Connect public, paid and private patent data with Google Patents Public Datasets

Spinal fixation system

Download PDF

Info

Publication number
US6280443B1
US6280443B1 US09442766 US44276699A US6280443B1 US 6280443 B1 US6280443 B1 US 6280443B1 US 09442766 US09442766 US 09442766 US 44276699 A US44276699 A US 44276699A US 6280443 B1 US6280443 B1 US 6280443B1
Authority
US
Grant status
Grant
Patent type
Prior art keywords
rod
pedicle
screw
connector
portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US09442766
Inventor
Ja-Kyo Gu
Howard S. An
Tae-Hong Lim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
U and I Corp
Original Assignee
Ja-Kyo Gu
Howard S. An
Tae-Hong Lim
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7035Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7041Screws or hooks combined with longitudinal elements which do not contact vertebrae with single longitudinal rod offset laterally from single row of screws or hooks

Abstract

A spinal fixation system for use in the immobilization of a sequence of spinal bones, comprising a plurality of pedicle screws, a pair of rods, and connectors. The pedicle screw has a spherical head having a round portion at an upper portion of the spherical head, a threaded shaft for insertion through the pedicles, and a threaded stem on the top of the spherical head. The connector has a rod passage for receiving the rod therethrough, a set member bore formed in an upper portion of the connector, and a support portion having an opening formed for adapting the stem of the pedicle screw and a recessed hemispherical wall. A spherical joint at the pedicle screw and the connector allows the multi-directional adjustment capability of the connector so that the screws can be implanted in any angulation with no need of having the screws well aligned. The spherical head of the pedicle screw and the hemispherical wall have slightly different diameters which improve the locking power and provide a rigid fixation. A rigid coupling is achieved between the rod and the connector by making the cross-section of the rod passage as an imperfect circular shape which allows the three point contact between the rod and the rod passage. The assembly is locked in place by tightening a fixing cap and a set member from the posterior aspect of the spine.

Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to a spinal fixation system for use in the immobilization of a sequence of spinal bones. More particularly, the present invention relates to a spinal fixation system which allow the implantation of the pedicle screws at the best anatomic location and orientation with flexibility of screw placement and alignment; easy and simple connection between the rod and the screws without application of excessive force to the spine and/or implants during assembly; the top-tightening mechanism to lock the assembly in place with better visibility and access to the spine and implants; a rigid segmental fixation for enhanced maintenance of correction and solid fusion process; and a low profile of the assembly.

2. Description of the Prior art

The human spine is a complex columnar structure of vertebral bone and connective tissues. The vertebrae, discs, and ligaments are intricately arranged, and the complex interaction amongst these structures provides flexibility for motion, spinal cord protection and distribution of body forces. In the diseased or injured state, this delicate equilibriums disturbed and results in spinal pathologies. In many cases, the spinal disorders can be treated by a conservative nonsurgical methods, such as medication, exercise and physical therapies. However, some spinal disorders, such as degenerative instability, deformity, trauma, and tumors, require a surgical intervention to treat pain induced by nerve root compression and unstable invertebral joints.

The surgical procedures for the thoracolumbar spine involves the dissection of soft tissues and often the removal of load bearing structures, such as vertebral bone and discs to decompress the neural elements. Such decompression procedures lead to spinal instability and it is often necessary to fuse spinal segment to restore the stability. Internal fixation with instrumentation accompanies surgical fusion to augment the bony fusion by achieving temporary but rigid fixation that provides a stable environment for bone fusion as well as a maintenance of corrected alignment of the spine.

A variety of internal spinal fixation systems have been developed and used in spine surgery to achieve such a rigid fixation by implanting artificial assemblies in or on the spine. Spinal implants can be classified as anterior or posterior instrumentation systems based upon the implanting location. Anterior implants are coupled to the anterior portion of the spine. The use of posterior implants using pedicle screws coupled by longitudinal rods has become more popular because of their capability of achieving a rigid fixation. Such posterior implants generally comprise pairs of rods, which are aligned along the longitudinal axis of the spine, and which are then attached to the spinal column by screws which are inserted through the pedicles into respective vertebral bodies.

The surgical procedure to achieve a posterior fixation using pedicle screws and connecting rods generally includes the insertion of screws into pedicles in a predetermined angle and depth, temporary coupling of the rods to the screws, the proper correction of spinal curve, and the secure connection of rods to the screws for rigid fixation. A considerable difficulty identified in this surgical procedure is associated with the coupling of a rod to a plurality of screws that are not well aligned in general because the angle and depth of the screw insertion should be determined by patient' anatomical and pathological conditions that may vary among spinal levels as well as among patients. It has been identified that attempts for addressing such a difficulty result in the application of unnecessarily excessive loads to the spinal column via the pedicle screws and the increased operation time, which are known to cause many complications associated with surgery.

For successful posterior spinal instrumentation, it is essential to securely mount the screws and the rods on the spinal column without applying unnecessary forces to the spine and the implants which may cause an acute or fatigue failure of the surgical construct. A variety of attempts have been made to address this issue. Such attempts can be classified into two methods. The first method is the use of a connector comprising a hole to adapt a rod at one end and an oblong hole used for coupling with screws at the other end (ISOLA® Spinal System, Acromed Corporation, Clevelan, Ohio). This connector permits some freedom with respect to the distance between the rod and screw axes by the use of an oblong hole, but not with respect to angulation of the screw and the coupling element. A variety of washers with a declined surface at various angles are used to obtain some freedom with respect to angulation in coupling the angulated screws and the rod. However, the selection and use of various washers in as proper manner is a tedious manipulation of many small parts during surgery in which there should be extreme limitations in terms of time and space. The use of washers also elevates the profile of the assembly, which causes patients' discomfort and often results in additional surgery for removal of the implants. The other method is the use of polyaxial screws that permits freedom with respect to angulation of the screw. The use of polyaxial screws, however, generally has difficulties in coupling the screw with the rod located apart from the screw head. An example of a polyaxial pedicle screw having a through bar clamp locking mechanism is disclosed in U.S. Pat. No. 5,961,518 to Errico et al., issued Oct. 5, 1999. Such polyaxial pedicle includes a pedicle screw and coupling element assembly which provides a polyaxial freedom of implantation angulation with respect to rod reception, and which comprises a reduced number of elements and thus correspondingly provides for expeditious implantation. In this invention, however, the screw and rod assembly should be locked using a nut oriented sideways (i.e., the tightening nut faces the lateral side of the patient during surgery), which is very inconvenient to perform in a very limited lateral operating space. In fact, most surgeons prefer the top-tightening mechanism (i.e., the axis of tightening member faces the posterior side of the patient) because the top-tightening mechanism provides better visibility and access than the side-tightening mechanism. Polyaxial couplings of the screw and the rod used in previous inventions are also not likely to provide either sufficient joint-locking power to prevent the slippage and rotation of the screw with respect to the rod or the polyaxial freedom of implantation angulation. The sufficient locking power in couplings is required to achieve a rigid fixation to provide a stable environment for successful bony fusion and also to maintain the correction until solid fusion occurs. Freedom i controlling both angulation and distance between the screw and the rod is required not only to reduce the surgery time but also to prevent the application of unnecessary stresses on the implant and the spine which may cause a failure in surgery.

SUMMARY OF THE INVENTION

Therefore, it is in the primary object of the present invention to provide a reliable, top-tightening spinal fixation system comprising pedicle screws, rods, and connecting and tightening members, which provides freedom of implantation not only with respect to angulation of the screw but also with respect to the distance between the screw head and the rod using a reduced number of elements for easy, simple and expeditious implantation.

It is also an object of the present invention to maintain or improve the joint-locking power for achieving a rigid fixation while preserving the freedom of implantation.

In addition, it is another object of the present invention to prevent the application of unnecessary stresses on the implant and the spine which may cause a failure in surgery.

