glycol (237.5 g) was poured out into the mixture. The mixture was stirred and refluxed for 48 hours. The solvent was evaporated. The residue was dissolved into ethyl acetate (5 l) and washed twice with a K2CO3 10% solution. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue was stirred in DIPE, filtered off and dried (vacuum, 40° C., 24 hours), yielding 265 g (91%) of 2-(4-chlorophenyl)-2-(4-nitrophenyl)-1,3-dioxolane (interm. 5-a).
b) Sodium hydroxide (16.4 g) and (3-methoxyphenyl)acetonitrile (20.6 ml) were added at room temperature to a solution of interm. (5-a) (25 g) in methanol (100 ml) and the mixture was stirred at room temperature overnight. Water was added, the precipitate was filtered off, washed with cold methanol and dried. The product was used without further purification, yielding 30 g (90%) of 5-[2-(4-chlorophenyl)-1,3-dioxolan-2-yl]-3-(3-methoxyphenyl)-2,1-benzisoxazole (interm. 5-b).
c) Interm. (5-b) (30 g) in THF (250 ml) was hydrogenated with palladium on carbon (3 g) as a catalyst at room temperature for 12 hours under a 2.6 105 Pa pressure in a Parr apparatus. After uptake of H2 (1 equivalent), the catalyst was filtered through celite and the filtrate was evaporated till dryness. The product was used without further purification, yielding 31.2g (100%) of (3-methoxyphenyl)[2-amino-5-[2-(4-chlorophenyl)-1,3-dioxolan-2-yl]phenyl]methanone (interm. 5-c).
d) Acetic anhydride (13.9 ml) was added to a solution of interm. (5-c) (31.2 g) in toluene (300 ml) and the mixture was stirred and refluxed for 2 hours. The mixture was evaporated till dryness and the product was used without further purification, yielding 36.4 g (100%) of N-[2-(3-methoxybenzoyl)-4-[2-(4-chlorophenyl)-1,3-dioxolan-2-yl]phenyl]acetamide (interm. 5-d).
e) Potassium tert-butoxide (33 g) was added portionwise at room temperature to a solution of interm. (5-d) (36.4 g) in 1,2-dimethoxyethane (350 ml) and the mixture was stirred at room temperature overnight. The mixture was hydrolized and extracted with DCM. The organic layer was dried (MgSO4), filtered off and evaporated till dryness. The product was used without further purification, yielding 43 g of 6-[2-(4-chlorophenyl)-1,3-dioxolan-2-yl]-4-(3-methoxyphenyl)-2(1H)-quinolinone (interm. 5-e).
f) A mixture of interm. (5-e) (43 g) in HCl (3N, 400 ml) and methanol (150 ml) was stirred and refluxed overnight. The mixture was cooled and filtered off. The precipitate was washed with water and diethyl ether and dried. The product was used without further purification, yielding 27g (94%) of 6-(4-chlorobenzoyl)-4-(3-methoxyphenyl)-2(1H)-quinolinone (interm. 5-f).
g) Methyl iodide (1.58 ml) was added to a solution of interm. (5-f) (7.6 g) and benzyltriethylammonium chloride (BTEAC) (2.23 g) in THF (80 ml) and sodium hydroxide (40%, 80 ml). The mixture was stirred at room temperature for 2 hours. Water was added and the mixture was extracted with ethyl acetate. The organic layer was dried (MgSO4), filtered, and the solvent was evaporated. The residue was purified by flash column chromatography over silica gel (eluent: DCM 100%). The desired fractions were collected and the solvent was evaporated, yielding 7.1g (90%) of 6-(4-chlorobenzoyl)-4-(3-methoxyphenyl)-1-methyl-2(1H)-quinolinone (interm. 5-g).
a) 3-(3-Chlorophenyl)-5-[2-(4-chlorophenyl)-1,3-dioxolan-2-yl]-2,1-benzisoxazole (interm. 6-a) was prepared analogous as intermediate (5-b).
b) A mixture of intermediate (6-a) (30 g) in HCl 3 N (220 ml) and methanol (165 ml) was stirred at 100° C. for 5 hours. The mixture was poured into ice and basified with NH3 (aq.). The precipitate was filtered off, washed with water and diethyl ether and dried, yielding 24.9 g (93%) of (4-chlorophenyl)[3-(3-chlorophenyl)-2,1-benzisoxazol-5-yl]methanone (interm. 6-b). The product was used without further purification.
c) Butyllithium in hexanes (10 ml) was added slowly at −70° C. under N2 flow to a solution of 1-methylimidazole (1.31 g) in THF (30 ml). The mixture was stirred at −70° C. for 45 minutes. Chlorotriethylsilane (2.7 ml) was added. The mixture was allowed to warm to 15° C. and cooled to −70° C. Butyllithium (10 ml) was added slowly. The mixture was stirred at −70° C. for 1 hour, allowed to warm to −15° C. and cooled to −70° C. A solution of intermediate (6-b) (4.9 g) in THF (60 ml) was added. The mixture was stirred at −70° C. for 30 minutes, then hydrolyzed with water, extracted with ethyl acetate and decanted. The organic layer was dried (MgSO4), filtered and the solvent was evaporated. The residue (8.2 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 96/4/0.2) and crystallized from 2-propanone/diethyl ether. The precipitate was filtered off and dried, yielding 1.5 g (25%) of (±)-3-(3-chlorophenyl)-α-(4-chlorophenyl)-α-(1-methyl-1H-imidazol-5-yl)-2,1-benzisoxazole-5-methanol (interm. 6-c).
d) TiCl3/15% in H2O (200 ml) was added at room temperature to a solution of intermediate (6-c) (38 g) in THF (300 ml). The mixture was stirred at room temperature for 90 minutes. The mixture was poured out on ice, basified with K2CO3, filtered over celite, washed with ethyl acetate and decanted. The organic layer was dried (MgSO4), filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 97/3/0.1 and 95/5/0.1), yielding 18.7 g (49%) of (±)-[2-amino-5-[(4-chlorophenyl)hydroxy(1-methyl-1H-imidazol-5-yl)methyl]phenyl](3-chlorophenyl)methanone (intern. 6-d).
1-Methylimidazole (4.69 ml) in tetrahydrofuran (100 ml) was stirred at −78° C. A solution of butyllithium in hexanes (2.5 M) (36.7 ml) was added dropwise and the mixture was stirred at −78° C. for 15 minutes. Chlorotriethylsilane (9.87 ml) was added and the mixture was brought to room temperature. The mixture was cooled till −78° C., a solution of butyllithium in hexanes (2.5 M) (36.7 ml) was added dropwise, the mixture was stirred at −78° C. for 1 hour and brought till −15° C. The mixture was cooled till −78° C., a solution of intermediate (1-d) (20 g) in THF (40 ml) was added and the mixture was brought to room temperature. The mixture was hydrolized at 0° C. and extracted with ethyl acetate. The organic layer was dried (MgSO4), filtered off and evaporated till dryness, yielding 36 g of product. The product was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 97/3/0.1). The pure fractions were collected, evaporated, and crystallized from 2-propanone, CH3OH and (C2H5)2O. The precipitate was filtered off, washed with (C2H5)2O and dried, yielding 12.4 g (52%) of (±)-4-(3-chlorophenyl)-6-[(4-chlorophenyl)hydroxy(1-methyl-1H-imidazol-5-yl)methyl]-1-methyl-2(1H)-quinolinone; (comp. 3, mp.233.6° C.).
In a similar way, but using intermediate (5-g) or intermediate (I-e) instead of intermediate (1-d), respectively (±)-6-[(4-chlorophenyl)hydroxy(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-methoxyphenyl)-1-methyl-2(1H)-quinolinone (comp. 36) and (±)-4-(3-chlorophenyl)-6-[(4-chlorophenyl)hydroxy(1-methyl-1H-imidazol-5-yl)methyl)-3,4-dihydro-1-methyl-2(1l)-quinolinone (comp. 127) were prepared.
Hydrochloric acid (60 ml) was added to a solution of intermediate (2) (2.5 g) in THF (10 ml) and the mixture was stirred and heated at 100° C. for 3 hours. The mixture was cooled, the precipitate was filtered off, washed with water, then with diethyl ether and dried, yielding 2.7 g (100%) of (±)-6-[(1-butyl-1H-imidazol-5-yl)-(4-chlorophenyl)hydroxymethyl]-4-(3-chlorophenyl)-2(1H)quinolinone (comp. 8).
Sodium hydride (0.28 g) was added to a mixture of compound (3) (3 g) in DMF (50 ml) under N2 and the mixture was stirred for 15 minutes. Iodomethane (1.5 ml) was added and the mixture was stirred at room temperature for 1 hour. The mixture was hydrolized and extracted with diethyl ether and methanol. The organic layer was dried (MgSO4), filtered off and evaporated till dryness, yielding 4.4 g of residue. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 95.5/4.5/0.2). The pure fractions were collected and evaporated. The product was converted into the ethanedioic acid salt (1:1) in 2-propanone and filtered off. The residue was crystallized from 2-propanone, diethyl ether and DIPE. The precipitate was filtered off, washed with diethyl ether, dried and recrystallized from 2-propanone, methanol and DIPE. The precipitate was filtered off, washed with diethyl ether and dried, yielding 0.95 g (25%) of (±)-4-(3-chlorophenyl)-6-[(4-chlorophenyl)methoxy(1-methyl-1H-imidazol-5-yl)methyl]-1-methyl-2(1H)-quinolinone ethanedioate(1:1 ).dihydrate; (comp. 4, mp. 154.6° C.).
Iodomethane (0.38 ml) was added dropwise at room temperature to a solution of compound (8) (2.44 g) and N,N,N-triethylbenzenemethanaminium chloride (0.54 g) in tetrahydrofuran (30 ml) and sodium hydroxide (40%) (30 ml) and the mixture was stirred at room temperature for 3 hours. Water was added and the mixture was extracted with ethyl acetate. The organic layer was dried (MgSO4), filtered off and evaporated. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 96.5/3.5/0.1). The pure fractions were collected, evaporated and crystallized from 2-propanone and DIPE. The precipitate was filtered off, washed with diethyl ether and dried, yielding 1.4 g (56%) of (±)-4-(3-chlorophenyl)-6-[(1-butyl-1H-imidazol-5-yl)(4-chlorophenyl)hydroxymethyl]-1-methyl-2(1H)-quinolinone; (comp. 9, mp. 174.6° C.).
Iodomethane (1.4 ml) was added to a mixture of (±)-6-[(4-chlorophenyl)-1H-imidazol-4-ylmethyl]-1-methyl-4-phenyl-2(1H)-quinolinone (7.5 g) and benzyltriethylammonium chloride (2 g) in THF (75 ml) and sodium hydroxide (75 ml) and the mixture was stirred at room temperature for 1 hour. Water was added and the mixture was extracted with ethyl acetate. The organic layer was dried (MgSO4), filtered off and evaporated till dryness. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 98.5/1.5/0.1). The pure fractions were collected and evaporated. Fraction 1 (3.5 g) was recrystallized from diethyl ether, yielding 3.3 g (42%) of (±)-6-[(4-chlorophenyl)(1-methyl-1H-imidazol-4-yl)methyl]-1-methyl-4-phenyl-2(1H)-quinolinone; mp. 149.9° C. (comp. 44). Fraction 2 was recrystallized from 2-propanone, methanol and diethyl ether, yielding 1.6 g (20%) of (±)-6-[(4chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-1-methyl-4-phenyl-2(1H)-quinolinone (comp. 2, mp. 96.8° C.).
Sodium borohydride (5.6 g) was added portionwise at 0° C. under N2 to compound (3) (7.2 g) dissolved in trifluoroacetic acid (150 ml) and the mixture was stirred at room temperature overnight. The mixture was poured into ice, basified with NaOH 3N, then concentrated NaOH and extracted with ethyl acetate. The organic layer was dried (MgSO4), filtered off and evaporated till dryness. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH 95/5). The pure fractions were collected and evaporated, yielding 4.3 g (62%) of fraction 1; 0.2 g (3%) of fraction 2 and 2 g (29%) of fraction 3. Fraction 1 was converted into the ethanedioic acid salt (1:1) in 2-propanone and diethyl ether. The precipitate was filtered off, washed with diethyl ether and dried, yielding 4.7 g (55%) of (±)-4-(3-chlorophenyl)-6-[(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-1-methyl-2(1H)-quinolinone ethanedioate(1:1).mono-hydrate (comp. 5, mp. 157.4° C.).
A solution of compound 90 (4.2 g) in 1,2-dimethoxyethane (70 ml) was stirred under N2 for 30 minutes. Iodomethane (0.83 ml), followed by potassium tert-butoxide (2 g) were added portionwise and the mixture was stirred at room temperature for 30 minutes. Water was added and the mixture was extracted with ethyl acetate. The organic layer was dried (MgSO4), filtered off and evaporated. The residue was purified by column chromatography over silica gel (eluent: cyclohexane/2-propanol/NH4OH 85/5/0.5 to 80/20/1) and converted into the ethanedioic acid salt, crystallized from 2-propanone and filtered off, yielding 1.16 g (23.6%) of (±)-4-(3-chlorophenyl)-6-[1-(4-chlorophenyl)-1-(1-methyl-1H-imidazol-5-yl)ethyl]-1-methyl-2(1H)-quinolinone.ethanedioate (1:1); (comp. 12, mp. 203.9° C.).
In a similar way, but replacing iodomethane by dichloromethane or dibromomethane, respectively (±)-6-[2-chloro-1-(4-chlorophenyl)-1-(1-methyl-1H-imidazol-5-yl)ethyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone ethanedioate (1:1) (comp. 69) and (±)-6-[2-bromo-1-(4-chlorophenyl)-1-(1-methyl-1H-imidazol-5-yl)ethyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone (comp. 70) were prepared.
a) Compound (3) (3 g) was separated (into its enantiomers) and purified by high-performance liquid chromatography over Chiracel OD (20 μm; eluent: hexane/ethanol 50/50). The pure (A)-fractions were collected, and the solvent was evaporated, yielding 1.6 g ((A); LCI:>99%). The pure (B)-fractions were collected, and the solvent was evaporated, yielding 1.5 g ((B); LCI:>99%). The (A)-residue was dissolved in 2-propanol and converted into the ethanedioic acid salt (1:1). The precipitate was filtered off and dried, yielding 0.6 g (17%) of (A)-4-(3-chlorophenyl)-6-[(4-chlorophenyl)-hydroxy(1-methyl-1H-imidazol-5-yl)methyl]-1-methyl-2(1H)-quinolinone ethanedioate (1:1); [α]D 20 =+17.96° (c=1% in methanol) (comp. 23). The (B)-residue was dissolved in 2-propanol and converted into the ethanedioic acid salt (1:1). The precipitate was filtered off and dried, yielding 0.6 g (17%) (B)-4-(3-chlorophenyl)-6-[(4-chlorophenyl)hydroxy(1-methyl-1H-imidazol-5-yl)methyl]-1-methyl-2(1H)-quinolinone ethanedioate(1:1); [α]D 20=−18.87° (c=1% in methanol) (comp. 24).
b) Compound 14 (4 g) was separated (into its enantiomers) and purified by chiral column chromatography over Chiralcel OD (25 cm; eluent: 100% ethanol; flow: 0.5 ml/min; wavelength: 220 nm). The pure (A)-fractions were collected, and the solvent was evaporated. This residue was dissolved in DCM (100 ml), filtered, and the filtrate was evaporated. The residue was stirred in DIPE (100 ml), filtered off and dried, yielding 1.3 g (A)-6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone (comp. 74). The pure (B)-fractions were collected and evaporated. The residue was crystallized from 2-propanol. The precipitate was filtered off, yielding 1.3 g (B)-6[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone ([α]D 20=+22.86° (c=49.22 mg/5 ml in methanol) (comp. 75).
Air was bubbled through a solution of compound (47) (3.6 g) in THF (40 ml) for 30 minutes. 2-Methyl-2-propanol potassium salt (4.4 g) was added. The mixture was stirred at room temperature for 3 hours, hydrolyzed and then extracted with DCM. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaparated, yielding 2.9 g of product. The product was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 97.5/2.510.1). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from 2-propanone/DIPE. The precipitate was filtered off and dried, yielding 1.3 g (35%) of (±)-4-(3-chlorophenyl)-6-[(4-chlorophenyl)hydroxy(1-methyl-1H-imidazol-4-yl)methyl]-1-methyl-2(1H)-quinolinone (comp. 48).
