US6324125B1 - Pulse width detection - Google Patents

Pulse width detection Download PDF

Info

Publication number
US6324125B1
US6324125B1 US09/281,020 US28102099A US6324125B1 US 6324125 B1 US6324125 B1 US 6324125B1 US 28102099 A US28102099 A US 28102099A US 6324125 B1 US6324125 B1 US 6324125B1
Authority
US
United States
Prior art keywords
pulse
delay
output
input
delay elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/281,020
Inventor
Gerd Frankowsky
Hartmud Terletzki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polaris Innovations Ltd
SMI Holding LLC
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Assigned to SIEMENS MICROELECTRONICS, INC. reassignment SIEMENS MICROELECTRONICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FRANKOWSKY, GERD, TERLETZKI, HARTMUD
Priority to US09/281,020 priority Critical patent/US6324125B1/en
Priority to DE60023583T priority patent/DE60023583T2/en
Priority to EP00104782A priority patent/EP1043596B1/en
Priority to TW089105684A priority patent/TW554173B/en
Priority to KR1020000016451A priority patent/KR100685081B1/en
Priority to JP2000095079A priority patent/JP2000338197A/en
Priority to CN00104901A priority patent/CN1271177A/en
Assigned to SMI HOLDING LLC reassignment SMI HOLDING LLC MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS MICROELECTRONICS, INC.
Assigned to SIEMENS DRAM SEMICONDUCTOR CORPORATION reassignment SIEMENS DRAM SEMICONDUCTOR CORPORATION TRANSFER OF ASSETS Assignors: SMI HOLDING LLC
Assigned to INFINEON TECHNOLOGIES NORTH AMERICA CORP. reassignment INFINEON TECHNOLOGIES NORTH AMERICA CORP. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: INFINEON TECHNOLOGIES CORPORATION
Assigned to INFINEON TECHNOLOGIES CORPORATION reassignment INFINEON TECHNOLOGIES CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS DRAM SEMICONDUCTOR CORPORATION
Priority to US09/687,883 priority patent/US6400650B1/en
Assigned to INFINEON TECHNOLOGIES AG reassignment INFINEON TECHNOLOGIES AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INFINEON TECHNOLOGIES NORTH AMERICA CORP.
Publication of US6324125B1 publication Critical patent/US6324125B1/en
Application granted granted Critical
Assigned to QIMONDA AG reassignment QIMONDA AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INFINEON TECHNOLOGIES AG
Assigned to INFINEON TECHNOLOGIES AG reassignment INFINEON TECHNOLOGIES AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: QIMONDA AG
Assigned to POLARIS INNOVATIONS LIMITED reassignment POLARIS INNOVATIONS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INFINEON TECHNOLOGIES AG
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31724Test controller, e.g. BIST state machine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/3193Tester hardware, i.e. output processing circuits with comparison between actual response and known fault free response
    • G01R31/31937Timing aspects, e.g. measuring propagation delay
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/02Measuring characteristics of individual pulses, e.g. deviation from pulse flatness, rise time or duration
    • G01R29/027Indicating that a pulse characteristic is either above or below a predetermined value or within or beyond a predetermined range of values
    • G01R29/0273Indicating that a pulse characteristic is either above or below a predetermined value or within or beyond a predetermined range of values the pulse characteristic being duration, i.e. width (indicating that frequency of pulses is above or below a certain limit)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/30Marginal testing, e.g. by varying supply voltage
    • G01R31/3016Delay or race condition test, e.g. race hazard test
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3187Built-in tests