The preceding objects of the invention are achieved by the present invention that is a posterior transpedicular instrumentation system comprising:

a plurality of pedicle screws, each pedicle screw having a spherical head, a threaded shaft for insertion through the pedicles at the bottom of the spherical head, and a threaded stem on the top of the spherical head;

a pair of rods being located in the lateral aspect and connected to the pedicle screws, the rods extending on both sides of the spinous processes along the length of the spinal column for preventing the movement of the injured or decompressed vertebrae;

a number of connectors with various sizes for coupling the pedicle screw with the rod, each connector having a rod passage formed to receive the rod therethrough, a set member bore formed in an upper portion of the connector to intersect perpendicular to the rod passage, and a support portion having an opening formed for adapting the stem of the pedicle screw and a recessed hemispherical wall;

a number of set members, each set member being inserted into the set member bore of the connector for tightening the rod inserted through the rod passage of the connector; and,

a number of fixing caps, each fixing cap having a stem bore for tightening the threaded stem of the pedicle screw protruding through the opening in the support portion of the connector.

In more detail, the round portion in the spherical head of the pedicle screw and the recessed hemispherical wall in the support portion of the connector form a spherical joint (with which the connector) and thus the rod can be placed into the required angular position. In the meantime, the use of connectors with different sizes provides lateral adjustment of the rod that can be located at various distances from the pedicle screws because of anatomic variations. In addition, the use of the spherical head of the pedicle screw and the hemispherical wall having slightly different diameters improves the locking power and provides a rigid fixation. A similar locking mechanism is employed to achieve a rigid connection of the rod to the connector.

Other objects and benefits of the present invention will become apparent upon consideration of the following written description taken in conjunction with the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an exploded perspective view of a spinal fixation system of the present invention.

FIG. 2 is a front sectional view illustrating a pedicle screw and a connector which are polyaxially engaged regardless of the insertion angle of a pedicle screws.

FIG. 3 is a plan view of the connectors with various sizes for coupling the pedicle screw to a rod with lateral adjustment.

FIG. 4A is a front view illustrating that the connector is imperfectly matched to a round surface of the pedicle screw before a fixing cap is engaged to a stem of the pedicle screw; and

FIG. 4B shows that the connector is perfectly matched to the round portion surface of the pedicle screw by engaging the fixing cap to the stem.

FIG. 5A is a front sectional view illustrating a rod passage which is made to have an outer boundary of two circles of slightly different diameters located at slightly eccentric center positions; and

FIG. 5B shows that the rod passage is matched with the rod by a set member.

FIG. 6 is a top elevational view illustrating a state that this fixation device is implanted in the spinal column.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention will be described in detail hereinafter with reference to the accompanying drawings, wherein same reference characters designate corresponding parts throughout several views. It is understood to be that these drawings depict only typical embodiments of the invention and are, therefore, not to be considered limiting of its scope.

Referring now to FIG. 1, a pedicle screw 10 to be implanted into a selected pedicle of the patient's vertebrae comprises a stem 11 protruded from a top portion thereof, a spherical head 13 formed below the stem 11, and a threaded shaft 15. The stem 11 has threads 12 on its outer surface. The spherical head 13 has six cut portions 16 along its equator line so as to make a hexagonal shape in its middle portion for inserting the pedicle screw 10 using a spanner, wrench or the likes. A round portion 14 is the upper portion of the spherical head 13, which serves as a part of ball and socket joint between the pedicle screw 10 and a connector 30 which will be described below. The shaft 15 of the pedicle screw 10, although shown to be like a bolt in FIG. 1, is used for being anchored into and holding the vertebra and will be, therefore, able to have any type of threads which is adequate for securely holding the bone.

The connector 30 in FIG. 1, which connects a rod 20 to the pedicle screw 10 comprises a rod reception portion on one end and a screw reception portion on the other end.

The rod reception portion of the connector 30 has a rod passage 31 to receive the rod 20 therethrough and a set member bore 32 formed in an upper portion of the rod reception portion of the connector 30 and intersecting perpendicular to the rod passage 31. The surface of the set member above 32 is threaded to be engaged with a set member 40 which has a threaded outer surface for secure tightening of the rod 20 to the connector 30.

The set member 40 has a recess 41 (See FIG. 1) of hexagonal cross-section for insertion into the set member bore using an allen wrench. The length of the set member should be short enough not to protrude from the upper surface of the set member bore 32 of the connector 30 to lower the profile of the complete assembly.

The screw reception portion of the connector 30 comprises a support portion 33 of a hemispherical shape which has an opening 34 formed to receive the stem 11 of the pedicle screw 10 and a recessed hemispherical wall 35 therein. The diameter of the recessed hemispherical wall 35 is slightly less than that of the round portion 14 of the upper portion of the spherical head 13. The stem 11 of the pedicle screw 10 which extends through the opening 34 is engaged to a fixing cap 50.

The fixing cap 50 in FIG. 1 comprises a stem bore 52 which is a threaded hold formed to engage the stem 11 of the pedicle screw 10 and a recessed spherical bottom surface 51 formed to be hollowed inside its surface thereof.

As depicted in FIG. 2, the round portion 14 formed at the upper portion of the pedicle screw 10 is held in the recessed hemispherical wall 35 of the opening 34 during assembly. The round portion 14 of the pedicle screw 10 and the recessed hemispherical wall 35 of the support portion 33 of the connector 30 are formed in almost the same spherical surfaces. Thus, the connector 30 is freely rotated with respect to the pedicle screw 10 before tightening, and thus the pedicle screw 10 and the connector 30 are polyaxially engaged regardless of the insertion angle of the pedicle screw 10. In addition to this polyaxial adjustability, the use of the connector 20 with different distances between the rod and screw reception portions provides the capability for lateral adjustment in controlling the rod position (See FIG. 3). These features allow easy coupling of the rod 20 to the pedicle screw 20 using the connector 30 in all directions.

After complete engagement of the rod 20 to the pedicle screw 10 using the connector 30, a firm fixation between the pedicle screw 10 and the connector 30 is achieved by tightening the fixing cap 50, and a firm fixation between the rod 20 and the connector 30 is achieved by tightening the set member 40. It should be noted that, in both cases, the assembly can be locked in place from the posterior aspect of the spine (top-tightening) as shown in FIG. 6. This top-tightening procedure allows a simple locking mechanism that provides better visibility and access than side-tightening/locking mechanism.

Additional unique features of the present invention are associated with the mechanism to obtain a rigid connection between the pedicle screw 10 and the rod 20 using the connector 30. Referring to FIG. 4, the diameter of the round portion 14 of the pedicle screw 10 is a little larger in fine tolerance than that of the inner hemispherical wall 35 of the connector 30. When the fixing cap 50 is engaged to the stem 11 of the pedicle screw 10 which extends through the opening 34 of the support portion 33 and tightened, an imperfectly matched surface contact occurs while maintaining the position and orientation of the connector 30 with respect to the screw 10 and the rod 20 in place. Such a ball-and-socket like connection with imperfectly matched surface contact provides an improved prevention of slippage within the joint compared with a conventional ball and socket joint with a perfectly matched surface contact. In addition, such an imperfectly matched surface contact induces the deformation of the support portion 33 of the hemispherical shell shape when the fixing cap 50 is tightened. The deformed support portion 33 of the connector 30 made of an elastic titanium alloy tends to return back to the original shape, which pushes the fixing cap 50. This elastic (or springback) force prevents loosening of the fixing cap 50, which eliminates the use of an additional nut which has been used in previous spinal fixation systems in order to prevent loosening.

A similar method is used to improve the strength of the rod 20 and connector 30 fixation. As shown in FIG. 5, the cross section of the rod passage 31 is made to have an outer boundary of two circles of slightly different diameters located at a slightly eccentric center positions so as to form a hole of imperfect-circular cross-section. When the rod 20 is compressed by the set number 40 for fixation, this provides at least a three point contact between the rod 20 and the rod passage 31 regardless of the rod bending status, which prevents the rotation and slippage of the connector 30 with respect to the rod 30 more effectively.

The implantation procedure of the present invention to achieve the surgical construct as shown in FIG. 6 is described hereafter. The pedicle screw 10 is inserted into the pedicle according to the best anatomic location and orientation at each spinal level without considering the alignment of screws for later attachment of the rod to the pedicle screws. The rod 20 is engaged to the connector 30 through the rod passage 31 and temporarily nested in the rod passage 31 by applying a small compressive load using the set member 40. Then, the rod-connector 30 allows the location of the rod 20 lateral to the pedicle screw 10, which lowers the profile of the present invention significantly. The variability in screw placement and screw-rod connection achieved in the present invention allows a physician to implant the screw according to the best anatomic location and orientation with no need for considering the alignment of the pedicle screws. These features also minimize the need for precise bending of the rod 20 which has been required for the implantation of some spinal fixation systems which do not have such variability in screw-rod connection.