A mixture of (±)-4-[(4-chlorophenyl)(1,2-dihydro-1-methyl-2-oxo-4-phenyl-6-quinolinyl)hydroxymethyl]-N,N-dimethyl-1H-imidazole-1-sulfonamide (2.4 g) in hydrochloric acid (10 ml), water (30 ml) and methanol (15 ml) was stirred and heated at 110° C. for 14 hours. The mixture was cooled, basified with NH3 (aq.) and extracted with DCM. The organic layer was dried (MgSO4), filtered off and evaporated till dryness. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 95/5/0.2). The pure fractions were collected and evaporated. The residue (1.25 g) was crystallized from 2-propanone/DIPE, yielding 1 g (48.3%) of (±)-6-[(4-chlorophenyl)hydroxy(1H-imidazol-4-yl)methyl]-1-methyl-4-phenyl-2(1H)-quinolinone monohydrate (comp. 43).
Compound (3) (4 g) was dissolved in DCM (10 ml) and acetic acid (5.6 ml) at 45° C. Zinc chloride (5.5 g), followed by cyanoacetic acid (3.5 g) were added. The mixture was stirred at 120° C. for 3 hours and then at 160° C. for 10 hours. Water was added and the mixture was extracted with DCM. The organic layer was washed with K2CO3 10%, dried (MgSO4), filtered, and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 96/4/0.2), crystallized from 2-propanone/DIPE, filtered off and dried, yielding 1.95 g (45%) of (±)-4-(3-chlorophenyl)-β-(4-chlorophenyl)-1,2-dihydro-1-methyl-β-(1-methyl-1H-imidazol-5-yl)-2-oxo-6-quinolinepropanenitrile; (comp. 25, mp. 151.3° C.).
Sulfuric acid (1 ml) was added dropwise to acetonitrile (30 ml), while stirring. Compound 3 (3 g) was added. The mixture was stirred at 80° C. for 3 hours and then cooled. K2CO3 10% was added and the mixture was extracted with ethyl acetate. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated till dryness. The residue (3.58 g) was dissolved in 2-propanone and converted into the ethanedioic acid salt (1:1). The precipitate was filtered off, dried and crystallized from 2-propanone/CH3OH. The precipitate was filtered off and dried, yielding 3.5 g (92%) of (±)-N-[(4-chlorophenyl)[4-(3-chlorophenyl)-1,2-dihydro-1-methyl-2-oxo-6-quinolinyl](1-methyl-1H-imidazol-5-yl)methyl]acetamide ethanedioate (1:1) (comp. 56).
NH3 (aq.) (40 ml) was added at room temperature to a mixture of intermediate 4 (7 g) in THF (40 ml). The mixture was stirred at 80° C. for 1 hour, then hydrolyzed and extracted with DCM. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: toluene/2-propanol/NH4OH 80/20/1). The pure fractions were collected and the solvent was evaporated, yielding 4.4 g (±)-6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone (comp. 14).
A solution of compound 36 (6.2 g) in DCM (140 ml) was cooled and tribromoborane (32 ml) was added dropwise. The mixture was stirred at room temperature for tho days. The mixture was poured out into ice water, basified with NH3 (aq.) and extracted with CH2Cl2/CH3OH. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated till dryness, yielding 6 g (100%) of (±)-6-[(4-chlorophenyl)hydroxy(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-hydroxyphenyl)-1-methyl-2(1H)-quinolinone (comp. 54).
A mixture of compound 54 (2.5 g), 2-chloro-N,N-dimethyl-ethanamine (1.9 g) and potassium carbonate (2.2 g) in ACN (50 ml) and DMF (50 ml) was stirred at 100° C. overnight. The solvent was evaporated till dryness. The residue was taken up in CH2Cl2/water and decanted. The organic layer was dried, filtered and the solvent was evaporated. The residue (2.7 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 97/3/0.1 to 90/10/0.1). The pure fractions were collected and the solvent was evaporated. The residue was converted into the ethanedioic acid salt (1:1) in 2-propanone. The precipitate was filtered off, washed with 2-propanone/diethyl ether and dried. The residue was converted into the free base. The precipitate was filtered off and dried. The residue was crystallized from diethyl ether. The precipitate was filtered off and dried, yielding 0.35 g (12%) of (±)-6-[(4-chlorophenyl)hydroxy(1-methyl-1H-imidazol-5-yl)methyl]-4-[3-[2-(dimethylamino)ethoxy]-phenyl]-1-methyl-2(1H)-quinolinone (comp. 62).
P4S10 (12 g) was added to a mixture of compound 90 (6 g) in pyridine (72 ml). The mixture was stirred and refluxed for 6 hours. Ice water was added. The precipitate was filtered off, washed with water and taken up in DCM. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated till dryness. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 97.5/2.5/0.1). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from 2-propanone/diethyl ether. The precipitate was filtered off and dried, yielding 1 g of (±)-4-(3-chlorophenyl)-6-[(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-1-methyl-2(1H)-quinolinethione (comp. 128).
A mixture of ethyl malonyl chloride (6.4 ml) in DCM (50 ml) was added dropwise at room temperature to a solution of intermediate (6-d) (15 g) and pyridine (10.7 ml) in DCM (150 ml). The mixture was stirred at room temperature overnight. Water was added and the mixture was decanted. The organic layer was dried (MgSO4), filtered and the solvent was evaporated. The residue (21 g) was purified by column chromatography over silica gel (eluent: CH2Cl2/2-propanol/NH4OH 92/8/0.4). The desired fractions were collected and the solvent was evaporated, yielding 10.9 g (60%) of (±)-ethyl 4-(3-chlorophenyl)-6[(4-chlorophenyl)hydroxy(1-methyl-1H-imidazol-5-yl)methyl]-1,2-dihydro-2-oxo-3-quinolinecarboxylate (comp. 144).
a) A mixture of benzoyl chloride (3.1 ml) in DCM (25 ml) was added dropwise at room temperature to a solution of interm. (6-d) (7 g) and pyridine (5 ml) in DCM (70 ml). The mixture was stirred at room temperature for 45 minutes. Water was added and the mixture was decanted. The organic layer was dried (MgSO4), filtered and the solvent was evaporated, yielding 8.8 g of (±)-N-[2-(3-chlorobenzoyl)-4-[(4-chlorophenyl)hydroxy(1-methyl-1H-imidazol-5-yl)methyl]phenyl]benzeneacetamide (interm. 7). The product was used without further purification.
b) Potassium tert-butoxide (8.7 g) was added to a mixture of intermediate 7 (8.8 g) in DME (70 ml). The mixture was stirred at 50° C. for 3 hours. Water (5 ml) was added and the solvent was evaporated, yielding 8.5 g of (±)-4-(3-chlorophenyl)-6-[(4-chlorophenyl)hydroxy(1-methyl-1H-imidazol-5-yl)methyl]-3-phenyl-2(1H)-quinolinone (comp. 140).
NH3 (aq.) (150 ml) was cooled to 5° C. A solution of (±)-4-(3-chlorophenyl)-1-methyl-6-[1-(4-methylphenyl)-1-(4-methyl-4H-pyrrol-3-yl)ethyl]-2(1H)-quinolinone hydrochloride (16.68 g) in THF (150 ml) was added. The mixture was stirred at room temperature for 2 hours, decanted and extracted with ethyl acetate. The organic layer was dried (MgSO4), filtered and the solvent was evaporated till dryness. The reaction was carried out twice. The residues were combined and purified by column chromatography over silica gel (eluent: toluene/2-propanol/NH4OH 70-29-1). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from CH2Cl2/CH3OH/CH3CN. The precipitate was filtered off and the mother layer was evaporated till dryness, purified by column chromatography (eluent: CH3OH/NH4OAc (0.5% in H2O) 70/30). Two pure fractions were collected and their solvents were evaporated till dryness. Fraction 2 was recrystallized from CH2Cl2/diethyl ether. The precipitate was filtered off and dried, yielding 0.8 g of (±)-6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-3-chloro-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone (comp. 143).
Sulfuric acid (1 ml) was added at room temperature to a solution of compound 3 (3.5 g) in methoxyacetonitrile (10 ml) and the mixture was stirred and heated at 80° C. for 3 hours. The mixture was coupled, poured into ice, basified with NH3 (aq.) and filtered off. The precipitate was taken up in DCM. The organic layer was separated, dried, (MgSO4), filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 96/4/0.3). The pure fractions were collected and the solvent was evaporated. The residue was converted into the hydrochloric acid salt (1:1) and crystallized from ACN. The precipitate was filtered off and dried, yielding 2.5 g (58%) of (±)-N-[(4-chlorophenyl)[4-(3-chlorophenyl)-1,2-dihydro-1-methyl-2-oxo-6-quinolinyl](1-methyl-1H-imidazol-5-yl)methyl]-2-methoxyacetamide monohydrochloride (comp. 89).
A solution of intermediate (4) (3.3 g) in THF (10 ml) was added dropwise at room temperature to a solution of methanamine in water (40 ml). The mixture was stirred at 80° C. for 45 minutes, taken up in water and extracted with DCM. The organic layer was separated, dried (MgSO4), filtered and the solvent was evaporated. The residue was purified by column chromatography over silica gel (eluent: CH2Cl2/CH3OH/NH4OH 97/3/0.3 and 95/5/0.3). The pure fractions were collected and the solvent was evaporated. The residue was crystallized from diethyl ether. The precipitate was filtered off and dried, yielding 0.89 g (28%) of (±)-4-(3-chlorophenyl)-6-[(4-chlorophenyl)(methylamino)(1-methyl-1H-imidazol-5-yl)methyl]-1-methyl-2(1H)-quinolinone monohydrate (comp. 61).
Tables 1 to 8 list the compounds that were prepared according to one of the above Examples and table 9 lists both the experimental (column heading “exp.”) and theoretical (column heading “theor.”) elemental analysis values for carbon, hydrogen and nitrogen of the compounds as prepared in the experimental part hereinabove.
TABLE 1 |
|
Co. | Ex. | ||||
No. | No. | R1 | R4a | R8 | Physical data |
3 | B.1 | CH3 | CH3 | OH | mp. 233.6° C. |
4 | B.3 | CH3 | CH3 | OCH3 | mp. 140-160° C.; |
.C2H2O4.H2O | |||||
5 | B.6 | CH3 | CH3 | H | mp. 165° C.; |
.C2H2O4.H2O | |||||
mp. 180° C.; | |||||
6 | B.5 | CH3 | CH2CH3 | H | .C2H2O4.1/2H2O |
7 | B.2 | H | CH3 | H | mp. 260° C. |
8 | B.2 | H | (CH2)3CH3 | OH | — |
9 | B.4 | CH3 | (CH2)3CH3 | OH | mp. 174° C. |
mp. 185° C.; | |||||
10 | B.3 | H | CH3 | OCH2COOCH2CH3 | .3/2C2H2O4 |
11 | B.3 | CH3 | CH3 | O(CH2)2N(CH3)2 | mp. 120° C. |
12 | B.7 | CH3 | CH3 | CH3 | mp. 210° C.; |
.C2H2O4 | |||||
13 | B.7 | CH3 | CH3 | CH2CH3 | mp. 196° C.; |
.C2H2O4 | |||||
14 | B.13 | CH3 | CH3 | NH2 | mp. 220° C. |
72 | B.13 | CH3 | CH3 | NH2 | .3/2-(E)-C4H4O4 |
73 | B.13 | CH3 | CH3 | NH2 | .2HCl |
74 | B.8b | CH3 | CH3 | NH2 | (A) |
75 | B.8b | CH3 | CH3 | NH2 | (B) |
15 | B.3 | CH3 | CH3 | O(CH2)3OH | mp. 135° C. |
16 | B.3 | CH3 | CH3 | O(CH2)2CH3 | mp. 180° C.; |
.C2H2O4.3/2(H2O) | |||||
17 | B.3 | CH3 | CH3 | O(CH2)2O—C6H5 | mp. 144° C.; |
.3/2(C2H2O4) | |||||
18 | B.2 | H | CH(CH3)2 | OH | — |
19 | B.4 | CH3 | CH(CH3)2 | OH | mp. 254° C. |
20 | B.2 | H | (CH2)2OCH3 | OH | mp. 112° C. |
21 | B.4 | CH3 | (CH2)2OCH3 | OH | mp. 192° C. |
22 | B.3 | CH3 | CH3 | O(CH2)2OH | mp. 198° C. |
23 | B.8a | CH3 | CH3 | OH | mp. 150-200° C.; |
(A); .C2H2O4 | |||||
24 | B.8a | CH3 | CH3 | OH | mp. 150-200° C.; |
(B); .C2H2O4 | |||||
25 | B.11 | CH3 | CH3 | CH2—CN | mp. 154° C. |
27 | B.2 | H | (CH2)3OCH3 | OH | — |
28 | B.4 | CH3 | (CH2)3OCH3 | OH | mp. 196° C.; .H2O |
29 | B.3 | CH3 | CH3 | O(CH2)3OCH2CH3 | mp. 105° C.; |
.3/2(H2O) | |||||
31 | B.2 | H | CH3 | OH | >260° C. |
32 | B.6 | CH3 | (CH2)2OCH3 | H | mp. 140° C.; |
.3/2(C2H2O4) | |||||
33 | B.6 | CH3 | (CH2)3OCH3 | H | mp. 180° C.; .HCl |
56 | B.12 | CH3 | CH3 | —NHCOCH3 | .C2H2O4 |
58 | B.11 | CH3 | CH3 | —CH2COOCH2CH3 | .C2H2O4.3/2(H2O) |
60 | B.11 | CH3 | CH3 | 1-imidazolyl | — |
61 | B.21 | CH3 | CH3 | —NH—CH3 | mp. 164° C. |
65 | B.2 | H | (CH2)3SOCH3 | OH | .H2O |
66 | B.13 | CH3 | CH3 | —N(CH3)2 | .2C2H2O4.H2O |
mp. 160° C. | |||||
67 | B.13 | CH3 | CH3 | —NH—(CH2)2OCH3 | mp. 216° C. |
68 | B.13 | CH3 | CH3 | —NH—(CH2)2—OH | — |
69 | B.7 | CH3 | CH3 | —CH2Cl | .2C2H2O4 |
mp. 220° C. | |||||
70 | B.7 | CH3 | CH3 | —CH2Br | — |