Definitions

  • the invention relates to pulse width detectors and more particularly to apparatus and methods for measuring pulse widths in semiconductor circuits during the manufacture thereof.
  • DRAMs Dynamic Random Access Memories
  • DRAMs Dynamic Random Access Memories
  • Different pulse widths i.e., time durations
  • the pulses can control various functions of the circuit, it is desirable to test the circuit to ensure that all of the pulses produced by the circuit have proper pulse widths.
  • the test equipment With pulse widths typically on the order of 2-4 ns, the test equipment needs to have a very fine time resolution in order to determine whether the pulse has an acceptable pulse width. If the pulse width is measured by probing a conductor carrying the pulse and the test equipment used to sample the pulse on the conductor, then the test equipment needs to sample the pulse at a frequency on the order of 1 GHz (i.e., a sampling period of 1/10 9 seconds or 1 nanosecond (ns)) in order to provide a time duration resolution on the order of 1 ns. Test equipment having operational or sampling frequencies this high is typically very expensive.
  • a semiconductor circuit including operational circuitry configured to produce a signal to be tested.
  • Test circuitry is provided to sense the signal.
  • the test circuitry provides indications of whether a pulse in the sensed signal has a time duration at least as long as corresponding, different, time durations.
  • the indications effectively divide the pulse into a plurality of time cells or windows indicative of different ranges of time durations, with differences between a maximum time duration and a minimum time duration of each window being a timespan of that window.
  • the indications indicate which of the windows includes the time duration of the pulse.
  • the indications provided by the test circuitry are at a frequency, f 1 , that is lower than a frequency, f 2 , that is defined by an inverse of a shortest one of the timespans.
  • the test circuitry is operated independently of a clock signal having a clock frequency f CLK that is greater than the frequency f 2 .
  • a signal which may include high-frequency components, in the semiconductor circuit can be tested at a relatively high effective sampling frequency, f s , and a characteristic (e.g., a level or a pulse width) of the signal can be expressed in a format having a lower frequency, f c , thereby enabling an effectively high-frequency sampling without requiring expensive high-frequency test circuitry.
  • a characteristic e.g., a level or a pulse width
  • a semiconductor circuit including operational circuitry configured to produce a signal, having at least one pulse, to be tested.
  • Test circuitry is provided to sense the signal at a high effective sampling frequency and to produce an indication of a characteristic of the pulse or pulses. The indication of the characteristic is at a frequency that is lower than the effective sampling frequency.
  • the test circuitry does not need, and is therefore independent of a clock signal having a clock frequency that is greater than the effective sampling frequency.
  • a semiconductor circuit including circuitry for producing a pulse.
  • a plurality of, n, delay elements is provided each enabled and disabled in parallel by the pulse. Each delay element is adapted to transmit the pulse from an input to an output thereof, with the pulse being received at respective outputs thereof at correspondingly different times.
  • a plurality, n ⁇ 1, of detectors is provided each having an input coupled to an input of a corresponding one of the delay elements. Each detector is adapted to set an output state to a predetermined one of a plurality of states in response to detection of a portion of the pulse.
  • a pulse width can be determined to be within a range of time durations having a timespan 1/f s , and expressed in a format that is detectable at a frequency f c that is lower than the frequency f s .
  • the outputs of the detectors are coupled to output pins of the semiconductor circuit.
  • pulse widths can be detected by a relatively inexpensive tester after the semiconductor circuit has been packaged.
  • a semiconductor circuit including operational circuitry, delay elements, and a decoder.
  • the operational circuitry produces a pulse having a pulse width.
  • the pulse enables and disables the delay elements in parallel, which provide the pulse to a plurality of output ports at different times.
  • the decoder receives the pulse from the delay element output ports and provides a signal to indicate a time duration window that includes the pulse width.
  • relatively low-frequency signals can be used to indicate that a window, or which window, of time durations includes the pulse width.
  • signals can include an analog DC voltage on a single line, and/or serial digital binary DC voltage levels on a single line, and/or digital binary DC voltage levels on multiple lines, e.g., in parallel.
  • a semiconductor circuit comprising circuitry for producing a pulse, n serially coupled delay elements, and n latches.
  • the delay elements are enabled and disabled in parallel by leading and trailing edges, respectively, of the pulse, and serially transmit the pulse from delay element inputs to delay element outputs thereof with associated time delays.
  • Each latch is adapted to set its output to a first predetermined state if the latch receives a portion of the pulse at its input, which is coupled to a corresponding delay element input.
  • At least one of the latches is adapted to set its output to a second predetermined state if the latch receives a portion of the pulse from the output of a last one of the n delay elements.
  • indications are provided as to whether any pulse is produced and, if a pulse is produced, which of n bounded windows of time durations a width of the pulse is within, or that the width is longer than a maximum delay of the delay elements.
  • a semiconductor circuit comprising circuitry for providing a pulse, n delay elements, and n ⁇ 1 latches.
  • the delay elements are adapted to be activated and deactivated by a first edge and a second edge, respectively, of the pulse received in parallel at corresponding enable ports thereof.
  • Each delay element is adapted to transmit the pulse, with a corresponding time delay, from a delay element input port to a delay element output port thereof.
  • Each latch has; a latch input port, coupled to a corresponding delay element input port, and a latch output port, and is adapted to provide a DC signal to the latch output port if the first edge of the pulse is received at the latch input port.
  • a semiconductor circuit including operational circuitry, a delay element, and a latching element.
  • the operational circuitry provides a pulse.
  • the delay element is selectively coupled to the operational circuitry, is enabled and disabled by the pulse, and transmits the pulse from a delay element input port to a delay element output port thereof in a delay time.
  • the latching element is selectively coupled to an output contact of the semiconductor circuit and is adapted to provide a DC signal to the contact in response to receiving a portion of the pulse from the delay element output port.
  • an apparatus including a first device activated and deactivated by leading and trailing edges, respectively, of a pulse received by the first device.
  • the first device is configured to receive the pulse and to provide it to a plurality of output ports at a plurality of different output times.
  • the different output times define a plurality of windows of time durations having corresponding timespans, with the inverse of the shortest timespan representing a first frequency.
  • a second device is provided coupled to the plurality of output ports of the first device and is adapted to provide one or more indications of whether a portion of the pulse reached each of the output ports. Each indication is detectable at a second frequency, that is lower than the first frequency.
  • a width of the pulse can be determined to be within a small window of time durations having a timespan corresponding to a first frequency, and expressed in a format that is detectable at a second frequency, lower than the first frequency.
  • an apparatus comprising n serially coupled delay elements.
  • the delay elements are activated and deactivated in parallel by leading and trailing edges, respectively, of a pulse.
  • Each delay element is adapted to receive the pulse at a delay element input port thereof and to output the signal to a delay element output port thereof delayed by a time delay.
  • Each of n detectors has a detector input port coupled to a corresponding delay element input port and is adapted to set a detector output port thereof to a first DC level if it receives the leading edge of the pulse at the detector input port.
  • a first one of the detectors is adapted to set its output port to a second DC level if it receives the leading edge of the pulse at a reset port coupled to the output port of a last one of the n delay elements.
  • a system for testing a semiconductor circuit including a circuit for producing a signal pulse having a pulse time duration.
  • a test circuit is provided adapted to provide a digitized indication of the pulse time duration.
  • the digitized indication corresponds to one of a plurality of windows of time durations having corresponding timespans.
  • a tester is provided that is adapted to detect the digitized indication using an operating frequency that is lower than an inverse of a shortest one of the timespans.
  • the tester can determine the pulse width to be within a small window of time durations, the timespan of that window corresponding to a first frequency, while having an operating frequency lower than the first frequency.
  • the test circuit provides the digitized indication to output pins of the semiconductor circuit.
  • pulse widths can be detected by a relatively inexpensive, relatively low-frequency tester after the semiconductor circuit has been packaged.
  • a system for testing a semiconductor circuit including circuitry for producing a pulse.
  • Each of n delay elements are enabled and disabled in parallel by the pulse.
  • the delay elements transmit the pulse to output ports so that the pulse reaches the output ports at different output times defining time duration windows having corresponding timespans.
  • Each of n ⁇ 1 detectors has a detector input coupled to an input of one of the delay elements and is adapted to set a detector output to a predetermined state if it receives a portion of the pulse.
  • a tester is provided that has an operational frequency that is lower than the shortest timespan and that is adapted to detect the predetermined state.
  • the pulse width can be determined to be within a small range of time durations and can be detected by the tester at a frequency lower than a sampling frequency needed to yield the same resolution.
  • FIG. 1 is a block diagram of a semiconductor circuit under test by a tester according to the invention
  • FIG. 2 is a diagrammatical view of portions, including test circuitry shown in block form, of the semiconductor circuit shown in FIG. 1;
  • FIG. 3 is a diagrammatical view of an example of the test circuitry shown in FIG. 2, including delay elements and latches;
  • FIG. 3A is a schematic diagram of a delay element shown in FIG. 3;
  • FIGS. 4A-4C are timing diagrams of signals in the test circuitry shown in FIG. 3;
  • FIG. 5 is a schematic diagram of an exemplary delay element and an exemplary latch
  • FIGS. 6A-6L are timing diagrams of signals in the test circuitry shown in FIG. 3.
  • FIGS. 7-8 are diagrammatical views of more examples of the test circuitry shown in FIG. 2 .
  • FIG. 8A is a schematic diagram of a delay element shown in FIG. 8.
  • FIG. 9 is a diagrammatical view of another example of the test circuitry shown in FIG. 2 .
  • FIG. 10 is a schematic diagram of another delay configuration.
  • a semiconductor integrated circuit test system 10 is shown to include a semiconductor integrated circuit 12 under test by a tester 14 .
  • the system 10 provides high-resolution testing using a relatively low-frequency, inexpensive tester 14 .
  • the circuit 12 produces signals, detects the signals, and produces indications of the signals with a resolution typical of high sampling frequency apparatus, without needing a high frequency clock signal, such that the low-frequency tester 14 can sense and process the indications from the circuit 12 .
  • the semiconductor circuit 12 is formed on a single crystal body or substrate 16 (i.e., a die or chip) such as silicon and can be any of a variety of well known types of circuits, e.g., a memory or a processor. Possible types of memories include, but are not limited to, Static Random Access Memories (SRAMs) and DRAMs.
  • the circuit 12 has a plurality of pins 18 1 - 18 m that are connected through lines 20 1 - 20 m to the tester 14 to provide communication with the tester 14 .
  • the tester 14 transmits signals to, and receives and processes signals from, the circuit 12 .
  • the tester 14 transmits test signals including, but not limited to, row address and column address signals, a Row Address Strobe (RAS) signal, a Column Address Strobe (CAS) signal, and a Test Mode TM signal.
  • the tester 14 supplies these signals to the circuit 12 and monitors/detects signals from the circuit 12 through the lines 20 1 - 20 m and pins 18 1 - 18 m .
  • the received signals are analyzed by a processor 15 , including a central processing unit CPU 17 and a memory 19 , in the tester 14 to provide indications of the results of the test.
  • the circuit 12 includes operational circuitry OC 22 and test circuitry 24 .
  • the operational circuitry 22 produces very short pulse widths.
  • the test circuitry 24 monitors the pulse widths.
  • the test circuitry 24 In order to monitor widths of pulses in the operational circuitry 22 with adequate resolution, the test circuitry 24 has a high effective sampling frequency. “Effective sampling frequency” means that a frequency needed to periodically monitor (i.e., the inverse of the time between monitoring) a signal in order to determine the signal's quality with desired resolution is simulated, without requiring sampling or clocking (and therefore a clock signal) at that frequency. In other words, the test circuitry 24 can monitor the operational circuitry 22 , and produce outputs, in such a way as to simulate sampling the operational circuitry at a high frequency without actually sampling at that high frequency.
  • the system 10 therefore does not need a high frequency clock signal.
  • the test circuitry 24 can be operated independently of such a clock signal (i.e., the test circuitry does not need such a clock signal even if the system 10 includes such a clock signal). By not using such a clock signal, noise associated with such signals is avoided.
  • the circuit 12 can be, e.g., as shown, a DRAM adapted to produce pulses on the order of 2-4 ns, while the tester 14 operates, and therefore monitors, senses or detects signals from the circuit 12 through lines 20 1 - 20 m , at an operational frequency of about 25-100 Mhz. This operational frequency is much lower than the effective sampling frequency of the test circuitry 24 . In other words, the time between monitoring by the tester 14 is longer than the smallest resolution of the test circuitry 24 .
  • the test circuitry 24 provides digitized indications of the pulse widths to the pins 18 for detection by the tester 14 .
  • the operational circuitry 22 is shown to be selectively connected to the test circuitry 24 as controlled by two test mode signals TM A and TM B .
  • the test mode signals TM A and TM B are indicative of two possible modes, test mode A and test mode B, of testing the operational circuitry 22 .
  • the operational circuitry 22 is shown to include two lines 26 and 28 that carry signal A and signal B, respectively, that each include pulses to be tested.
  • Line 26 is connected to the test circuitry 24 through a line 29 when a switch 30 is closed in response to the test mode signal TM A .
  • Line 28 is connected to the test circuitry 24 through line 29 when a switch 32 is closed in response to the test mode signal TM B .
  • the test mode signals TM A and TM B can be generated in the circuit 12 (e.g., in the test circuitry 24 ), or can be received from the tester 14 through the pins 18 .
  • test mode signals TM A and TM B also control selective coupling of the pins 18 to the test circuitry 24 .
  • Either test mode signal TM A or TM B causes switches 34 1 - 34 n , and 35 to connect pins 18 m-n - 18 m and 18 r to the test circuitry 24 by joining lines 36 1 - 36 n and 37 to lines 38 1 - 38 n and 39 .
  • the lines 36 1 - 36 n and 37 are connected through the switches 34 1 - 34 n and 35 to the operational circuitry OC 22 .
  • the test circuitry 24 is shown to include a plurality of n delay elements 40 1 - 40 n and a plurality of n detectors or latches 42 1 - 42 n .
  • the delay elements 40 1 - 40 n have enable ports 44 1 - 44 n coupled in parallel to the line 29 and are adapted to be enabled and disabled by pulses on the line 29 .
  • the delay elements 40 1 - 40 n also have input ports 46 1 - 46 n and output ports 48 1 - 48 n coupled inn series, forming a delay chain (i.e., the output port 48 1 of the first delay element 40 1 is connected to the input port 46 2 of the second delay element 40 2 , etc., with the input port 46 1 connected to the line 29 ).
  • the delay elements 40 pass signals received via the line 29 through each of the delay elements 40 .
  • the latches 42 1 - 42 n have input ports 50 1 - 50 n connected to corresponding ones of the input ports 46 1 - 46 n of the delay elements 40 1 - 40 n , and reset ports 52 1 - 52 n connected to the line 39 for receiving a reset signal RESET from the tester 14 through the pin 18 r , the line 37 , and the switch 35 .
  • the first latch 42 1 has a second reset port RST2 56 connected to the output port 48 n of the last delay element 40 n , providing feedback of any signal present at tile output port 48 n .
  • the delay elements 40 1 - 40 n are each configured to pass a signal received at the respective one of the input ports 46 1 - 46 n to the respective one of the output ports 48 1 - 48 n delayed by corresponding time delays dt 1 -dt n .
  • a delay element 40 functions as a switch 104 , that closes in response to a signal (e.g, rising edge of a signal) from the enable port 44 , thereby allowing a signal to pass from the input port 46 to the output port 48 , delayed by a delay time dt.
  • the time delays dt 1 -dt n may be different for some or all of the delay elements 40 , or may be substantially the same.
  • each time delay of the delay elements 40 corresponds to a window of time durations.
  • the inverse of the shortest time delay is the effective sampling frequency because the shortest delay represents the finest resolution possible for determining the pulse width.
  • the delay elements 40 transmit signals with little attenuation.
  • FIGS. 4A-4B illustrate the timing of signals enabling, and being transmitted by, the delay element 40 1 .
  • FIG. 4A shows that a pulse 60 on line 29 is received by the delay element 40 1 at the enable port 44 1 and at the input port 46 1 at substantially the same time, t 0 .
  • a leading edge 62 of the pulse 60 enables the delay element 40 1 to transmit the pulse 60 from the input port 46 1 to the output port 48 1 .
  • the pulse 60 is provided at the output port 48 , until the pulse 60 present at the enable port 44 1 ends, with a trailing edge 64 of the pulse 60 disabling the delay element 40 1 .
  • FIG. 5 illustrates an exemplary embodiment of one of the delay elements 40 .
  • the delay element 40 includes a NAND gate 66 coupled in series to an inverter 68 .
  • Inputs to the NAND gate 66 correspond to the enable port 44 and the input port 46 of the delay element 40
  • an output 70 of the NAND gate 66 feeds the inverter 68 .
  • An output of the inverter 68 corresponds to the output port 48 of the delay element 40 .
  • the time delays introduced by the NAND gate 66 and the inverter 68 are both about 80-100 picoseconds (ps), yielding a time delay dt of about 160-200 ps.
  • Other delay elements are possible, e.g., as shown in FIG. 10 .
  • the latches 42 1 - 42 n are configured to set and hold their output ports 58 1 - 58 n to a static energy level, e.g., a high DC voltage, in response to receiving the leading edge 62 of the pulse 60 at their input ports 50 1 - 50 n .
  • the signal level or potential is transmitted to the pins 18 m-n-18 m through lines 36 1 - 36 n and switches 34 1 - 34 n because lines 38 1 - 38 n are coupled to the output ports 58 1 - 58 n of the latches 42 1 - 42 n .
  • latches refers generally to a circuit that sets and holds an output state in response to detecting a particular signal at its input, even if the signal at its input changes thereafter.
  • the latches 42 will reset their respective output ports 58 1 - 58 n in response to receiving a leading edge of a pulse at their respective reset ports 52 and/or 56 .
  • FIGS. 4A-4C illustrate the timing of the pulse 60 at the latch input 50 2 and output 58 2 in relation to the pulse 60 at the delay element input 46 1 and output 48 1 .
  • the latch output port is at a low voltage level V L , corresponding to a binary “0”.
  • the pulse 60 is provided to the delay output 48 1 and the latch input 50 2 at substantially the same time, t 1 .
  • the latch 42 2 sets the latch output 58 2 (FIG.
  • the latch 42 2 provides a static energy level indication at its output port 58 2 that the pulse 60 is at least as long as the time delay dt 1 of the delay element 40 1 . If the pulse was not at least this long, then the delay element 40 1 would be disabled before the latch 42 1 could set its output 58 2 to the binary 1 level.
  • FIG. 5 illustrates an exemplary embodiment of one of the latches 42 .
  • the latch 42 includes two cross-coupled inverters 71 and 72 .
  • the latch input 50 is connected to a gate 74 of a Field Effect Transistor (FET) 76 while the latch reset port 52 is connected to a gate 78 of a FET 80 .
  • the FETs 76 and 80 have their sources 82 and 84 connected to ground.
  • the FET 80 has its drain connected to the output port 58 of the latch 42 . A pulse received at the gate 78 will reset the voltage at the output port 58 to zero.
  • FET Field Effect Transistor
  • FIGS. 6A-6L show the timing of the outputs of the latches 42 1 - 42 10 as a pulse 86 travels through the n, here 10 , delay elements 40 1 - 40 10 .
  • the test circuitry 24 can determine pulse widths up to a maximum pulse width of 1.8 ns with a resolution of 200 ps.
  • the test circuitry 24 indicates through the outputs of the latches 42 1 - 42 10 in which window of time durations the pulse width falls.
  • the windows are defined by the minimum time duration and the maximum time duration indicated.
  • the duration or length of each window i.e., the difference between the maximum and minimum time durations indicated ) corrresponds to a respective delay element 40 and is a resolution of the measurement (200 ps in this case).
  • Table 1 illustrates the states of the latch output ports 58 1 - 58 10 for various windows of time durations for pulses received by the delay elements 40 1 - 40 10 .
  • the binary values indicated by the static energy levels at the latch output ports 58 1 - 58 10 provide digitized indications that: there was no pulse, there was a pulse having a pulse width within a certain window (e.g., between 0 ns and 0.2 ns, between 0.2 ns and 0.4 ns, etc.), or there was a pulse having a pulse width longer than the total delay, here 2.0 ns, of the delay elements 40 1 - 40 10 , i.e., a “pulse too long” indication.
  • the “pulse too long” indication is provided by resetting the first latch 42 1 to a binary 0.
  • the tester 14 is connected to the circuit 12 and communicates with the circuit 12 to send the reset signal RESET to the latches 42 , setting the output ports 58 1 - 58 10 to zero volts, at time t rst , regardless of their previous values (FIGS. 6 A and 6 C- 6 L), and to initiate a test mode.
  • initiating test mode A closes switch 30 , coupling line 26 to line 29 , and closes switches 34 1 - 34 n , coupling the latches 42 1 - 42 n to the pins 18 m-n - 18 m .
  • the pulse 86 is produced in the operational circuitry 22 as part of signal A and conveyed to the test circuitry 24 through lines 26 and 29 and switch 30 .
  • the pulse 86 travels through the delay elements 40 , causing the latches 42 to set voltages of their outputs 58 to indicate which window of time durations includes the width of the pulse 86 .
  • the pulse 86 on line 29 is received by the test circuitry 24 at time t 1 , causing latch 42 1 to set its output port 58 1 to a 1 , as shown in FIG. 6C, at time t 1 (assuming no delay in the latch 42 1 ).
  • the pulse 86 enables all of the delay elements 40 1 - 40 10 substantially simultaneously at time t 1 .
  • the pulse 86 travels through delay elements 40 1 - 40 9 , reaching the delay element output ports 48 1 - 48 8 at different times (t 1 +dt, t 1 +2dt, etc.) and setting the latch output ports 58 2 - 58 9 to binary 1's (FIGS. 6D-6L) at these times (assuming no delay in the latches 42 2 - 42 9 ).
  • the pulse 86 does not reach the output port 48 9 before the pulse 86 ends at time t 2 , disabling the delay elements 40 1 - 40 10 .
  • the latch output ports 58 1 - 58 10 have binary values of 111111110, indicating that the pulse width is between 8dt and 9dt (i.e., between 1.6 ns and 1.8 ns).
  • the voltages at the latch output ports 58 1 - 58 10 are transmitted through respective lines 38 , switches 34 , and lines 36 to pins 18 .
  • the tester 14 can sample the pins 18 connected to the latches 42 at a time t s after the total delay time, n*dt, here 10dt, and before the latches 42 are reset by the reset signal RESET. Outputting the latches to the pins 18 allows the testing to be done after packaging because the circuit 12 does not need to be probed internally.
  • the processor 15 in the tester 14 analyzes the outputs from the latches 38 and provides one or more indications of the test results.
  • the CPU 17 uses the latch outputs when accessing Table 1, which is stored as a look-up table in the memory 19 , to find the corresponding result/window of time durations containing the pulse width.
  • the CPU 17 then produces one or more indications, such as a numeric display, of the pulse width.
  • the CPU 17 can also determine whether the indicated window is acceptable (i.e., whether the pulse width is in a desired window) and provide a pass/fail indication of the determination.
  • FIG. 7 illustrates another configuration of the test circuitry 24 .
  • another latch 48 n+1 is connected to the output port 48 n .
  • the “pulse too long” indication would be all 1's as indicated by the outputs 58 of the n+1 latches 42 .
  • the configuration shown in FIG. 7 can thus provide the same information as provided by the configuration shown in FIG. 3 .
  • FIG. 8 illustrates another configuration of the test circuitry 24 .
  • delay elements 41 1 - 41 n are connected in parallel.
  • the line 29 connects both enable ports 45 1 - 45 n and input ports 47 1 - 47 n in parallel.
  • feedback from output port 49 n of the last delay element 41 n to the second reset port 56 of the first latch 42 1 is provided similar to the configuration shown in FIG. 3 .
  • the delay elements 41 1 - 41 n have different time delays dt 1 -dt n . For example, if dt 1 is 200 ps, dt 2 is 400 ps, etc., then the configuration of FIG. 8 has the same resolution and yields the same output indications (Table 1) as the configuration shown in FIG. 3 .
  • FIG. 8A shows that each of the delay elements 41 functions as a switch 106 , that closes in response to a signal (e.g., rising edge of a signal) from the enable port 44 , thereby allowing a signal to pass from the input port 46 to the output port 48 , delayed by a delay time dt.
  • a signal e.g., rising edge of a signal
  • Each delay element 41 can be implemented as shown in FIG. 5 for the delay element 40 .
  • FIG. 9 illustrates another configuration of the test circuitry 24 .
  • the delay elements 40 1 - 40 n are connected to a decoder 88 .
  • the decoder 88 outputs one or more indications of the length of a pulse on the line 29 onto one or more lines 90 for coupling to one or more lines 38 .
  • the indication on line 90 can be an analog static energy level, e.g., with the magnitude of the level corresponding to the window in which the pulse width falls.
  • the line 90 can be a bus line carrying n static signals to n lines 38 .
  • the decoder 88 decodes the signals received from the delay elements 40 1 - 40 n , and outputs only one binary 1 indicative of the window including the pulse width. For example, if there are 5 delay elements 40 each with a delay time of 200 ps, then an output on bus line 90 of 00100 indicates a pulse width of between 400 ps and 600 ps.
  • the “pulse too long” indication uses two 1's, e.g., 00011 for a pulse width longer than 1.0 ns. This arrangement can be accomplished, for example, by using n+1 latches 42 for n delay elements 40 , similar to the configuration shown in FIG.
  • n latches 42 could be used for n delay elements 40 , similar to the configurations shown in FIGS. 3 and 8, but coupling the output port 48 n to a second input port of the first latch 42 1 instead of the second reset port 56 , and also coupling the output ports 48 1 - 48 n ⁇ 1 to second reset ports of the latches 42 1 - 42 n ⁇ 1 .
  • the “pulse too long” indication is 10001.
  • the latches 42 can be transparent latches or D-type registers (i.e., comprising a set of D flip-flops).
  • the delay elements 40 could be implemented using an AND gate without an inverter.
  • “negative” pulses i.e., the pulse has a voltage lower than the voltage present on the line carrying the pulse
  • an OR gate or a NOR gate with an inverter
  • no latch needs to be connected to the input port 46 1 of the first delay element 40 1 , e.g., if pulses shorter than the first time delay dt 1 need not be detected.
  • FIG. 10 shows that delay elements 40 ′ other than that shown in FIG. 5 are possible.
  • the delay elements 40 ′ 1 - 40 ′ 4 have alternating configurations.
  • the delay elements 40 ′ 1 , 40 ′ 3 , etc. are combinations of NAND gates 92 and inverters 94 . Inputs to the NAND gates 92 correspond to the enable ports 44 ′ and the input ports 46 ′ of the respective delay elements 40 ′.
  • the enable ports 44 ′ of elements 40 ′ 1 , 40 ′ 3 , etc. are connected in parallel to line 100 .
  • the outputs of the NAND gates 92 feed output ports 51 ′ 1 , 51 ′ 3 , etc. and the inverters 94 .
  • Outputs of the inverters 94 correspond to the output ports 48 ′ 1 , 48 ′ 3 , etc. of the delay elements 40 ′ 1 , 40 ′ 3 , etc.
  • the delay elements 40 ′ 2 and 40 ′ 4 , etc. are NOR gates 98 each with one input coupled to respective output ports 51 ′ 1 , 51 ′ 3 , etc. of a corresponding “preceding” delay element 40 ′ 1 , 40 ′ 3 , etc. and the other input coupled in parallel to the line 100 through an inverter 102 .
  • Outputs of the NOR gates 98 correspond to the outputs 48 ′ 2 , 48 ′ 4 , etc. and the outputs 51 ′ 2 , 51 ′ 4 , etc.

Abstract

A semiconductor circuit is provided including circuitry for producing a pulse. A plurality, n, of delay elements are provided each enabled and disabled in parallel by the pulse. Each delay element is adapted to transmit the pulse from an input to an output, with the pulse reaching the respective outputs at different times. A plurality, n−1, of detectors is provided each having an input coupled to an input of a corresponding delay element. Each detector is adapted to set a state of its output to a predetermined state, from a plurality of states, in response to receiving a portion of the pulse. The outputs of the detectors are coupled to output pins of the semiconductor circuit. A tester is provided that is adapted to couple to the semiconductor output pins and detect the state of the detector outputs.

Description

BACKGROUND OF THE INVENTION
The invention relates to pulse width detectors and more particularly to apparatus and methods for measuring pulse widths in semiconductor circuits during the manufacture thereof.
As is known in the art, in the manufacture of semiconductor circuits, a significant cost is incurred in testing such circuits. Testing is necessary to detect manufacturing or design defects effecting operational characteristics of the circuits. For example, many semiconductor circuits, such as Dynamic Random Access Memories (DRAMs), use internally-generated pulses to convey information. Different pulse widths (i.e., time durations) convey different information. Because the pulses can control various functions of the circuit, it is desirable to test the circuit to ensure that all of the pulses produced by the circuit have proper pulse widths.
Much of the cost for testing these circuits is the result of the cost of the test equipment. With pulse widths typically on the order of 2-4 ns, the test equipment needs to have a very fine time resolution in order to determine whether the pulse has an acceptable pulse width. If the pulse width is measured by probing a conductor carrying the pulse and the test equipment used to sample the pulse on the conductor, then the test equipment needs to sample the pulse at a frequency on the order of 1 GHz (i.e., a sampling period of 1/109 seconds or 1 nanosecond (ns)) in order to provide a time duration resolution on the order of 1 ns. Test equipment having operational or sampling frequencies this high is typically very expensive.
SUMMARY OF THE INVENTION
In accordance with one feature of the invention, a semiconductor circuit is provided including operational circuitry configured to produce a signal to be tested. Test circuitry is provided to sense the signal. The test circuitry provides indications of whether a pulse in the sensed signal has a time duration at least as long as corresponding, different, time durations. The indications effectively divide the pulse into a plurality of time cells or windows indicative of different ranges of time durations, with differences between a maximum time duration and a minimum time duration of each window being a timespan of that window. The indications indicate which of the windows includes the time duration of the pulse. The indications provided by the test circuitry are at a frequency, f1, that is lower than a frequency, f2, that is defined by an inverse of a shortest one of the timespans. The test circuitry is operated independently of a clock signal having a clock frequency fCLK that is greater than the frequency f2.
With such an arrangement, a signal, which may include high-frequency components, in the semiconductor circuit can be tested at a relatively high effective sampling frequency, fs, and a characteristic (e.g., a level or a pulse width) of the signal can be expressed in a format having a lower frequency, fc, thereby enabling an effectively high-frequency sampling without requiring expensive high-frequency test circuitry.
In accordance with another feature of the invention, a semiconductor circuit is provided including operational circuitry configured to produce a signal, having at least one pulse, to be tested. Test circuitry is provided to sense the signal at a high effective sampling frequency and to produce an indication of a characteristic of the pulse or pulses. The indication of the characteristic is at a frequency that is lower than the effective sampling frequency. The test circuitry does not need, and is therefore independent of a clock signal having a clock frequency that is greater than the effective sampling frequency.
With such an arrangement, high-frequency performance of circuit components and high-frequency quality of signals in the circuit can be measured with lower-frequency test equipment.
In accordance with another feature of the invention, a semiconductor circuit is provided including circuitry for producing a pulse. A plurality of, n, delay elements is provided each enabled and disabled in parallel by the pulse. Each delay element is adapted to transmit the pulse from an input to an output thereof, with the pulse being received at respective outputs thereof at correspondingly different times. A plurality, n−1, of detectors is provided each having an input coupled to an input of a corresponding one of the delay elements. Each detector is adapted to set an output state to a predetermined one of a plurality of states in response to detection of a portion of the pulse.
With such an arrangement, a pulse width can be determined to be within a range of time durations having a timespan 1/fs, and expressed in a format that is detectable at a frequency fc that is lower than the frequency fs.
In accordance with another feature of the invention, the outputs of the detectors are coupled to output pins of the semiconductor circuit.
With such a structure, pulse widths can be detected by a relatively inexpensive tester after the semiconductor circuit has been packaged.
In accordance with another feature of the invention, a semiconductor circuit is provided including operational circuitry, delay elements, and a decoder. The operational circuitry produces a pulse having a pulse width. The pulse enables and disables the delay elements in parallel, which provide the pulse to a plurality of output ports at different times. The decoder receives the pulse from the delay element output ports and provides a signal to indicate a time duration window that includes the pulse width.
With such a structure, relatively low-frequency signals can be used to indicate that a window, or which window, of time durations includes the pulse width. For example, such signals can include an analog DC voltage on a single line, and/or serial digital binary DC voltage levels on a single line, and/or digital binary DC voltage levels on multiple lines, e.g., in parallel.
In accordance with another feature of the invention, a semiconductor circuit is provided comprising circuitry for producing a pulse, n serially coupled delay elements, and n latches. The delay elements are enabled and disabled in parallel by leading and trailing edges, respectively, of the pulse, and serially transmit the pulse from delay element inputs to delay element outputs thereof with associated time delays. Each latch is adapted to set its output to a first predetermined state if the latch receives a portion of the pulse at its input, which is coupled to a corresponding delay element input. At least one of the latches is adapted to set its output to a second predetermined state if the latch receives a portion of the pulse from the output of a last one of the n delay elements.
With such an arrangement, indications are provided as to whether any pulse is produced and, if a pulse is produced, which of n bounded windows of time durations a width of the pulse is within, or that the width is longer than a maximum delay of the delay elements.
In accordance with another feature of the invention, a semiconductor circuit is provided comprising circuitry for providing a pulse, n delay elements, and n−1 latches. The delay elements are adapted to be activated and deactivated by a first edge and a second edge, respectively, of the pulse received in parallel at corresponding enable ports thereof. Each delay element is adapted to transmit the pulse, with a corresponding time delay, from a delay element input port to a delay element output port thereof. Each latch has; a latch input port, coupled to a corresponding delay element input port, and a latch output port, and is adapted to provide a DC signal to the latch output port if the first edge of the pulse is received at the latch input port.
In accordance with another feature of the invention, a semiconductor circuit is provided including operational circuitry, a delay element, and a latching element. The operational circuitry provides a pulse. The delay element is selectively coupled to the operational circuitry, is enabled and disabled by the pulse, and transmits the pulse from a delay element input port to a delay element output port thereof in a delay time. The latching element is selectively coupled to an output contact of the semiconductor circuit and is adapted to provide a DC signal to the contact in response to receiving a portion of the pulse from the delay element output port.
In accordance with another feature of the invention, an apparatus is provided including a first device activated and deactivated by leading and trailing edges, respectively, of a pulse received by the first device. The first device is configured to receive the pulse and to provide it to a plurality of output ports at a plurality of different output times. The different output times define a plurality of windows of time durations having corresponding timespans, with the inverse of the shortest timespan representing a first frequency. A second device is provided coupled to the plurality of output ports of the first device and is adapted to provide one or more indications of whether a portion of the pulse reached each of the output ports. Each indication is detectable at a second frequency, that is lower than the first frequency.
With such an arrangement, a width of the pulse can be determined to be within a small window of time durations having a timespan corresponding to a first frequency, and expressed in a format that is detectable at a second frequency, lower than the first frequency.
In accordance with another feature of the invention, an apparatus is provided comprising n serially coupled delay elements. The delay elements are activated and deactivated in parallel by leading and trailing edges, respectively, of a pulse. Each delay element is adapted to receive the pulse at a delay element input port thereof and to output the signal to a delay element output port thereof delayed by a time delay. Each of n detectors has a detector input port coupled to a corresponding delay element input port and is adapted to set a detector output port thereof to a first DC level if it receives the leading edge of the pulse at the detector input port. A first one of the detectors is adapted to set its output port to a second DC level if it receives the leading edge of the pulse at a reset port coupled to the output port of a last one of the n delay elements.
In accordance with another feature of the invention, a system for testing a semiconductor circuit is provided. A semiconductor circuit is provided including a circuit for producing a signal pulse having a pulse time duration. A test circuit is provided adapted to provide a digitized indication of the pulse time duration. The digitized indication corresponds to one of a plurality of windows of time durations having corresponding timespans. A tester is provided that is adapted to detect the digitized indication using an operating frequency that is lower than an inverse of a shortest one of the timespans.
With such an arrangement, the tester can determine the pulse width to be within a small window of time durations, the timespan of that window corresponding to a first frequency, while having an operating frequency lower than the first frequency.
In accordance with another feature of the invention, the test circuit provides the digitized indication to output pins of the semiconductor circuit.
With such a structure, pulse widths can be detected by a relatively inexpensive, relatively low-frequency tester after the semiconductor circuit has been packaged.
In accordance with another feature of the invention, a system for testing a semiconductor circuit is provided. A semiconductor circuit is provided including circuitry for producing a pulse. Each of n delay elements are enabled and disabled in parallel by the pulse. The delay elements transmit the pulse to output ports so that the pulse reaches the output ports at different output times defining time duration windows having corresponding timespans. Each of n−1 detectors has a detector input coupled to an input of one of the delay elements and is adapted to set a detector output to a predetermined state if it receives a portion of the pulse. A tester is provided that has an operational frequency that is lower than the shortest timespan and that is adapted to detect the predetermined state.
With such an arrangement, the pulse width can be determined to be within a small range of time durations and can be detected by the tester at a frequency lower than a sampling frequency needed to yield the same resolution.
BRIEF DESCRIPTION OF THE DRAWINGS
Other features and advantages of the invention, as well as the invention itself, will become more readily apparent when taken together with the following detailed description and the accompanying drawings, in which:
FIG. 1 is a block diagram of a semiconductor circuit under test by a tester according to the invention;
FIG. 2 is a diagrammatical view of portions, including test circuitry shown in block form, of the semiconductor circuit shown in FIG. 1;
FIG. 3 is a diagrammatical view of an example of the test circuitry shown in FIG. 2, including delay elements and latches;
FIG. 3A is a schematic diagram of a delay element shown in FIG. 3;
FIGS. 4A-4C are timing diagrams of signals in the test circuitry shown in FIG. 3;
FIG. 5 is a schematic diagram of an exemplary delay element and an exemplary latch;
FIGS. 6A-6L are timing diagrams of signals in the test circuitry shown in FIG. 3; and
FIGS. 7-8 are diagrammatical views of more examples of the test circuitry shown in FIG. 2.
FIG. 8A is a schematic diagram of a delay element shown in FIG. 8;
FIG. 9 is a diagrammatical view of another example of the test circuitry shown in FIG. 2.
FIG. 10 is a schematic diagram of another delay configuration.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring now to FIG. 1, a semiconductor integrated circuit test system 10 is shown to include a semiconductor integrated circuit 12 under test by a tester 14.
As described more fully below, the system 10 provides high-resolution testing using a relatively low-frequency, inexpensive tester 14. Suffice it to say here that the circuit 12 produces signals, detects the signals, and produces indications of the signals with a resolution typical of high sampling frequency apparatus, without needing a high frequency clock signal, such that the low-frequency tester 14 can sense and process the indications from the circuit 12.
The semiconductor circuit 12 is formed on a single crystal body or substrate 16 (i.e., a die or chip) such as silicon and can be any of a variety of well known types of circuits, e.g., a memory or a processor. Possible types of memories include, but are not limited to, Static Random Access Memories (SRAMs) and DRAMs. The circuit 12 has a plurality of pins 18 1-18 m that are connected through lines 20 1-20 m to the tester 14 to provide communication with the tester 14.
The tester 14 transmits signals to, and receives and processes signals from, the circuit 12. For testing a memory, the tester 14 transmits test signals including, but not limited to, row address and column address signals, a Row Address Strobe (RAS) signal, a Column Address Strobe (CAS) signal, and a Test Mode TM signal. The tester 14 supplies these signals to the circuit 12 and monitors/detects signals from the circuit 12 through the lines 20 1-20 m and pins 18 1-18 m. The received signals are analyzed by a processor 15, including a central processing unit CPU 17 and a memory 19, in the tester 14 to provide indications of the results of the test.
The circuit 12 includes operational circuitry OC 22 and test circuitry 24. The operational circuitry 22 produces very short pulse widths. During test modes, the test circuitry 24 monitors the pulse widths.
In order to monitor widths of pulses in the operational circuitry 22 with adequate resolution, the test circuitry 24 has a high effective sampling frequency. “Effective sampling frequency” means that a frequency needed to periodically monitor (i.e., the inverse of the time between monitoring) a signal in order to determine the signal's quality with desired resolution is simulated, without requiring sampling or clocking (and therefore a clock signal) at that frequency. In other words, the test circuitry 24 can monitor the operational circuitry 22, and produce outputs, in such a way as to simulate sampling the operational circuitry at a high frequency without actually sampling at that high frequency. For example, here the test circuitry 24 can determine the pulse width to be within 0.2 nanosecond (ns) windows, so the effective sampling frequency is 1/0.2 ns=5 GHz. Also, if the test circuitry 24 can determine the quality (e.g., level) of the signal every 0.2 ns, then the effective sampling frequency is also 5 GHz.
The system 10 therefore does not need a high frequency clock signal. Thus, the test circuitry 24 can be operated independently of such a clock signal (i.e., the test circuitry does not need such a clock signal even if the system 10 includes such a clock signal). By not using such a clock signal, noise associated with such signals is avoided.
The circuit 12 can be, e.g., as shown, a DRAM adapted to produce pulses on the order of 2-4 ns, while the tester 14 operates, and therefore monitors, senses or detects signals from the circuit 12 through lines 20 1-20 m, at an operational frequency of about 25-100 Mhz. This operational frequency is much lower than the effective sampling frequency of the test circuitry 24. In other words, the time between monitoring by the tester 14 is longer than the smallest resolution of the test circuitry 24. The test circuitry 24 provides digitized indications of the pulse widths to the pins 18 for detection by the tester 14.
Referring now to FIG. 2, the operational circuitry 22 is shown to be selectively connected to the test circuitry 24 as controlled by two test mode signals TMA and TMB. The test mode signals TMA and TMB are indicative of two possible modes, test mode A and test mode B, of testing the operational circuitry 22. The operational circuitry 22 is shown to include two lines 26 and 28 that carry signal A and signal B, respectively, that each include pulses to be tested. Line 26 is connected to the test circuitry 24 through a line 29 when a switch 30 is closed in response to the test mode signal TMA. Line 28 is connected to the test circuitry 24 through line 29 when a switch 32 is closed in response to the test mode signal TMB. The test mode signals TMA and TMB can be generated in the circuit 12 (e.g., in the test circuitry 24), or can be received from the tester 14 through the pins 18.
The test mode signals TMA and TMB also control selective coupling of the pins 18 to the test circuitry 24. Either test mode signal TMA or TMB causes switches 34 1-34 n, and 35 to connect pins 18 m-n-18 m and 18 r to the test circuitry 24 by joining lines 36 1-36 n and 37 to lines 38 1-38 n and 39. In the absence of the test mode signals TMA and TMB, the lines 36 1-36 n and 37 are connected through the switches 34 1-34 n and 35 to the operational circuitry OC 22.
Referring now to FIG. 3, the test circuitry 24 is shown to include a plurality of n delay elements 40 1-40 n and a plurality of n detectors or latches 42 1-42 n. The delay elements 40 1-40 n have enable ports 44 1-44 n coupled in parallel to the line 29 and are adapted to be enabled and disabled by pulses on the line 29. The delay elements 40 1-40 n also have input ports 46 1-46 n and output ports 48 1-48 n coupled inn series, forming a delay chain (i.e., the output port 48 1 of the first delay element 40 1 is connected to the input port 46 2 of the second delay element 40 2, etc., with the input port 46 1 connected to the line 29). The delay elements 40 pass signals received via the line 29 through each of the delay elements 40. The latches 42 1-42 n have input ports 50 1-50 n connected to corresponding ones of the input ports 46 1-46 n of the delay elements 40 1-40 n, and reset ports 52 1-52 n connected to the line 39 for receiving a reset signal RESET from the tester 14 through the pin 18 r, the line 37, and the switch 35. The first latch 42 1 has a second reset port RST2 56 connected to the output port 48 n of the last delay element 40 n, providing feedback of any signal present at tile output port 48 n.
The delay elements 40 1-40 n are each configured to pass a signal received at the respective one of the input ports 46 1-46 n to the respective one of the output ports 48 1-48 n delayed by corresponding time delays dt1-dtn. Referring also to FIG. 3A, a delay element 40 functions as a switch 104, that closes in response to a signal (e.g, rising edge of a signal) from the enable port 44, thereby allowing a signal to pass from the input port 46 to the output port 48, delayed by a delay time dt. The time delays dt1-dtn may be different for some or all of the delay elements 40, or may be substantially the same. The delay realized by a signal passing through the series of delay elements 40, however, is different at each of the delay element output ports 48, the delay being the sum of all the time delays dt of all the delay elements 40 in the series between the line 29 and the output port 48 in question. Thus, each time delay of the delay elements 40 corresponds to a window of time durations. The inverse of the shortest time delay is the effective sampling frequency because the shortest delay represents the finest resolution possible for determining the pulse width. The delay elements 40 transmit signals with little attenuation.
FIGS. 4A-4B illustrate the timing of signals enabling, and being transmitted by, the delay element 40 1. FIG. 4A shows that a pulse 60 on line 29 is received by the delay element 40 1 at the enable port 44 1 and at the input port 46 1 at substantially the same time, t0. A leading edge 62 of the pulse 60 enables the delay element 40 1 to transmit the pulse 60 from the input port 46 1 to the output port 48 1. FIG. 4A shows that the pulse 60 begins (i.e., is received at the input port 46 1 and the enable port 44 1) at time t0 and ends at time t2, having a pulse width w=t2−t0. The pulse 60 is provided at the output port 48 1 at a time t1 after the time delay dt1 of the delay element 40 1 (i.e., dt1=t1−to). The pulse 60 is provided at the output port 48, until the pulse 60 present at the enable port 44 1 ends, with a trailing edge 64 of the pulse 60 disabling the delay element 40 1.
FIG. 5 illustrates an exemplary embodiment of one of the delay elements 40. As shown, the delay element 40 includes a NAND gate 66 coupled in series to an inverter 68. Inputs to the NAND gate 66 correspond to the enable port 44 and the input port 46 of the delay element 40, and an output 70 of the NAND gate 66 feeds the inverter 68. An output of the inverter 68 corresponds to the output port 48 of the delay element 40. With this configuration, the time delays introduced by the NAND gate 66 and the inverter 68 are both about 80-100 picoseconds (ps), yielding a time delay dt of about 160-200 ps. Other delay elements are possible, e.g., as shown in FIG. 10.
Referring again to FIGS. 3 and 4A, the latches 42 1-42 n are configured to set and hold their output ports 58 1-58 n to a static energy level, e.g., a high DC voltage, in response to receiving the leading edge 62 of the pulse 60 at their input ports 50 1-50 n. The signal level or potential is transmitted to the pins 18 m-n-18 m through lines 36 1-36 n and switches 34 1-34 n because lines 38 1-38 n are coupled to the output ports 58 1-58 n of the latches 42 1-42 n. The term latches as used herein refers generally to a circuit that sets and holds an output state in response to detecting a particular signal at its input, even if the signal at its input changes thereafter. The latches 42 will reset their respective output ports 58 1-58 n in response to receiving a leading edge of a pulse at their respective reset ports 52 and/or 56.
FIGS. 4A-4C illustrate the timing of the pulse 60 at the latch input 50 2 and output 58 2 in relation to the pulse 60 at the delay element input 46 1 and output 48 1. Before the pulse 60 reaches the delay output port 48 1, the latch output port is at a low voltage level VL, corresponding to a binary “0”. As shown in FIG. 4B, the pulse 60 is provided to the delay output 48 1 and the latch input 50 2 at substantially the same time, t1. When the voltage at the latch input 50 2 is high enough to actuate the latch 42 2, exceeding reference level VREF, the latch 42 2 sets the latch output 58 2 (FIG. 4C) to a high voltage level VH substantially equal to the magnitude of the pulse 60, corresponding to a binary “1”. Thus, the latch 42 2 provides a static energy level indication at its output port 58 2 that the pulse 60 is at least as long as the time delay dt1 of the delay element 40 1. If the pulse was not at least this long, then the delay element 40 1 would be disabled before the latch 42 1 could set its output 58 2 to the binary 1 level.
FIG. 5 illustrates an exemplary embodiment of one of the latches 42. As shown, the latch 42 includes two cross-coupled inverters 71 and 72. The latch input 50 is connected to a gate 74 of a Field Effect Transistor (FET) 76 while the latch reset port 52 is connected to a gate 78 of a FET 80. The FETs 76 and 80 have their sources 82 and 84 connected to ground. The FET 80 has its drain connected to the output port 58 of the latch 42. A pulse received at the gate 78 will reset the voltage at the output port 58 to zero.
Operation of the system 10 will be described with reference to the preceding figures, and to FIGS. 6A-6L which show the timing of the outputs of the latches 42 1-42 10 as a pulse 86 travels through the n, here 10, delay elements 40 1-40 10. Because there are 10 delay elements 40, each here with a time delay dt of about 200 ps, the test circuitry 24 can determine pulse widths up to a maximum pulse width of 1.8 ns with a resolution of 200 ps. The test circuitry 24 indicates through the outputs of the latches 42 1-42 10 in which window of time durations the pulse width falls. The windows are defined by the minimum time duration and the maximum time duration indicated. The duration or length of each window (i.e., the difference between the maximum and minimum time durations indicated ) corrresponds to a respective delay element 40 and is a resolution of the measurement (200 ps in this case).
Table 1 illustrates the states of the latch output ports 58 1-58 10 for various windows of time durations for pulses received by the delay elements 40 1-40 10.
TABLE 1
LATCH OUTPUTS RESULT/WINDOW
0000000000 No Pulse
1000000000 Pulse Width ≦ dt
1100000000 dt ≦ Pulse Width ≦ 2dt
1110000000 2dt ≦ Pulse Width ≦ 3dt
1111000000 3dt ≦ Pulse Width ≦ 4dt
1111100000 4dt ≦ Pulse Width ≦ 5dt
1111110000 5dt ≦ Pulse Width ≦ 6dt
1111111000 6dt ≦ Pulse Width ≦ 7dt
1111111100 7dt ≦ Pulse Width ≦ 8dt
1111111110 8dt ≦ Pulse Width ≦ 9dt
1111111111 9dt ≦ Pulse Width ≦ 10dt
0111111111 Pulse Too Long
As shown, the binary values indicated by the static energy levels at the latch output ports 58 1-58 10 provide digitized indications that: there was no pulse, there was a pulse having a pulse width within a certain window (e.g., between 0 ns and 0.2 ns, between 0.2 ns and 0.4 ns, etc.), or there was a pulse having a pulse width longer than the total delay, here 2.0 ns, of the delay elements 40 1-40 10, i.e., a “pulse too long” indication. The “pulse too long” indication is provided by resetting the first latch 42 1 to a binary 0.
Referring to FIGS. 1-3 and 6 in particular, in operation, the tester 14 is connected to the circuit 12 and communicates with the circuit 12 to send the reset signal RESET to the latches 42, setting the output ports 58 1-58 10 to zero volts, at time trst, regardless of their previous values (FIGS. 6A and 6C-6L), and to initiate a test mode. For example, referring to FIG. 2, initiating test mode A closes switch 30, coupling line 26 to line 29, and closes switches 34 1-34 n, coupling the latches 42 1-42 n to the pins 18 m-n-18 m. Selectively coupling lines in the operational circuitry 22 to the test circuitry 24 allows a single test circuit 24 to test many pulses on many different lines. The pulse 86, here with a width of 1.7 ns (FIG. 6B), is produced in the operational circuitry 22 as part of signal A and conveyed to the test circuitry 24 through lines 26 and 29 and switch 30.
The pulse 86 travels through the delay elements 40, causing the latches 42 to set voltages of their outputs 58 to indicate which window of time durations includes the width of the pulse 86. The pulse 86 on line 29 is received by the test circuitry 24 at time t1, causing latch 42 1 to set its output port 58 1 to a 1, as shown in FIG. 6C, at time t1 (assuming no delay in the latch 42 1). The pulse 86 enables all of the delay elements 40 1-40 10 substantially simultaneously at time t1. The pulse 86 travels through delay elements 40 1-40 9, reaching the delay element output ports 48 1-48 8 at different times (t1+dt, t1+2dt, etc.) and setting the latch output ports 58 2-58 9 to binary 1's (FIGS. 6D-6L) at these times (assuming no delay in the latches 42 2-42 9). The pulse 86 does not reach the output port 48 9 before the pulse 86 ends at time t2, disabling the delay elements 40 1-40 10. Thus, the latch output ports 58 1-58 10 have binary values of 111111110, indicating that the pulse width is between 8dt and 9dt (i.e., between 1.6 ns and 1.8 ns).
The voltages at the latch output ports 58 1-58 10 are transmitted through respective lines 38, switches 34, and lines 36 to pins 18. The tester 14 can sample the pins 18 connected to the latches 42 at a time ts after the total delay time, n*dt, here 10dt, and before the latches 42 are reset by the reset signal RESET. Outputting the latches to the pins 18 allows the testing to be done after packaging because the circuit 12 does not need to be probed internally. Using static energy levels allows the tester 14 to detect the indications from the latches 42 while having an operational frequency that is slower than the inverse of the smallest test circuitry resolution. In other words, the tester 14 can operate at a low frequency relative to the effective sampling frequency of the test circuitry 24, here 1/200 ps=5 GHz.
The processor 15 in the tester 14 analyzes the outputs from the latches 38 and provides one or more indications of the test results. The CPU 17 uses the latch outputs when accessing Table 1, which is stored as a look-up table in the memory 19, to find the corresponding result/window of time durations containing the pulse width. The CPU 17 then produces one or more indications, such as a numeric display, of the pulse width. The CPU 17 can also determine whether the indicated window is acceptable (i.e., whether the pulse width is in a desired window) and provide a pass/fail indication of the determination.
FIG. 7 illustrates another configuration of the test circuitry 24. In this embodiment, there is no feedback from the last delay element output port 48 n to any latch 42. In order to provide the “pulse too long” indication, another latch 48 n+1 is connected to the output port 48 n. Thus, the “pulse too long” indication would be all 1's as indicated by the outputs 58 of the n+1 latches 42. The configuration shown in FIG. 7 can thus provide the same information as provided by the configuration shown in FIG. 3.
FIG. 8 illustrates another configuration of the test circuitry 24. In this embodiment, delay elements 41 1-41 n are connected in parallel. The line 29 connects both enable ports 45 1-45 n and input ports 47 1-47 n in parallel. Also, feedback from output port 49 n of the last delay element 41 n to the second reset port 56 of the first latch 42 1 is provided similar to the configuration shown in FIG. 3. The delay elements 41 1-41 n have different time delays dt1-dtn. For example, if dt1 is 200 ps, dt2 is 400 ps, etc., then the configuration of FIG. 8 has the same resolution and yields the same output indications (Table 1) as the configuration shown in FIG. 3.
FIG. 8A shows that each of the delay elements 41 functions as a switch 106, that closes in response to a signal (e.g., rising edge of a signal) from the enable port 44, thereby allowing a signal to pass from the input port 46 to the output port 48, delayed by a delay time dt. Each delay element 41 can be implemented as shown in FIG. 5 for the delay element 40.
FIG. 9 illustrates another configuration of the test circuitry 24. As shown, the delay elements 40 1-40 n are connected to a decoder 88. The decoder 88 outputs one or more indications of the length of a pulse on the line 29 onto one or more lines 90 for coupling to one or more lines 38. The indication on line 90 can be an analog static energy level, e.g., with the magnitude of the level corresponding to the window in which the pulse width falls.
Alternatively, the line 90 can be a bus line carrying n static signals to n lines 38. In this case, the decoder 88 decodes the signals received from the delay elements 40 1-40 n, and outputs only one binary 1 indicative of the window including the pulse width. For example, if there are 5 delay elements 40 each with a delay time of 200 ps, then an output on bus line 90 of 00100 indicates a pulse width of between 400 ps and 600 ps. The “pulse too long” indication uses two 1's, e.g., 00011 for a pulse width longer than 1.0 ns. This arrangement can be accomplished, for example, by using n+1 latches 42 for n delay elements 40, similar to the configuration shown in FIG. 7, but also coupling the output ports 48 1-48 n−1 to second reset ports of the latches 42 1-42 n−1. Alternatively still, n latches 42 could be used for n delay elements 40, similar to the configurations shown in FIGS. 3 and 8, but coupling the output port 48 n to a second input port of the first latch 42 1 instead of the second reset port 56, and also coupling the output ports 48 1-48 n−1 to second reset ports of the latches 42 1-42 n−1. In this case, for five delay elements, the “pulse too long” indication is 10001.
Other embodiments are within the scope and spirit of the appended claims. For example, the latches 42 can be transparent latches or D-type registers (i.e., comprising a set of D flip-flops). The delay elements 40 could be implemented using an AND gate without an inverter. Or, “negative” pulses (i.e., the pulse has a voltage lower than the voltage present on the line carrying the pulse) can be detected using an OR gate (or a NOR gate with an inverter) in place of NAND gate 66 for the delay elements 40. Also, no latch needs to be connected to the input port 46 1 of the first delay element 40 1, e.g., if pulses shorter than the first time delay dt1 need not be detected.
FIG. 10 shows that delay elements 40′ other than that shown in FIG. 5 are possible. As shown, the delay elements 401-404 have alternating configurations. The delay elements 401, 403, etc. are combinations of NAND gates 92 and inverters 94. Inputs to the NAND gates 92 correspond to the enable ports 44′ and the input ports 46′ of the respective delay elements 40′. The enable ports 44′ of elements 401, 403, etc. are connected in parallel to line 100. The outputs of the NAND gates 92 feed output ports 511, 513, etc. and the inverters 94. Outputs of the inverters 94 correspond to the output ports 481, 483, etc. of the delay elements 401, 403, etc. The delay elements 402 and 404, etc. are NOR gates 98 each with one input coupled to respective output ports 511, 513, etc. of a corresponding “preceding” delay element 401, 403, etc. and the other input coupled in parallel to the line 100 through an inverter 102. Outputs of the NOR gates 98 correspond to the outputs 482, 484, etc. and the outputs 512, 514, etc. of elements 402, 404, etc. The outputs 512, 514, etc. are coupled to input ports 463, 465 (not shown), etc. of corresponding “following” elements 403, 46 5 (not shown), etc.

Claims (23)

What is claimed is:
1. An apparatus comprising:
a first device activated and deactivated by leading and trailing edges, respectively, of a pulse received by the first device, the first device being configured to provide the pulse to a plurality of output ports at a plurality of different output times defining a plurality of windows of time durations having corresponding timespans, an inverse of a shortest one of the timespans defining a first frequency; and
a second device coupled to the plurality of output ports and adapted to provide one or more indications of whether a portion of the pulse was received at each output port, each indication being detectable at a second frequency that is lower than the first frequency.
2. The apparatus recited in claim 1, the first device further comprises a plurality of delay elements, wherein the plurality of delay elements have a corresponding plurality of enable ports coupled in parallel.
3. The apparatus recited in claim 2 wherein the plurality of delay elements are coupled in series to transmit the pulse between them.
4. A semiconductor circuit comprising:
operational circuitry for producing a pulse having a pulse width;
a plurality of delay elements enabled and disabled in parallel by the pulse, the plurality of delay elements being adapted to provide at least portions of the pulse to a plurality of delay element output ports at a plurality of different times; and
a decoder coupled to the plurality of delay element output ports and responsive to the pulse at the plurality of delay element output ports to provide a signal indicative of a window of time durations that includes the pulse width.
5. The circuit recited in claim 4 wherein the signal is a DC signal whose magnitude corresponds to the window.
6. The circuit recited in claim 4 wherein the signal is part of a set of DC signals indicative of binary values.
7. A semiconductor circuit comprising:
circuitry for producing a pulse;
a plurality of n delay elements enabled and disabled in parallel by the pulse, each delay element adapted to transmit the pulse from an input to an output, the plurality of n delay elements configured to transmit the pulse to corresponding outputs of the plurality of n delay elements at different times; and
n−1 detectors each having a detector input coupled to an input of a corresponding one of the plurality of n delay elements, each detector adapted to set a state of a detector output to a predetermined state from a plurality of states in response to receiving a portion of the pulse.
8. The circuit recited in claim 7 wherein each detector output is selectively coupled to an output pin of the circuit.
9. The circuit recited in claim 7 wherein the plurality of n delay elements are serially coupled to transmit the pulse from the output of one delay element to the input of another delay element.
10. The circuit recited in claim 9 wherein a delay time introduced to the pulse by each of the plurality of n delay elements between the input. and the output of each delay element is substantially the same.
11. A semiconductor circuit comprising:
circuitry for producing a pulse;
a plurality of n delay elements enabled and disabled in parallel by the pulse, each delay element adapted to transmit the pulse from an input to an output, the plurality of n delay elements configured to transmit the pulse to corresponding outputs of the plurality of n delay elements at different times; and
n−1 detectors each having a detector input coupled to an input of a corresponding one of the plurality of n delay elements, each detector adapted to set a state of a detector output to a predetermined state from a plurality of states in response to receiving a portion of the pulse;
wherein each detector output is selectively coupled to an output pin of the circuit; and;
wherein the input port of each of the plurality of n delay elements is connected in common.
12. The circuit recited in claim 11 wherein each delay element is adapted to delay the pulse a substantially unique amount of time between its input and its output.
13. The circuit recited in claim 8 wherein the indication is a DC energy level.
14. The circuit recited in claim 8 further comprising another detector having a detector input coupled to the input of a first one of the plurality of n delay elements.
15. A semiconductor circuit comprising:
circuitry for producing a pulse;
a plurality of n delay elements enabled and disabled in parallel by the pulse, each delay element adapted to transmit the pulse from an input to an output, the plurality of n delay elements configured to transmit the pulse to corresponding outputs of the plurality of n delay elements at different times;
n−1 detectors each having a detector input coupled to an input of a corresponding one of the plurality of n delay elements, each detector adapted to set a state of a detector output to a predetermined state from a plurality of states in response to receiving a portion of the pulse;
further comprising another detector having a detector input coupled to the input of a first one of the plurality of n delay elements; and further comprising another detector having a detector input coupled to the output of a last one of the plurality of n delay elements.
16. A semiconductor circuit comprising:
circuitry for producing a pulse;
a plurality of n delay elements serially coupled and adapted to be enabled and disabled in parallel by leading and trailing edges, respectively, of the pulse, each delay element adapted to delay the pulse as it is transmitted between a delay element input and a delay element output of that delay element; and
a plurality of n latches each having a latch input coupled to a corresponding delay element input, each latch adapted to set a state of a latch output port to a first predetermined state in response to receiving a portion of the pulse at the latch input, a selected one of the plurality of n latches having a latch reset coupled to the output of a last one of the plurality of n delay elements and being adapted to set the state of that latch to a second predetermined state in response to receiving a portion of the pulse at the latch reset.
17. A semiconductor circuit comprising:
circuitry for producing a pulse;
a plurality of n delay elements serially coupled and adapted to be enabled and disabled in parallel by leading and trailing edges, respectively, of the pulse, each delay element adapted to delay the pulse as it is transmitted between a delay element input and a delay element output of that delay element; and
a plurality of n latches each having a latch input coupled to a corresponding delay element input, each latch adapted to set a state of a latch output port to a first predetermined state in response to receiving a portion of the pulse at the latch input, a selected one of the plurality of n latches having a latch reset coupled to the output of a last one of the plurality of n delay elements and being adapted to set the state of that latch to a second predetermined state in response to receiving a portion of the pulse at the latch reset, wherein the selected one of the plurality of n latches is a first one of the plurality of n latches.
18. A semiconductor circuit comprising:
circuitry for providing a signal including a pulse;
a plurality of n delay elements having enable ports coupled in parallel, each one of the plurality of n delay elements adapted to be activated and deactivated by a first edge and a second edge, respectively, of the pulse received at the corresponding enable port, each delay element adapted to transmit the pulse from a delay element input port to a delay element output port delayed by a corresponding time delay; and
a plurality of n−1 latches each having a latch input port coupled to a corresponding delay element input port and adapted to provide a DC signal to a latch output port in response to receiving the first edge of the pulse at the latch input port.
19. The circuit recited in claim 18 wherein the plurality of n delay elements are coupled in series.
20. A semiconductor circuit comprising:
operational circuitry for providing a signal including a pulse;
a delay element including a delay element input port and a delay element enable port both selectively coupled to the operational circuitry, the delay element being enabled and disabled by the pulse incident at the enable port, the delay element configured to receive the pulse at the delay element input port at a first time and provide the pulse to a delay element output port at a second time, later than the first time; and
a latching element including a latching element input port coupled to the delay element output port, the latching element output port being selectively coupled to an output contact of the semiconductor circuit, the latching element being configured to provide a DC signal to the output port of the latching element in response to receiving at least a portion of the pulse at an input port of the latching element.
21. The circuit recited in claim 20 further comprising a second latching element having an input port coupled to the delay element input port.
22. An apparatus comprising:
a plurality of n delay elements serially coupled and adapted to be activated and deactivated in parallel by leading and trailing edges, respectively, of a pulse present in a signal received by the delay elements, each delay element adapted to receive the signal at a delay element input port thereof and to output the signal to a delay element output port thereof delayed by a time delay; and
a plurality of n detectors each having a detector input port coupled to a corresponding delay element input port and adapted to set a state of a detector output port to a first predetermined DC level in response to receiving the leading edge of the pulse at the detector input port, a first one of the plurality of n detectors having a detector reset coupled to the output of a last one of the plurality of n delay elements and being adapted to set the state of its detector output to a second predetermined DC level in response to receiving the leading edge of the pulse at the detector reset.
23. A system for testing a semiconductor circuit, the system comprising:
a semiconductor circuit comprising:
circuitry for producing a pulse;
a plurality of n delay elements enabled and disabled in parallel by the pulse and adapted to deliver the pulse to corresponding outputs of the plurality of n delay elements at different output times defining time duration windows having corresponding timespans; and
a plurality of n−1 detectors each having a detector input coupled to an input of a corresponding one of the plurality of n delay elements, each detector adapted to set a state of a detector output to a predetermined state from a plurality of states in response to receiving a portion of the pulse; and
a tester having an operational frequency that is lower than a shortest one of the timespans and being adapted to detect the predetermined state.
US09/281,020 1999-03-30 1999-03-30 Pulse width detection Expired - Lifetime US6324125B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US09/281,020 US6324125B1 (en) 1999-03-30 1999-03-30 Pulse width detection
DE60023583T DE60023583T2 (en) 1999-03-30 2000-03-06 Pulse length detector
EP00104782A EP1043596B1 (en) 1999-03-30 2000-03-06 Pulse width detection
TW089105684A TW554173B (en) 1999-03-30 2000-03-28 Pulse width detection apparatus, semiconductor circuit and apparatus for testing a semiconductor circuit
KR1020000016451A KR100685081B1 (en) 1999-03-30 2000-03-30 Pulse width detection
JP2000095079A JP2000338197A (en) 1999-03-30 2000-03-30 Device for testing semiconductor circuit, semiconductor circuit and system
CN00104901A CN1271177A (en) 1999-03-30 2000-03-30 Pulse width detection
US09/687,883 US6400650B1 (en) 1999-03-30 2000-10-13 Pulse width detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/281,020 US6324125B1 (en) 1999-03-30 1999-03-30 Pulse width detection

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/687,883 Division US6400650B1 (en) 1999-03-30 2000-10-13 Pulse width detection

Publications (1)

Publication Number Publication Date
US6324125B1 true US6324125B1 (en) 2001-11-27

Family

ID=23075632

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/281,020 Expired - Lifetime US6324125B1 (en) 1999-03-30 1999-03-30 Pulse width detection
US09/687,883 Expired - Lifetime US6400650B1 (en) 1999-03-30 2000-10-13 Pulse width detection

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/687,883 Expired - Lifetime US6400650B1 (en) 1999-03-30 2000-10-13 Pulse width detection

Country Status (7)

Country Link
US (2) US6324125B1 (en)
EP (1) EP1043596B1 (en)
JP (1) JP2000338197A (en)
KR (1) KR100685081B1 (en)
CN (1) CN1271177A (en)
DE (1) DE60023583T2 (en)
TW (1) TW554173B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661271B1 (en) * 2002-05-30 2003-12-09 Lsi Logic Corporation Multi-phase edge rate control for SCSI LVD
US20060132340A1 (en) * 2004-12-22 2006-06-22 Lin Chun W Apparatus and method for time-to-digital conversion and jitter-measuring apparatus using the same
US8324952B2 (en) 2011-05-04 2012-12-04 Phase Matrix, Inc. Time interpolator circuit

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2844054B1 (en) * 2002-08-29 2004-12-17 Iroc Technologies EVALUATION OF THE CHARACTERISTICS OF ELECTRIC PULSES
US8290094B2 (en) * 2010-01-18 2012-10-16 Infineon Technologies Ag Methods and systems for measuring data pulses
CN103176059B (en) * 2011-12-21 2016-12-21 北京普源精电科技有限公司 A kind of measure the method for pulse width, device and cymometer
TWI513985B (en) * 2013-04-03 2015-12-21 United Microelectronics Corp Method and device for pulse width estimation
CN108120919B (en) * 2017-12-27 2019-12-13 北京华峰测控技术股份有限公司 integrated circuit time parameter testing circuit and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439046A (en) * 1982-09-07 1984-03-27 Motorola Inc. Time interpolator
US4875201A (en) * 1987-07-21 1989-10-17 Logic Replacement Technology, Limited Electronic pulse time measurement apparatus
US5179438A (en) * 1990-02-13 1993-01-12 Matsushita Electric Industrial Co., Ltd. Pulse signal delay device, and pulse signal phase detector and clock generator using the device
US5199008A (en) * 1990-03-14 1993-03-30 Southwest Research Institute Device for digitally measuring intervals of time
US5694377A (en) * 1996-04-16 1997-12-02 Ltx Corporation Differential time interpolator
US5796682A (en) * 1995-10-30 1998-08-18 Motorola, Inc. Method for measuring time and structure therefor
US5818797A (en) * 1996-08-09 1998-10-06 Denso Corporation Time measuring device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710465A (en) * 1980-06-24 1982-01-20 Toshiba Corp Pulse width measurement circuit
FR2564216B1 (en) * 1984-05-11 1986-10-24 Centre Nat Rech Scient HIGH-SPEED TIME-TO-DIGITAL CONVERTER
JPH03102266A (en) * 1989-09-14 1991-04-26 Nec Corp Pulse width measurer
JP3153677B2 (en) * 1993-03-12 2001-04-09 株式会社日立製作所 Pulse width measuring device, time difference measuring device, and IC testing device
JPH07280857A (en) * 1994-04-05 1995-10-27 Sony Corp Pulse width measuring circuit
US5627478A (en) * 1995-07-06 1997-05-06 Micron Technology, Inc. Apparatus for disabling and re-enabling access to IC test functions
US5892838A (en) * 1996-06-11 1999-04-06 Minnesota Mining And Manufacturing Company Biometric recognition using a classification neural network
US6219305B1 (en) * 1996-09-17 2001-04-17 Xilinx, Inc. Method and system for measuring signal propagation delays using ring oscillators
US5867693A (en) * 1997-07-03 1999-02-02 Modern Video Technology, Inc. Extended resolution phase measurement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439046A (en) * 1982-09-07 1984-03-27 Motorola Inc. Time interpolator
US4875201A (en) * 1987-07-21 1989-10-17 Logic Replacement Technology, Limited Electronic pulse time measurement apparatus
US5179438A (en) * 1990-02-13 1993-01-12 Matsushita Electric Industrial Co., Ltd. Pulse signal delay device, and pulse signal phase detector and clock generator using the device
US5199008A (en) * 1990-03-14 1993-03-30 Southwest Research Institute Device for digitally measuring intervals of time
US5796682A (en) * 1995-10-30 1998-08-18 Motorola, Inc. Method for measuring time and structure therefor
US5694377A (en) * 1996-04-16 1997-12-02 Ltx Corporation Differential time interpolator
US5818797A (en) * 1996-08-09 1998-10-06 Denso Corporation Time measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661271B1 (en) * 2002-05-30 2003-12-09 Lsi Logic Corporation Multi-phase edge rate control for SCSI LVD
US20060132340A1 (en) * 2004-12-22 2006-06-22 Lin Chun W Apparatus and method for time-to-digital conversion and jitter-measuring apparatus using the same
US8324952B2 (en) 2011-05-04 2012-12-04 Phase Matrix, Inc. Time interpolator circuit

Also Published As

Publication number Publication date
TW554173B (en) 2003-09-21
EP1043596A3 (en) 2003-07-09
DE60023583T2 (en) 2006-07-27
CN1271177A (en) 2000-10-25
EP1043596B1 (en) 2005-11-02
KR20000076991A (en) 2000-12-26
JP2000338197A (en) 2000-12-08
US6400650B1 (en) 2002-06-04
DE60023583D1 (en) 2005-12-08
KR100685081B1 (en) 2007-02-22
EP1043596A2 (en) 2000-10-11

Similar Documents

Publication Publication Date Title
US6586921B1 (en) Method and circuit for testing DC parameters of circuit input and output nodes
US6426641B1 (en) Single pin performance screen ring oscillator with frequency division
US6008664A (en) Parametric test system and method
US5386392A (en) Programmable high speed array clock generator circuit for array built-in self test memory chips
JPH0954140A (en) Method and apparatus for testing of semiconductor integrated circuit
US6324125B1 (en) Pulse width detection
KR950028102A (en) Semiconductor integrated circuit with stress circuit and stress voltage supply method
JP2760284B2 (en) Semiconductor integrated circuit device
US6430725B1 (en) System and method for aligning output signals in massively parallel testers and other electronic devices
US6262585B1 (en) Apparatus for I/O leakage self-test in an integrated circuit
US6370676B1 (en) On-demand process sorting method and apparatus
US6470483B1 (en) Method and apparatus for measuring internal clock skew
US6327218B1 (en) Integrated circuit time delay measurement apparatus
US5343479A (en) Semiconductor integrated circuit having therein circuit for detecting abnormality of logical levels outputted from input buffers
US5912562A (en) Quiescent current monitor circuit for wafer level integrated circuit testing
KR100576475B1 (en) Internal clock doubler and Semiconductor memory device having the same
US8248094B2 (en) Acquisition of silicon-on-insulator switching history effects statistics
KR100308078B1 (en) Integrated circuit
US6408410B1 (en) Method and apparatus for built in self-test of buffer circuits for speed related defects
US7386407B2 (en) Semiconductor device test method using an evaluation LSI
US8070357B2 (en) Device and method for evaluating a temperature
KR100696856B1 (en) Contact error testing apparatus and method for the TCP output pin of a Flat Panel Display and error testing system for a Flat Panel Display
US20030102883A1 (en) Integrated circuit testing system and method
US11514958B2 (en) Apparatus and method for operating source synchronous devices
US20220381823A1 (en) Test element group and test method

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS MICROELECTRONICS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRANKOWSKY, GERD;TERLETZKI, HARTMUD;REEL/FRAME:009876/0084

Effective date: 19990120

AS Assignment

Owner name: INFINEON TECHNOLOGIES CORPORATION, CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:SIEMENS DRAM SEMICONDUCTOR CORPORATION;REEL/FRAME:010862/0685

Effective date: 19990401

Owner name: INFINEON TECHNOLOGIES NORTH AMERICA CORP., CALIFOR

Free format text: CHANGE OF NAME;ASSIGNOR:INFINEON TECHNOLOGIES CORPORATION;REEL/FRAME:010862/0696

Effective date: 19990930

Owner name: SIEMENS DRAM SEMICONDUCTOR CORPORATION, CALIFORNIA

Free format text: TRANSFER OF ASSETS;ASSIGNOR:SMI HOLDING LLC;REEL/FRAME:010862/0699

Effective date: 19990330

Owner name: SMI HOLDING LLC, CALIFORNIA

Free format text: MERGER;ASSIGNOR:SIEMENS MICROELECTRONICS, INC.;REEL/FRAME:010863/0701

Effective date: 19990330

AS Assignment

Owner name: INFINEON TECHNOLOGIES AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INFINEON TECHNOLOGIES NORTH AMERICA CORP.;REEL/FRAME:012140/0090

Effective date: 20010822

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: QIMONDA AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INFINEON TECHNOLOGIES AG;REEL/FRAME:023828/0001

Effective date: 20060425

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: INFINEON TECHNOLOGIES AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QIMONDA AG;REEL/FRAME:035623/0001

Effective date: 20141009

AS Assignment

Owner name: POLARIS INNOVATIONS LIMITED, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INFINEON TECHNOLOGIES AG;REEL/FRAME:036539/0196

Effective date: 20150708