Those skilled in the art will readily recognize that these and various other modifications and changes may be made to the present invention without strictly following the exemplary application illustrated and described herein and without departing from the true spirit and scope of the present invention, which is set forth in the following claims.

Claims (12)

What is claimed is:
1. A spinal fixation system for fixing at least one injured or decompressed vertebrae to a spine comprising:
a plurality of pedicle screws, each pedicle screw having a stem protruding from a top portion thereof, the stem having threads on its outer surface, a spherical head formed below the stem, and a threaded shaft which is insertable to a pedicle of the vertebrae;
a pair of rods for being located in a lateral aspect of the spine and connected to the pedicle screws, the rods extending are capable of on both sides of a plurality of spinal processes of the spine along the length of the spine for preventing a movement of the vertebrae;
a number of correctors for coupling each of the pedicle screws to the rods with lateral adjustment, each connector having a rod passage formed to receive the rod therethrough, a set member bore formed in an upper portion of the connector to intersect perpendicular to the rod passage, and a support portion of a hemispherical shell which provides rotational freedom in coupling the pedicle screw and the connector, the support portion having an opening formed through a middle part of the support portion for holding the stem of the pedicle screw and a recessed hemispherical wall therein;
a number of set members, each set member being inserted into the set member bore of the connector for fastening the rod inserted in the rod passage of the connector; and
a number of fixing caps, each fixing cap having a stem bore formed to adapt the stem of the pedicle screw therethrough and a recessed hemispherical bottom surface,
wherein the rod passage is made to have an outer boundary of two circles of slightly different diameters located at slightly eccentric center positions, and wherein at least a three point contact occurs between the rod and the rod passage by tightening the fixing cap regardless a degree to which the rod is bent.
2. The spinal fixation system set forth in claim 1, wherein the spherical head has six cut portions along its equator line so as to make a hexagonal shape in its middle portion.
3. The spinal fixation system set forth in claim 1, wherein the spherical head has a round portion at its upper portion, the round portion serving as a part of ball and socket joint between the pedicle screw and the connector.
4. The spinal fixation system set forth in claim 3, wherein the round portion is formed in significantly the same as a spherical surface of the recessed hemispherical wall of the support portion of the connector, so that the connector is rotated with respect to the pedicle screw in all directions before tightening.
5. The spinal fixation system set forth in claim 1, wherein the se member has a threaded outer surface for securely tightening the rod to the connector and a recess of hexagonal cross-section formed at a top portion thereof.
6. The spinal fixation system set forth in claim 1, wherein the set member has a length being short enough not to protrude from an upper surface of the set member bore of the connector so as to lower a profile of the complete assembly.
7. The spinal fixation system set forth in claim 1, wherein the set member bore of the connector is threaded on its inner surface to be engaged with the set member.
8. The spinal fixation system set forth in claim 1, wherein the connector is made of titanium alloy with elastic force and tends to return back to an original shape.
9. The spinal fixation systems set forth in claim 1, wherein each of the connectors has different distances between the rod passage and the support portion thereof to provide the capability for lateral adjustment in controlling the rod position.
10. The spinal fixation system set forth in claim 1, wherein the fixing cap and the set member tighten the spinal fixation system to the posterior aspect of the spine.
11. The spinal fixation system for fixing at least one injured or decompressed vertebrae to a spine comprising:
a plurality of pedicle screws, each pedicle screw having a stem protruding from a top portion thereof, the stem having threads on its outer surface, a spherical head formed below the stem, and a threaded shaft which is inserted to a pedicle of the vertebrae;
a pair of rods being located in a lateral aspect of the spine and connected to the pedicle screws, the rods extending on both sides of a plurality of spinal processes of the spine along the length of the spine for preventing a movement of the vertebrae;
a number of correctors for coupling each of the pedicle screws to the rods with lateral adjustment, each connector having a rod passage formed to receive the rod therethrough, a set member bore formed in an upper portion of the connector to intersect perpendicular to the rod passage, and a support portion of a hemispherical shell which provides rotational freedom in coupling the pedicle screw and the connector, the support portion having an opening formed through a middle part of the support portion for holding the stem of the pedicle screw and a recessed hemispherical wall therein;
a number of set members, each set member being inserted into the set member bore of the connector for fastening the rod inserted in the rod passage of the connector; and
a number of fixing caps, each fixing cap having a stem bore formed to adapt the stem of the pedicle screw therethrough and a recessed hemispherical bottom surface,
wherein the spherical head has a round portion at its upper portion, the round portion serving as a part of ball and socket joint between the pedicle screw and the connector, and
a diameter of the round portion of the pedicle screw is a larger in fine tolerance than that of the inner hemispherical wall of the connector so that an imperfectly matched surface contact between the pedicle screw and the connector occurs, and wherein the imperfectly matched surface contact induces a deformation of the support portion of the hemispherical shell shape when the fixing cap is tightened, and provides a firm fixation between the pedicle screw and the connector.
12. The spinal fixation system set forth in claim 11, wherein the fixing cap and the set member tighten the spinal fixation system to the posterior aspect of the spine.
US09442766 1999-01-30 1999-11-18 Spinal fixation system Active US6280443B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR99-3161 1999-01-30
KR19990003161A KR100324698B1 (en) 1999-01-30 1999-01-30 Spine fixing device

Publications (1)

Publication Number Publication Date
US6280443B1 true US6280443B1 (en) 2001-08-28

Family

ID=36274120

Family Applications (1)

Application Number Title Priority Date Filing Date
US09442766 Active US6280443B1 (en) 1999-01-30 1999-11-18 Spinal fixation system

Country Status (5)

Country Link
US (1) US6280443B1 (en)
KR (1) KR100324698B1 (en)
DE (2) DE60014462T2 (en)
EP (1) EP1023873B1 (en)
ES (1) ES2228310T3 (en)