71 | * | CH3 | CH3 | —CH2OH | .2C2H2O4 |
76 | B.4 | —(CH2)2OCH3 | CH3 | OH | mp. 150° C. |
77 | * | CH3 | CH3 | —CH2OCH3 | .2C2H2O4 |
mp. 166° C. | |||||
78 | B.13 | CH3 | CH3 | —NH—OCH3 | mp. 170° C. |
79 | B.20 | CH3 | CH3 | —NH—CONH2 | .2H2O |
80 | ** | CH3 | CH3 | —CH2CONH2 | — |
81 | B.13 | CH3 | CH3 | —NH—OH | — |
82 | B.13 | CH3 | CH3 | —NH(CH2)2N(CH3)2 | — |
.3/2C2H2O4 | |||||
83 | B.4 | (CH2)2N(CH3)2 | CH3 | OH | .3/2H2O |
mp. 200° C. | |||||
84 | * | CH3 | CH3 | —CH2N(CH3)2 | .C2H2O4 |
mp. 210° C. | |||||
85 | B.4 | CH3 | CH3 | —N(CH3)2 | — |
86 | B.4 | CH3 | CH3 | NHCOCH2N(CH3)2 | — |
87 | B.4 | CH3 | CH3 | —NH(CH2)9CH3 | — |
88 | B.4 | CH3 | CH3 | —NH(CH2)2NH2 | — |
89 | B.20 | CH3 | CH3 | —NHCOCH2OCH3 | .HCl |
mp. 220° C. | |||||
90 | B.6 | CH3 | CH3 | H | — |
91 | B.20 | CH3 | CH3 | —NHCOCH2C6H5 | .C2H2O4.H2O |
mp. 170° C. | |||||
92 | B.20 | CH3 | CH3 | —NHCOC6H5 | mp. 242° C. |
93 | B.20 | CH3 | CH3 | —NHCOCONH2 | .C2H2O4.H2O |
mp. 186° C. | |||||
94 | B.13 | CH3 | CH3 | —NHC6H5 | mp. 165° C. |
*: prepared by functional-group transformation of compound 70 | |||||
**: prepared by functional-group transformation of compound 25 |
TABLE 2 |
|
Co. | Ex. | ||||||
No. | No. | R1 | R2 | R4a | R5 | R8 | Physical data |
1 | B.1 | CH3 | H | CH3 | H | OH | mp. >250° C. |
2 | B.5 | CH3 | H | CH3 | H | H | mp. 100-110° C. |
26 | B.1 | CH3 | 3-Cl | CH3 | 2-CH3 | OH | mp. 200° C. |
30 | B.6 | CH3 | 3-Cl | CH3 | 2-CH3 | H | mp. 120-140° C.; |
.3/2(C2H2O4).H2O | |||||||
34 | B.1 | CH3 | 3-O—CH2—CH3 | CH3 | H | OH | mp. 190° C. |
35 | B.6 | CH3 | 3-O—CH2—CH3 | CH3 | H | H | mp. 160-180° C.; |
.HCl.H2O | |||||||
36 | B.1 | CH3 | 3-O—CH3 | CH3 | H | OH | mp. 210° C. |
37 | B.1 | CH3 | 3-O—(CH2)2—CH3 | CH3 | H | OH | mp. 150-160° C. |
38 | B.1 | CH3 | 3-O—(CH2)3—CH3 | CH3 | H | OH | mp. 150-160° C. |
49 | B.1 | CH3 | 4-O—CH2—CH3 | CH3 | H | OH | mp. 184.2° C. |
50 | B.1 | CH3 | 3-O—CH—(CH3)2 | CH3 | H | OH | mp. 147.1° C. |
51 | B.6 | CH3 | 3-O—(CH2)3—CH3 | CH3 | H | H | mp. 164.2° C.; |
.3/2(C2H2O4) | |||||||
52 | B.6 | CH3 | 3-O—(CH2)2—CH3 | CH3 | H | H | .3/2(C2H2O4) |
53 | B.6 | CH3 | 3-O—CH—(CH3)2 | CH3 | H | H | mp. 133.9° C.; |
.C2H2O4.H2O | |||||||
54 | B.14 | CH3 | 3-OH | CH3 | H | OH | — |
64 | B.10 | CH3 | 3-OH | CH3 | H | OH | .HCl.H2O |
55 | B.6 | CH3 | 3-OH | CH3 | H | H | mp. >250° C. |
57 | B.1 | CH3 | 2-OCH2CH3 | CH3 | H | OH | — |
59 | B.13 | CH3 | 3-OCH2CH3 | CH3 | H | NH2 | — |
95 | B.8a | CH3 | 3-OCH2CH3 | CH3 | H | NH2 | (A) |
96 | B.8a | CH3 | 3-OCH2CH3 | CH3 | H | NH2 | (B) |
62 | B.15 | CH3 | 3-O(CH2)2N(CH3)2 | CH3 | H | OH | — |
63 | B.11 | CH3 | 3-O(CH2)2—OH | CH3 | H | OH | — |
97 | B.1 | CH3 | 3-CH2CH3 | CH3 | H | OH | — |
98 | B.13 | CH3 | 3-CH2CH3 | CH3 | H | NH2 | mp. 240° C. |
99 | B.1 | CH3 | 3-(CH2)2CH3 | CH3 | H | OH | — |
100 | B.13 | CH3 | 3-(CH2)2CH3 | CH3 | H | NH2 | — |
101 | * | CH3 | 3-O—(CH2)2OCH3 | CH3 | H | OH | .3/2(C2.H2O4) |
mp. 193° C. | |||||||
102 | B.1 | CH3 | 3-CH3 | CH3 | H | OH | mp. >250° C. |
103 | B.13 | CH3 | 3-CH3 | CH3 | H | NH2 | — |
104 | B.1 | CH3 | 3-Br | CH3 | H | OH | — |
105 | B.13 | CH3 | 3-Br | CH3 | H | NH2 | — |
106 | B.1 | CH3 | 3-O—CF3 | CH3 | H | OH | — |
107 | B.13 | CH3 | 3-O—CF3 | CH3 | H | NH2 | mp. 168° C. |
108 | B.1 | CH3 | 3-C6H5 | CH3 | H | OH | — |
109 | B.13 | CH3 | 3-C6H5 | CH3 | H | NH2 | — |
110 | B.1 | CH3 | 3-F | CH3 | H | OH | — |
111 | B.13 | CH3 | 3-F | CH3 | H | NH2 | mp. >250° C. |
112 | B.1 | CH3 | 3-(E)-CH═CH—CH3 | CH3 | H | OH | mp. >250° C. |
113 | B.2 | H | 3-Cl | CH3 | 3-Cl | OH | — |
114 | B.4 | CH3 | 3-Cl | CH3 | 3-Cl | OH | — |
115 | B.1 | CH3 | 3-Cl | H | 3-CH3 | OH | — |
116 | B.4 | CH3 | 3-Cl | CH3 | 3-CH3 | OH | — |
117 | ** | CH3 | 3-CN | CH3 | H | OH | — |
160 | B.1 | CH3 | 3-CF3 | CH3 | H | OH | — |
*: prepared by functional-group transformation of compound 54 | |||||||
**: prepared by functional-group transformation of compound 104 |
TABLE 3 |
|
Co. No. | Ex. No. | R1 | R8 | Physical data |
39 | B.4 | CH2CONHCH(COOCH3)(CH2CH(CH3)2) | H | mp. 240° C. (S) |
40 | B.4 | CH2-2-quinolinyl | H | mp. 240° C.; .2 HCl |
41 | B.4 | CH2CONHCH(COOCH3)(CH2CH(CH3)2) | OH | mp. >260° C. (S) |
TABLE 4 |
|
Co. No. | Ex. No. | R2 | R4 | R5a | R6 | R8 | Physical data |
42 | B.6 | H | H | H | 4-Cl | H | mp. 170° C.; |
.C2H2O4.1/2 H2O | |||||||
43 | B.10 | H | H | H | 4-Cl | OH | mp. 180° C.; .H2O |
44 | B.5 | H | H | CH3 | 4-Cl | H | mp. 152° C. |
45 | B.6 | 3-Cl | H | H | 4-Cl | H | mp. 175° C.; .C2H2O4 |
46 | B.5 | 3-Cl | H | CH2CH3 | 4-Cl | H | mp. 132° C.; .C2H2O4 |
47 | B.5 | 3-Cl | H | CH3 | 4-Cl | H | mp. 115° C.; .3/2 C2H2O4 |
48 | B.9 | 3-Cl | H | CH3 | 4-Cl | OH | mp. 230° C. |
118 | B.4 | 3-Cl | 3-CH3 | CH3 | 4-Cl | OH | mp. 222° C. |
TABLE 5 |
|
Co. No. | Ex. No. | —R2—R3— | R6 | R8 |
119 | B.1 | —O—CH2—O— | 4-Cl | OH |
120 | B.13 | —O—CH2—O— | 4-Cl | NH2 |
121 | B.1 | —O—CH2—CH2—O— | 4-Cl | OH |
122 | B.13 | —O—CH2—CH2—O— | 4-Cl | NH2 |
123 | B.1 | —O—CH═CH— | 4-Cl | OH |
TABLE 6 |
|
Co. No. | Ex. No. | X |
|
R2 | R3 | R16 | R8 | Physical data |
124 | B.1 | O | dou- | 3-OCH3 | 4-OCH3 | 5-OCH3 | OH | mp. |
ble | 230° C. | |||||||
125 | B.13 | O | dou- | 3-OCH3 | 4-OCH3 | 5-OCH3 | NH2 | mp. |
ble | 218° C. | |||||||
126 | B.1 | O | single | 3-Cl | H | H | OH | .C2H2O4 |
mp. | ||||||||
160° C. | ||||||||
127 | B.1 | O | single | 3-Cl | H | H | OH | — |
128 | B.16 | S | dou- | 3-Cl | H | H | H | — |
ble | ||||||||
TABLE 7 |
|
Co. | Ex. | ||||||
No. | No. | R1 | R17 | R18 | R19 | R8 | Physical data |
129 | B.17 | H | CN | H | H | H | — |
130 | B.4 | CH3 | CN | H | H | H | mp. 202° C. |
131 | B.17 | H | CN | H | H | OH | — |
132 | B.4 | CH3 | CN | H | H | OH | — |
133 | B.17 | H | CN | H | H | —CH2CN | — |
134 | B.4 | CH3 | CN | H | H | —CH2CN | mp. 138° C. |
135 | B.18 | H | CH3 | H | H | OH | — |
136 | B.4 | CH3 | CH3 | H | H | OH | — |
137 | B.13 | CH3 | CH3 | H | H | NH2 | mp. >250° C. |
138 | B.18 | H | C6H5 | H | H | H | — |
139 | B.4 | CH3 | C6H5 | H | H | H | .3/2(C2H2O4) |
mp. 180° C. | |||||||
140 | B.18 | H | C6H5 | H | H | OH | — |
141 | B.4 | CH3 | C6H5 | H | H | OH | — |
142 | B.13 | CH3 | C6H5 | H | H | NH2 | — |
143 | B.13 | CH3 | Cl | H | H | NH2 | — |
144 | B.17 | H | —COOCH2CH3 | H | H | OH | — |
145 | B.4 | CH3 | —COOCH2CH3 | H | H | OH | — |
146 | B.1 | CH3 | H | 8-CH3 | H | OH | — |
147 | B.13 | CH3 | H | 8-CH3 | H | NH2 | .H2O |
148 | B.1 | CH3 | H | 7-Cl | H | OH | — |
149 | B.1 | CH3 | H | 7-CH3 | H | OH | — |
150 | B.1 | CH3 | H | 5-CH3 | H | OH | — |
151 | B.1 | CH3 | H | 8-OCH3 | H | OH | — |
161 | B.1 | CH3 | H | 7-CH3 | 8-CH3 | OH | mp. 255° C. |
TABLE 8 |
|
Co. | Ex. | ||||||
No. | No. | R2 | R3 | R6 | R7 | R8 | Physical data |
152 | B.1 | 3-OCH2CH3 | H | 4-OCH2CH3 | H | OH | .3/2(C2H2O4) |
153 | B.1 | 3-Cl | H | H | H | OH | — |
154 | B.1 | 3-Cl | H | 4-CH3 | H | OH | — |
155 | B.1 | 3-Cl | H | 4-OCH3 | H | OH | — |
156 | B.1 | 3-Cl | H | 4-CF3 | H | OH | — |
157 | B.1 | 3-Cl | H | 2-Cl | 4-Cl | OH | — |
158 | B.1 | 3-Cl | 5-Cl | 4-Cl | H | OH | — |
159 | B.1 |
|
H | 4-Cl | H | OH | — |
162 | B.1 | 3-Cl | H | 4-S—CH3 | H | OH | mp. 169° C. |
.C2H2O4.H2O; | |||||||
163 | B.1 | 3-Cl | H | 4-N(CH3)2 | H | OH | mp. decomposes |
>172° C. |
164 | B.1 | 3-Cl | H | —CH═CH—CH═CH—* | OH | .C2H2O4 |
*: R6 and R7 taken together to form a bivalent radical between positions 3 and 4 on the phenyl moiety |
TABLE 9 | |||
Comp. | Carbon | Hydrogen | Nitrogen |
No. | Exp. | Theor. | Exp. | Theor. | Exp. | Theor. |
57 | 67.78 | 69.66 | 4.82 | 5.24 | 7.83 | 8.40 |
58 | 58.59 | 58.50 | 4.58 | 4.76 | 5.96 | 6.20 |
59 | 69.68 | 69.80 | 5.38 | 5.45 | 11.06 | 11.23 |
60 | 65.89 | 66.67 | 4.35 | 4.29 | 11.30 | 12.96 |
62 | 66.51 | 68.56 | 5.74 | 5.75 | 9.67 | 10.32 |
63 | 66.64 | 67.50 | 5.29 | 5.08 | 7.63 | 8.14 |
64 | 62.20 | 61.60 | 4.70 | 4.79 | 7.97 | 7.98 |
65 | 58.90 | 59.59 | 4.42 | 4.66 | 6.79 | 7.19 |
68 | 64.29 | 65.29 | 4.87 | 4.91 | 10.13 | 10.50 |
71 | 60.68 | 60.62 | 3.86 | 4.24 | 6.87 | 7.07 |
73 | 54.33 | 57.67 | 4.51 | 4.30 | 9.26 | 9.96 |
74 | 66.64 | 66.26 | 4.28 | 4.53 | 11.33 | 11.45 |
75 | 66.26 | 66.26 | 4.39 | 4.53 | 11.30 | 11.45 |
79 | 59.89 | 59.16 | 4.65 | 4.79 | 12.18 | 12.32 |
80 | 64.27 | 65.54 | 4.71 | 4.55 | 10.36 | 10.54 |
81 | 64.27 | 64.17 | 4.44 | 4.39 | 10.92 | 11.09 |
82 | 65.98 | 66.43 | 5.88 | 5.57 | 11.61 | 12.49 |
85 | 66.20 | 67.31 | 5.22 | 5.06 | 10.44 | 10.83 |
86 | 64.83 | 64.81 | 4.96 | 5.09 | 12.12 | 12.19 |
87 | 69.63 | 70.58 | 6.88 | 6.72 | 8.70 | 8.90 |
88 | 65.21 | 65.42 | 5.10 | 5.11 | 13.22 | 13.15 |
97 | 71.38 | 71.97 | 5.60 | 5.41 | 8.17 | 8.68 |
98 | 71.38 | 72.11 | 5.58 | 5.63 | 11.31 | 11.60 |
100 | 71.92 | 72.50 | 5.65 | 5.88 | 10.92 | 11.27 |
103 | 70.72 | 71.71 | 5.42 | 5.37 | 11.80 | 11.95 |
104 | 60.56 | 60.63 | 3.99 | 3.96 | 7.84 | 7.86 |
105 | 60.33 | 60.75 | 3.72 | 4.15 | 10.28 | 10.49 |
106 | 62.37 | 62.29 | 3.71 | 3.92 | 7.71 | 7.78 |
108 | 74.22 | 74.50 | 4.94 | 4.93 | 7.83 | 7.90 |
109 | 74.17 | 74.64 | 5.23 | 5.12 | 10.60 | 10.55 |
110 | 68.17 | 68.43 | 4.28 | 4.47 | 8.75 | 8.87 |
115 | 65.98 | 66.13 | 4.08 | 4.32 | 8.53 | 8.57 |
116 | 66.49 | 66.67 | 4.38 | 4.60 | 8.47 | 8.33 |
117 | 67.97 | 69.93 | 4.60 | 4.40 | 11.14 | 11.65 |
120 | 67.35 | 67.40 | 4.62 | 4.65 | 11.14 | 11.23 |
121 | 67.32 | 67.77 | 4.72 | 4.71 | 7.78 | 8.18 |
122 | 67.88 | 67.90 | 4.72 | 4.91 | 10.88 | 10.92 |
123 | 69.75 | 70.23 | 4.77 | 4.47 | 8.06 | 8.47 |
128 | 65.88 | 66.12 | 4.24 | 4.32 | 8.37 | 8.57 |
132 | 65.20 | 65.25 | 3.77 | 3.91 | 10.42 | 10.87 |
136 | 66.77 | 66.67 | 4.64 | 4.60 | 8.34 | 8.33 |
142 | 69.26 | 70.09 | 4.42 | 4.63 | 9.59 | 9.91 |
145 | 64.36 | 64.06 | 4.19 | 4.48 | 7.49 | 7.47 |
148 | 61.88 | 61.79 | 3.65 | 3.84 | 7.88 | 8.01 |
150 | 66.56 | 66.67 | 4.64 | 4.60 | 8.08 | 8.33 |
151 | 64.76 | 64.62 | 4.86 | 4.45 | 7.80 | 8.07 |
153 | 70.99 | 71.13 | 5.17 | 4.86 | 9.25 | 9.22 |
154 | 71.67 | 71.56 | 5.08 | 5.15 | 9.14 | 8.94 |
158 | 61.72 | 61.79 | 3.76 | 3.84 | 7.96 | 8.01 |
159 | 69.28 | 69.50 | 5.21 | 5.29 | 10.01 | 10.13 |
160 | 62.71 | 64.19 | 3.91 | 4.04 | 7.36 | 8.02 |
Human farnesyl protein transferase was prepared essentially as described (Y. Reiss et al., Methods: A Companion to Methods in Enzymology vol 1, 241-245, 1990). Kirsten virus transformed human osteosarcoma (KHOS) cells (American Type Culture Collection, Rockville, Md., USA) grown as solid tumors in nude mice or grown as monolayer cell cultures were used as a source of human enzyme. Briefly, cells or tumors were homogenized in buffer containing 50 mM Tris, 1 mM EDTA, 1 mM EGTA and 0.2 mM phenylmethylsulfonylfluoride (pH 7.5). The homogenates were centrifuged 28,000×g for 60 min and the supernatants collected. A 30-50% ammonium sulfate fraction was prepared, and the resulting precipitate was resuspended in a small (10 to 20 ml) volume of dialysis buffer containing 20 mM Tris 1 mM dithiothreitol and 20 μM ZnCl2. The ammonium sulfate fraction was dialyzed overnight against two changes of the same buffer. The dialyzed material was applied to a 10×1 cm Q Fast Flow Sepharose (Pharmacia LKB Biotechnology Inc., Piscataway, N.J., USA) which had been preequilibrated with 100 ml of dialysis buffer supplemented with 0.05 M NaCl. The column was washed with an additional 50 ml of dialysis buffer plus 0.05 M NaCl followed by a gradient from 0.05 M to 0.25 M NaCl prepared in dialysis buffer. The enzyme activity was eluted with a linear gradient of 0.25 to 1.0 M NaCl prepared in the dialysis buffer. Fractions containing 4 to 5 ml volumes of column eluate were collected and analyzed for farnesyl protein transferase activity. Fractions with enzyme activity were pooled and supplemented with 100 μM ZnCl2. Enzyme samples were stored frozen at −70° C.
The activity of farnesyl protein transferase was measured using the Farnesyl Transferase [3H] Scintillation Proximity Assay (Amersham International plc., England) under the conditions specified by the manufacturer. To assay for inhibitors of the enzyme, 0.20 μCi of the [3H]-famesylpyrophosphate substrate and the biotinylated lamin B peptide substrate (biotin-YRASNRSCAIM) were mixed with test compounds in a reaction buffer consisting of 50 mM HEPES, 30 mM MgCl2, 20 mM KCl, 5 mM dithiothreitol, 0.01% Triton X-100. Test compounds were delivered in a 10 μl volume of dimethylsulfoxide (DMSO) to achieve concentrations of 1 and 10 μg/ml in a final volume of 100 μl. The reaction mixture was warmed to 37° C. The enzyme reaction was started by adding 20 μl of diluted human farnesyl protein transferase. Sufficient enzyme preparation was added to produce between 4000 to 15000 cpm of reaction product during the 60 min of reaction incubation at 37° C. Reactions were terminated by the addition of STOP/scintillation proximity bead reagent (Amersham). The reaction product [3H]-farnesyl-(Cys)-biotin lamin B peptide was captured on the streptavidin linked scintillation proximity bead. The amount of [3H]-farnesyl-(Cys)-biotin lamin B peptide synthesized in the presence or absence of test compounds was quantified as cpm by counting on a Wallac Model 1480 Microbeta Liquid Scintillation Counter. The cpm of product was considered to be farnesyl protein transferase activity. The protein farnesyl transferase activity observed in the presence of test compound was normalized to farnesyl transferase activity in the presence of 10% DMSO and expressed as per cent inhibition. In separate studies, some test compounds exhibiting 50% or greater inhibition of farnesyl protein transferase activity were evaluated for concentration-dependent inhibition of enzyme activity. The effects of test compounds in these studies were calculated as IC50 (concentration of test compound producing 50% inhibition of enzyme activity) using the LGICV50 computer program written by the Science Information Division of R. W. Johnson Pharmaceutical Research Institute (Spring House, Pa., USA) on a VAX computer.
TABLE 10 | |||||
Co. No. | IC50 (nM) | Co. No. | IC50 (nM) | ||
1 | 6.0 | 58 | 2.8 | ||
2 | 8.0 | 59 | 0.14 | ||
3 | 1.7 | 60 | 0.62 | ||
4 | 24 | 61 | 1.1 | ||
5 | 25 | 63 | 1.0 | ||
7 | 1.6 | 64 | 11.6 | ||
12 | 4.2 | 66 | 4.0 | ||
15 | 18.4 | 67 | 5.9 | ||
24 | 2.7 | 69 | 3.4 | ||
25 | 2.2 | 71 | 26 | ||
29 | 57 | 74 | 100 | ||
34 | 1.6 | 75 | 0.86 | ||
35 | 0.39 | 95 | 57 | ||
36 | 2.8 | 96 | 0.11 | ||
37 | 10.1 | 97 | 2.9 | ||
39 | 0.59 | 98 | 6.4 | ||
42 | 910 | 99 | 1.7 | ||
45 | 1000 | 100 | 0.52 | ||
52 | 5.7 | 146 | 68 | ||
Insertion of activated oncogenes such as the mutant ras gene into mouse NIH 3T3 cells converts the cells to a transformed phenotype. The cells become tumorigenic, display anchorage independent growth in semi-solid medium and lose contact inhibition. Loss of contact inhibition produces cell cultures which no longer form uniform monolayers. Rather, the cells pile up into multicellular nodules and grow to very high saturation densities in plastic tissue culture dishes. Agents such as protein farnesyl transferase inhibitors which revert the ras transformed phenotype restore the uniform monolayer growth pattern to cells in culture. This reversion is easily monitored by counting the number of cells in tissue culture plates. Transformed cells will achieve higher cell numbers than cells which have reverted to an untransformed phenotype. Compounds which revert the transformed phenotype should produce antitumor effects in tumors bearing ras gene mutations.
Method:
Compounds are screened in tissue culture in NIH 3T3 cells transformed by the T24 activated human H-ras gene. Cells are seeded at an initial density of 200,000 cells per well (9.6 cm2 surface area) in six-well cluster tissue culture plates. Test compounds are immediately added to 3.0 ml cell growth medium in a 3.0 μl volume of DMSO, with a final concentration of DMSO in the cell growth medium of 0.1%. The test compounds are run at concentrations of 5, 10, 50, 100, and 500 nM along with a DMSO treated vehicle control. (In case a high activity is observed at 5 nM, the test compound is tested at even lower concentrations.) The cells are allowed to proliferate for 72 hours. Then the cells are detached in 1.0 ml trypsin-EDTA cell dissociation medium and counted on a Coulter particle counter.
Measurements:
Cell numbers expressed as cells per well are measured using a Coulter Particle Counter.
All cell counts were corrected for the initial cell input density by subtracting 200,000.
Control cell counts=[cell counts from cells incubated with DMSO vehicle −200,000].
IC50 (i.e. the test compound concentration required to inhibit enzyme activity by 50%) is calculated if sufficient data are available, summarized in table 11.
TABLE 11 | |||||
Co. No. | IC50 (nM) | Co. No. | IC50 (nM) | ||
5 | 32 | 88 | 136 | ||
12 | 66 | 89 | 24 | ||
14 | 3.8 | 91 | 47 | ||
22 | 63 | 92 | 218 | ||
23 | 395 | 93 | 45 | ||
24 | 16 | 94 | 62 | ||
25 | 86 | 96 | 0.78 | ||
29 | 345 | 98 | 15 | ||
34 | 3.0 | 100 | 11 | ||
35 | 3.4 | 101 | 366 | ||
39 | 104 | 102 | 24 | ||
40 | 340 | 104 | 4.5 | ||
56 | 23 | 105 | 3.8 | ||
58 | 96 | 107 | 12 | ||
59 | 0.4 | 109 | 409 | ||
60 | 70 | 111 | 16 | ||
61 | 310 | 112 | 18 | ||
63 | 53 | 119 | 46 | ||
66 | 19 | 120 | 7 | ||
67 | 51 | 122 | 133 | ||
68 | 35 | 123 | 41 | ||
69 | 14 | 125 | 128 | ||
71 | 288 | 126 | 208 | ||
72 | 4.6 | 128 | 177 | ||
73 | 6.1 | 130 | 3.2 | ||
74 | 100 | 130 | 547 | ||
75 | 1.7 | 137 | 655 | ||
76 | 18 | 143 | 82 | ||
78 | 4.6 | 146 | 65 | ||
79 | 657 | 148 | 25 | ||
80 | 500 | 152 | 67 | ||
81 | 83 | 153 | 3.5 | ||
83 | 174 | 154 | 4.5 | ||
84 | 231 | 155 | 69 | ||
86 | 91 | 156 | 25 | ||
87 | 251 | 160 | 40 | ||
The enzyme farnesyl protein transferase catalyzes the covalent attachment of a farnesyl moiety derived from farnesyl pyrophosphate to the oncogene product p21ras. This directs p21ras to attach to plasma membranes. Once attached to plasma membranes, mutant or oncogenic forms of p21ras will provide a signal for the transformation and uncontrolled growth of malignant tumor cells. Therefore, inhibitors of protein farnesyl transferase will prevent the membrane attachment of p21ras and inhibit growth of ras-transformed tumors.
Nude mice are inoculated with 1×106 of T24 activated human H-ras gene transformed NIH 3T3 fibroblast cells (T24 cells), subcutaneously in the inguinal region. After three days to allow tumors to become established, treatment with test compounds is begun via the oral route. The test compounds are dissolved in a 20% β-cyclodextrin in 0.1 N HCl solution and administered orally as 0.1 ml of compound solution per 10 g mouse body weight. Routinely used doses are 6.25, 12.5 and 25 mg/kg. Body weights and tumor sizes are monitored during the ensuing 15 days of treatment. At the end of treatment, animals are sacrificed and tumors are weighed.
The “mean vehicle treated tumor weight” is defined as the mean tumor weight from 10 to 15 mice treated with the test compound.
The “mean tumor weight” is defined as the mean tumor weight from 10 to 15 mice not treated with the test compound.
TABLE 12 | |||
% reduction final tumor weight | |||
Co. No. | at a dose of 25 mg/kg bid, po | ||
14 | 66% | ||
34 | 56% | ||
35 | 39% | ||
56 | 42% | ||
59 | 56% | ||
75 | 86% | ||
The following formulations exemplify typical pharmaceutical compositions in dosage unit form suitable for systemic or topical administration to warm-blooded animals in accordance with the present invention.
“Active ingredient” (A.I.) as used throughout these examples relates to a compound of formula (I), a pharmaceutically acceptable acid or base addition salt or a stereochemically isomeric form thereof.
9 g of methyl 4-hydroxybenzoate and 1 g of propyl 4-hydroxybenzoate are dissolved in 4 l of boiling purified water. In 3 l of this solution are dissolved first 10 g of 2,3-dihydroxybutanedioic acid and thereafter 20 g of the A.I. The latter solution is combined with the remaining part of the former solution and 12 l of 1,2,3-propanetriol and 3 l of sorbitol 70% solution are added thereto. 40 g of sodium saccharin are dissolved in 0.5 l of water and 2 ml of raspberry and 2 ml of gooseberry essence are added. The latter solution is combined with the former, water is added q.s. to a volume of 20 l providing an oral solution comprising 5 mg of the A.I. per teaspoonful (5 ml). The resulting solution is filled in suitable containers.
20 g of the A.I., 6 g sodium lauryl sulfate, 56 g starch, 56 g lactose, 0.8 g colloidal silicon dioxide, and 1.2 g magnesium stearate are vigorously stirred together. The resulting mixture is subsequently filled into 1000 suitable hardened gelatin capsules, each comprising 20 mg of the A.I.
Preparation of Tablet Core
A mixture of 100 g of the A.I., 570 g lactose and 200 g starch is mixed well and thereafter humidified with a solution of 5 g sodium dodecyl sulfate and 10 g polyvinyl-pyrrolidone in about 200 ml of water. The wet powder mixture is sieved, dried and sieved again. Then there are added 100 g microcrystalline cellulose and 15 g hydrogenated vegetable oil. The whole is mixed well and compressed into tablets, giving 10,000 tablets, each comprising 10 mg of the active ingredient.
Coating
To a solution of 10 g methyl cellulose in 75 ml of denaturated ethanol there is added a solution of 5 g of ethyl cellulose in 150 ml of dichloromethane. Then there are added 75 ml of dichloromethane and 2.5 ml 1,2,3-propanetriol. 10 g of polyethylene glycol is molten and dissolved in 75 ml of dichloromethane. The latter solution is added to the former and then there are added 2.5 g of magnesium octadecanoate, 5 g of polyvinylpyrrolidone and 30 ml of concentrated colour suspension and the whole is homogenated. The tablet cores are coated with the thus obtained mixture in a coating apparatus.
1.8 g methyl 4-hydroxybenzoate and 0.2 g propyl 4-hydroxybenzoate were dissolved in about 0.5 l of boiling water for injection. After cooling to about 50° C. there were added while stirring 4 g lactic acid, 0.05 g propylene glycol and 4 g of the A.I. The solution was cooled to room temperature and supplemented with water for injection q.s. ad 1 l volume, giving a solution of 4 mg/ml of A.I. The solution was sterilized by filtration and filled in sterile containers.
3 Grams A.I. was dissolved in a solution of 3 grams 2,3-dihydroxybutanedioic acid in 25 ml polyethylene glycol 400. 12 Grams surfactant and 300 grams triglycerides were molten together. The latter mixture was mixed well with the former solution. The thus obtained mixture was poured into moulds at a temperature of 37-38° C. to form 100 suppositories each containing 30 mg/ml of the A.I.
Claims (2)
1. A compound which is an enantiomer of 6-(amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl)-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone having an [α]D 20 value of +22.86° (c=49.22 mg/5 ml, methanol) or a pharmaceutically acceptable acid addition salt thereof.