Cited By (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355039B1 (en) * 1999-09-03 2002-03-12 Bone & Joint Research S.A. Flexible fastening device
US20030045878A1 (en) * 1999-12-03 2003-03-06 Dominique Petit Connecting assembly for spinal osteosynthesis
US20030144664A1 (en) * 1999-12-24 2003-07-31 Remi Cavagna Pedicle screws with inclined channels to hold support rods
US6641583B2 (en) 2001-03-29 2003-11-04 Endius Incorporated Apparatus for retaining bone portions in a desired spatial relationship
US6673074B2 (en) 2001-08-02 2004-01-06 Endius Incorporated Apparatus for retaining bone portions in a desired spatial relationship
US20040087949A1 (en) * 2002-10-31 2004-05-06 Bono Frank S. Snap-in washers and assemblies thereof
US20040158247A1 (en) * 2003-02-07 2004-08-12 Arthit Sitiso Polyaxial pedicle screw system
US20040193157A1 (en) * 2003-03-24 2004-09-30 Falahee Mark H. Low profile screw anchor with variable axis/angle fixation
US20040210216A1 (en) * 2003-04-17 2004-10-21 Farris Robert A Spinal fixation system and method
US20050010216A1 (en) * 2001-10-30 2005-01-13 Thomas Gradel Vertebral column support device which is assembled by means of clamping
US20050070901A1 (en) * 2003-09-26 2005-03-31 Stryker Spine Bone fixation assembly and method
US20050182409A1 (en) * 2003-05-02 2005-08-18 Ronald Callahan Systems and methods accommodating relative motion in spine stabilization
US20050216001A1 (en) * 2004-03-23 2005-09-29 Stryker Spine Sphere and bone plate
US20060036252A1 (en) * 2004-08-12 2006-02-16 Baynham Bret O Polyaxial screw
US20060058787A1 (en) * 2004-08-24 2006-03-16 Stryker Spine Spinal implant assembly
US20060064090A1 (en) * 2004-09-22 2006-03-23 Kyung-Woo Park Bio-flexible spinal fixation apparatus with shape memory alloy
US20060149231A1 (en) * 2004-12-13 2006-07-06 Rsb Spine Llc Bone fastener assembly for bone retention apparatus
US20060200132A1 (en) * 2005-03-04 2006-09-07 Chao Nam T Instruments and methods for manipulating a vertebra
US20060200131A1 (en) * 2005-03-04 2006-09-07 Depuy Spine Sarl Constrained motion bone screw assembly
US20070156143A1 (en) * 2006-01-03 2007-07-05 Zimmer Spine, Inc. Instrument for pedicle screw adhesive materials
US20070273748A1 (en) * 2006-05-26 2007-11-29 Canon Kabushiki Kaisha Light scanning apparatus and image forming apparatus
US20080045954A1 (en) * 1999-10-22 2008-02-21 Reiley Mark A Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces
US20080132951A1 (en) * 1999-10-22 2008-06-05 Reiley Mark A Prostheses systems and methods for replacement of natural facet joints with artificial facet joint surfaces
US20080195122A1 (en) * 2007-02-09 2008-08-14 Altiva Corporation Connector
US20080292161A1 (en) * 2004-04-22 2008-11-27 Funk Michael J Implantable orthopedic device component selection instrument and methods
US20090228053A1 (en) * 2008-03-10 2009-09-10 Eric Kolb Derotation instrument with reduction functionality
US20090248078A1 (en) * 2008-04-01 2009-10-01 Zimmer Spine, Inc. Spinal stabilization device
US20090312804A1 (en) * 2008-06-17 2009-12-17 Thomas Gamache Adjustable implant assembly
US20090326580A1 (en) * 2008-06-25 2009-12-31 Anderson Mark E Spinal fixation device
US20100030272A1 (en) * 2007-06-05 2010-02-04 Spartek Medical Inc. Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine
US7674293B2 (en) 2004-04-22 2010-03-09 Facet Solutions, Inc. Crossbar spinal prosthesis having a modular design and related implantation methods
US20100094346A1 (en) * 2008-10-09 2010-04-15 Total Connect Spine, Llc Spinal connection assembly
US7722651B2 (en) 2005-10-21 2010-05-25 Depuy Spine, Inc. Adjustable bone screw assembly
US7744632B2 (en) 2006-12-20 2010-06-29 Aesculap Implant Systems, Inc. Rod to rod connector
WO2010036950A3 (en) * 2008-09-26 2010-07-22 Spartek Medical, Inc. Load-sharing bone anchor, dynamic vertical rod and assemblies for dynamic stabilization of the spine
US20100234893A1 (en) * 2009-03-10 2010-09-16 Andrew Iott Spinal Implant Connection Assembly
US20110040331A1 (en) * 2009-05-20 2011-02-17 Jose Fernandez Posterior stabilizer
US7914556B2 (en) 2005-03-02 2011-03-29 Gmedelaware 2 Llc Arthroplasty revision system and method
US7942900B2 (en) 2007-06-05 2011-05-17 Spartek Medical, Inc. Shaped horizontal rod for dynamic stabilization and motion preservation spinal implantation system and method
US7963978B2 (en) 2007-06-05 2011-06-21 Spartek Medical, Inc. Method for implanting a deflection rod system and customizing the deflection rod system for a particular patient need for dynamic stabilization and motion preservation spinal implantation system
US7993372B2 (en) 2007-06-05 2011-08-09 Spartek Medical, Inc. Dynamic stabilization and motion preservation spinal implantation system with a shielded deflection rod system and method
US8007518B2 (en) 2008-02-26 2011-08-30 Spartek Medical, Inc. Load-sharing component having a deflectable post and method for dynamic stabilization of the spine
US8012181B2 (en) 2008-02-26 2011-09-06 Spartek Medical, Inc. Modular in-line deflection rod and bone anchor system and method for dynamic stabilization of the spine
US8016861B2 (en) 2008-02-26 2011-09-13 Spartek Medical, Inc. Versatile polyaxial connector assembly and method for dynamic stabilization of the spine
US8021396B2 (en) 2007-06-05 2011-09-20 Spartek Medical, Inc. Configurable dynamic spinal rod and method for dynamic stabilization of the spine
US8043337B2 (en) 2006-06-14 2011-10-25 Spartek Medical, Inc. Implant system and method to treat degenerative disorders of the spine
US8048115B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Surgical tool and method for implantation of a dynamic bone anchor
US8057515B2 (en) 2008-02-26 2011-11-15 Spartek Medical, Inc. Load-sharing anchor having a deflectable post and centering spring and method for dynamic stabilization of the spine
US8070811B2 (en) 1999-10-22 2011-12-06 Gmedelaware 2 Llc Facet arthroplasty devices and methods
US8083775B2 (en) 2008-02-26 2011-12-27 Spartek Medical, Inc. Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine
US8083772B2 (en) 2007-06-05 2011-12-27 Spartek Medical, Inc. Dynamic spinal rod assembly and method for dynamic stabilization of the spine
US8092501B2 (en) 2007-06-05 2012-01-10 Spartek Medical, Inc. Dynamic spinal rod and method for dynamic stabilization of the spine
US8097024B2 (en) 2008-02-26 2012-01-17 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for stabilization of the spine
WO2012009162A1 (en) * 2010-07-12 2012-01-19 Depuy Spine, Inc. Pedicular facet fusion screw with plate
US8187303B2 (en) 2004-04-22 2012-05-29 Gmedelaware 2 Llc Anti-rotation fixation element for spinal prostheses
US8197513B2 (en) 2007-04-13 2012-06-12 Depuy Spine, Inc. Facet fixation and fusion wedge and method of use
US8197517B1 (en) 2007-05-08 2012-06-12 Theken Spine, Llc Frictional polyaxial screw assembly
US8211155B2 (en) 2008-02-26 2012-07-03 Spartek Medical, Inc. Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine
US8221461B2 (en) 2004-10-25 2012-07-17 Gmedelaware 2 Llc Crossbar spinal prosthesis having a modular design and systems for treating spinal pathologies
US8231655B2 (en) 2003-07-08 2012-07-31 Gmedelaware 2 Llc Prostheses and methods for replacement of natural facet joints with artificial facet joint surfaces
US8257397B2 (en) 2009-12-02 2012-09-04 Spartek Medical, Inc. Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US8267979B2 (en) 2008-02-26 2012-09-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine
US8313515B2 (en) 2007-06-15 2012-11-20 Rachiotek, Llc Multi-level spinal stabilization system
WO2012135870A3 (en) * 2011-04-01 2012-11-22 Stachniak Rebecca Elizabeth Posterior cervical stabilization system and method
US8333792B2 (en) 2008-02-26 2012-12-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine
US20120323277A1 (en) * 2004-02-17 2012-12-20 Alan Chervitz Spinal Facet Implants with Mating Articulating Bearing Surface and Methods of Use
US8337536B2 (en) 2008-02-26 2012-12-25 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine
US8348952B2 (en) 2006-01-26 2013-01-08 Depuy International Ltd. System and method for cooling a spinal correction device comprising a shape memory material for corrective spinal surgery
US20130030474A1 (en) * 2011-07-26 2013-01-31 Christopher Chaput Bone Screws and Bone Screw Systems
US8398681B2 (en) 2004-08-18 2013-03-19 Gmedelaware 2 Llc Adjacent level facet arthroplasty devices, spine stabilization systems, and methods
US8409254B2 (en) 2003-05-14 2013-04-02 Gmedelaware 2 Llc Prostheses, tools and methods for replacement of natural facet joints with artificial facet joint surfaces
US8414614B2 (en) 2005-10-22 2013-04-09 Depuy International Ltd Implant kit for supporting a spinal column
US8425563B2 (en) 2006-01-13 2013-04-23 Depuy International Ltd. Spinal rod support kit
US8430914B2 (en) 2007-10-24 2013-04-30 Depuy Spine, Inc. Assembly for orthopaedic surgery
US8430916B1 (en) 2012-02-07 2013-04-30 Spartek Medical, Inc. Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors
US8496686B2 (en) 2005-03-22 2013-07-30 Gmedelaware 2 Llc Minimally invasive spine restoration systems, devices, methods and kits
US8518085B2 (en) 2010-06-10 2013-08-27 Spartek Medical, Inc. Adaptive spinal rod and methods for stabilization of the spine
US8702755B2 (en) 2006-08-11 2014-04-22 Gmedelaware 2 Llc Angled washer polyaxial connection for dynamic spine prosthesis
US8709015B2 (en) 2008-03-10 2014-04-29 DePuy Synthes Products, LLC Bilateral vertebral body derotation system
US8771319B2 (en) 2012-04-16 2014-07-08 Aesculap Implant Systems, Llc Rod to rod cross connector
US8828056B2 (en) 2012-04-16 2014-09-09 Aesculap Implant Systems, Llc Rod to rod cross connector
US8894685B2 (en) 2007-04-13 2014-11-25 DePuy Synthes Products, LLC Facet fixation and fusion screw and washer assembly and method of use
US9056016B2 (en) 2003-12-15 2015-06-16 Gmedelaware 2 Llc Polyaxial adjustment of facet joint prostheses
US9084634B1 (en) 2010-07-09 2015-07-21 Theken Spine, Llc Uniplanar screw
US9101416B2 (en) 2003-01-24 2015-08-11 DePuy Synthes Products, Inc. Spinal rod approximator
US9119678B2 (en) 2011-11-01 2015-09-01 Synergy Disc Replacement Inc. Facet fixation systems
US9198766B2 (en) 2003-05-14 2015-12-01 Gmedelaware 2 Llc Prostheses, tools, and methods for replacement of natural facet joints with artificial facet joint surfaces
US9345519B1 (en) * 2010-07-02 2016-05-24 Presidio Surgical, Inc. Pedicle screw
US9414865B2 (en) 2011-11-01 2016-08-16 Synergy Disc Replacement Inc. Joint and bone fixation
US9743959B2 (en) * 2013-03-14 2017-08-29 Atlas Spine, Inc. Low profile spinal fixation system
US9844398B2 (en) 2012-05-11 2017-12-19 Orthopediatrics Corporation Surgical connectors and instrumentation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10055888C1 (en) 2000-11-10 2002-04-25 Biedermann Motech Gmbh Bone screw, has connector rod receiving part with unsymmetrically arranged end bores
FR2819711B1 (en) 2001-01-23 2003-08-01 Stryker Spine Sa adjustment system in position for spinal surgery instrument
US6974460B2 (en) 2001-09-14 2005-12-13 Stryker Spine Biased angulation bone fixation assembly
FR2831419B1 (en) * 2001-10-30 2004-07-16 Vitatech spine holding apparatus has assembly Spherical
FR2838041B1 (en) * 2002-04-04 2004-07-02 Kiscomedica of spinal osteosynthesis system
DE20207851U1 (en) * 2002-05-21 2002-10-10 Metz Stavenhagen Peter Anchoring element for fastening a rod of a device for adjusting a human or animal spine to a vertebral bone
FR2870108B1 (en) * 2004-05-17 2007-06-15 Hassan Razian Spinal osteosynthesis device for holding at least two vertebrae relative to the other