2. A pharmaceutical composition comprising an enantiomer of 6-(amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl)-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone having an [α]D 20 value of +22.86° (c=49.22 mg/5 ml, methanol) or a pharmaceutically acceptable acid addition salt thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/689,211 US6420387B1 (en) | 1995-12-08 | 2000-10-12 | Farnesyl protein transferase inhibiting (imidazol-5-yl) methyl-2-quinolinone derivatives |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95203427 | 1995-12-08 | ||
EP95203427 | 1995-12-08 | ||
US09/363,353 US6169096B1 (en) | 1995-12-08 | 1999-07-29 | Farnesyl protein transferase inhibiting (imidazol-5-yl)methyl-2-quinolinone derivatives |
US09/689,211 US6420387B1 (en) | 1995-12-08 | 2000-10-12 | Farnesyl protein transferase inhibiting (imidazol-5-yl) methyl-2-quinolinone derivatives |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/363,353 Continuation US6169096B1 (en) | 1995-12-08 | 1999-07-29 | Farnesyl protein transferase inhibiting (imidazol-5-yl)methyl-2-quinolinone derivatives |
Publications (1)
Publication Number | Publication Date |
---|---|
US6420387B1 true US6420387B1 (en) | 2002-07-16 |
Family
ID=8220926
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/084,717 Expired - Lifetime US6037350A (en) | 1995-12-08 | 1996-10-16 | Farnesyl protein transferase inhibiting (imidazol-5-yl)methyl-2-quionlinone derivatives |
US09/363,353 Expired - Lifetime US6169096B1 (en) | 1995-12-08 | 1999-07-29 | Farnesyl protein transferase inhibiting (imidazol-5-yl)methyl-2-quinolinone derivatives |
US09/689,211 Expired - Lifetime US6420387B1 (en) | 1995-12-08 | 2000-10-12 | Farnesyl protein transferase inhibiting (imidazol-5-yl) methyl-2-quinolinone derivatives |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/084,717 Expired - Lifetime US6037350A (en) | 1995-12-08 | 1996-10-16 | Farnesyl protein transferase inhibiting (imidazol-5-yl)methyl-2-quionlinone derivatives |
US09/363,353 Expired - Lifetime US6169096B1 (en) | 1995-12-08 | 1999-07-29 | Farnesyl protein transferase inhibiting (imidazol-5-yl)methyl-2-quinolinone derivatives |
Country Status (36)
Country | Link |
---|---|
US (3) | US6037350A (en) |
EP (2) | EP1162201B1 (en) |
JP (1) | JP3257559B2 (en) |
KR (1) | KR100272676B1 (en) |
CN (1) | CN1101392C (en) |
AP (1) | AP1108A (en) |
AR (1) | AR004992A1 (en) |
AT (2) | ATE321757T1 (en) |
AU (1) | AU711142B2 (en) |
BG (1) | BG62615B1 (en) |
BR (1) | BR9610745A (en) |
CA (1) | CA2231105C (en) |
CY (1) | CY2289B1 (en) |
CZ (1) | CZ293296B6 (en) |
DE (2) | DE69620445T2 (en) |
DK (2) | DK0865440T3 (en) |
EA (1) | EA000710B1 (en) |
EE (1) | EE03484B1 (en) |
ES (2) | ES2175137T3 (en) |
HK (2) | HK1012188A1 (en) |
HR (1) | HRP960576B1 (en) |
HU (1) | HU221227B1 (en) |
IL (1) | IL123568A (en) |
MX (1) | MX9802068A (en) |
MY (1) | MY114444A (en) |
NO (1) | NO314036B1 (en) |
NZ (1) | NZ320244A (en) |
PL (1) | PL184171B1 (en) |
PT (2) | PT1162201E (en) |
SI (2) | SI0865440T1 (en) |
SK (1) | SK283335B6 (en) |
TR (1) | TR199800825T2 (en) |
TW (1) | TW494101B (en) |
UA (1) | UA57717C2 (en) |
WO (1) | WO1997021701A1 (en) |
ZA (1) | ZA9610254B (en) |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040067968A1 (en) * | 2000-12-27 | 2004-04-08 | Angibaud Patrick Rene | Farnesyl transferase inhibiting 4-heterocyclyl quinoline and quinazoline |
US20040265315A1 (en) * | 2002-09-05 | 2004-12-30 | Christine Dingivan | Methods of preventing or treating T cell malignancies by administering CD2 antagonists |
WO2005042743A2 (en) | 2003-08-18 | 2005-05-12 | Medimmune, Inc. | Humanization of antibodies |
US20050272068A1 (en) * | 2004-03-18 | 2005-12-08 | The Brigham And Women's Hospital, Inc. | UCH-L1 expression and cancer therapy |
EP1611890A1 (en) | 2004-07-01 | 2006-01-04 | Veridex, LLC | Methods for assessing and treating cancer |
US20060194821A1 (en) * | 2005-02-18 | 2006-08-31 | The Brigham And Women's Hospital, Inc. | Compounds inhibiting the aggregation of superoxide dismutase-1 |
WO2006102095A2 (en) | 2005-03-18 | 2006-09-28 | Medimmune, Inc. | Framework-shuffling of antibodies |
US20060281788A1 (en) * | 2005-06-10 | 2006-12-14 | Baumann Christian A | Synergistic modulation of flt3 kinase using a flt3 inhibitor and a farnesyl transferase inhibitor |
WO2007002543A2 (en) | 2005-06-23 | 2007-01-04 | Medimmune, Inc. | Antibody formulations having optimized aggregation and fragmentation profiles |
WO2007075923A2 (en) | 2005-12-23 | 2007-07-05 | Link Medicine Corporation | Treatment of synucleinopathies |
US20070249680A1 (en) * | 2006-04-20 | 2007-10-25 | Illig Carl R | Inhibitors of c-fms kinase |
US20080051402A1 (en) * | 2006-04-20 | 2008-02-28 | Illig Carl R | Method of inhibiting c-kit kinase |
US20090105296A1 (en) * | 2007-10-17 | 2009-04-23 | Illig Carl R | Inhibitors of c-fms kinase |
EP2206516A1 (en) | 2002-06-14 | 2010-07-14 | Medimmune, LLC | Stabilized liquid anti-RSV antibody formulations |
EP2210606A2 (en) | 2002-11-06 | 2010-07-28 | Celgene Corporation | Methods Of Using And Compositions Comprising Immunomodulatory Compounds For The Treatment And Management Of Myeloproliferative Diseases |
US20100197729A1 (en) * | 2007-05-23 | 2010-08-05 | Allerdan, Inc. | Therapeutic ((phenyl)imidazolyl)methylquinolinyl compounds |
EP2292663A2 (en) | 2006-08-28 | 2011-03-09 | Kyowa Hakko Kirin Co., Ltd. | Antagonistic human light-specific human monoclonal antibodies |
EP2316487A1 (en) | 2003-04-11 | 2011-05-04 | MedImmune, LLC | Recombinant IL-9 antibodies & uses thereof |
US20110195960A1 (en) * | 2006-04-20 | 2011-08-11 | Illig Carl R | Inhibitors of c-fms kinase |
US8034831B2 (en) | 2002-11-06 | 2011-10-11 | Celgene Corporation | Methods for the treatment and management of myeloproliferative diseases using 4-(amino)-2-(2,6-Dioxo(3-piperidyl)-isoindoline-1,3-dione in combination with other therapies |
EP2422811A2 (en) | 2004-10-27 | 2012-02-29 | MedImmune, LLC | Modulation of antibody specificity by tailoring the affinity to cognate antigens |
US8232402B2 (en) | 2008-03-12 | 2012-07-31 | Link Medicine Corporation | Quinolinone farnesyl transferase inhibitors for the treatment of synucleinopathies and other indications |
US8343996B2 (en) | 2008-11-13 | 2013-01-01 | Astrazeneca Ab | Azaquinolinone derivatives and uses thereof |
EP2543368A1 (en) | 2007-12-11 | 2013-01-09 | Viamet Pharmaceuticals, Inc. | Metalloenzyme inhibitors using metal binding moieties in combination with targeting moieties |
EP2570432A1 (en) | 2002-06-14 | 2013-03-20 | Medimmune, Inc. | Stabilized anti-respiratory syncytial virus (RSV) antibody formulations |
WO2014018625A1 (en) | 2012-07-25 | 2014-01-30 | Kolltan Pharmaceuticals, Inc. | Anti-kit antibodies and uses thereof |
EP2703007A1 (en) | 2007-03-30 | 2014-03-05 | MedImmune, LLC | Antibodies with decreased deamidation profiles |
WO2014059028A1 (en) | 2012-10-09 | 2014-04-17 | Igenica, Inc. | Anti-c16orf54 antibodies and methods of use thereof |
WO2014197849A2 (en) | 2013-06-06 | 2014-12-11 | Igenica Biotherapeutics, Inc. | Anti-c10orf54 antibodies and uses thereof |
WO2015053871A2 (en) | 2013-08-26 | 2015-04-16 | MabVax Therapeutics, Inc. | NUCLEIC ACIDS ENCODING HUMAN ANTIBODIES TO SIALYL-LEWISa |
US9029352B2 (en) | 2012-08-07 | 2015-05-12 | Janssen Pharmaceutica Nv | Process for the preparation of C-FMS kinase inhibitors |
WO2015187811A2 (en) | 2014-06-04 | 2015-12-10 | MabVax Therapeutics, Inc. | Human monoclonal antibodies to ganglioside gd2 |
US9303046B2 (en) | 2012-08-07 | 2016-04-05 | Janssen Pharmaceutica Nv | Process for the preparation of heterocyclic ester derivatives |
WO2016139482A1 (en) | 2015-03-03 | 2016-09-09 | Kymab Limited | Antibodies, uses & methods |
WO2017096051A1 (en) | 2015-12-02 | 2017-06-08 | Stcube & Co., Inc. | Antibodies and molecules that immunospecifically bind to btn1a1 and the therapeutic uses thereof |
US9707221B2 (en) | 2015-08-17 | 2017-07-18 | Kura Oncology, Inc. | Methods of treating cancer patients with farnesyltransferase inhibitors |
WO2018083248A1 (en) | 2016-11-03 | 2018-05-11 | Kymab Limited | Antibodies, combinations comprising antibodies, biomarkers, uses & methods |
WO2018222689A1 (en) | 2017-05-31 | 2018-12-06 | Stcube & Co., Inc. | Antibodies and molecules that immunospecifically bind to btn1a1 and the therapeutic uses thereof |
WO2018222685A1 (en) | 2017-05-31 | 2018-12-06 | Stcube & Co., Inc. | Methods of treating cancer using antibodies and molecules that immunospecifically bind to btn1a1 |
WO2018226671A1 (en) | 2017-06-06 | 2018-12-13 | Stcube & Co., Inc. | Methods of treating cancer using antibodies and molecules that bind to btn1a1 or btn1a1-ligands |
WO2019073069A1 (en) | 2017-10-13 | 2019-04-18 | Boehringer Ingelheim International Gmbh | Human antibodies to thomsen-nouvelle (tn) antigen |
EP3590539A1 (en) | 2014-03-04 | 2020-01-08 | Kymab Limited | Antibodies, uses & methods |
WO2020016459A1 (en) | 2018-07-20 | 2020-01-23 | Pierre Fabre Medicament | Receptor for vista |
US10828283B2 (en) | 2014-05-01 | 2020-11-10 | Eiger Biopharmaceuticals, Inc. | Treatment of hepatitis delta virus infection |
US10835496B2 (en) | 2015-04-21 | 2020-11-17 | Eiger Biopharmaceuticals, Inc. | Pharmaceutical compositions comprising lonafarnib and ritonavir |
EP3763740A1 (en) | 2011-01-26 | 2021-01-13 | Celldex Therapeutics, Inc. | Anti-kit antibodies and uses thereof |
US10954210B2 (en) | 2016-12-08 | 2021-03-23 | Hangzhou Solipharma Co., Ltd. | Crystal form of tipifarnib and preparation method and pharmaceutical composition thereof |
EP3800202A1 (en) | 2014-12-11 | 2021-04-07 | Pierre Fabre Medicament | Anti-c10orf54 antibodies and uses thereof |
US11124839B2 (en) | 2016-11-03 | 2021-09-21 | Kura Oncology, Inc. | Methods of treating cancer patients with farnesyltransferase inhibitors |
US11253590B2 (en) | 2015-12-02 | 2022-02-22 | Stsciences, Inc. | Antibodies specific to glycosylated BTLA (B- and T- lymphocyte attenuator) |
US11311519B2 (en) | 2014-05-01 | 2022-04-26 | Eiger Biopharmaceuticals, Inc. | Treatment of hepatitis delta virus infection |
Families Citing this family (177)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69620445T2 (en) * | 1995-12-08 | 2002-12-12 | Janssen Pharmaceutica N.V., Beerse | (IMIDAZOL-5-YL) METHYL-2-CHINOLINO DERIVATIVES AS A FARNESYL PROTEIN TRANSFERASE INHIBITOR |
DE69807222T2 (en) | 1997-06-02 | 2003-04-17 | Janssen Pharmaceutica N.V., Beerse | (IMIDAZOL-5-YL) METHYL-2-QUINOLINONE DERIVATIVES AS INHIBITORS OF PROLIFERATION OF SMOOTH MUSCLE CELLS |
US20030114503A1 (en) * | 1997-06-16 | 2003-06-19 | Pfizer Inc. | Farnesyl transferase inhibitors in combination with HMG CoA reductase inhibitors for the treatment of cancer |
US6420555B1 (en) | 1998-06-16 | 2002-07-16 | Societe De Conseils De Recherches Et D'applications Scientifiques, S.A.S. | Imidazolyl derivatives |
CA2335435A1 (en) * | 1998-06-16 | 1999-12-23 | Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R | Imidazolyl derivatives |
BR9911869A (en) | 1998-07-06 | 2001-03-27 | Janssen Pharmaceutica Nv | Farnesyl protein transferase inhibitors for the treatment of arthropathies |
CN1152716C (en) | 1998-07-06 | 2004-06-09 | 詹森药业有限公司 | Farnesyl protein transferase inhibitors with i(IN VIVO) Radiosensitizing |
FR2780892B1 (en) * | 1998-07-08 | 2001-08-17 | Sod Conseils Rech Applic | USE OF PRENYLTRANSFERASE INHIBITORS FOR THE PREPARATION OF A MEDICINAL PRODUCT FOR TREATING CONDITIONS RESULTING FROM MEMBRANE FIXATION OF HETEROTRIMERIC PROTEIN |
DE69923849T2 (en) | 1998-08-27 | 2006-01-12 | Pfizer Products Inc., Groton | QUINOLIN-2-ON DERIVATIVES USE AS ANTICROPHOSIS |
OA11645A (en) * | 1998-08-27 | 2004-11-16 | Pfizer Prod Inc | Alkynyl-substituted quinolin-2-one derivatives useful as anticancer agents. |
AU2478500A (en) | 1998-12-08 | 2000-06-26 | Merck & Co., Inc. | Inhibitors of prenyl-protein transferase |
AU2477400A (en) | 1998-12-08 | 2000-06-26 | Merck & Co., Inc. | Inhibitors of prenyl-protein transferase |
TW531533B (en) | 1998-12-23 | 2003-05-11 | Janssen Pharmaceutica Nv | 1,2-annelated quinoline derivatives having farnesyl transferase and geranylgeranyl transferase inhibiting activity |
UA71945C2 (en) | 1999-01-27 | 2005-01-17 | Pfizer Prod Inc | Substituted bicyclic derivatives being used as anticancer agents |
JP3270834B2 (en) | 1999-01-27 | 2002-04-02 | ファイザー・プロダクツ・インク | Heteroaromatic bicyclic derivatives useful as anticancer agents |
CN1340051A (en) | 1999-02-11 | 2002-03-13 | 辉瑞产品公司 | Heteroaryl-substituted quinoline-2-one derivatives useful asticancer agents |
US6143766A (en) * | 1999-04-16 | 2000-11-07 | Warner-Lambert Company | Benzopyranone and quinolone inhibitors of ras farnesyl transferase |
EP1420015A1 (en) * | 1999-06-11 | 2004-05-19 | Societe De Conseils De Recherches Et D'applications Scientifiques S.A.S. | Imidazolyl derivatives |
FR2796943A1 (en) * | 1999-07-30 | 2001-02-02 | Aventis Pharma Sa | BENZOXAZINN DERIVATIVES, THEIR PREPARATION PROCESS AND THEIR USE IN THERAPEUTICS |
CZ20021550A3 (en) * | 1999-11-09 | 2003-02-12 | Societe De Conseils De Recherches Et D'application | Product comprising inhibitor of heterotrimeric G protein transduction signals combined with another anticancer agent for therapeutic in cancer treatment |
DE60008206T2 (en) * | 1999-11-30 | 2004-12-02 | Pfizer Products Inc., Groton | Quinoline derivatives can be used to inhibit farnesyl protein transferase |
HN2000000266A (en) * | 2000-01-21 | 2001-05-21 | Pfizer Prod Inc | ANTI-TARGET COMPOUND AND METHOD OF SEPARATION OF ENANTIOMERS USEFUL TO SYNTHEIZE SUCH COMPOUND. |
DE60118889T2 (en) * | 2000-02-04 | 2006-11-30 | Janssen Pharmaceutica N.V. | FARNESYL PROTEIN TRANSFERASE INHIBITORS FOR THE TREATMENT OF BREAST CANCER |
US6838467B2 (en) | 2000-02-24 | 2005-01-04 | Janssen Pharmaceutica N. V. | Dosing regimen |
CA2397475A1 (en) * | 2000-02-29 | 2001-09-07 | Janssen Pharmaceutica N.V. | Farnesyl protein transferase inhibitor combinations with vinca alkaloids |
EP1267929A2 (en) * | 2000-02-29 | 2003-01-02 | Janssen Pharmaceutica N.V. | Farnesyl protein transferase inhibitor combinations with an her2 antibody |
WO2001064197A2 (en) * | 2000-02-29 | 2001-09-07 | Janssen Pharmaceutica N.V. | Farnesyl protein transferase inhibitor combinations with anti-tumor anthracycline derivatives |
JP2003525239A (en) * | 2000-02-29 | 2003-08-26 | ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ | Combination of farnesyl protein transferase inhibitor with taxane compound |
CA2397256A1 (en) * | 2000-02-29 | 2001-09-07 | Mary Ellen Margaret Rybak | Farnesyl protein transferase inhibitor combinations with anti-tumor podophyllotoxin derivatives |
AU2001246477A1 (en) * | 2000-02-29 | 2001-09-12 | Janssen Pharmaceutica N.V. | Farnesyl protein transferase inhibitor combinations with platinum compounds |
CA2397240A1 (en) * | 2000-02-29 | 2001-09-07 | Peter Albert Palmer | Farnesyl protein transferase inhibitor combinations with camptothecin compounds |
CA2397448A1 (en) * | 2000-02-29 | 2001-09-07 | Janssen Pharmaceutica N.V. | Farnesyl protein transferase inhibitor combinations with further anti-cancer agents |
AU2001256166A1 (en) * | 2000-02-29 | 2001-09-12 | Janssen Pharmaceutica N.V. | Farnesyl protein transferase inhibitor combinations with anti-tumor nucleoside derivatives |
WO2001064217A2 (en) * | 2000-02-29 | 2001-09-07 | Janssen Pharmaceutica N.V. | Combinations of a farnesyl protein transferase inhibitor with nitrogen mustard or nitrosourea alkylating agents |
CA2397694A1 (en) * | 2000-02-29 | 2001-09-07 | Janssen Pharmaceutica Inc. | Farnesyl protein transferase inhibitor combinations |
US6844357B2 (en) * | 2000-05-01 | 2005-01-18 | Pfizer Inc. | Substituted quinolin-2-one derivatives useful as antiproliferative agents |
JO2361B1 (en) * | 2000-06-22 | 2006-12-12 | جانسين فارماسيوتيكا ان. في | Farnesyl transferase inhibiting 1-2 annelated quinoline enantiomer |
US7196094B2 (en) | 2000-09-25 | 2007-03-27 | Janssen Pharmaceutica, N.V. | Farnesyl transferase inhibiting 6-heterocyclylmethyl quinoline and quinazoline derivatives |
JP4974437B2 (en) * | 2000-09-25 | 2012-07-11 | ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ | 6-[(Substituted phenyl) methyl] -quinoline and quinazoline derivatives that inhibit farnesyltransferase |
EP1322635B1 (en) | 2000-09-25 | 2006-03-22 | Janssen Pharmaceutica N.V. | Farnesyl transferase inhibiting quinoline and quinazoline derivatives as farnesyl transferase inhibitors |
EP1322644A1 (en) * | 2000-09-25 | 2003-07-02 | Janssen Pharmaceutica N.V. | Farnesyl transferase inhibiting 6-heterocyclylmethyl quinolinone derivatives |
ES2328225T3 (en) | 2000-11-21 | 2009-11-11 | Janssen Pharmaceutica Nv | INHIBITING BENZOHETEROCICLIC DERIVATIVES OF THE FARNESIL-TRANSFERASA. |
DK1339407T3 (en) * | 2000-11-28 | 2006-08-14 | Janssen Pharmaceutica Nv | Farnesyl protein transferase inhibitors for the treatment of inflammatory bowel disease |
CA2632091C (en) | 2000-12-19 | 2011-03-22 | Pfizer Products Inc. | Crystal forms of 6-[(4-chloro-phenyl)-hydroxy-(3-methyl-3h-imidazol-4-yl)-methyl]-4-(3-ethynyl-phenyl)-1-methyl-1h-quinolin-2-one, 2,3-dihydroxybutanedioate salts and method of production |
ATE319704T1 (en) | 2000-12-27 | 2006-03-15 | Janssen Pharmaceutica Nv | FARNESYL TRANSFERASE INHIBITING QUINOLINE AND QUINAZOLINE DERIVATIVES SUBSTITUTED IN THE 4-POSITION |
WO2002056884A2 (en) * | 2001-01-22 | 2002-07-25 | Schering Corporation | Treatment of malaria with farnesyl protein transferase inhibitors |
DE60230017D1 (en) * | 2001-02-15 | 2009-01-08 | Janssen Pharmaceutica Nv | FARNESYL PROTEIN TRANSFERASE HEMMER IN COMBINATION WITH ANTI-OROTE |
AU2002253101B2 (en) * | 2001-03-12 | 2007-08-09 | Janssen Pharmaceutica N.V. | Process for the preparation of imidazole compounds |
US20020151563A1 (en) * | 2001-03-29 | 2002-10-17 | Pfizer Inc. | Farnesyl transferase inhibitors in combination with HMG CoA reductase inhibitors for the inhibition of abnormal cell growth |
US6706699B2 (en) * | 2001-06-21 | 2004-03-16 | Ariad Pharmaceuticals, Inc. | Quinolines and uses thereof |
US6713462B2 (en) | 2001-06-21 | 2004-03-30 | Ariad Pharmaceuticals, Inc. | Quinolinones and uses thereof |
US6740757B2 (en) | 2001-08-29 | 2004-05-25 | Pfizer Inc | Enantiomers of 6-[(4-chloro-phenyl)-hydroxy-(3-methyl-3h-imidazol-4-yl)-methyl]-4-[3-(3-hydroxy-3-methyl-but-1-ynyl)-phenyl]-1-methyl-1h-quinolin-2-one and salts thereof, useful in the treatment of cancer |
US20030134846A1 (en) * | 2001-10-09 | 2003-07-17 | Schering Corporation | Treatment of trypanosoma brucei with farnesyl protein transferase inhibitors |
US7408063B2 (en) | 2001-12-19 | 2008-08-05 | Janssen Pharmaceutica, N.V. | 1,8-annelated quinoline derivatives substituted with carbon-linked triazoles as farnesyl transferase inhibitors |
US7241777B2 (en) | 2002-03-22 | 2007-07-10 | Janssen Pharmaceutica N.V. | Benzylimidazolyl substituted 2-quinoline and quinazoline derivatives for use as farnesyl transferase inhibitors |
DE60307616T2 (en) | 2002-04-15 | 2007-10-04 | Janssen Pharmaceutica N.V. | FARNESYL TRANSFERASE-INHIBITING TRICYCLIC QUINAZOLE DERIVATIVES SUBSTITUTES WITH CARBIDE-BONDED IMIDAZOLS OR TRIAZOLS |
US20030125268A1 (en) * | 2002-08-28 | 2003-07-03 | Rybak Mary Ellen Margaret | Farnesyl protein transferase inhibitor combinations with anti-tumor anthracycline derivatives |
US7326788B2 (en) * | 2003-07-22 | 2008-02-05 | Janssen Pharmaceutica N.V. | Quinolinone derivatives as inhibitors of c-fms kinase |
US20060228350A1 (en) * | 2003-08-18 | 2006-10-12 | Medimmune, Inc. | Framework-shuffling of antibodies |
US7825131B2 (en) | 2003-09-23 | 2010-11-02 | Merck Sharp & Dohme Corp. | Quinoline potassium channel inhibitors |
US20050288298A1 (en) * | 2004-03-18 | 2005-12-29 | The Brigham And Women's Hospital, Inc. | Methods for the treatment of synucleinopathies |
EP1744751A4 (en) * | 2004-03-18 | 2010-03-10 | Brigham & Womens Hospital | Methods for the treatment of synucleinopathies |
US20050272722A1 (en) * | 2004-03-18 | 2005-12-08 | The Brigham And Women's Hospital, Inc. | Methods for the treatment of synucleinopathies |
US20060106060A1 (en) * | 2004-03-18 | 2006-05-18 | The Brigham And Women's Hospital, Inc. | Methods for the treatment of synucleinopathies (Lansbury) |
US20070293539A1 (en) * | 2004-03-18 | 2007-12-20 | Lansbury Peter T | Methods for the treatment of synucleinopathies |
US7524961B2 (en) | 2004-05-03 | 2009-04-28 | Janssen Pharmaceutica, N.V. | Diastereoselective addition of lithiated N-methylimidazole on sulfinimines |
ATE471316T1 (en) * | 2004-05-03 | 2010-07-15 | Janssen Pharmaceutica Nv | DIASTEREOSELECTIVE SYNTHESIS METHOD USING 6-BROMINE-4-(3-CHLORPHENYL)-2-METHOXYQUINOLINE |
CA2563807C (en) * | 2004-05-03 | 2012-11-20 | Janssen Pharmaceutica N.V. | Diastereoselective synthesis process for the preparation of imidazole compounds |
CA2571421A1 (en) | 2004-06-24 | 2006-01-05 | Nicholas Valiante | Compounds for immunopotentiation |
GB0420722D0 (en) | 2004-09-17 | 2004-10-20 | Addex Pharmaceuticals Sa | Novel allosteric modulators |
DK1815247T3 (en) | 2004-11-05 | 2013-03-11 | Janssen Pharmaceutica Nv | Therapeutic use of farnesyl transferase inhibitors and methods for monitoring their efficacy |
ATE550019T1 (en) | 2005-05-17 | 2012-04-15 | Merck Sharp & Dohme | CIS-4-Ä(4-CHLOROPHENYL)SULFONYLÜ-4-(2,5-DIFLUOROPHENYL)CYCLOHEXANEPROPANE ACID FOR THE TREATMENT OF CANCER |
US20060281769A1 (en) * | 2005-06-10 | 2006-12-14 | Baumann Christian A | Synergistic modulation of flt3 kinase using thienopyrimidine and thienopyridine kinase modulators |
US20060281755A1 (en) * | 2005-06-10 | 2006-12-14 | Baumann Christian A | Synergistic modulation of flt3 kinase using aminopyrimidines kinase modulators |
US20070004660A1 (en) * | 2005-06-10 | 2007-01-04 | Baumann Christian A | Synergistic Modulation of Flt3 Kinase Using Alkylquinolines and Alkylquinazolines |
JP5225092B2 (en) * | 2005-10-14 | 2013-07-03 | ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ | A novel IV formulation of tipifarnib |
JO2660B1 (en) | 2006-01-20 | 2012-06-17 | نوفارتيس ايه جي | PI-3 Kinase inhibitors and methods of their use |
GB0603041D0 (en) | 2006-02-15 | 2006-03-29 | Angeletti P Ist Richerche Bio | Therapeutic compounds |
AR059898A1 (en) | 2006-03-15 | 2008-05-07 | Janssen Pharmaceutica Nv | DERIVATIVES OF 3-CIANO-PIRIDONA 1,4-DISUSTITUTED AND ITS USE AS ALLOSTERIC MODULATORS OF MGLUR2 RECEIVERS |
TW200808739A (en) | 2006-04-06 | 2008-02-16 | Novartis Vaccines & Diagnostic | Quinazolines for PDK1 inhibition |
CA2664113C (en) | 2006-09-22 | 2013-05-28 | Merck & Co., Inc. | Use of platencin and platensimycin as fatty acid synthesis inhibitors to treat obesity, diabetes and cancer |
US20110218176A1 (en) | 2006-11-01 | 2011-09-08 | Barbara Brooke Jennings-Spring | Compounds, methods, and treatments for abnormal signaling pathways for prenatal and postnatal development |
PL2109608T3 (en) | 2007-01-10 | 2011-08-31 | Msd Italia Srl | Amide substituted indazoles as poly(adp-ribose)polymerase (parp) inhibitors |
WO2008106692A1 (en) | 2007-03-01 | 2008-09-04 | Novartis Vaccines And Diagnostics, Inc. | Pim kinase inhibitors and methods of their use |
TW200900065A (en) | 2007-03-07 | 2009-01-01 | Janssen Pharmaceutica Nv | 3-cyano-4-(4-pyridinyloxy-phenyl)-pyridin-2-one derivatives |
TW200845978A (en) | 2007-03-07 | 2008-12-01 | Janssen Pharmaceutica Nv | 3-cyano-4-(4-tetrahydropyran-phenyl)-pyridin-2-one derivatives |
JO2959B1 (en) | 2007-05-14 | 2016-03-15 | جانسين فارماسوتيكا ان. في | Mono-Hydrochloric Salts Of An Inhibitor Of Histone Deacetylase |
KR20100017866A (en) | 2007-05-21 | 2010-02-16 | 노파르티스 아게 | Csf-1r inhibitors, compositions, and methods of use |
CA2690191C (en) | 2007-06-27 | 2015-07-28 | Merck Sharp & Dohme Corp. | 4-carboxybenzylamino derivatives as histone deacetylase inhibitors |
NZ584145A (en) | 2007-09-14 | 2012-03-30 | Ortho Mcneil Janssen Pharm | 1',3'-disubstituted-4-phenyl-3,4,5,6-tetrahydro-2h, 1'h-[1,4'] bipyridinyl-2'-ones |
EA019085B1 (en) | 2007-09-14 | 2014-01-30 | Янссен Фармасьютикалз, Инк. | 1,3-disubstituted 4-(aryl-x-phenyl)-1h-pyridin-2-ones |
EP2215246B1 (en) | 2007-10-31 | 2015-01-07 | MedImmune, LLC | Protein scaffolds |
PA8809001A1 (en) | 2007-12-20 | 2009-07-23 | Novartis Ag | ORGANIC COMPOUNDS |
US7932036B1 (en) | 2008-03-12 | 2011-04-26 | Veridex, Llc | Methods of determining acute myeloid leukemia response to treatment with farnesyltransferase |
ES2439291T3 (en) | 2008-09-02 | 2014-01-22 | Janssen Pharmaceuticals, Inc. | 3-Azabicyclo [3.1.0] hexyl derivatives as modulators of metabotropic glutamate receptors |
US20110060005A1 (en) * | 2008-11-13 | 2011-03-10 | Link Medicine Corporation | Treatment of mitochondrial disorders using a farnesyl transferase inhibitor |
US20100331363A1 (en) * | 2008-11-13 | 2010-12-30 | Link Medicine Corporation | Treatment of mitochondrial disorders using a farnesyl transferase inhibitor |
BRPI0921113A2 (en) * | 2008-11-13 | 2016-02-16 | Link Medicine Corp | treatment of proteinopathies using a farnesyl transferase inhibitor. |
MX2011005242A (en) | 2008-11-28 | 2011-09-06 | Ortho Mcneil Janssen Pharm | Indole and benzoxazine derivatives as modulators of metabotropic glutamate receptors. |
WO2010114780A1 (en) | 2009-04-01 | 2010-10-07 | Merck Sharp & Dohme Corp. | Inhibitors of akt activity |
MY161325A (en) | 2009-05-12 | 2017-04-14 | Janssen Pharmaceuticals Inc | 1, 2, 4-triazolo[4,3-a]pyridine derivatives and their use for the treatment or prevention of neurological and psychiatric disorders |
MY153913A (en) | 2009-05-12 | 2015-04-15 | Janssen Pharmaceuticals Inc | 7-aryl-1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mglur2 receptors |
CA2760259C (en) | 2009-05-12 | 2018-05-01 | Janssen Pharmaceuticals, Inc. | 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mglur2 receptors |
US8765747B2 (en) | 2009-06-12 | 2014-07-01 | Dana-Farber Cancer Institute, Inc. | Fused 2-aminothiazole compounds |
US8293753B2 (en) | 2009-07-02 | 2012-10-23 | Novartis Ag | Substituted 2-carboxamide cycloamino ureas |
BR112012008849A2 (en) | 2009-10-14 | 2015-09-22 | Schering Corp | compound, pharmaceutical composition, and use of a compound |
US9180127B2 (en) | 2009-12-29 | 2015-11-10 | Dana-Farber Cancer Institute, Inc. | Type II Raf kinase inhibitors |
CN103080093A (en) | 2010-03-16 | 2013-05-01 | 达纳-法伯癌症研究所公司 | Indazole compounds and their uses |