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053034A (en) * 1990-08-03 1991-10-01 Sven Olerud Spinal joint
US5254118A (en) * 1991-12-04 1993-10-19 Srdjian Mirkovic Three dimensional spine fixation system
US5312404A (en) * 1990-07-24 1994-05-17 Acromed Corporation Spinal column retaining apparatus
US5474551A (en) * 1994-11-18 1995-12-12 Smith & Nephew Richards, Inc. Universal coupler for spinal fixation
US5476463A (en) * 1994-01-12 1995-12-19 Acromed Corporation Spinal column retaining apparatus
US5487744A (en) * 1993-04-08 1996-01-30 Advanced Spine Fixation Systems, Inc. Closed connector for spinal fixation systems
US5569247A (en) * 1995-03-27 1996-10-29 Smith & Nephew Richards, Inc. Enhanced variable angle bone bolt
US6083226A (en) * 1998-04-22 2000-07-04 Fiz; Daniel Bone fixation device and transverse linking bridge

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2100348T3 (en) * 1992-06-25 1997-06-16 Synthes Ag Osteosynthetic fixation device.
FR2702361B1 (en) * 1993-02-24 1997-10-24 Soprane Sa Fixer for lumbosacral osteosynthesis.
US5613968A (en) * 1995-05-01 1997-03-25 Lin; Chih-I Universal pad fixation device for orthopedic surgery
US5785711A (en) 1997-05-15 1998-07-28 Third Millennium Engineering, Llc Polyaxial pedicle screw having a through bar clamp locking mechanism
EP0933065A1 (en) * 1998-02-02 1999-08-04 Sulzer Orthopädie AG Pivotable attachment system for a bone screw
FR2776500B1 (en) * 1998-03-31 2000-09-29 Bianchi Connection device for osteosynthesis

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312404A (en) * 1990-07-24 1994-05-17 Acromed Corporation Spinal column retaining apparatus
US5053034A (en) * 1990-08-03 1991-10-01 Sven Olerud Spinal joint
US5254118A (en) * 1991-12-04 1993-10-19 Srdjian Mirkovic Three dimensional spine fixation system
US5487744A (en) * 1993-04-08 1996-01-30 Advanced Spine Fixation Systems, Inc. Closed connector for spinal fixation systems
US5476463A (en) * 1994-01-12 1995-12-19 Acromed Corporation Spinal column retaining apparatus
US5474551A (en) * 1994-11-18 1995-12-12 Smith & Nephew Richards, Inc. Universal coupler for spinal fixation
US5569247A (en) * 1995-03-27 1996-10-29 Smith & Nephew Richards, Inc. Enhanced variable angle bone bolt
US6083226A (en) * 1998-04-22 2000-07-04 Fiz; Daniel Bone fixation device and transverse linking bridge

Cited By (184)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355039B1 (en) * 1999-09-03 2002-03-12 Bone & Joint Research S.A. Flexible fastening device
US20080045954A1 (en) * 1999-10-22 2008-02-21 Reiley Mark A Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces
US8092532B2 (en) 1999-10-22 2012-01-10 Gmedelaware 2 Llc Facet arthroplasty devices and methods
US8070811B2 (en) 1999-10-22 2011-12-06 Gmedelaware 2 Llc Facet arthroplasty devices and methods
US8066740B2 (en) 1999-10-22 2011-11-29 Gmedelaware 2 Llc Facet joint prostheses
US7691145B2 (en) 1999-10-22 2010-04-06 Facet Solutions, Inc. Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces
US20080132951A1 (en) * 1999-10-22 2008-06-05 Reiley Mark A Prostheses systems and methods for replacement of natural facet joints with artificial facet joint surfaces
US7837715B2 (en) * 1999-12-03 2010-11-23 Spinevision S.A. Connecting assembly for spinal osteosynthesis
US20030045878A1 (en) * 1999-12-03 2003-03-06 Dominique Petit Connecting assembly for spinal osteosynthesis
US7303562B2 (en) * 1999-12-24 2007-12-04 Sdgi Holdings, Inc. Pedicle screws with inclined channels to hold support rods
US20030144664A1 (en) * 1999-12-24 2003-07-31 Remi Cavagna Pedicle screws with inclined channels to hold support rods
US6641583B2 (en) 2001-03-29 2003-11-04 Endius Incorporated Apparatus for retaining bone portions in a desired spatial relationship
US6673074B2 (en) 2001-08-02 2004-01-06 Endius Incorporated Apparatus for retaining bone portions in a desired spatial relationship
US20050010216A1 (en) * 2001-10-30 2005-01-13 Thomas Gradel Vertebral column support device which is assembled by means of clamping
US7094237B2 (en) * 2001-10-30 2006-08-22 Vitatech Vertebral column support device which is assembled by means of clamping
US20040087949A1 (en) * 2002-10-31 2004-05-06 Bono Frank S. Snap-in washers and assemblies thereof
US7306602B2 (en) 2002-10-31 2007-12-11 Depuy Actomed, Inc. Snap-in washers and assemblies thereof
US9101416B2 (en) 2003-01-24 2015-08-11 DePuy Synthes Products, Inc. Spinal rod approximator
US20040158247A1 (en) * 2003-02-07 2004-08-12 Arthit Sitiso Polyaxial pedicle screw system
US8128666B2 (en) * 2003-03-24 2012-03-06 Medical Designs, Llc Low profile screw anchor with variable axis/angle fixation
US20040193157A1 (en) * 2003-03-24 2004-09-30 Falahee Mark H. Low profile screw anchor with variable axis/angle fixation
US20040210216A1 (en) * 2003-04-17 2004-10-21 Farris Robert A Spinal fixation system and method
US20050182409A1 (en) * 2003-05-02 2005-08-18 Ronald Callahan Systems and methods accommodating relative motion in spine stabilization
US7635379B2 (en) * 2003-05-02 2009-12-22 Applied Spine Technologies, Inc. Pedicle screw assembly with bearing surfaces
US9198766B2 (en) 2003-05-14 2015-12-01 Gmedelaware 2 Llc Prostheses, tools, and methods for replacement of natural facet joints with artificial facet joint surfaces
US8409254B2 (en) 2003-05-14 2013-04-02 Gmedelaware 2 Llc Prostheses, tools and methods for replacement of natural facet joints with artificial facet joint surfaces
US8231655B2 (en) 2003-07-08 2012-07-31 Gmedelaware 2 Llc Prostheses and methods for replacement of natural facet joints with artificial facet joint surfaces
US8523907B2 (en) 2003-07-08 2013-09-03 Gmedelaware 2 Llc Prostheses, tools and methods for replacement of natural facet joints with artificial facet joint surfaces
USRE46371E1 (en) * 2003-09-26 2017-04-25 Stryker European Holdings I, Llc Bone fixation assembly and method
US20050070901A1 (en) * 2003-09-26 2005-03-31 Stryker Spine Bone fixation assembly and method
US7648522B2 (en) * 2003-09-26 2010-01-19 Stryker Spine Bone fixation assembly and method
US9056016B2 (en) 2003-12-15 2015-06-16 Gmedelaware 2 Llc Polyaxial adjustment of facet joint prostheses
US8911475B2 (en) * 2004-02-17 2014-12-16 Gmedelaware 2 Llc Spinal facet implants with mating articulating bearing surface and methods of use
US20120323277A1 (en) * 2004-02-17 2012-12-20 Alan Chervitz Spinal Facet Implants with Mating Articulating Bearing Surface and Methods of Use
US20050216001A1 (en) * 2004-03-23 2005-09-29 Stryker Spine Sphere and bone plate
US7491221B2 (en) 2004-03-23 2009-02-17 Stryker Spine Modular polyaxial bone screw and plate
US8187303B2 (en) 2004-04-22 2012-05-29 Gmedelaware 2 Llc Anti-rotation fixation element for spinal prostheses
US8675930B2 (en) 2004-04-22 2014-03-18 Gmedelaware 2 Llc Implantable orthopedic device component selection instrument and methods
US8496687B2 (en) 2004-04-22 2013-07-30 Gmedelaware 2 Llc Crossbar spinal prosthesis having a modular design and related implantation methods
US20080292161A1 (en) * 2004-04-22 2008-11-27 Funk Michael J Implantable orthopedic device component selection instrument and methods
US8425557B2 (en) 2004-04-22 2013-04-23 Gmedelaware 2 Llc Crossbar spinal prosthesis having a modular design and related implantation methods
US8491635B2 (en) 2004-04-22 2013-07-23 Gmedelaware 2 Llc Crossbar spinal prosthesis having a modular design and related implantation methods
US7674293B2 (en) 2004-04-22 2010-03-09 Facet Solutions, Inc. Crossbar spinal prosthesis having a modular design and related implantation methods
US20060036252A1 (en) * 2004-08-12 2006-02-16 Baynham Bret O Polyaxial screw
US7186255B2 (en) 2004-08-12 2007-03-06 Atlas Spine, Inc. Polyaxial screw
US8398681B2 (en) 2004-08-18 2013-03-19 Gmedelaware 2 Llc Adjacent level facet arthroplasty devices, spine stabilization systems, and methods
US20060058787A1 (en) * 2004-08-24 2006-03-16 Stryker Spine Spinal implant assembly
US20100228289A1 (en) * 2004-09-22 2010-09-09 Kyung-Woo Park Bio-flexible spinal fixation apparatus with shape memory alloy
US7727259B2 (en) 2004-09-22 2010-06-01 Kyung-Woo Park Bio-flexible spinal fixation apparatus with shape memory alloy
US20070288008A1 (en) * 2004-09-22 2007-12-13 Kyung-Woo Park Semi-rigid spinal fixation apparatus
US20060064090A1 (en) * 2004-09-22 2006-03-23 Kyung-Woo Park Bio-flexible spinal fixation apparatus with shape memory alloy
US8221461B2 (en) 2004-10-25 2012-07-17 Gmedelaware 2 Llc Crossbar spinal prosthesis having a modular design and systems for treating spinal pathologies
US20060149231A1 (en) * 2004-12-13 2006-07-06 Rsb Spine Llc Bone fastener assembly for bone retention apparatus
US7578833B2 (en) 2004-12-13 2009-08-25 Dr. Robert S. Bray, Jr. Bone fastener assembly for bone retention apparatus
US7914556B2 (en) 2005-03-02 2011-03-29 Gmedelaware 2 Llc Arthroplasty revision system and method
US20060200131A1 (en) * 2005-03-04 2006-09-07 Depuy Spine Sarl Constrained motion bone screw assembly
US20060200132A1 (en) * 2005-03-04 2006-09-07 Chao Nam T Instruments and methods for manipulating a vertebra
US7951172B2 (en) 2005-03-04 2011-05-31 Depuy Spine Sarl Constrained motion bone screw assembly
US8007516B2 (en) 2005-03-04 2011-08-30 Depuy Spine, Inc. Instruments and methods for manipulating vertebra
US7951168B2 (en) 2005-03-04 2011-05-31 Depuy Spine, Inc. Instruments and methods for manipulating vertebra
US7951175B2 (en) 2005-03-04 2011-05-31 Depuy Spine, Inc. Instruments and methods for manipulating a vertebra
US20070162009A1 (en) * 2005-03-04 2007-07-12 Chao Nam T Instruments and methods for manipulating vertebra
US20070162010A1 (en) * 2005-03-04 2007-07-12 Chao Nam T Instruments and methods for manipulating vertebra
US9795416B2 (en) 2005-03-04 2017-10-24 Medos International Sárl Constrained motion bone screw assembly
US20110196431A1 (en) * 2005-03-04 2011-08-11 Depuy Spine Sarl Constrained motion bone screw assembly
US8709044B2 (en) 2005-03-04 2014-04-29 DePuy Synthes Products, LLC Instruments and methods for manipulating vertebra
US9095379B2 (en) 2005-03-04 2015-08-04 Medos International Sarl Constrained motion bone screw assembly
US8496686B2 (en) 2005-03-22 2013-07-30 Gmedelaware 2 Llc Minimally invasive spine restoration systems, devices, methods and kits
US20100198273A1 (en) * 2005-10-21 2010-08-05 Kwak Seungkyu Daniel Adjustable bone screw assembly
US20110208250A1 (en) * 2005-10-21 2011-08-25 Depuy Spine, Inc. Adjustable bone screw assembly
US8603144B2 (en) 2005-10-21 2013-12-10 DePuy Synthes Products, LLC Adjustable bone screw assembly
US8845700B2 (en) 2005-10-21 2014-09-30 DePuy Synthes Products, LLC. Adjustable bone screw assembly
US7722651B2 (en) 2005-10-21 2010-05-25 Depuy Spine, Inc. Adjustable bone screw assembly
US7951174B2 (en) 2005-10-21 2011-05-31 Depuy Spine, Inc. Adjustable bone screw assembly
US8414614B2 (en) 2005-10-22 2013-04-09 Depuy International Ltd Implant kit for supporting a spinal column
US20070156143A1 (en) * 2006-01-03 2007-07-05 Zimmer Spine, Inc. Instrument for pedicle screw adhesive materials
US7819899B2 (en) 2006-01-03 2010-10-26 Zimmer Spine, Inc. Instrument for pedicle screw adhesive materials
US8425563B2 (en) 2006-01-13 2013-04-23 Depuy International Ltd. Spinal rod support kit
US8348952B2 (en) 2006-01-26 2013-01-08 Depuy International Ltd. System and method for cooling a spinal correction device comprising a shape memory material for corrective spinal surgery
US7760228B2 (en) * 2006-05-26 2010-07-20 Canon Kabushiki Kaisha Light scanning apparatus and image forming apparatus
US20070273748A1 (en) * 2006-05-26 2007-11-29 Canon Kabushiki Kaisha Light scanning apparatus and image forming apparatus
US8043337B2 (en) 2006-06-14 2011-10-25 Spartek Medical, Inc. Implant system and method to treat degenerative disorders of the spine
US8172882B2 (en) 2006-06-14 2012-05-08 Spartek Medical, Inc. Implant system and method to treat degenerative disorders of the spine
US8702755B2 (en) 2006-08-11 2014-04-22 Gmedelaware 2 Llc Angled washer polyaxial connection for dynamic spine prosthesis
US7744632B2 (en) 2006-12-20 2010-06-29 Aesculap Implant Systems, Inc. Rod to rod connector
US20080195122A1 (en) * 2007-02-09 2008-08-14 Altiva Corporation Connector
US8926667B2 (en) 2007-02-09 2015-01-06 Transcendental Spine, Llc Connector
US8197513B2 (en) 2007-04-13 2012-06-12 Depuy Spine, Inc. Facet fixation and fusion wedge and method of use
US8894685B2 (en) 2007-04-13 2014-11-25 DePuy Synthes Products, LLC Facet fixation and fusion screw and washer assembly and method of use
US8197517B1 (en) 2007-05-08 2012-06-12 Theken Spine, Llc Frictional polyaxial screw assembly
US8048123B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Spine implant with a deflection rod system and connecting linkages and method
US8070775B2 (en) 2007-06-05 2011-12-06 Spartek Medical, Inc. Deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method
US7963978B2 (en) 2007-06-05 2011-06-21 Spartek Medical, Inc. Method for implanting a deflection rod system and customizing the deflection rod system for a particular patient need for dynamic stabilization and motion preservation spinal implantation system
US8070776B2 (en) 2007-06-05 2011-12-06 Spartek Medical, Inc. Deflection rod system for use with a vertebral fusion implant for dynamic stabilization and motion preservation spinal implantation system and method
US8080039B2 (en) 2007-06-05 2011-12-20 Spartek Medical, Inc. Anchor system for a spine implantation system that can move about three axes
US8568451B2 (en) 2007-06-05 2013-10-29 Spartek Medical, Inc. Bone anchor for receiving a rod for stabilization and motion preservation spinal implantation system and method
US8083772B2 (en) 2007-06-05 2011-12-27 Spartek Medical, Inc. Dynamic spinal rod assembly and method for dynamic stabilization of the spine
US7942900B2 (en) 2007-06-05 2011-05-17 Spartek Medical, Inc. Shaped horizontal rod for dynamic stabilization and motion preservation spinal implantation system and method
US8092501B2 (en) 2007-06-05 2012-01-10 Spartek Medical, Inc. Dynamic spinal rod and method for dynamic stabilization of the spine
US8070780B2 (en) 2007-06-05 2011-12-06 Spartek Medical, Inc. Bone anchor with a yoke-shaped anchor head for a dynamic stabilization and motion preservation spinal implantation system and method
US8317836B2 (en) 2007-06-05 2012-11-27 Spartek Medical, Inc. Bone anchor for receiving a rod for stabilization and motion preservation spinal implantation system and method
US8105356B2 (en) 2007-06-05 2012-01-31 Spartek Medical, Inc. Bone anchor with a curved mounting element for a dynamic stabilization and motion preservation spinal implantation system and method
US8105359B2 (en) 2007-06-05 2012-01-31 Spartek Medical, Inc. Deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method
US8109970B2 (en) 2007-06-05 2012-02-07 Spartek Medical, Inc. Deflection rod system with a deflection contouring shield for a spine implant and method
US8114134B2 (en) * 2007-06-05 2012-02-14 Spartek Medical, Inc. Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine
US8114130B2 (en) 2007-06-05 2012-02-14 Spartek Medical, Inc. Deflection rod system for spine implant with end connectors and method
US8118842B2 (en) 2007-06-05 2012-02-21 Spartek Medical, Inc. Multi-level dynamic stabilization and motion preservation spinal implantation system and method
US7985243B2 (en) 2007-06-05 2011-07-26 Spartek Medical, Inc. Deflection rod system with mount for a dynamic stabilization and motion preservation spinal implantation system and method
US8142480B2 (en) 2007-06-05 2012-03-27 Spartek Medical, Inc. Dynamic stabilization and motion preservation spinal implantation system with horizontal deflection rod and articulating vertical rods
US8147520B2 (en) 2007-06-05 2012-04-03 Spartek Medical, Inc. Horizontally loaded dynamic stabilization and motion preservation spinal implantation system and method
US8162987B2 (en) 2007-06-05 2012-04-24 Spartek Medical, Inc. Modular spine treatment kit for dynamic stabilization and motion preservation of the spine
US8172881B2 (en) 2007-06-05 2012-05-08 Spartek Medical, Inc. Dynamic stabilization and motion preservation spinal implantation system and method with a deflection rod mounted in close proximity to a mounting rod
US8066747B2 (en) 2007-06-05 2011-11-29 Spartek Medical, Inc. Implantation method for a dynamic stabilization and motion preservation spinal implantation system and method
US8177815B2 (en) 2007-06-05 2012-05-15 Spartek Medical, Inc. Super-elastic deflection rod for a dynamic stabilization and motion preservation spinal implantation system and method
US8182516B2 (en) 2007-06-05 2012-05-22 Spartek Medical, Inc. Rod capture mechanism for dynamic stabilization and motion preservation spinal implantation system and method
US8182515B2 (en) 2007-06-05 2012-05-22 Spartek Medical, Inc. Dynamic stabilization and motion preservation spinal implantation system and method
US8002803B2 (en) 2007-06-05 2011-08-23 Spartek Medical, Inc. Deflection rod system for a spine implant including an inner rod and an outer shell and method
US8192469B2 (en) 2007-06-05 2012-06-05 Spartek Medical, Inc. Dynamic stabilization and motion preservation spinal implantation system and method with a deflection rod
US8057514B2 (en) 2007-06-05 2011-11-15 Spartek Medical, Inc. Deflection rod system dimensioned for deflection to a load characteristic for dynamic stabilization and motion preservation spinal implantation system and method
US7993372B2 (en) 2007-06-05 2011-08-09 Spartek Medical, Inc. Dynamic stabilization and motion preservation spinal implantation system with a shielded deflection rod system and method
US8052722B2 (en) 2007-06-05 2011-11-08 Spartek Medical, Inc. Dual deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method
US8211150B2 (en) 2007-06-05 2012-07-03 Spartek Medical, Inc. Dynamic stabilization and motion preservation spinal implantation system and method
US8052721B2 (en) 2007-06-05 2011-11-08 Spartek Medical, Inc. Multi-dimensional horizontal rod for a dynamic stabilization and motion preservation spinal implantation system and method
US8048115B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Surgical tool and method for implantation of a dynamic bone anchor
US8048128B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Revision system and method for a dynamic stabilization and motion preservation spinal implantation system and method
US8048113B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Deflection rod system with a non-linear deflection to load characteristic for a dynamic stabilization and motion preservation spinal implantation system and method
US8048122B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Spine implant with a dual deflection rod system including a deflection limiting sheild associated with a bone screw and method
US8048121B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Spine implant with a defelction rod system anchored to a bone anchor and method
US8298267B2 (en) 2007-06-05 2012-10-30 Spartek Medical, Inc. Spine implant with a deflection rod system including a deflection limiting shield associated with a bone screw and method
US8021396B2 (en) 2007-06-05 2011-09-20 Spartek Medical, Inc. Configurable dynamic spinal rod and method for dynamic stabilization of the spine
US8002800B2 (en) 2007-06-05 2011-08-23 Spartek Medical, Inc. Horizontal rod with a mounting platform for a dynamic stabilization and motion preservation spinal implantation system and method
US8012175B2 (en) 2007-06-05 2011-09-06 Spartek Medical, Inc. Multi-directional deflection profile for a dynamic stabilization and motion preservation spinal implantation system and method
US20100030272A1 (en) * 2007-06-05 2010-02-04 Spartek Medical Inc. Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine
US8070774B2 (en) 2007-06-05 2011-12-06 Spartek Medical, Inc. Reinforced bone anchor for a dynamic stabilization and motion preservation spinal implantation system and method
US8313515B2 (en) 2007-06-15 2012-11-20 Rachiotek, Llc Multi-level spinal stabilization system
US8430914B2 (en) 2007-10-24 2013-04-30 Depuy Spine, Inc. Assembly for orthopaedic surgery
US8097024B2 (en) 2008-02-26 2012-01-17 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for stabilization of the spine
US8057517B2 (en) 2008-02-26 2011-11-15 Spartek Medical, Inc. Load-sharing component having a deflectable post and centering spring and method for dynamic stabilization of the spine
US8007518B2 (en) 2008-02-26 2011-08-30 Spartek Medical, Inc. Load-sharing component having a deflectable post and method for dynamic stabilization of the spine
US8012181B2 (en) 2008-02-26 2011-09-06 Spartek Medical, Inc. Modular in-line deflection rod and bone anchor system and method for dynamic stabilization of the spine
US8211155B2 (en) 2008-02-26 2012-07-03 Spartek Medical, Inc. Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine
US8016861B2 (en) 2008-02-26 2011-09-13 Spartek Medical, Inc. Versatile polyaxial connector assembly and method for dynamic stabilization of the spine
US8267979B2 (en) 2008-02-26 2012-09-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine
US8337536B2 (en) 2008-02-26 2012-12-25 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine
US8048125B2 (en) 2008-02-26 2011-11-01 Spartek Medical, Inc. Versatile offset polyaxial connector and method for dynamic stabilization of the spine
US8057515B2 (en) 2008-02-26 2011-11-15 Spartek Medical, Inc. Load-sharing anchor having a deflectable post and centering spring and method for dynamic stabilization of the spine
US8333792B2 (en) 2008-02-26 2012-12-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine
US8083775B2 (en) 2008-02-26 2011-12-27 Spartek Medical, Inc. Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine
US8608746B2 (en) 2008-03-10 2013-12-17 DePuy Synthes Products, LLC Derotation instrument with reduction functionality
US9326798B2 (en) 2008-03-10 2016-05-03 DePuy Synthes Products, Inc. Derotation instrument with reduction functionality
US20090228053A1 (en) * 2008-03-10 2009-09-10 Eric Kolb Derotation instrument with reduction functionality
US8709015B2 (en) 2008-03-10 2014-04-29 DePuy Synthes Products, LLC Bilateral vertebral body derotation system
US20090248078A1 (en) * 2008-04-01 2009-10-01 Zimmer Spine, Inc. Spinal stabilization device
US20090312804A1 (en) * 2008-06-17 2009-12-17 Thomas Gamache Adjustable implant assembly
US20090326580A1 (en) * 2008-06-25 2009-12-31 Anderson Mark E Spinal fixation device
US8425514B2 (en) 2008-06-25 2013-04-23 Westmark Medical, Llc. Spinal fixation device
WO2010036950A3 (en) * 2008-09-26 2010-07-22 Spartek Medical, Inc. Load-sharing bone anchor, dynamic vertical rod and assemblies for dynamic stabilization of the spine
US8951289B2 (en) * 2008-10-09 2015-02-10 Total Connect Spine, Llc Spinal connection assembly
US20100094346A1 (en) * 2008-10-09 2010-04-15 Total Connect Spine, Llc Spinal connection assembly
US8216281B2 (en) 2008-12-03 2012-07-10 Spartek Medical, Inc. Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US20120290015A1 (en) * 2009-03-10 2012-11-15 Andrew Iott Spinal Implant Connection Assembly
US8252030B2 (en) * 2009-03-10 2012-08-28 Globus Medical, Inc. Spinal implant connection assembly
US8628559B2 (en) * 2009-03-10 2014-01-14 Globus Medical, Inc. Spinal implant connection assembly
US20100234893A1 (en) * 2009-03-10 2010-09-16 Andrew Iott Spinal Implant Connection Assembly
US20110040331A1 (en) * 2009-05-20 2011-02-17 Jose Fernandez Posterior stabilizer
US8394127B2 (en) 2009-12-02 2013-03-12 Spartek Medical, Inc. Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US8372122B2 (en) 2009-12-02 2013-02-12 Spartek Medical, Inc. Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US8257397B2 (en) 2009-12-02 2012-09-04 Spartek Medical, Inc. Low profile spinal prosthesis incorporating a bone anchor having a deflectable post and a compound spinal rod
US8518085B2 (en) 2010-06-10 2013-08-27 Spartek Medical, Inc. Adaptive spinal rod and methods for stabilization of the spine
US9345519B1 (en) * 2010-07-02 2016-05-24 Presidio Surgical, Inc. Pedicle screw
US9707014B1 (en) 2010-07-09 2017-07-18 Theken Spine, Llc Apparatus and method for limiting a range of angular positions of a screw
US9084634B1 (en) 2010-07-09 2015-07-21 Theken Spine, Llc Uniplanar screw
WO2012009162A1 (en) * 2010-07-12 2012-01-19 Depuy Spine, Inc. Pedicular facet fusion screw with plate
US9044277B2 (en) 2010-07-12 2015-06-02 DePuy Synthes Products, Inc. Pedicular facet fusion screw with plate
US9089372B2 (en) 2010-07-12 2015-07-28 DePuy Synthes Products, Inc. Pedicular facet fusion screw with plate
WO2012135870A3 (en) * 2011-04-01 2012-11-22 Stachniak Rebecca Elizabeth Posterior cervical stabilization system and method
US20130030474A1 (en) * 2011-07-26 2013-01-31 Christopher Chaput Bone Screws and Bone Screw Systems
US9119678B2 (en) 2011-11-01 2015-09-01 Synergy Disc Replacement Inc. Facet fixation systems
US9414865B2 (en) 2011-11-01 2016-08-16 Synergy Disc Replacement Inc. Joint and bone fixation
US8430916B1 (en) 2012-02-07 2013-04-30 Spartek Medical, Inc. Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors
US8771319B2 (en) 2012-04-16 2014-07-08 Aesculap Implant Systems, Llc Rod to rod cross connector
US8828056B2 (en) 2012-04-16 2014-09-09 Aesculap Implant Systems, Llc Rod to rod cross connector
US9844398B2 (en) 2012-05-11 2017-12-19 Orthopediatrics Corporation Surgical connectors and instrumentation
US9743959B2 (en) * 2013-03-14 2017-08-29 Atlas Spine, Inc. Low profile spinal fixation system

Also Published As

Publication number Publication date Type
EP1023873A2 (en) 2000-08-02 application
KR100324698B1 (en) 2002-02-27 grant
ES2228310T3 (en) 2005-04-16 grant
EP1023873A3 (en) 2003-05-02 application
DE60014462D1 (en) 2004-11-11 grant
KR20000052241A (en) 2000-08-16 application
DE60014462T2 (en) 2006-05-18 grant
EP1023873B1 (en) 2004-10-06 grant

Similar Documents

Publication Publication Date Title
US7008423B2 (en) Spinal osteosynthesis system for anterior fixation
US7588593B2 (en) Pedicle screw with vertical adjustment
US5554157A (en) Rod securing polyaxial locking screw and coupling element assembly
US5474555A (en) Spinal implant system
US7862594B2 (en) Polyaxial pedicle screw assembly
US5531746A (en) Posterior spinal polyaxial locking lateral mass screw plate assembly
US6238396B1 (en) Surgical cross-connecting apparatus and related methods
US5549608A (en) Advanced polyaxial locking screw and coupling element device for use with rod fixation apparatus
US6669700B1 (en) Anterior cervical plating system
US5961518A (en) Polyaxial pedicle screw having a through bar clamp locking mechanism
US6113601A (en) Polyaxial pedicle screw having a loosely coupled locking cap
US7207992B2 (en) Connection rod for screw or hook polyaxial system and method of use
US7850715B2 (en) Orthopedic implant apparatus
US6991632B2 (en) Adjustable rod and connector device and method of use
US6689133B2 (en) Multi-axial bone anchor system
US7717941B2 (en) Linking element for dynamically stabilizing a spinal fixing system and spinal fixing system comprising same
US7901433B2 (en) Occipito-cervical stabilization system and method
US20070123870A1 (en) Bi-polar screw assembly
US6287308B1 (en) Methods and apparatus for fusionless treatment of spinal deformities
US5752957A (en) Polyaxial mechanism for use with orthopaedic implant devices
US6858030B2 (en) Pedicle screw assembly and methods therefor
US20080312692A1 (en) Multi-level spinal stabilization system
US20100016901A1 (en) Bone screw retaining system
US20070233090A1 (en) Aligning cross-connector
US20100030224A1 (en) Surgical tool and method for connecting a dynamic bone anchor and dynamic vertical rod

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: U & I CORPORATION, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GU, JA-KYO;REEL/FRAME:019843/0679

Effective date: 20070730

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12