EP2584903B1 (en) | 2010-06-24 | 2018-10-24 | Merck Sharp & Dohme Corp. | Novel heterocyclic compounds as erk inhibitors |
CA3186328A1 (en) | 2010-07-28 | 2012-02-02 | Janssen Pharmaceutica Nv | Methods of determining acute myeloid leukemia response to treatment with farnesyltransferase inhibitors |
CN103068980B (en) | 2010-08-02 | 2017-04-05 | 瑟纳治疗公司 | Using short interfering nucleic acid(siNA)The connection albumen led of mediated rnai(Cadherin related protein matter), β 1(CTNNB1)The suppression of gene expression |
AR082418A1 (en) | 2010-08-02 | 2012-12-05 | Novartis Ag | CRYSTAL FORMS OF 1- (4-METHYL-5- [2- (2,2,2-TRIFLUORO-1,1-DIMETHYL-Ethyl) -PIRIDIN-4-IL] -TIAZOL-2-IL) -AMIDE OF 2 -AMIDA OF THE ACID (S) -PIRROLIDIN-1,2-DICARBOXILICO |
SI2606134T1 (en) | 2010-08-17 | 2019-08-30 | Sirna Therapeutics, Inc. | RNA INTERFERENCE MEDIATED INHIBITION OF HEPATITIS B VIRUS (HBV) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
US8883801B2 (en) | 2010-08-23 | 2014-11-11 | Merck Sharp & Dohme Corp. | Substituted pyrazolo[1,5-a]pyrimidines as mTOR inhibitors |
WO2012030685A2 (en) | 2010-09-01 | 2012-03-08 | Schering Corporation | Indazole derivatives useful as erk inhibitors |
EP2615916B1 (en) | 2010-09-16 | 2017-01-04 | Merck Sharp & Dohme Corp. | Fused pyrazole derivatives as novel erk inhibitors |
DK2632472T3 (en) | 2010-10-29 | 2018-03-19 | Sirna Therapeutics Inc | RNA INTERFERENCE-MEDIATED INHIBITION OF GENE EXPRESSION USING SHORT INTERFERRING NUCLEIC ACIDS (SINA) |
JP5852664B2 (en) | 2010-11-08 | 2016-02-03 | ジヤンセン・フアーマシユーチカルズ・インコーポレーテツド | 1,2,4-Triazolo [4,3-a] pyridine derivatives and their use as positive allosteric modulators of the mGluR2 receptor |
CN103298809B (en) | 2010-11-08 | 2016-08-31 | 杨森制药公司 | 1,2,4-triazol [4,3-a] pyridine derivate and the purposes of the positive allosteric modulators as MGLUR2 acceptor thereof |
ES2536433T3 (en) | 2010-11-08 | 2015-05-25 | Janssen Pharmaceuticals, Inc. | 1,2,4-Triazolo [4,3-a] pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors |
WO2012087772A1 (en) | 2010-12-21 | 2012-06-28 | Schering Corporation | Indazole derivatives useful as erk inhibitors |
KR101928116B1 (en) | 2011-01-31 | 2018-12-11 | 노파르티스 아게 | Novel heterocyclic derivatives |
IN2013MN02170A (en) | 2011-04-21 | 2015-06-12 | Piramal Entpr Ltd | |
EP2770987B1 (en) | 2011-10-27 | 2018-04-04 | Merck Sharp & Dohme Corp. | Novel compounds that are erk inhibitors |
CA2853256C (en) | 2011-10-28 | 2019-05-14 | Novartis Ag | Novel purine derivatives and their use in the treatment of disease |
JP6106685B2 (en) | 2011-11-17 | 2017-04-05 | ダナ−ファーバー キャンサー インスティテュート, インコーポレイテッド | Inhibitors of C-JUN-N-terminal kinase (JNK) |
EP3919620A1 (en) | 2012-05-02 | 2021-12-08 | Sirna Therapeutics, Inc. | Short interfering nucleic acid (sina) compositions |
SG11201406550QA (en) | 2012-05-16 | 2014-11-27 | Novartis Ag | Dosage regimen for a pi-3 kinase inhibitor |
JP6280554B2 (en) | 2012-09-28 | 2018-02-14 | メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. | Novel compounds that are ERK inhibitors |
CA2888210C (en) | 2012-10-16 | 2021-02-09 | Janssen Pharmaceutica Nv | Methylene linked quinolinyl modulators of ror-gamma-t |
AU2013331505A1 (en) | 2012-10-16 | 2015-04-30 | Janssen Pharmaceutica Nv | Phenyl linked quinolinyl modulators of ROR-gamma-t |
WO2014062655A1 (en) | 2012-10-16 | 2014-04-24 | Janssen Pharmaceutica Nv | HETEROARYL LINKED QUINOLINYL MODULATORS OF RORyt |
EP2909194A1 (en) | 2012-10-18 | 2015-08-26 | Dana-Farber Cancer Institute, Inc. | Inhibitors of cyclin-dependent kinase 7 (cdk7) |
USRE48175E1 (en) | 2012-10-19 | 2020-08-25 | Dana-Farber Cancer Institute, Inc. | Hydrophobically tagged small molecules as inducers of protein degradation |
US10000483B2 (en) | 2012-10-19 | 2018-06-19 | Dana-Farber Cancer Institute, Inc. | Bone marrow on X chromosome kinase (BMX) inhibitors and uses thereof |
PL2925888T3 (en) | 2012-11-28 | 2018-03-30 | Merck Sharp & Dohme Corp. | Compositions and methods for treating cancer |
WO2014100065A1 (en) | 2012-12-20 | 2014-06-26 | Merck Sharp & Dohme Corp. | Substituted imidazopyridines as hdm2 inhibitors |
WO2014120748A1 (en) | 2013-01-30 | 2014-08-07 | Merck Sharp & Dohme Corp. | 2,6,7,8 substituted purines as hdm2 inhibitors |
JO3368B1 (en) | 2013-06-04 | 2019-03-13 | Janssen Pharmaceutica Nv | 6,7-DIHYDROPYRAZOLO[1,5-a]PYRAZIN-4(5H)-ONE COMPOUNDS AND THEIR USE AS NEGATIVE ALLOSTERIC MODULATORS OF MGLUR2 RECEPTORS |
US20160194368A1 (en) | 2013-09-03 | 2016-07-07 | Moderna Therapeutics, Inc. | Circular polynucleotides |
JO3367B1 (en) | 2013-09-06 | 2019-03-13 | Janssen Pharmaceutica Nv | 1,2,4-TRIAZOLO[4,3-a]PYRIDINE COMPOUNDS AND THEIR USE AS POSITIVE ALLOSTERIC MODULATORS OF MGLUR2 RECEPTORS |
US9403816B2 (en) | 2013-10-15 | 2016-08-02 | Janssen Pharmaceutica Nv | Phenyl linked quinolinyl modulators of RORγt |
EP3057422B1 (en) | 2013-10-15 | 2019-05-15 | Janssen Pharmaceutica NV | Quinolinyl modulators of ror(gamma)t |
US9328095B2 (en) | 2013-10-15 | 2016-05-03 | Janssen Pharmaceutica Nv | Heteroaryl linked quinolinyl modulators of RORgammat |
US9221804B2 (en) | 2013-10-15 | 2015-12-29 | Janssen Pharmaceutica Nv | Secondary alcohol quinolinyl modulators of RORγt |
US10555941B2 (en) | 2013-10-15 | 2020-02-11 | Janssen Pharmaceutica Nv | Alkyl linked quinolinyl modulators of RORγt |
US9284308B2 (en) | 2013-10-15 | 2016-03-15 | Janssen Pharmaceutica Nv | Methylene linked quinolinyl modulators of RORγt |
JP6423423B2 (en) | 2013-10-15 | 2018-11-14 | ヤンセン ファーマシューティカ エヌ.ベー. | Rorγt alkyl-linked quinolinyl modulator |
EP3057955B1 (en) | 2013-10-18 | 2018-04-11 | Syros Pharmaceuticals, Inc. | Heteroaromatic compounds useful for the treatment of prolferative diseases |
WO2015058140A1 (en) | 2013-10-18 | 2015-04-23 | Dana-Farber Cancer Institute, Inc. | Polycyclic inhibitors of cyclin-dependent kinase 7 (cdk7) |
KR20160095035A (en) | 2013-12-06 | 2016-08-10 | 노파르티스 아게 | Dosage regimen for an alpha-isoform selective phosphatidylinositol 3-kinase inhibitor |
ME03518B (en) | 2014-01-21 | 2020-04-20 | Janssen Pharmaceutica Nv | Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use |
WO2015110435A1 (en) | 2014-01-21 | 2015-07-30 | Janssen Pharmaceutica Nv | Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use |
US10017477B2 (en) | 2014-04-23 | 2018-07-10 | Dana-Farber Cancer Institute, Inc. | Janus kinase inhibitors and uses thereof |
US9862688B2 (en) | 2014-04-23 | 2018-01-09 | Dana-Farber Cancer Institute, Inc. | Hydrophobically tagged janus kinase inhibitors and uses thereof |
JO3589B1 (en) | 2014-08-06 | 2020-07-05 | Novartis Ag | Protein kinase c inhibitors and methods of their use |
US10870651B2 (en) | 2014-12-23 | 2020-12-22 | Dana-Farber Cancer Institute, Inc. | Inhibitors of cyclin-dependent kinase 7 (CDK7) |
JP6861166B2 (en) | 2015-03-27 | 2021-04-21 | ダナ−ファーバー キャンサー インスティテュート, インコーポレイテッド | Inhibitor of cyclin-dependent kinase |
WO2016201370A1 (en) | 2015-06-12 | 2016-12-15 | Dana-Farber Cancer Institute, Inc. | Combination therapy of transcription inhibitors and kinase inhibitors |
US9815790B2 (en) | 2015-08-27 | 2017-11-14 | Janssen Pharmaceutica Nv | Chemically modified quinoline and quinolone derivatives useful as CB-1 inverse agonists |
WO2017044858A2 (en) | 2015-09-09 | 2017-03-16 | Dana-Farber Cancer Institute, Inc. | Inhibitors of cyclin-dependent kinases |
CA3002954A1 (en) | 2015-11-02 | 2017-05-11 | Novartis Ag | Dosage regimen for a phosphatidylinositol 3-kinase inhibitor |
JOP20190055A1 (en) | 2016-09-26 | 2019-03-24 | Merck Sharp & Dohme | Anti-cd27 antibodies |
WO2018060833A1 (en) | 2016-09-27 | 2018-04-05 | Novartis Ag | Dosage regimen for alpha-isoform selective phosphatidylinositol 3-kinase inhibitor alpelisib |
US10975084B2 (en) | 2016-10-12 | 2021-04-13 | Merck Sharp & Dohme Corp. | KDM5 inhibitors |
CN110650976B (en) | 2017-04-13 | 2024-04-19 | 赛罗帕私人有限公司 | Anti-SIRP alpha antibodies |
US10947234B2 (en) | 2017-11-08 | 2021-03-16 | Merck Sharp & Dohme Corp. | PRMT5 inhibitors |
WO2019113269A1 (en) | 2017-12-08 | 2019-06-13 | Kura Oncology, Inc. | Methods of treating cancer patients with farnesyltransferase inhibitors |
WO2019148412A1 (en) | 2018-02-01 | 2019-08-08 | Merck Sharp & Dohme Corp. | Anti-pd-1/lag3 bispecific antibodies |
CA3100706A1 (en) | 2018-05-18 | 2019-11-21 | Kura Oncology, Inc. | Synthesis of tipifarnib |
WO2020033284A1 (en) | 2018-08-07 | 2020-02-13 | Merck Sharp & Dohme Corp. | Prmt5 inhibitors |
US11993602B2 (en) | 2018-08-07 | 2024-05-28 | Merck Sharp & Dohme Llc | PRMT5 inhibitors |
WO2020190604A1 (en) | 2019-03-15 | 2020-09-24 | Kura Oncology, Inc. | Methods of treating cancer patients with farnesyltransferase inhibitors |
AU2022399572A1 (en) * | 2021-11-30 | 2024-05-02 | Kura Oncology, Inc. | Macrocyclic compounds having farnesyltransferase inhibitory activity |
WO2023141082A1 (en) * | 2022-01-20 | 2023-07-27 | Teva Czech Industries S.R.O. | Solid state forms of tipifarnib and process for preparation thereof |
WO2024180169A1 (en) | 2023-03-02 | 2024-09-06 | Carcimun Biotech Gmbh | Means and methods for diagnosing cancer and/or an acute inflammatory disease |
CN117229206A (en) * | 2023-09-18 | 2023-12-15 | 延安大学 | Preparation method for synthesizing polysubstituted 2-quinolinone compound by base catalysis |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2101115A (en) | 1980-10-23 | 1983-01-12 | Pfizer Ltd | Thromboxane synthetase inhibitors |
EP0371564A2 (en) | 1988-11-29 | 1990-06-06 | Janssen Pharmaceutica N.V. | (1H-azol-1-ylmethyl)substituted quinoline, quinazoline or quinoxaline derivatives |
US6037350A (en) * | 1995-12-08 | 2000-03-14 | Janssen Pharmaceutica, N.V. | Farnesyl protein transferase inhibiting (imidazol-5-yl)methyl-2-quionlinone derivatives |
-
1996
- 1996-10-16 DE DE69620445T patent/DE69620445T2/en not_active Expired - Lifetime
- 1996-10-16 TR TR1998/00825T patent/TR199800825T2/en unknown
- 1996-10-16 PT PT01202750T patent/PT1162201E/en unknown
- 1996-10-16 JP JP52163897A patent/JP3257559B2/en not_active Expired - Lifetime
- 1996-10-16 AU AU72948/96A patent/AU711142B2/en not_active Expired
- 1996-10-16 EP EP01202750A patent/EP1162201B1/en not_active Expired - Lifetime
- 1996-10-16 CN CN96198750A patent/CN1101392C/en not_active Expired - Lifetime
- 1996-10-16 US US09/084,717 patent/US6037350A/en not_active Expired - Lifetime
- 1996-10-16 PT PT96934727T patent/PT865440E/en unknown
- 1996-10-16 NZ NZ320244A patent/NZ320244A/en not_active IP Right Cessation
- 1996-10-16 SI SI9630477T patent/SI0865440T1/en unknown
- 1996-10-16 EE EE9800146A patent/EE03484B1/en unknown
- 1996-10-16 PL PL96325962A patent/PL184171B1/en unknown
- 1996-10-16 CA CA002231105A patent/CA2231105C/en not_active Expired - Lifetime
- 1996-10-16 AT AT01202750T patent/ATE321757T1/en active
- 1996-10-16 ES ES96934727T patent/ES2175137T3/en not_active Expired - Lifetime
- 1996-10-16 EA EA199800443A patent/EA000710B1/en not_active IP Right Cessation
- 1996-10-16 EP EP96934727A patent/EP0865440B1/en not_active Expired - Lifetime
- 1996-10-16 BR BR9610745A patent/BR9610745A/en not_active IP Right Cessation
- 1996-10-16 WO PCT/EP1996/004515 patent/WO1997021701A1/en active IP Right Grant
- 1996-10-16 UA UA98052686A patent/UA57717C2/en unknown
- 1996-10-16 DK DK96934727T patent/DK0865440T3/en active
- 1996-10-16 AT AT96934727T patent/ATE215541T1/en active
- 1996-10-16 SK SK704-98A patent/SK283335B6/en not_active IP Right Cessation
- 1996-10-16 HU HU9900185A patent/HU221227B1/en unknown
- 1996-10-16 DK DK01202750T patent/DK1162201T3/en active
- 1996-10-16 KR KR1019980702363A patent/KR100272676B1/en not_active IP Right Cessation
- 1996-10-16 SI SI9630736T patent/SI1162201T1/en unknown
- 1996-10-16 AP APAP/P/1998/001257A patent/AP1108A/en active
- 1996-10-16 CZ CZ19981573A patent/CZ293296B6/en not_active IP Right Cessation
- 1996-10-16 IL IL12356896A patent/IL123568A/en not_active IP Right Cessation
- 1996-10-16 DE DE69635966T patent/DE69635966T2/en not_active Expired - Lifetime
- 1996-10-16 ES ES01202750T patent/ES2260156T3/en not_active Expired - Lifetime
- 1996-11-30 TW TW085114832A patent/TW494101B/en not_active IP Right Cessation
- 1996-12-05 HR HR960576A patent/HRP960576B1/en not_active IP Right Cessation
- 1996-12-05 ZA ZA9610254A patent/ZA9610254B/en unknown
- 1996-12-06 AR ARP960105548A patent/AR004992A1/en active IP Right Grant
- 1996-12-06 MY MYPI96005129A patent/MY114444A/en unknown
-
1998
- 1998-03-04 NO NO19980927A patent/NO314036B1/en not_active IP Right Cessation
- 1998-03-16 MX MX9802068A patent/MX9802068A/en unknown
- 1998-05-18 BG BG102458A patent/BG62615B1/en unknown
- 1998-12-15 HK HK98113364A patent/HK1012188A1/en not_active IP Right Cessation
-
1999
- 1999-07-29 US US09/363,353 patent/US6169096B1/en not_active Expired - Lifetime
-
2000
- 2000-10-12 US US09/689,211 patent/US6420387B1/en not_active Expired - Lifetime
-
2002
- 2002-04-17 HK HK02102891.4A patent/HK1042482B/en not_active IP Right Cessation
- 2002-07-30 CY CY0200047A patent/CY2289B1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2101115A (en) | 1980-10-23 | 1983-01-12 | Pfizer Ltd | Thromboxane synthetase inhibitors |
EP0371564A2 (en) | 1988-11-29 | 1990-06-06 | Janssen Pharmaceutica N.V. | (1H-azol-1-ylmethyl)substituted quinoline, quinazoline or quinoxaline derivatives |
US6037350A (en) * | 1995-12-08 | 2000-03-14 | Janssen Pharmaceutica, N.V. | Farnesyl protein transferase inhibiting (imidazol-5-yl)methyl-2-quionlinone derivatives |
Cited By (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060135769A1 (en) * | 2000-12-27 | 2006-06-22 | Angibaud Patrick R | Farnesyl transferase inhibiting 4-heterocyclyl-quinoline and quinazoline derivatives |
US20040067968A1 (en) * | 2000-12-27 | 2004-04-08 | Angibaud Patrick Rene | Farnesyl transferase inhibiting 4-heterocyclyl quinoline and quinazoline |
EP2206516A1 (en) | 2002-06-14 | 2010-07-14 | Medimmune, LLC | Stabilized liquid anti-RSV antibody formulations |
EP2570432A1 (en) | 2002-06-14 | 2013-03-20 | Medimmune, Inc. | Stabilized anti-respiratory syncytial virus (RSV) antibody formulations |
EP2327421A1 (en) | 2002-06-14 | 2011-06-01 | MedImmune, LLC | Stabilized liquid anti-RSV antibody formulations |
US20040265315A1 (en) * | 2002-09-05 | 2004-12-30 | Christine Dingivan | Methods of preventing or treating T cell malignancies by administering CD2 antagonists |
EP2210606A2 (en) | 2002-11-06 | 2010-07-28 | Celgene Corporation | Methods Of Using And Compositions Comprising Immunomodulatory Compounds For The Treatment And Management Of Myeloproliferative Diseases |
US8034831B2 (en) | 2002-11-06 | 2011-10-11 | Celgene Corporation | Methods for the treatment and management of myeloproliferative diseases using 4-(amino)-2-(2,6-Dioxo(3-piperidyl)-isoindoline-1,3-dione in combination with other therapies |
US8618136B2 (en) | 2002-11-06 | 2013-12-31 | Celgene Corporation | Methods for the treatment of myeloproliferative diseases using 4-(amino)-2-(2,6-dioxo(3-piperidyl))-isoindoline-1,3-dione |
EP2316487A1 (en) | 2003-04-11 | 2011-05-04 | MedImmune, LLC | Recombinant IL-9 antibodies & uses thereof |
EP2272566A2 (en) | 2003-08-18 | 2011-01-12 | MedImmune, LLC | Humanisation of antibodies |
WO2005042743A2 (en) | 2003-08-18 | 2005-05-12 | Medimmune, Inc. | Humanization of antibodies |
US20050272068A1 (en) * | 2004-03-18 | 2005-12-08 | The Brigham And Women's Hospital, Inc. | UCH-L1 expression and cancer therapy |
EP1611890A1 (en) | 2004-07-01 | 2006-01-04 | Veridex, LLC | Methods for assessing and treating cancer |
EP2422811A2 (en) | 2004-10-27 | 2012-02-29 | MedImmune, LLC | Modulation of antibody specificity by tailoring the affinity to cognate antigens |
US20060194821A1 (en) * | 2005-02-18 | 2006-08-31 | The Brigham And Women's Hospital, Inc. | Compounds inhibiting the aggregation of superoxide dismutase-1 |
WO2006102095A2 (en) | 2005-03-18 | 2006-09-28 | Medimmune, Inc. | Framework-shuffling of antibodies |
US20060281788A1 (en) * | 2005-06-10 | 2006-12-14 | Baumann Christian A | Synergistic modulation of flt3 kinase using a flt3 inhibitor and a farnesyl transferase inhibitor |
US20090197913A1 (en) * | 2005-06-10 | 2009-08-06 | Christian Andrew Baumann | Synergistic modulation of flt3 kinase using a flt3 inhibitor and a farnesyl transferase inhibitor |
US8557847B2 (en) | 2005-06-10 | 2013-10-15 | Janssen Pharmaceutica, N.V. | Synergistic modulation of FLT3 kinase using a FLT3 inhibitor and a farnesyl transferase inhibitor |
WO2007002543A2 (en) | 2005-06-23 | 2007-01-04 | Medimmune, Inc. | Antibody formulations having optimized aggregation and fragmentation profiles |
EP2545919A1 (en) | 2005-12-23 | 2013-01-16 | Link Medicine Corporation | Treatment of synucleinopathies |
WO2007075923A2 (en) | 2005-12-23 | 2007-07-05 | Link Medicine Corporation | Treatment of synucleinopathies |
US8815867B2 (en) | 2006-04-20 | 2014-08-26 | Janssen Pharmaceutica Nv | Inhibitors of c-fms kinase |
US8722718B2 (en) | 2006-04-20 | 2014-05-13 | Janssen Pharmaceutica Nv | Inhibitors of C-FMS kinase |
US20110195960A1 (en) * | 2006-04-20 | 2011-08-11 | Illig Carl R | Inhibitors of c-fms kinase |
US9403804B2 (en) | 2006-04-20 | 2016-08-02 | Janssen Pharmaceutica Nv | Inhibitors of c-fms kinase |
US9394289B2 (en) | 2006-04-20 | 2016-07-19 | Janssen Pharmaceutica Nv | Inhibitors of c-fms kinase |
US9296726B2 (en) | 2006-04-20 | 2016-03-29 | Janssen Pharmaceutica Nv | Inhibitors of c-fms kinase |
US9266866B2 (en) | 2006-04-20 | 2016-02-23 | Janssen Pharmaceutica Nv | Inhibitors of C-FMS kinase |
US8933091B2 (en) | 2006-04-20 | 2015-01-13 | Janssen Pharmaceutica Nv | Method of inhibiting C-KIT kinase |
US20070249680A1 (en) * | 2006-04-20 | 2007-10-25 | Illig Carl R | Inhibitors of c-fms kinase |
US8481564B2 (en) | 2006-04-20 | 2013-07-09 | Janssen Pharmaceutica, N.V. | Inhibitors of c-fms kinase |
US8895584B2 (en) | 2006-04-20 | 2014-11-25 | Janssen Pharmaceutica Nv | Inhibitors of c-fms kinase |
US8859602B2 (en) | 2006-04-20 | 2014-10-14 | Janssen Pharmaceutica Nv | Inhibitors of c-fms kinase |
US20080051402A1 (en) * | 2006-04-20 | 2008-02-28 | Illig Carl R | Method of inhibiting c-kit kinase |
US9526731B2 (en) | 2006-04-20 | 2016-12-27 | Janssen Pharmaceutica Nv | Method of inhibiting C-KIT kinase |
US8759347B2 (en) | 2006-04-20 | 2014-06-24 | Janssen Pharmaceutica Nv | Inhibitors of C-FMS kinase |
US8697716B2 (en) | 2006-04-20 | 2014-04-15 | Janssen Pharmaceutica Nv | Method of inhibiting C-KIT kinase |
EP2292663A2 (en) | 2006-08-28 | 2011-03-09 | Kyowa Hakko Kirin Co., Ltd. | Antagonistic human light-specific human monoclonal antibodies |
EP2484696A1 (en) | 2006-08-28 | 2012-08-08 | Kyowa Hakko Kirin Co., Ltd. | Antagonistic human light-specific human monoclonal antibodies |
EP2703007A1 (en) | 2007-03-30 | 2014-03-05 | MedImmune, LLC | Antibodies with decreased deamidation profiles |
US8124774B2 (en) * | 2007-05-23 | 2012-02-28 | Allergan, Inc. | Therapeutic ((phenyl)imidazolyl)methylquinolinyl compounds |
US20100197729A1 (en) * | 2007-05-23 | 2010-08-05 | Allerdan, Inc. | Therapeutic ((phenyl)imidazolyl)methylquinolinyl compounds |
US20090105296A1 (en) * | 2007-10-17 | 2009-04-23 | Illig Carl R | Inhibitors of c-fms kinase |
US8497376B2 (en) | 2007-10-17 | 2013-07-30 | Janssen Pharmaceutica N.V. | Inhibitors of c-fms kinase |
EP2543368A1 (en) | 2007-12-11 | 2013-01-09 | Viamet Pharmaceuticals, Inc. | Metalloenzyme inhibitors using metal binding moieties in combination with targeting moieties |
US8232402B2 (en) | 2008-03-12 | 2012-07-31 | Link Medicine Corporation | Quinolinone farnesyl transferase inhibitors for the treatment of synucleinopathies and other indications |
US8343996B2 (en) | 2008-11-13 | 2013-01-01 | Astrazeneca Ab | Azaquinolinone derivatives and uses thereof |
EP3763740A1 (en) | 2011-01-26 | 2021-01-13 | Celldex Therapeutics, Inc. | Anti-kit antibodies and uses thereof |
EP4063391A1 (en) | 2012-07-25 | 2022-09-28 | Celldex Therapeutics, Inc. | Anti-kit antibodies and uses thereof |
WO2014018625A1 (en) | 2012-07-25 | 2014-01-30 | Kolltan Pharmaceuticals, Inc. | Anti-kit antibodies and uses thereof |
EP3381943A1 (en) | 2012-07-25 | 2018-10-03 | Celldex Therapeutics, Inc. | Anti-kit antibodies and uses thereof |
US9029352B2 (en) | 2012-08-07 | 2015-05-12 | Janssen Pharmaceutica Nv | Process for the preparation of C-FMS kinase inhibitors |
US9303046B2 (en) | 2012-08-07 | 2016-04-05 | Janssen Pharmaceutica Nv | Process for the preparation of heterocyclic ester derivatives |
WO2014059028A1 (en) | 2012-10-09 | 2014-04-17 | Igenica, Inc. | Anti-c16orf54 antibodies and methods of use thereof |
WO2014197849A2 (en) | 2013-06-06 | 2014-12-11 | Igenica Biotherapeutics, Inc. | Anti-c10orf54 antibodies and uses thereof |
US10421818B2 (en) | 2013-06-06 | 2019-09-24 | Pierre Fabre Medicament | Anti-C10orf54 antibodies and uses thereof |
US10414823B2 (en) | 2013-06-06 | 2019-09-17 | Pierre Fabre Medicament | Anti-C10orf54 antibodies and uses thereof |
US10100123B2 (en) | 2013-06-06 | 2018-10-16 | Pierre Fabre Medicament | Anti-C10orf54 antibodies and uses thereof |
WO2015053871A2 (en) | 2013-08-26 | 2015-04-16 | MabVax Therapeutics, Inc. | NUCLEIC ACIDS ENCODING HUMAN ANTIBODIES TO SIALYL-LEWISa |
US9475874B2 (en) | 2013-08-26 | 2016-10-25 | MabVax Therapeutics, Inc. | Nucleic acids encoding human antibodies to sialyl-lewisa |
EP3906945A2 (en) | 2013-08-26 | 2021-11-10 | BioNTech Research and Development, Inc. | Nucleic acids encoding human antibodies to sialyl-lewis a |
EP3590539A1 (en) | 2014-03-04 | 2020-01-08 | Kymab Limited | Antibodies, uses & methods |
US10828283B2 (en) | 2014-05-01 | 2020-11-10 | Eiger Biopharmaceuticals, Inc. | Treatment of hepatitis delta virus infection |
US11793793B2 (en) | 2014-05-01 | 2023-10-24 | Eiger Biopharmaceuticals, Inc. | Treatment of hepatitis delta virus infection |
US11311519B2 (en) | 2014-05-01 | 2022-04-26 | Eiger Biopharmaceuticals, Inc. | Treatment of hepatitis delta virus infection |
WO2015187811A2 (en) | 2014-06-04 | 2015-12-10 | MabVax Therapeutics, Inc. | Human monoclonal antibodies to ganglioside gd2 |
EP3868405A1 (en) | 2014-06-04 | 2021-08-25 | BioNTech Research and Development, Inc. | Human monoclonal antibodies to ganglioside gd2 |
EP3800202A1 (en) | 2014-12-11 | 2021-04-07 | Pierre Fabre Medicament | Anti-c10orf54 antibodies and uses thereof |
WO2016139482A1 (en) | 2015-03-03 | 2016-09-09 | Kymab Limited | Antibodies, uses & methods |
EP4137157A1 (en) | 2015-03-03 | 2023-02-22 | Kymab Limited | Antibodies, uses and methods |
US11517532B2 (en) | 2015-04-21 | 2022-12-06 | Eiger Biopharmaceuticals, Inc. | Methods of treating hepatitis delta virus infection |
US12029819B2 (en) | 2015-04-21 | 2024-07-09 | Eiger Biopharmaceuticals, Inc. | Pharmaceutical compositions comprising lonafarnib and ritonavir |
US10835496B2 (en) | 2015-04-21 | 2020-11-17 | Eiger Biopharmaceuticals, Inc. | Pharmaceutical compositions comprising lonafarnib and ritonavir |
US11207314B2 (en) | 2015-08-17 | 2021-12-28 | Kura Oncology, Inc. | Methods of treating cancer patients with farnesyltransferase inhibitors |
US10022364B2 (en) | 2015-08-17 | 2018-07-17 | Kura Oncology, Inc. | Methods of treating cancer patients with farnesyltransferase inhibitors |
US10471055B2 (en) | 2015-08-17 | 2019-11-12 | Kura Oncology, Inc. | Methods of treating cancer patients with farnesyltransferase inhibitors |
US9707221B2 (en) | 2015-08-17 | 2017-07-18 | Kura Oncology, Inc. | Methods of treating cancer patients with farnesyltransferase inhibitors |
US10335404B2 (en) | 2015-08-17 | 2019-07-02 | Kura Oncology, Inc. | Methods of treating cancer patients with farnesyltransferase inhibitors |
US10292979B2 (en) | 2015-08-17 | 2019-05-21 | Kura Oncology, Inc. | Methods of treating cancer patients with farnesyltransferase inhibitors |
WO2017096051A1 (en) | 2015-12-02 | 2017-06-08 | Stcube & Co., Inc. | Antibodies and molecules that immunospecifically bind to btn1a1 and the therapeutic uses thereof |
EP3909983A1 (en) | 2015-12-02 | 2021-11-17 | STCube & Co. Inc. | Antibodies and molecules that immunospecifically bind to btn1a1 and the therapeutic uses thereof |
US11253590B2 (en) | 2015-12-02 | 2022-02-22 | Stsciences, Inc. | Antibodies specific to glycosylated BTLA (B- and T- lymphocyte attenuator) |
WO2018083248A1 (en) | 2016-11-03 | 2018-05-11 | Kymab Limited | Antibodies, combinations comprising antibodies, biomarkers, uses & methods |
US11124839B2 (en) | 2016-11-03 | 2021-09-21 | Kura Oncology, Inc. | Methods of treating cancer patients with farnesyltransferase inhibitors |
US10954210B2 (en) | 2016-12-08 | 2021-03-23 | Hangzhou Solipharma Co., Ltd. | Crystal form of tipifarnib and preparation method and pharmaceutical composition thereof |
US11639341B2 (en) | 2016-12-08 | 2023-05-02 | Hangzhou Solipharma Co., Ltd. | Crystal form of tipifarnib and method of treatment thereof |
WO2018222689A1 (en) | 2017-05-31 | 2018-12-06 | Stcube & Co., Inc. | Antibodies and molecules that immunospecifically bind to btn1a1 and the therapeutic uses thereof |
WO2018222685A1 (en) | 2017-05-31 | 2018-12-06 | Stcube & Co., Inc. | Methods of treating cancer using antibodies and molecules that immunospecifically bind to btn1a1 |
US11542331B2 (en) | 2017-06-06 | 2023-01-03 | Stcube & Co., Inc. | Methods of treating cancer using antibodies and molecules that bind to BTN1A1 or BTN1A1-ligands |
WO2018226671A1 (en) | 2017-06-06 | 2018-12-13 | Stcube & Co., Inc. | Methods of treating cancer using antibodies and molecules that bind to btn1a1 or btn1a1-ligands |
WO2019073069A1 (en) | 2017-10-13 | 2019-04-18 | Boehringer Ingelheim International Gmbh | Human antibodies to thomsen-nouvelle (tn) antigen |
WO2020016459A1 (en) | 2018-07-20 | 2020-01-23 | Pierre Fabre Medicament | Receptor for vista |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6420387B1 (en) | Farnesyl protein transferase inhibiting (imidazol-5-yl) methyl-2-quinolinone derivatives | |
EP1019395B1 (en) | Farnesyl transferase inhibiting 2-quinolone derivatives | |
US6187786B1 (en) | Farnesyl transferase inhibiting 1,8-annelated quinolinone derivatives substituted with N- or C-linked imidazoles | |
CZ371799A3 (en) | Quinazolinones inhibiting farnesyltransferase | |
MXPA98002067A (en) | Derivatives of the 2-quinolone inhibitors of the farnesil transfer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |