US6243272B1 - Method and apparatus for interconnecting multiple devices on a circuit board - Google Patents

Method and apparatus for interconnecting multiple devices on a circuit board Download PDF

Info

Publication number
US6243272B1
US6243272B1 US09/336,486 US33648699A US6243272B1 US 6243272 B1 US6243272 B1 US 6243272B1 US 33648699 A US33648699 A US 33648699A US 6243272 B1 US6243272 B1 US 6243272B1
Authority
US
United States
Prior art keywords
type
circuit board
pin
edge
attach region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/336,486
Inventor
Ming Zeng
Sanjay Dabral
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Assigned to INTEL CORPORATION reassignment INTEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DABRAL, SANJAY, ZENG, MING
Priority to US09/336,486 priority Critical patent/US6243272B1/en
Priority to AU53081/00A priority patent/AU5308100A/en
Priority to DE10084714T priority patent/DE10084714T1/en
Priority to GB0128926A priority patent/GB2367191B/en
Priority to PCT/US2000/014960 priority patent/WO2000079850A1/en
Priority to CNB008091528A priority patent/CN1199530C/en
Priority to GB0318246A priority patent/GB2388714B/en
Priority to US09/848,996 priority patent/US6434016B2/en
Publication of US6243272B1 publication Critical patent/US6243272B1/en
Application granted granted Critical
Priority to HK02104145.4A priority patent/HK1042404B/en
Priority to HK04102769A priority patent/HK1060255A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09236Parallel layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/097Alternating conductors, e.g. alternating different shaped pads, twisted pairs; Alternating components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10689Leaded Integrated Circuit [IC] package, e.g. dual-in-line [DIL]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10734Ball grid array [BGA]; Bump grid array
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1572Processing both sides of a PCB by the same process; Providing a similar arrangement of components on both sides; Making interlayer connections from two sides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention pertains to the field of bus topologies. More particularly, the present invention pertains to an improved multiple load bus topology and associated circuit boards, systems, and methods.
  • the performance and cost of a circuit board in a multi-load topology are influenced by numerous design parameters. For example, routing between components on the circuit board, the placement of such components, and the types of vias used to interconnect different layers of routing in the circuit board all play an important role in determining the cost and performance of a circuit board. In the case of a circuit board intended for high-volume manufacturing, it may be advantageous to provide high performance while limiting overall cost; however, often high performance and low cost are conflicting goals.
  • Package routing refers to the routing of signal lines from pads of an integrated circuit to component pins.
  • Pins are interconnect nodes that transfer signals from the component to circuit board traces and may take any of a variety of known or otherwise available forms (e.g., pins, solder balls, solder columns, etc.).
  • Circuit board traces are signal lines as they are routed through one or more layers of the circuit board, and the bus length for a particular bus is the length of the traces that comprise the bus.
  • a stub offset is the distance on the bus between two connections to a single circuit board trace
  • a chip offset is the horizontal distance in the plane of a circuit board between the midpoints of two devices mounted on the circuit board.
  • a typical circuit board may have numerous layers of traces within the circuit board to transmit signals from components mounted on both sides of the circuit board.
  • trace routing is a complex three-dimensional problem which may be further complicated by the large number of pins densely populating modern components. Additionally, some systems may have design specific constraints such as a maximum trace length, or a requirement of some degree of consistency between trace lengths.
  • One prior art multi-load bus topology attaches devices to a bus arranged in a straight line on a single surface of a circuit board. As additional devices are added, such a bus necessarily becomes longer. At a certain point, the bus may be too long for signals to propagate between components within predetermined periods of time associated with proper bus operation. For example, in a system operating with a common bus clock between components, the bus may become too long for signals to propagate from end to end during a cycle of the common clock. In such cases, to provide operation at higher common clock frequencies, techniques that allow shortening of the bus may be required.
  • FIG. 1 a One prior art technique that shortens the total length of the bus is shown in FIG. 1 a .
  • This prior art technique involves mounting devices on opposite sides of a circuit board in an overlapping manner.
  • a device 155 is mounted on a first side of a circuit board 150
  • a device 160 is mounted on a second side of the circuit board 150 .
  • many pins that need to be connected are not aligned.
  • a through-hole via 162 may be used to connect both pins to a signal line 164 at a single connection point 165 .
  • the connection of two stubs at a single connection point 165 may disadvantageously reduce signal quality when high frequency signaling is involved.
  • a partial via 166 and a partial via 174 respectively are used to connect pins 158 and 180 respectively from the device 155 and the device 160 to a signal line 170 .
  • a partial via 166 and a partial via 174 respectively are used to connect pins 158 and 180 respectively from the device 155 and the device 160 to a signal line 170 .
  • the connection points 172 and 176 are spaced apart so that the stubs do not connect at a single point; however, the fully overlapping nature of devices 155 and 160 (i.e., being directly above/below each other) does not guarantee that a minimum stub offset can be maintained between pins. Therefore, disadvantages of this prior art approach may include the use of expensive vias and/or the inability to ensure minimum stub offsets.
  • FIG. 1 b Another prior art technique that allows mounting overlapping components on opposite sides of a circuit board is shown in FIG. 1 b (see also, e.g., U.S. Pat. No. 5,502,621).
  • This technique also involves-mounting a device 110 on a first side of a printed circuit board 105 and a device 135 on a second side of the printed circuit board 105 ; however, the device 135 has corresponding pin positions in mirror image locations with respect to the device 110 .
  • Corresponding pins are pins that are connected together in the system such as pins 115 and 130 .
  • corresponding pins may be pins such as data bus pins (e.g., D1 of device 1 is connected to D1 of devices 2 , 3 , etc.), address bus pins, or certain control pins.
  • a pin 115 and a pin 130 may be connected together and to a signal line 140 at a single connection point 125 by a single through-hole via 120 .
  • This technique requires that a particular device be designed with multiple pin arrangements (standard and mirror image), thereby increasing the cost of manufacturing and maintaining inventory of the device.
  • both stubs connecting the devices 110 and 135 terminate at a single connection point 125 , which may undesirably reduce signal quality.
  • a method and apparatus interconnecting multiple devices on a circuit board has a first attach region on a first surface for coupling a first set of pins from a first device to a set of signal lines.
  • a second attach region on a second surface is for coupling a second set of pins from a second device to the set of signal lines.
  • the second attach region is predominantly non-overlapping with respect to the first attach region.
  • FIG. 1 a illustrates a prior art circuit board utilizing complex via structures to support two fully overlapping devices without mirror image pin locations.
  • FIG. 1 b illustrates a prior art circuit board having fully overlapping devices with mirror image pin locations.
  • FIG. 2 a illustrates one embodiment of a circuit board having non-overlapping devices mounted on opposite sides of the circuit board.
  • FIG. 2 b illustrates a top view of the circuit board in FIG. 2 a.
  • FIG. 3 illustrates a graph of the worst case available signal amplitude among all the receivers on a bus for one embodiment.
  • FIG. 4 a illustrates one embodiment of a circuit board having predominantly non-overlapping devices mounted on opposite sides of the circuit board.
  • FIG. 4 b illustrates a top view of the circuit board in FIG. 4 a.
  • FIG. 5 illustrates one embodiment of a circuit board having attached devices with pins separated into regions by pin type.
  • FIG. 6 illustrates another embodiment of a circuit board having attached devices with pins separated into regions by pin type.
  • some embodiments of the present invention allow an economical high speed circuit board design by staggering components on opposite sides of a circuit board.
  • staggering devices on opposite sides of the circuit board actually enhances signal quality by providing at least some minimum stub offset between stub connections to each signal trace.
  • staggering devices so that they are at least partially non-overlapping allows the use of through-hole vias in some embodiments, thereby providing a less expensive circuit board design.
  • signals may be grouped by their signal type to maintain better signal quality for a particular set of signals.
  • FIG. 2 a illustrates one embodiment of a circuit board 200 having devices mounted on both sides and using through-hole vias to connect pins from the devices to signal traces in the circuit board 200 .
  • pins may be pins, solder balls, solder columns, or any other known or available interconnection mechanism or structure for signals from devices to a circuit board.
  • the area of a device populated with pins may be referred to as the attach region, and the circuit board has a corresponding attach region which interfaces with the device attach region.
  • a device 205 , a device 210 , and a device 215 are mounted on a first surface of the circuit board 200 .
  • the devices 220 and 225 are mounted on a second surface of the circuit board 200 .
  • devices on opposite sides of the circuit board 200 are non-overlapping. That is, the attach regions on opposite sides of the circuit board 200 would not overlap if they were in the same plane.
  • one edge of the attach region of the device 205 is adjacent to the attach region of the device 220 but on the opposite side of the circuit board 200 .
  • portions of the packaging or of heat dissipation mechanisms for these devices may extend outwardly beyond the attach region and therefore may overlap even if the attach regions do not. Where larger packages and/or heat dissipation mechanisms are present, staggering devices on opposite sides of the circuit board may advantageously allow higher density component placement.
  • each device may use through-hole vias to connect to signal traces in the circuit board 200 without conflicting with the vias of another device.
  • the use of through-hole vias may be advantageous as less expensive circuit boards may be produced if simple through-hole via technology is used instead of complex partial vias, blind vias, and/or buried vias.
  • this staggering arrangement may help reduce stub lengths.
  • the stub length is the distance from an internal connection point of a device, such as a bond pad of an integrated circuit, to the connection point to the bus on the circuit board.
  • This stub may include various sections of package routing as well as routing in the circuit board before the final bus trace is reached. Lengthy stubs typically lead to poor signal quality in a multi-load, high frequency signaling environment.
  • the use of through-hole vias with stacked devices may require enlarging the region of vias in the circuit board. For example, if the region of vias directly under each device is completely filled by through-hole vias required for pins on that device, mounting another device directly opposite the device would require an enlargement of the total via field area by the surface area of the added device. In other words, if the same component is mounted back-to-back with through-hole vias where vias from one device already populate the region to the maximum via density, the surface area required for the vias for both back-to-back devices would double. Due to this increase in surface area, on average, the stub length to reach a bus trace may be expected to increase by a factor of the square root of two. Therefore, avoiding such back-to-back placement by staggering devices may help to limit stub lengths.
  • FIGS. 2 a and 2 b may advantageously ensure that a minimum stub offset is maintained, meaning that there is at least a minimum distance between connection points to a trace on the bus. Maintaining a minimum stub offset is another technique which may help improve signal quality in a high-speed signaling environment. If stubs from multiple devices driving a signal line connect to the signal line at the same point or at small distances from one another (i.e., if they have little or no stub offset), more reflections are likely to be present when these devices drive the bus. In the prior art, efforts to increase device density often lead to a reduction in or elimination of the stub offset.
  • FIG. 3 illustrates, for one embodiment, the effect on signal quality of changing chip offset distances. Changing the chip offset generally results in altered stub offsets for each trace.
  • FIG. 3 depicts the worst case available signal amplitude (e.g., in millivolts) among all the receivers on the relevant bus. Larger signal amplitudes at the receiver translate toibetter signal quality because noise at the receiver may be more easily rejected when a larger signal is present. Thus, generally, larger chip offsets translate to better signal quality in a high speed signaling environment.
  • FIG. 3 indicates a common clock limit 310 for a system utilizing at least some common clock signals.
  • a common clock system includes signals that are driven with reference to a common clock shared by multiple devices on the circuit board.
  • the common clock limit reflects the notion that the flight time and hence the bus length is typically limited in a common clock system so that signals can propagate as needed within a predetermined number of periods (usually one) of the clock signal. Therefore, smaller chip offsets generally allow a higher common clock frequency.
  • the signal amplitude generally improves as chip offsets increase until a certain point is reached.
  • the behavior may differ, with the profile being largely determined by reflections in the system.
  • a chip offset 320 may be selected which is less than the common clock limit 310 in some embodiments. In order to provide margin, the chip offset 320 may be chosen a bit less than the common clock limit distance.
  • a family of similar curves may be analyzed for the various signals routed on the circuit board.
  • the graph in FIG. 3 reflects aggregate system information for many or all signal lines at each chip offset. That is, the worst case signal of a group of signals at a particular chip offset distance is reflected in the graph at each offset distance, thereby allowing analysis of signal groups.
  • each stub offset could be individually analyzed. In either case, the minimum chip or stub offset distance may be adjusted as a function of the desired signal quality and a common clock signal frequency.
  • pins 207 , 232 , 212 , 227 , and 217 are connected to a signal line 230 at connection points separated by a stub offset approximately equal to one-half of the width of each device.
  • connections to the signal line 235 have a smaller minimum stub offset and a larger maximum stub offset, but since the smaller distance typically creates a noisier signal it is usually treated as the worst-case.
  • a minimum stub offset may be ensured.
  • sufficient minimum stub offsets may be maintained simply due to the staggered nature of the devices on the circuit board (without special pin arrangements).
  • the devices mounted on discussed circuit boards may be any of a variety of types of memory devices or processing devices that communicate via substantial interconnections (e.g., one or more buses).
  • processing devices include general purpose processors, special purpose processors, media processors, graphics processors, broadband processors, real-time video and/or audio processors, any combination thereof, as well as any other appropriate known or otherwise available processor may all work in close cooperation and may benefit from disclosed circuit board arrangements.
  • FIG. 4 a illustrates a two sided circuit board 400 having devices mounted in a predominantly non-overlapping staggered manner.
  • a device 405 and a device 410 are mounted on a first side of the circuit board 400 .
  • these devices have attach regions of the same size as a device.
  • the attach region may be smaller than the device itself.
  • a device 415 is mounted on a second side of the circuit board 400 with an attach region that overlaps both the attach region of device 405 and the attach region of the device 410 .
  • an expanded via region 420 is formed.
  • This expanded via region results in an increase in some stub lengths, however, it also results in the devices being placed closer together.
  • the devices being placed closer together may be advantageous in a system where some signals are common clock signals. In such cases, limiting the overall length of the bus may be important to allow the common clock to operate at a sufficiently high frequency. Having devices overlap, however, is not required to use techniques of the present invention.
  • FIG. 5 illustrates one embodiment of a circuit board 500 having attached devices with pins separated into regions by pin type.
  • a device 510 and a device 520 are attached to a first surface of the circuit board 500 .
  • a device 530 is attached to a second surface of the circuit board 500 .
  • the device 510 includes a region 512 and a region 516 of a first type of pin node for a first type of signal.
  • the device 510 also includes a region 514 with a second type of pin for a second type of signal.
  • the pins may be physically identical; however, different types of signals may be routed through these pins.
  • the regions 512 and 516 may be regions for common clock (CC) signals
  • the region 514 may be a region for source synchronous (SS) signals.
  • Source synchronous signals are signals that are transmitted with an accompanying clock or strobe signal to capture the signal at a destination.
  • source synchronous signals may warrant special treatment because the waveform of the clock transmitted with the data signals may be important to ensure that proper data is captured.
  • source synchronous signal buses may transfer data on multiple clock edges and therefore may have a higher data transfer rate than other signals in the system.
  • signals may be grouped into different regions based on one set of signals having a higher desired signal quality.
  • signals expected to operate at a higher frequency or particularly sensitive signals, such as clocks or strobes may be separated into a region exhibiting superior signal quality characteristic.
  • the device 520 includes regions 522 and 526 having pins of the first type, as well as a region 524 having pins of the second type.
  • the device 530 has regions 532 and 536 with pins of the first type and region 534 having pins of the second type.
  • a minimum distance of D1 is maintained between the regions 514 and 534 as well as the regions 524 and 534 . Since the regions themselves are separated by the distance D1, the minimum stub offset is also D1 for pins in the regions separated by the distance D1 in this embodiment.
  • FIG. 6 illustrates another embodiment having devices with pins separated into regions based on pin type.
  • a circuit board 600 has a processor 605 , a processor 610 , and a controller 615 mounted on a first side of the circuit board.
  • a processor 620 and a processor 625 are mounted on a second side of the circuit board.
  • Each device includes pins separated into regions based on the signal type being transmitted.
  • the common clock signals of both processors separate the source synchronous signals. Therefore, the desired stub offset is achieved by the intervening region of non-source synchronous signals.
  • an additional offset is added because the source synchronous signal regions would otherwise be adjacent.
  • the common clock signal regions suffice to provide an offset between source synchronous signal regions.
  • each of the processors 605 , 610 , 620 and 625 have the same pin arrangement. Therefore, all processors may be identical parts. Since the controller 615 is a different part than the processors, its pin arrangement may be different then the processors. As illustrated, the controller 615 may have its common clock signals located between the source synchronous signals of the processor 625 and those of the controller such that the region of common clock signals on the controller helps minimize the chip offset needed between the controller 615 and the processor 625 to achieve desired stub offsets. In this particular example, the regions of source synchronous and common clock signals are reversed with respect to those of the processors.
  • signals may be divided by different criteria than whether they are source synchronous or common clock signals.
  • signal grouping may be employed on a single sided circuit board.
  • the attach regions may be completely non-overlapping or only predominantly non-overlapping as previously discussed. In some cases, there may be significant overlap of pins for which the signal quality is of less concern. Additionally, there may be no clear second group of signals, but rather only a first group for which a higher quality signal is desired and which is located on the device to provide some minimum stub offset chosen to achieve a particular signal quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combinations Of Printed Boards (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

A method and apparatus interconnecting multiple devices on a circuit board. One disclosed circuit board has a first attach region on a first surface for coupling a first set of pins from a first device to a set of signal lines. A second attach region on a second surface is for coupling a second set of pins from a second device to the set of signal lines. The second attach region is predominantly non-overlapping with respect to the first attach region.

Description

BACKGROUND
1. Field of the Invention
The present invention pertains to the field of bus topologies. More particularly, the present invention pertains to an improved multiple load bus topology and associated circuit boards, systems, and methods.
2. Description of Related Art
The performance and cost of a circuit board in a multi-load topology are influenced by numerous design parameters. For example, routing between components on the circuit board, the placement of such components, and the types of vias used to interconnect different layers of routing in the circuit board all play an important role in determining the cost and performance of a circuit board. In the case of a circuit board intended for high-volume manufacturing, it may be advantageous to provide high performance while limiting overall cost; however, often high performance and low cost are conflicting goals.
Package routing refers to the routing of signal lines from pads of an integrated circuit to component pins. Pins are interconnect nodes that transfer signals from the component to circuit board traces and may take any of a variety of known or otherwise available forms (e.g., pins, solder balls, solder columns, etc.). Circuit board traces are signal lines as they are routed through one or more layers of the circuit board, and the bus length for a particular bus is the length of the traces that comprise the bus. As referred to herein, a stub offset is the distance on the bus between two connections to a single circuit board trace, and a chip offset is the horizontal distance in the plane of a circuit board between the midpoints of two devices mounted on the circuit board.
A typical circuit board may have numerous layers of traces within the circuit board to transmit signals from components mounted on both sides of the circuit board. Thus, trace routing is a complex three-dimensional problem which may be further complicated by the large number of pins densely populating modern components. Additionally, some systems may have design specific constraints such as a maximum trace length, or a requirement of some degree of consistency between trace lengths.
One prior art multi-load bus topology attaches devices to a bus arranged in a straight line on a single surface of a circuit board. As additional devices are added, such a bus necessarily becomes longer. At a certain point, the bus may be too long for signals to propagate between components within predetermined periods of time associated with proper bus operation. For example, in a system operating with a common bus clock between components, the bus may become too long for signals to propagate from end to end during a cycle of the common clock. In such cases, to provide operation at higher common clock frequencies, techniques that allow shortening of the bus may be required.
One prior art technique that shortens the total length of the bus is shown in FIG. 1a. This prior art technique involves mounting devices on opposite sides of a circuit board in an overlapping manner. In FIG. 1a, a device 155 is mounted on a first side of a circuit board 150, and a device 160 is mounted on a second side of the circuit board 150. Typically, many pins that need to be connected are not aligned. In cases where pins are aligned (e.g., pins 157 and 161), a through-hole via 162 may be used to connect both pins to a signal line 164 at a single connection point 165. Nonetheless, the connection of two stubs at a single connection point 165 may disadvantageously reduce signal quality when high frequency signaling is involved.
With respect to unaligned pins, expensive partial via techniques (e.g., blind and buried vias) may be needed to make the appropriate connections. For example, to connect pins 158 and 180 respectively from the device 155 and the device 160 to a signal line 170, a partial via 166 and a partial via 174 respectively are used. Notably, the connection points 172 and 176 are spaced apart so that the stubs do not connect at a single point; however, the fully overlapping nature of devices 155 and 160 (i.e., being directly above/below each other) does not guarantee that a minimum stub offset can be maintained between pins. Therefore, disadvantages of this prior art approach may include the use of expensive vias and/or the inability to ensure minimum stub offsets.
Another prior art technique that allows mounting overlapping components on opposite sides of a circuit board is shown in FIG. 1b (see also, e.g., U.S. Pat. No. 5,502,621). This technique also involves-mounting a device 110 on a first side of a printed circuit board 105 and a device 135 on a second side of the printed circuit board 105; however, the device 135 has corresponding pin positions in mirror image locations with respect to the device 110. Corresponding pins are pins that are connected together in the system such as pins 115 and 130. In some systems, corresponding pins may be pins such as data bus pins (e.g., D1 of device 1 is connected to D1 of devices 2, 3, etc.), address bus pins, or certain control pins.
Due to the mirror image pin locations, simplified signal routing may be achieved because numerous corresponding pins from the device 110 and device 135 are directly opposite one another. For example, a pin 115 and a pin 130 may be connected together and to a signal line 140 at a single connection point 125 by a single through-hole via 120. This technique, however, requires that a particular device be designed with multiple pin arrangements (standard and mirror image), thereby increasing the cost of manufacturing and maintaining inventory of the device. Additionally, both stubs connecting the devices 110 and 135 terminate at a single connection point 125, which may undesirably reduce signal quality.
Accordingly, there is a continuing need to develop low cost and/or high speed circuit boards that maintain an appropriate signal level quality.
SUMMARY
A method and apparatus interconnecting multiple devices on a circuit board is disclosed. One disclosed circuit board has a first attach region on a first surface for coupling a first set of pins from a first device to a set of signal lines. A second attach region on a second surface is for coupling a second set of pins from a second device to the set of signal lines. The second attach region is predominantly non-overlapping with respect to the first attach region.
BRIEF DESCRIPTION OF THE FIGURES
The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings.
FIG. 1a illustrates a prior art circuit board utilizing complex via structures to support two fully overlapping devices without mirror image pin locations.
FIG. 1b illustrates a prior art circuit board having fully overlapping devices with mirror image pin locations.
FIG. 2a illustrates one embodiment of a circuit board having non-overlapping devices mounted on opposite sides of the circuit board.
FIG. 2b illustrates a top view of the circuit board in FIG. 2a.
FIG. 3 illustrates a graph of the worst case available signal amplitude among all the receivers on a bus for one embodiment.
FIG. 4a illustrates one embodiment of a circuit board having predominantly non-overlapping devices mounted on opposite sides of the circuit board.
FIG. 4b illustrates a top view of the circuit board in FIG. 4a.
FIG. 5 illustrates one embodiment of a circuit board having attached devices with pins separated into regions by pin type.
FIG. 6 illustrates another embodiment of a circuit board having attached devices with pins separated into regions by pin type.
DETAILED DESCRIPTION
The following description provides a method and apparatus for interconnecting multiple devices on a circuit board. In the following description, numerous specific details such as device types, pin structures, packaging technologies and logic partitioning/integration choices are set forth in order to provide a more thorough understanding of the present invention. It will be appreciated, however, by one skilled in the art that the invention may be practiced without such specific details.
Rather than simply continuously crowding components and shortening distances between signal pins, some embodiments of the present invention allow an economical high speed circuit board design by staggering components on opposite sides of a circuit board. In some embodiments, staggering devices on opposite sides of the circuit board actually enhances signal quality by providing at least some minimum stub offset between stub connections to each signal trace. Additionally, staggering devices so that they are at least partially non-overlapping allows the use of through-hole vias in some embodiments, thereby providing a less expensive circuit board design. Furthermore, in some embodiments, signals may be grouped by their signal type to maintain better signal quality for a particular set of signals.
FIG. 2a illustrates one embodiment of a circuit board 200 having devices mounted on both sides and using through-hole vias to connect pins from the devices to signal traces in the circuit board 200. Once again, “pins” may be pins, solder balls, solder columns, or any other known or available interconnection mechanism or structure for signals from devices to a circuit board. The area of a device populated with pins may be referred to as the attach region, and the circuit board has a corresponding attach region which interfaces with the device attach region.
A device 205, a device 210, and a device 215 are mounted on a first surface of the circuit board 200. The devices 220 and 225 are mounted on a second surface of the circuit board 200. In this embodiment, devices on opposite sides of the circuit board 200 are non-overlapping. That is, the attach regions on opposite sides of the circuit board 200 would not overlap if they were in the same plane. Thus, one edge of the attach region of the device 205 is adjacent to the attach region of the device 220 but on the opposite side of the circuit board 200. Notably, in some embodiments, portions of the packaging or of heat dissipation mechanisms for these devices may extend outwardly beyond the attach region and therefore may overlap even if the attach regions do not. Where larger packages and/or heat dissipation mechanisms are present, staggering devices on opposite sides of the circuit board may advantageously allow higher density component placement.
Staggering the devices in this manner also allows through-hole vias to be conveniently used. As is illustrated in FIG. 2a, each device may use through-hole vias to connect to signal traces in the circuit board 200 without conflicting with the vias of another device. The use of through-hole vias may be advantageous as less expensive circuit boards may be produced if simple through-hole via technology is used instead of complex partial vias, blind vias, and/or buried vias.
In cases where via density is a limiting factor in designing the circuit board, this staggering arrangement may help reduce stub lengths. The stub length is the distance from an internal connection point of a device, such as a bond pad of an integrated circuit, to the connection point to the bus on the circuit board. This stub may include various sections of package routing as well as routing in the circuit board before the final bus trace is reached. Lengthy stubs typically lead to poor signal quality in a multi-load, high frequency signaling environment.
In cases where via density is a limiting factor, the use of through-hole vias with stacked devices (i.e., devices directly above/below each other) may require enlarging the region of vias in the circuit board. For example, if the region of vias directly under each device is completely filled by through-hole vias required for pins on that device, mounting another device directly opposite the device would require an enlargement of the total via field area by the surface area of the added device. In other words, if the same component is mounted back-to-back with through-hole vias where vias from one device already populate the region to the maximum via density, the surface area required for the vias for both back-to-back devices would double. Due to this increase in surface area, on average, the stub length to reach a bus trace may be expected to increase by a factor of the square root of two. Therefore, avoiding such back-to-back placement by staggering devices may help to limit stub lengths.
Additionally, the embodiment illustrated in FIGS. 2a and 2 b may advantageously ensure that a minimum stub offset is maintained, meaning that there is at least a minimum distance between connection points to a trace on the bus. Maintaining a minimum stub offset is another technique which may help improve signal quality in a high-speed signaling environment. If stubs from multiple devices driving a signal line connect to the signal line at the same point or at small distances from one another (i.e., if they have little or no stub offset), more reflections are likely to be present when these devices drive the bus. In the prior art, efforts to increase device density often lead to a reduction in or elimination of the stub offset.
FIG. 3 illustrates, for one embodiment, the effect on signal quality of changing chip offset distances. Changing the chip offset generally results in altered stub offsets for each trace. FIG. 3 depicts the worst case available signal amplitude (e.g., in millivolts) among all the receivers on the relevant bus. Larger signal amplitudes at the receiver translate toibetter signal quality because noise at the receiver may be more easily rejected when a larger signal is present. Thus, generally, larger chip offsets translate to better signal quality in a high speed signaling environment.
Additionally, FIG. 3 indicates a common clock limit 310 for a system utilizing at least some common clock signals. A common clock system includes signals that are driven with reference to a common clock shared by multiple devices on the circuit board. The common clock limit reflects the notion that the flight time and hence the bus length is typically limited in a common clock system so that signals can propagate as needed within a predetermined number of periods (usually one) of the clock signal. Therefore, smaller chip offsets generally allow a higher common clock frequency.
In the exemplary graph of FIG. 3, the signal amplitude generally improves as chip offsets increase until a certain point is reached. In other embodiments, the behavior may differ, with the profile being largely determined by reflections in the system. To allow a high frequency common clock, a chip offset 320 may be selected which is less than the common clock limit 310 in some embodiments. In order to provide margin, the chip offset 320 may be chosen a bit less than the common clock limit distance.
In a particular system, a family of similar curves may be analyzed for the various signals routed on the circuit board. The graph in FIG. 3 reflects aggregate system information for many or all signal lines at each chip offset. That is, the worst case signal of a group of signals at a particular chip offset distance is reflected in the graph at each offset distance, thereby allowing analysis of signal groups. Alternatively, each stub offset could be individually analyzed. In either case, the minimum chip or stub offset distance may be adjusted as a function of the desired signal quality and a common clock signal frequency.
In the embodiment of FIGS. 2a the and 2 b, pins 207, 232, 212, 227, and 217 are connected to a signal line 230 at connection points separated by a stub offset approximately equal to one-half of the width of each device. On the other hand, connections to the signal line 235 have a smaller minimum stub offset and a larger maximum stub offset, but since the smaller distance typically creates a noisier signal it is usually treated as the worst-case. By arranging signals that require higher signal quality or that operate at a higher frequency in regions of the devices that ensure greater stub offsets (e.g., toward the center of the device), a minimum stub offset may be ensured. Alternatively, sufficient minimum stub offsets may be maintained simply due to the staggered nature of the devices on the circuit board (without special pin arrangements).
The devices mounted on discussed circuit boards may be any of a variety of types of memory devices or processing devices that communicate via substantial interconnections (e.g., one or more buses). For example, processing devices include general purpose processors, special purpose processors, media processors, graphics processors, broadband processors, real-time video and/or audio processors, any combination thereof, as well as any other appropriate known or otherwise available processor may all work in close cooperation and may benefit from disclosed circuit board arrangements.
FIG. 4a illustrates a two sided circuit board 400 having devices mounted in a predominantly non-overlapping staggered manner. In particular, a device 405 and a device 410 are mounted on a first side of the circuit board 400. In this embodiment, these devices have attach regions of the same size as a device. In other embodiments, the attach region may be smaller than the device itself. A device 415 is mounted on a second side of the circuit board 400 with an attach region that overlaps both the attach region of device 405 and the attach region of the device 410.
Due to this overlap, as can be seen in FIG. 4b, an expanded via region 420 is formed. This expanded via region results in an increase in some stub lengths, however, it also results in the devices being placed closer together. The devices being placed closer together may be advantageous in a system where some signals are common clock signals. In such cases, limiting the overall length of the bus may be important to allow the common clock to operate at a sufficiently high frequency. Having devices overlap, however, is not required to use techniques of the present invention.
FIG. 5 illustrates one embodiment of a circuit board 500 having attached devices with pins separated into regions by pin type. A device 510 and a device 520 are attached to a first surface of the circuit board 500. A device 530 is attached to a second surface of the circuit board 500. The device 510 includes a region 512 and a region 516 of a first type of pin node for a first type of signal. The device 510 also includes a region 514 with a second type of pin for a second type of signal.
Notably, the pins, despite being referred to as being of different types, may be physically identical; however, different types of signals may be routed through these pins. For example, the regions 512 and 516 may be regions for common clock (CC) signals, and the region 514 may be a region for source synchronous (SS) signals. Source synchronous signals are signals that are transmitted with an accompanying clock or strobe signal to capture the signal at a destination. As such, source synchronous signals may warrant special treatment because the waveform of the clock transmitted with the data signals may be important to ensure that proper data is captured. Additionally, source synchronous signal buses may transfer data on multiple clock edges and therefore may have a higher data transfer rate than other signals in the system. Alternatively, other types of signals may be grouped into different regions based on one set of signals having a higher desired signal quality. For example, signals expected to operate at a higher frequency or particularly sensitive signals, such as clocks or strobes, may be separated into a region exhibiting superior signal quality characteristic.
Similarly, the device 520 includes regions 522 and 526 having pins of the first type, as well as a region 524 having pins of the second type. The device 530 has regions 532 and 536 with pins of the first type and region 534 having pins of the second type. A minimum distance of D1 is maintained between the regions 514 and 534 as well as the regions 524 and 534. Since the regions themselves are separated by the distance D1, the minimum stub offset is also D1 for pins in the regions separated by the distance D1 in this embodiment.
FIG. 6 illustrates another embodiment having devices with pins separated into regions based on pin type. In this case, a circuit board 600 has a processor 605, a processor 610, and a controller 615 mounted on a first side of the circuit board. A processor 620 and a processor 625 are mounted on a second side of the circuit board. Each device includes pins separated into regions based on the signal type being transmitted. In the case of processors 605 and 620, the common clock signals of both processors separate the source synchronous signals. Therefore, the desired stub offset is achieved by the intervening region of non-source synchronous signals. In the case of the processor 620 and the processor 610, an additional offset is added because the source synchronous signal regions would otherwise be adjacent. Again, in the case of the processors 610 and 625, the common clock signal regions suffice to provide an offset between source synchronous signal regions.
Advantageously, each of the processors 605, 610, 620 and 625 have the same pin arrangement. Therefore, all processors may be identical parts. Since the controller 615 is a different part than the processors, its pin arrangement may be different then the processors. As illustrated, the controller 615 may have its common clock signals located between the source synchronous signals of the processor 625 and those of the controller such that the region of common clock signals on the controller helps minimize the chip offset needed between the controller 615 and the processor 625 to achieve desired stub offsets. In this particular example, the regions of source synchronous and common clock signals are reversed with respect to those of the processors.
Many other embodiments utilizing grouped pins by signal type are possible. For example, signals may be divided by different criteria than whether they are source synchronous or common clock signals. In some embodiments, such signal grouping may be employed on a single sided circuit board. In some embodiments, the attach regions may be completely non-overlapping or only predominantly non-overlapping as previously discussed. In some cases, there may be significant overlap of pins for which the signal quality is of less concern. Additionally, there may be no clear second group of signals, but rather only a first group for which a higher quality signal is desired and which is located on the device to provide some minimum stub offset chosen to achieve a particular signal quality.
Thus, a method and apparatus for interconnecting multiple devices on a circuit board is disclosed. While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art upon studying this disclosure.

Claims (26)

What is claimed is:
1. An apparatus comprising:
a circuit board having a first surface, a second surface, and a plurality of signal traces comprising a bus; and
a plurality of interconnected devices mounted on said first surface of said circuit board and said second surface of said circuit board and coupled to said bus, said plurality of devices having predominantly non-overlapping attach regions and having at least a minimum stub offset.
2. The apparatus of claim 1 wherein said plurality of devices comprises:
a first device having a first attach region including a first plurality of pins electrically coupled to said plurality of signal traces, the first device being mounted on said first surface of said circuit board substantially parallel to said first surface of said circuit board; and
a second device having a second attach region including a second plurality of pins electrically coupled to said plurality of signal traces, the second device being mounted on said second surface of said circuit board substantially parallel to said second surface of said circuit board.
3. The apparatus of claim 2 wherein said first attach region has a first attach region first edge and a first attach region second edge parallel to the first attach region first edge, and wherein the second attach region has a second attach region first edge and a second attach region second edge, and further wherein said first attach region first edge is approximately aligned with said second attach region first edge on the opposite side of the circuit board, and wherein said first attach region and said second attach region are non-overlapping.
4. The apparatus of claim 1 wherein a plurality of through-hole vias connect pins from each of said plurality of devices to said plurality of signal traces.
5. The apparatus of claim 1 wherein each of said plurality of devices has at least two different types of pins separated into different regions, and wherein said plurality of devices are mounted to ensure said minimum stub offset between corresponding connection points to said plurality of signal traces of one of said two different types of pins.
6. The apparatus of claim 2 wherein said first plurality of pins comprises a first plurality of a first type of pin and a first plurality of a second type of pin, and wherein said second plurality of pins comprises a second plurality of the first type of pin and a second plurality of the second type of pin, and further wherein said first plurality of the second type of pin and said second plurality of the second type of pin are separated by at least one of said first plurality of the first type of pin and the second plurality of the first type of pin.
7. The apparatus of claim 6 wherein the first plurality of the first type of pin and the second plurality of the first type of pin are adjacent in the plane of the circuit board but located on opposite sides of the circuit board.
8. The apparatus of claim 7 wherein said first type of pin is a common clock pin and wherein said second type of pin is a source synchronous pin.
9. The apparatus of claim 2 wherein said plurality of devices further comprises:
a third device having a third attach region including a third plurality of pins electrically coupled to the plurality of signal traces, the third device being mounted on said first surface of said circuit board substantially parallel to said first surface of said circuit board, said third attach region being predominantly non-overlapping with respect to the second attach region; and
a fourth device having a fourth attach region including a fourth plurality of pins electrically coupled to the plurality of signal traces, the fourth device being mounted on said second surface of said circuit board substantially parallel to said second surface of said circuit board, said fourth attach region being predominantly non-overlapping with respect to the third attach region; and
a fifth device having a fifth plurality of pins electrically coupled to the plurality of signal traces, the fifth device being mounted on said first surface of said circuit board substantially parallel to said second surface of said circuit board and predominantly non-overlapping with respect to said fourth attach region.
10. The apparatus of claim 9 wherein said first, second, third, fourth and fifth devices include a first type of pin for a first signal type and a second type of pin for a second signal type, and wherein regions containing the second type of pin are separated by either regions of said first type of pin or by an offset between devices.
11. The apparatus of claim 2 wherein a plurality of through-hole vias are used to connect said first plurality of pins and said second plurality of pins to said plurality of signal traces, and wherein said first attach region partially overlaps said second attach region, and further wherein an expanded via region is formed at the overlap of the first attach region and the second attach region.
12. The circuit board of claim 1 wherein said minimum stub offset is chosen based on a desired signal quality and a common clock signal frequency.
13. A circuit board comprising:
a first attach region on a first surface of said circuit board, said first attach region for coupling a first plurality of pins from a first processing device to a plurality of signal lines;
a first plurality of through-hole vias to connect said first plurality of pins to said plurality of signal lines;
a second attach region on a second surface of said circuit board, said second attach region for coupling a second plurality of pins from a second processing device to said plurality of signal lines and being at least predominantly non-overlapping with respect to said first attach region;
a second plurality of through-hole vias to connect said second plurality of pins to said plurality of signal lines each of said plurality of signal lines being at least a minimum length and therefore providing a minimum stub offset that is greater than a minimum stub offset distance.
14. The circuit board of claim 13 wherein said minimum stub offset is chosen based on a desired signal quality and a common clock signal frequency.
15. The circuit board of claim 13 wherein said first plurality of pins includes a first plurality of a first type of pin and a first plurality of a second type of pin, and wherein said second plurality of pins includes a second plurality of said first type of pin and a second plurality of said second type of pin, and further wherein said first plurality of said second type of pin and said second plurality of said second type of pin are separated by at least some of either or both of said first plurality of said first type of pin and said second plurality of said first type of pin.
16. The circuit board of claim 15 wherein said first type of pin is a common clock signal pin and wherein said second type of pin is a source synchronous signal pin.
17. The circuit board of claim 15 wherein said first plurality of said first type of pin is adjacent to but on an opposite side of said circuit board with respect to said second plurality of said first type of pin, and further wherein said first plurality of said second type of pin and said second plurality of said second type of pin are located at remote ends of said first attach region and said second attach region, the remote ends at which the first and second plurality of said second type of pin are located being remote in that the remote ends are separated from each other in a plane of the circuit board by regions including the first and second plurality of the first type of signal pins, the circuit board further comprising:
a third attach region on said first surface of said circuit board, said third attach region including a third plurality of said first type of pin and a third plurality of said second type of pin, said third plurality of said first type of pin being located at a remote end of said third attach region with respect to said second attach region, said third plurality of said second type of pin being located adjacent to said second attach region.
18. The circuit board of claim 17 wherein said first attach region and said second attach region are approximately adjacent and wherein said second attach region and said third attach region are offset by a first distance.
19. A method comprising:
mounting a first processor on a first side of a circuit board, said first processor having a first plurality of a first type of signals; and
mounting a second processor on a second side of said circuit board, said second processor having a second plurality of said first type of signals, said second processor being mounted so that a plurality of a second type of signals on at least one of said first processor and said second processor separate said first plurality of said first type of signals and said second plurality of said first type of signals.
20. The method of claim 19 further comprising:
mounting a third processor on said first side of said circuit board so that an offset separates signals of said first type of said second processor and said third processor.
21. The method of claim 19 wherein said first type of signals are source synchronous signals and said second type of signals are non-source synchronous signals, the method further comprising:
mounting a plurality of additional processors so that source synchronous signals of each processor are separated by either a plurality of non-source synchronous signals or an offset.
22. An apparatus comprising:
a circuit board having a first plurality of signal lines and a second plurality of signal lines;
a first device having a first device first edge and a first plurality of a first type of interconnect node for a first signal type and a first plurality of a second type of interconnect node for a second signal type, the first plurality of the first type of interconnect node being located in a first region; and
a second device having a second plurality of said first type of interconnect node and a second plurality of said second type of interconnect node, said second device having a second device first edge mounted parallel to said first device first edge and a second device second edge opposite said second device first edge and further distant from said first device than said second device first edge, said second plurality of said first type of interconnect node being located in a second region, said first region and said second region being separated by an intermediate region including at least some of either or both of said first plurality of said second type of interconnect node and said second plurality of said second type of interconnect node.
23. The apparatus of claim 22 wherein said first plurality of said first type of interconnect node is adjacent to said first device first edge, the first plurality of the second type of interconnect node being located in a second region further from said first device first edge than said first region, and wherein said second plurality of said first type of interconnect signal is adjacent to said second device first edge.
24. The apparatus of claim 22 further comprising:
a third device having a third plurality of said first type of interconnect node and a third plurality of said second type of interconnect node, said third device having a third device first edge mounted parallel to said second device second edge and closer to said second device second edge than a third device second edge that is opposite said third device first edge, said third plurality of said second type of interconnect node being located adjacent to said third device first edge, said third plurality of said first type of interconnect node being located in a third region further from said third device first edge said third plurality of said second type of interconnect node.
25. The apparatus of claim 24 wherein said first device and said third device are on a first side of said circuit board, and wherein said third device is offset from said second device which is on a second side of the circuit board to maintain a minimum stub offset.
26. The apparatus of claim 25 further comprising:
a fourth device having a fourth plurality of said first type of interconnect node and a fourth plurality of said second type of interconnect node, said fourth device having a fourth device first edge mounted parallel to said third device second edge and closer to said third device second edge than a fourth device second edge that is opposite said fourth device first edge, said fourth plurality of said first type of interconnect node being located adjacent to said fourth device first edge, said fourth plurality of said second type of interconnect node being located further from said fourth device first edge than said fourth plurality of said first type of interconnect node; and a fifth device having a fifth plurality of said first type of interconnect node and a fifth plurality of said second type of interconnect node, said fifth device having said fifth device first edge mounted parallel to said fourth device second edge and closer to send fourth device second edge than a fifth device second edge that is opposite said fifth device first edge, said fifth plurality of said first type of interconnect node being located to said fifth device first edge, said fifth plurality of said second type of interconnect node being located further from said fifth device first edge than said fifth plurality of said first type of interconnect node, said fifth device being offset from said fourth device to maintain a minimum distance between connections to interconnect nodes of said second type.
US09/336,486 1999-06-18 1999-06-18 Method and apparatus for interconnecting multiple devices on a circuit board Expired - Lifetime US6243272B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US09/336,486 US6243272B1 (en) 1999-06-18 1999-06-18 Method and apparatus for interconnecting multiple devices on a circuit board
GB0318246A GB2388714B (en) 1999-06-18 2000-05-25 A method and apparatus for interconnecting multiple devices on a circuit board
DE10084714T DE10084714T1 (en) 1999-06-18 2000-05-25 A method and device for connecting a plurality of components on a circuit board
GB0128926A GB2367191B (en) 1999-06-18 2000-05-25 A method and apparatus for interconnecting multiple devices on a circuit board
PCT/US2000/014960 WO2000079850A1 (en) 1999-06-18 2000-05-25 A method and apparatus for interconnecting multiple devices on a circuit board
CNB008091528A CN1199530C (en) 1999-06-18 2000-05-25 Method and appts. for interconnecting multiple devices on circuit board
AU53081/00A AU5308100A (en) 1999-06-18 2000-05-25 A method and apparatus for interconnecting multiple devices on a circuit board
US09/848,996 US6434016B2 (en) 1999-06-18 2001-05-04 Apparatus for interconnecting multiple devices on a circuit board
HK02104145.4A HK1042404B (en) 1999-06-18 2002-05-31 A method and apparatus for interconnecting multiple devices on a circuit board
HK04102769A HK1060255A1 (en) 1999-06-18 2002-05-31 A method and apparatus for interconnecting multiple devices on a circuit board.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/336,486 US6243272B1 (en) 1999-06-18 1999-06-18 Method and apparatus for interconnecting multiple devices on a circuit board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/848,996 Continuation US6434016B2 (en) 1999-06-18 2001-05-04 Apparatus for interconnecting multiple devices on a circuit board

Publications (1)

Publication Number Publication Date
US6243272B1 true US6243272B1 (en) 2001-06-05

Family

ID=23316311

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/336,486 Expired - Lifetime US6243272B1 (en) 1999-06-18 1999-06-18 Method and apparatus for interconnecting multiple devices on a circuit board
US09/848,996 Expired - Lifetime US6434016B2 (en) 1999-06-18 2001-05-04 Apparatus for interconnecting multiple devices on a circuit board

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/848,996 Expired - Lifetime US6434016B2 (en) 1999-06-18 2001-05-04 Apparatus for interconnecting multiple devices on a circuit board

Country Status (7)

Country Link
US (2) US6243272B1 (en)
CN (1) CN1199530C (en)
AU (1) AU5308100A (en)
DE (1) DE10084714T1 (en)
GB (1) GB2367191B (en)
HK (1) HK1042404B (en)
WO (1) WO2000079850A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010053069A1 (en) * 2000-05-10 2001-12-20 Rambus Inc. Multiple channel modules and bus systems using same
US6459157B1 (en) * 1999-01-22 2002-10-01 Kabushiki Kaisha Toshiba Semiconductor device and double-sided multi-chip package
US20020160631A1 (en) * 2001-04-27 2002-10-31 Mendoza Jose-Filonel T. Cross-connect module and mount
US20040012934A1 (en) * 2002-07-16 2004-01-22 Behdad Jafari Multi-configuration processor-memory substrate device
US6726505B2 (en) 2000-07-20 2004-04-27 Silicon Graphics, Inc. Memory daughter card apparatus, configurations, and methods
US20040226742A1 (en) * 2003-05-14 2004-11-18 Aneta Wyrzykowska Package modification for channel-routed circuit boards
US20050188266A1 (en) * 2004-01-27 2005-08-25 Brian Johnson System and method using a programmable device for capturing signals from a device during testing
US20060146509A1 (en) * 2004-12-30 2006-07-06 Howard David Ballout for buffer
US20080037229A1 (en) * 2004-02-23 2008-02-14 Bsh Bosch Und Siemens Hausgerate Gmbh Electronic Module And Method For The Production Thereof
US20080123303A1 (en) * 2006-11-29 2008-05-29 Elpida Memory, Inc. Memory module
US20080280463A1 (en) * 2007-05-09 2008-11-13 Mercury Computer Systems, Inc. Rugged Chip Packaging
US8399983B1 (en) * 2008-12-11 2013-03-19 Xilinx, Inc. Semiconductor assembly with integrated circuit and companion device
US20140101353A1 (en) * 2007-01-22 2014-04-10 Renesas Electronics Corporation Multi-processor device
US20140111951A1 (en) * 2012-10-18 2014-04-24 Infineon Technologies Austria Ag High performance vertical interconnection
US9507378B2 (en) 2012-11-07 2016-11-29 Nvidia Corporation Flat panel electronic device, auxiliary heat-dissipating means thereof and assembly of both
CN113454571A (en) * 2019-03-06 2021-09-28 思科技术公司 Multi-slot server assembly
US11487445B2 (en) * 2016-11-22 2022-11-01 Intel Corporation Programmable integrated circuit with stacked memory die for storing configuration data

Families Citing this family (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243272B1 (en) 1999-06-18 2001-06-05 Intel Corporation Method and apparatus for interconnecting multiple devices on a circuit board
US6417462B1 (en) * 2000-06-19 2002-07-09 Intel Corporation Low cost and high speed 3-load printed wiring board bus topology
US6791845B2 (en) * 2002-09-26 2004-09-14 Fci Americas Technology, Inc. Surface mounted electrical components
JP4723178B2 (en) * 2003-10-28 2011-07-13 エルピーダメモリ株式会社 Memory system and memory module
US7633764B2 (en) * 2005-04-27 2009-12-15 Broadcom Corporation Ball grid array configuration for reducing path distances
CN101166401B (en) * 2006-10-16 2011-11-30 辉达公司 Method and system for placing multiple loads in high-speed system
US7649745B2 (en) * 2006-11-08 2010-01-19 Intel Corporation Circuit board including stubless signal paths and method of making same
WO2008097997A1 (en) 2007-02-06 2008-08-14 Rambus Inc. Semiconductor module with micro-buffers
US8232183B2 (en) * 2007-05-04 2012-07-31 Taiwan Semiconductor Manufacturing Company, Ltd. Process and apparatus for wafer-level flip-chip assembly
US8492263B2 (en) * 2007-11-16 2013-07-23 Taiwan Semiconductor Manufacturing Company, Ltd. Protected solder ball joints in wafer level chip-scale packaging
US8637883B2 (en) * 2008-03-19 2014-01-28 Cree, Inc. Low index spacer layer in LED devices
US8228679B2 (en) * 2008-04-02 2012-07-24 Spansion Llc Connections for electronic devices on double-sided circuit board
US8334170B2 (en) * 2008-06-27 2012-12-18 Taiwan Semiconductor Manufacturing Company, Ltd. Method for stacking devices
US7851346B2 (en) * 2008-07-21 2010-12-14 Taiwan Semiconductor Manufacturing Company, Ltd. Bonding metallurgy for three-dimensional interconnect
US8932906B2 (en) 2008-08-19 2015-01-13 Taiwan Semiconductor Manufacturing Company, Ltd. Through silicon via bonding structure
US9524945B2 (en) 2010-05-18 2016-12-20 Taiwan Semiconductor Manufacturing Company, Ltd. Cu pillar bump with L-shaped non-metal sidewall protection structure
US7943421B2 (en) * 2008-12-05 2011-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Component stacking using pre-formed adhesive films
US7869208B2 (en) * 2008-12-31 2011-01-11 Caterpillar Inc Electronics component packaging for power converter
US9117828B2 (en) * 2009-03-27 2015-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Method of handling a thin wafer
US8138607B2 (en) * 2009-04-15 2012-03-20 International Business Machines Corporation Metal fill structures for reducing parasitic capacitance
CN101877935B (en) * 2009-04-29 2012-06-20 鸿富锦精密工业(深圳)有限公司 Mainboard wiring method and mainboard for wiring by using same
US8377816B2 (en) * 2009-07-30 2013-02-19 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming electrical connections
US8841766B2 (en) 2009-07-30 2014-09-23 Taiwan Semiconductor Manufacturing Company, Ltd. Cu pillar bump with non-metal sidewall protection structure
US8324738B2 (en) 2009-09-01 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Self-aligned protection layer for copper post structure
US8803332B2 (en) * 2009-09-11 2014-08-12 Taiwan Semiconductor Manufacturing Company, Ltd. Delamination resistance of stacked dies in die saw
US8659155B2 (en) 2009-11-05 2014-02-25 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming copper pillar bumps
US8299616B2 (en) * 2010-01-29 2012-10-30 Taiwan Semiconductor Manufacturing Company, Ltd. T-shaped post for semiconductor devices
US10297550B2 (en) 2010-02-05 2019-05-21 Taiwan Semiconductor Manufacturing Company, Ltd. 3D IC architecture with interposer and interconnect structure for bonding dies
US8610270B2 (en) * 2010-02-09 2013-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and semiconductor assembly with lead-free solder
US8318596B2 (en) 2010-02-11 2012-11-27 Taiwan Semiconductor Manufacturing Company, Ltd. Pillar structure having a non-planar surface for semiconductor devices
US8803319B2 (en) 2010-02-11 2014-08-12 Taiwan Semiconductor Manufacturing Company, Ltd. Pillar structure having a non-planar surface for semiconductor devices
US8519537B2 (en) * 2010-02-26 2013-08-27 Taiwan Semiconductor Manufacturing Company, Ltd. 3D semiconductor package interposer with die cavity
US9385095B2 (en) 2010-02-26 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. 3D semiconductor package interposer with die cavity
US8378480B2 (en) * 2010-03-04 2013-02-19 Taiwan Semiconductor Manufacturing Company, Ltd. Dummy wafers in 3DIC package assemblies
US8455995B2 (en) 2010-04-16 2013-06-04 Taiwan Semiconductor Manufacturing Company, Ltd. TSVs with different sizes in interposers for bonding dies
US8441124B2 (en) 2010-04-29 2013-05-14 Taiwan Semiconductor Manufacturing Company, Ltd. Cu pillar bump with non-metal sidewall protection structure
US8716867B2 (en) 2010-05-12 2014-05-06 Taiwan Semiconductor Manufacturing Company, Ltd. Forming interconnect structures using pre-ink-printed sheets
US8674513B2 (en) 2010-05-13 2014-03-18 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structures for substrate
US9142533B2 (en) 2010-05-20 2015-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate interconnections having different sizes
US8901736B2 (en) 2010-05-28 2014-12-02 Taiwan Semiconductor Manufacturing Company, Ltd. Strength of micro-bump joints
US9018758B2 (en) 2010-06-02 2015-04-28 Taiwan Semiconductor Manufacturing Company, Ltd. Cu pillar bump with non-metal sidewall spacer and metal top cap
US8426961B2 (en) 2010-06-25 2013-04-23 Taiwan Semiconductor Manufacturing Company, Ltd. Embedded 3D interposer structure
US8241963B2 (en) 2010-07-13 2012-08-14 Taiwan Semiconductor Manufacturing Company, Ltd. Recessed pillar structure
US8581418B2 (en) 2010-07-21 2013-11-12 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-die stacking using bumps with different sizes
US8629568B2 (en) 2010-07-30 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device cover mark
US8540506B2 (en) 2010-08-16 2013-09-24 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor molding chamber
US8546254B2 (en) 2010-08-19 2013-10-01 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming copper pillar bumps using patterned anodes
US8541262B2 (en) 2010-09-02 2013-09-24 Taiwan Semiconductor Manufacturing Company, Ltd. Die edge contacts for semiconductor devices
US9343436B2 (en) 2010-09-09 2016-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Stacked package and method of manufacturing the same
US8105875B1 (en) 2010-10-14 2012-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Approach for bonding dies onto interposers
US8936966B2 (en) 2012-02-08 2015-01-20 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging methods for semiconductor devices
US9064879B2 (en) 2010-10-14 2015-06-23 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging methods and structures using a die attach film
US8338945B2 (en) 2010-10-26 2012-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Molded chip interposer structure and methods
US8797057B2 (en) 2011-02-11 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Testing of semiconductor chips with microbumps
JP2012203807A (en) * 2011-03-28 2012-10-22 Elpida Memory Inc Memory module
US9704766B2 (en) * 2011-04-28 2017-07-11 Taiwan Semiconductor Manufacturing Company, Ltd. Interposers of 3-dimensional integrated circuit package systems and methods of designing the same
US8610285B2 (en) 2011-05-30 2013-12-17 Taiwan Semiconductor Manufacturing Company, Ltd. 3D IC packaging structures and methods with a metal pillar
US8664760B2 (en) 2011-05-30 2014-03-04 Taiwan Semiconductor Manufacturing Company, Ltd. Connector design for packaging integrated circuits
US8580683B2 (en) 2011-09-27 2013-11-12 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and methods for molding die on wafer interposers
US8501590B2 (en) 2011-07-05 2013-08-06 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and methods for dicing interposer assembly
US8476770B2 (en) 2011-07-07 2013-07-02 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and methods for forming through vias
US8647796B2 (en) 2011-07-27 2014-02-11 Taiwan Semiconductor Manufacturing Company, Ltd. Photoactive compound gradient photoresist
US8754514B2 (en) 2011-08-10 2014-06-17 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-chip wafer level package
US20130040423A1 (en) 2011-08-10 2013-02-14 Taiwan Semiconductor Manufacturing Company, Ltd. Method of Multi-Chip Wafer Level Packaging
US8557684B2 (en) 2011-08-23 2013-10-15 Taiwan Semiconductor Manufacturing Company, Ltd. Three-dimensional integrated circuit (3DIC) formation process
US8963334B2 (en) 2011-08-30 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. Die-to-die gap control for semiconductor structure and method
US8531032B2 (en) * 2011-09-02 2013-09-10 Taiwan Semiconductor Manufacturing Company, Ltd. Thermally enhanced structure for multi-chip device
US9530761B2 (en) 2011-09-02 2016-12-27 Taiwan Semiconductor Manufacturing Company, Ltd. Package systems including passive electrical components
US9245773B2 (en) 2011-09-02 2016-01-26 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device packaging methods and structures thereof
US9418876B2 (en) 2011-09-02 2016-08-16 Taiwan Semiconductor Manufacturing Company, Ltd. Method of three dimensional integrated circuit assembly
US9390060B2 (en) 2011-09-02 2016-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging methods, material dispensing methods and apparatuses, and automated measurement systems
US9219016B2 (en) 2011-09-28 2015-12-22 Taiwan Semiconductor Manufacturing Company, Ltd. Structure design for 3DIC testing
US10475759B2 (en) 2011-10-11 2019-11-12 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit structure having dies with connectors of different sizes
US8878182B2 (en) 2011-10-12 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Probe pad design for 3DIC package yield analysis
US8518753B2 (en) 2011-11-15 2013-08-27 Taiwan Semiconductor Manufacturing Company, Ltd. Assembly method for three dimensional integrated circuit
US8779599B2 (en) 2011-11-16 2014-07-15 Taiwan Semiconductor Manufacturing Company, Ltd. Packages including active dies and dummy dies and methods for forming the same
US8629043B2 (en) 2011-11-16 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for de-bonding carriers
US8759118B2 (en) 2011-11-16 2014-06-24 Taiwan Semiconductor Manufacturing Company, Ltd. Plating process and structure
US8772929B2 (en) 2011-11-16 2014-07-08 Taiwan Semiconductor Manufacturing Company, Ltd. Package for three dimensional integrated circuit
US8779588B2 (en) 2011-11-29 2014-07-15 Taiwan Semiconductor Manufacturing Company, Ltd. Bump structures for multi-chip packaging
US8653658B2 (en) 2011-11-30 2014-02-18 Taiwan Semiconductor Manufacturing Company, Ltd. Planarized bumps for underfill control
US8643148B2 (en) 2011-11-30 2014-02-04 Taiwan Semiconductor Manufacturing Company, Ltd. Chip-on-Wafer structures and methods for forming the same
US8557631B2 (en) 2011-12-01 2013-10-15 Taiwan Semiconductor Manufacturing Co., Ltd. Interposer wafer bonding method and apparatus
US8536573B2 (en) 2011-12-02 2013-09-17 Taiwan Semiconductor Manufacturing Company, Ltd. Plating process and structure
US8558229B2 (en) 2011-12-07 2013-10-15 Taiwan Semiconductor Manufacturing Company, Ltd. Passivation layer for packaged chip
US8828848B2 (en) 2011-12-16 2014-09-09 Taiwan Semiconductor Manufacturing Company, Ltd. Die structure and method of fabrication thereof
US8871568B2 (en) 2012-01-06 2014-10-28 Taiwan Semiconductor Manufacturing Company, Ltd. Packages and method of forming the same
US8518796B2 (en) 2012-01-09 2013-08-27 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor die connection system and method
US8691706B2 (en) 2012-01-12 2014-04-08 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing substrate warpage in semiconductor processing
US9620430B2 (en) 2012-01-23 2017-04-11 Taiwan Semiconductor Manufacturing Company, Ltd. Sawing underfill in packaging processes
US8698308B2 (en) 2012-01-31 2014-04-15 Taiwan Semiconductor Manufacturing Company, Ltd. Bump structural designs to minimize package defects
US9406500B2 (en) 2012-02-08 2016-08-02 Taiwan Semiconductor Manufacturing Company, Ltd. Flux residue cleaning system and method
US9230932B2 (en) 2012-02-09 2016-01-05 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect crack arrestor structure and methods
US8975183B2 (en) 2012-02-10 2015-03-10 Taiwan Semiconductor Manufacturing Co., Ltd. Process for forming semiconductor structure
US8816495B2 (en) 2012-02-16 2014-08-26 Taiwan Semiconductor Manufacturing Company, Ltd. Structures and formation methods of packages with heat sinks
US8900922B2 (en) 2012-02-16 2014-12-02 Taiwan Semiconductor Manufacturing Company, Ltd. Fine-pitch package-on-package structures and methods for forming the same
US9646942B2 (en) 2012-02-23 2017-05-09 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for controlling bump height variation
US8953336B2 (en) 2012-03-06 2015-02-10 Taiwan Semiconductor Manufacturing Co., Ltd. Surface metal wiring structure for an IC substrate
US8962392B2 (en) 2012-03-13 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. Underfill curing method using carrier
US9006004B2 (en) 2012-03-23 2015-04-14 Taiwan Semiconductor Manufacturing Company, Ltd. Probing chips during package formation
US8464196B1 (en) * 2012-03-28 2013-06-11 Cadence Design Systems, Inc. Method and system for routing optimally between terminals through intermediate vias in a circuit design
US9391000B2 (en) 2012-04-11 2016-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for forming silicon-based hermetic thermal solutions
US9034695B2 (en) 2012-04-11 2015-05-19 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated thermal solutions for packaging integrated circuits
US9425136B2 (en) 2012-04-17 2016-08-23 Taiwan Semiconductor Manufacturing Company, Ltd. Conical-shaped or tier-shaped pillar connections
US9646923B2 (en) 2012-04-17 2017-05-09 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices, methods of manufacture thereof, and packaged semiconductor devices
US9299674B2 (en) 2012-04-18 2016-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Bump-on-trace interconnect
US9515036B2 (en) 2012-04-20 2016-12-06 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for solder connections
US8741691B2 (en) 2012-04-20 2014-06-03 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating three dimensional integrated circuit
US20130277855A1 (en) * 2012-04-24 2013-10-24 Terry (Teckgyu) Kang High density 3d package
US9576830B2 (en) 2012-05-18 2017-02-21 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for adjusting wafer warpage
US9583365B2 (en) 2012-05-25 2017-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming interconnects for three dimensional integrated circuit
US8970035B2 (en) 2012-08-31 2015-03-03 Taiwan Semiconductor Manufacturing Company, Ltd. Bump structures for semiconductor package
US9111817B2 (en) 2012-09-18 2015-08-18 Taiwan Semiconductor Manufacturing Company, Ltd. Bump structure and method of forming same
US10622310B2 (en) 2012-09-26 2020-04-14 Ping-Jung Yang Method for fabricating glass substrate package
US8628990B1 (en) 2012-09-27 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Image device and methods of forming the same
US9078380B2 (en) * 2012-10-19 2015-07-07 Nvidia Corporation MOSFET stack package
US9646894B2 (en) 2013-03-15 2017-05-09 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging mechanisms for dies with different sizes of connectors
US9070644B2 (en) 2013-03-15 2015-06-30 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging mechanisms for dies with different sizes of connectors
US9148923B2 (en) * 2013-12-23 2015-09-29 Infineon Technologies Ag Device having a plurality of driver circuits to provide a current to a plurality of loads and method of manufacturing the same
US10056267B2 (en) 2014-02-14 2018-08-21 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US9935090B2 (en) 2014-02-14 2018-04-03 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US9653443B2 (en) 2014-02-14 2017-05-16 Taiwan Semiconductor Manufacturing Company, Ltd. Thermal performance structure for semiconductor packages and method of forming same
US9768090B2 (en) 2014-02-14 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US10026671B2 (en) 2014-02-14 2018-07-17 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
US9564416B2 (en) 2015-02-13 2017-02-07 Taiwan Semiconductor Manufacturing Company, Ltd. Package structures and methods of forming the same
CN106163110B (en) * 2015-04-03 2019-04-12 华为技术有限公司 A kind of pcb board
US9613931B2 (en) 2015-04-30 2017-04-04 Taiwan Semiconductor Manufacturing Company, Ltd. Fan-out stacked system in package (SIP) having dummy dies and methods of making the same
US10727391B2 (en) 2017-09-29 2020-07-28 International Business Machines Corporation Bump bonded cryogenic chip carrier
US11393758B2 (en) * 2018-09-12 2022-07-19 Intel Corporation Power delivery for embedded interconnect bridge devices and methods
MY202246A (en) * 2018-10-22 2024-04-19 Intel Corp Devices and methods for signal integrity protection technique
JP2021170750A (en) * 2020-04-17 2021-10-28 株式会社村田製作所 High-frequency module and communication device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241456A (en) * 1990-07-02 1993-08-31 General Electric Company Compact high density interconnect structure
US5502621A (en) 1994-03-31 1996-03-26 Hewlett-Packard Company Mirrored pin assignment for two sided multi-chip layout
US5513135A (en) * 1994-12-02 1996-04-30 International Business Machines Corporation Synchronous memory packaged in single/dual in-line memory module and method of fabrication
US5831890A (en) * 1996-12-16 1998-11-03 Sun Microsystems, Inc. Single in-line memory module having on-board regulation circuits
US5841686A (en) * 1996-11-22 1998-11-24 Ma Laboratories, Inc. Dual-bank memory module with shared capacitors and R-C elements integrated into the module substrate
US5982654A (en) * 1998-07-20 1999-11-09 Micron Technology, Inc. System for connecting semiconductor devices
US5986893A (en) * 1996-07-18 1999-11-16 Compaq Computer Corporation Apparatus for controlling the impedance of high speed signals on a printed circuit board
US5998864A (en) * 1995-05-26 1999-12-07 Formfactor, Inc. Stacking semiconductor devices, particularly memory chips

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464113A (en) * 1990-07-03 1992-02-28 Mitsubishi Electric Corp Processor mounting structure
US5297107A (en) * 1992-04-24 1994-03-22 Digital Equipment Corporation Interconnect arrangement for electronic components disposed on a circuit board
JPH06310827A (en) * 1993-04-26 1994-11-04 Nec Corp Surface mounting component arrangement structure
JPH08102569A (en) * 1994-09-30 1996-04-16 Sony Corp Electronic device mounting structure on wiring board
US6243272B1 (en) 1999-06-18 2001-06-05 Intel Corporation Method and apparatus for interconnecting multiple devices on a circuit board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241456A (en) * 1990-07-02 1993-08-31 General Electric Company Compact high density interconnect structure
US5502621A (en) 1994-03-31 1996-03-26 Hewlett-Packard Company Mirrored pin assignment for two sided multi-chip layout
US5513135A (en) * 1994-12-02 1996-04-30 International Business Machines Corporation Synchronous memory packaged in single/dual in-line memory module and method of fabrication
US5998864A (en) * 1995-05-26 1999-12-07 Formfactor, Inc. Stacking semiconductor devices, particularly memory chips
US5986893A (en) * 1996-07-18 1999-11-16 Compaq Computer Corporation Apparatus for controlling the impedance of high speed signals on a printed circuit board
US5841686A (en) * 1996-11-22 1998-11-24 Ma Laboratories, Inc. Dual-bank memory module with shared capacitors and R-C elements integrated into the module substrate
US5831890A (en) * 1996-12-16 1998-11-03 Sun Microsystems, Inc. Single in-line memory module having on-board regulation circuits
US5982654A (en) * 1998-07-20 1999-11-09 Micron Technology, Inc. System for connecting semiconductor devices

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6459157B1 (en) * 1999-01-22 2002-10-01 Kabushiki Kaisha Toshiba Semiconductor device and double-sided multi-chip package
US20010053069A1 (en) * 2000-05-10 2001-12-20 Rambus Inc. Multiple channel modules and bus systems using same
US20050254221A1 (en) * 2000-05-10 2005-11-17 Rambus Inc. Clock routing in multiple channel modules and bus systems
US6545875B1 (en) * 2000-05-10 2003-04-08 Rambus, Inc. Multiple channel modules and bus systems using same
US6590781B2 (en) 2000-05-10 2003-07-08 Rambus, Inc. Clock routing in multiple channel modules and bus systems
US6657871B2 (en) * 2000-05-10 2003-12-02 Rambus Inc. Multiple channel modules and bus systems using same
US20070120575A1 (en) * 2000-05-10 2007-05-31 Rambus Inc. Multiple Channel Modules and Bus Systems Using Same
US20040066636A1 (en) * 2000-05-10 2004-04-08 Kollipara Ravindranath T. Clock routing in multiple channel modules and bus systems
US7027307B2 (en) 2000-05-10 2006-04-11 Rambus Inc. Clock routing in multiple channel modules and bus systems
US20040105240A1 (en) * 2000-05-10 2004-06-03 Rambus Inc. Multiple channel modules and bus systems using same
US6765800B2 (en) * 2000-05-10 2004-07-20 Rambus Inc. Multiple channel modules and bus systems using same
US8050042B2 (en) 2000-05-10 2011-11-01 Rambus Inc. Clock routing in multiple channel modules and bus systems and method for routing the same
US7170314B2 (en) 2000-05-10 2007-01-30 Rambus Inc. Multiple channel modules and bus systems using same
US6898085B2 (en) 2000-05-10 2005-05-24 Rambus Inc. Multiple channel modules and bus systems using same
US20050142950A1 (en) * 2000-05-10 2005-06-30 Rambus Inc. Multiple channel modules and bus systems using same
US6726505B2 (en) 2000-07-20 2004-04-27 Silicon Graphics, Inc. Memory daughter card apparatus, configurations, and methods
US6823063B2 (en) * 2001-04-27 2004-11-23 Adc Telecommunications, Inc. Cross-connect module and mount
US20020160631A1 (en) * 2001-04-27 2002-10-31 Mendoza Jose-Filonel T. Cross-connect module and mount
US8264851B2 (en) 2002-07-16 2012-09-11 Nvidia Corporation Multi-configuration processor-memory substrate device
US20100103604A1 (en) * 2002-07-16 2010-04-29 Nvidia Corporation Multi-configuration processor-memory substrate device
US8837161B2 (en) * 2002-07-16 2014-09-16 Nvidia Corporation Multi-configuration processor-memory substrate device
US8482120B2 (en) 2002-07-16 2013-07-09 Nvidia Corporation Combined heat sink multi-configuration processor memory substrate device
US20040012934A1 (en) * 2002-07-16 2004-01-22 Behdad Jafari Multi-configuration processor-memory substrate device
US20100103605A1 (en) * 2002-07-16 2010-04-29 Nvidia Corporation multi-configuration processor-memory substrate device
US20080106861A1 (en) * 2002-07-16 2008-05-08 Behdad Jafari Multi-configuration processor-memory substrate device
US20080106860A1 (en) * 2002-07-16 2008-05-08 Nvidia Corporation Multi-configuration processor-memory substrate device
US20050257958A1 (en) * 2003-05-14 2005-11-24 Nortel Networks Limited Package modification for channel-routed circuit boards
US6936502B2 (en) * 2003-05-14 2005-08-30 Nortel Networks Limited Package modification for channel-routed circuit boards
US20040226742A1 (en) * 2003-05-14 2004-11-18 Aneta Wyrzykowska Package modification for channel-routed circuit boards
US20050188266A1 (en) * 2004-01-27 2005-08-25 Brian Johnson System and method using a programmable device for capturing signals from a device during testing
US20080037229A1 (en) * 2004-02-23 2008-02-14 Bsh Bosch Und Siemens Hausgerate Gmbh Electronic Module And Method For The Production Thereof
US20060146509A1 (en) * 2004-12-30 2006-07-06 Howard David Ballout for buffer
US7269025B2 (en) * 2004-12-30 2007-09-11 Intel Corporation Ballout for buffer
US7440289B2 (en) * 2006-11-29 2008-10-21 Elpida Memory, Inc. Memory module
US20080123303A1 (en) * 2006-11-29 2008-05-29 Elpida Memory, Inc. Memory module
US20140101353A1 (en) * 2007-01-22 2014-04-10 Renesas Electronics Corporation Multi-processor device
US10372654B2 (en) 2007-01-22 2019-08-06 Renesas Electronics Corporation Multi-processor device
US20080280463A1 (en) * 2007-05-09 2008-11-13 Mercury Computer Systems, Inc. Rugged Chip Packaging
US8399983B1 (en) * 2008-12-11 2013-03-19 Xilinx, Inc. Semiconductor assembly with integrated circuit and companion device
US20140111951A1 (en) * 2012-10-18 2014-04-24 Infineon Technologies Austria Ag High performance vertical interconnection
US9867277B2 (en) * 2012-10-18 2018-01-09 Infineon Technologies Austria Ag High performance vertical interconnection
US9507378B2 (en) 2012-11-07 2016-11-29 Nvidia Corporation Flat panel electronic device, auxiliary heat-dissipating means thereof and assembly of both
US11487445B2 (en) * 2016-11-22 2022-11-01 Intel Corporation Programmable integrated circuit with stacked memory die for storing configuration data
CN113454571A (en) * 2019-03-06 2021-09-28 思科技术公司 Multi-slot server assembly

Also Published As

Publication number Publication date
CN1199530C (en) 2005-04-27
HK1042404A1 (en) 2002-08-09
US6434016B2 (en) 2002-08-13
GB0128926D0 (en) 2002-01-23
CN1357216A (en) 2002-07-03
WO2000079850A1 (en) 2000-12-28
HK1042404B (en) 2004-09-10
GB2367191B (en) 2004-01-21
GB2367191A (en) 2002-03-27
DE10084714T1 (en) 2002-07-11
AU5308100A (en) 2001-01-09
US20010028557A1 (en) 2001-10-11

Similar Documents

Publication Publication Date Title
US6243272B1 (en) Method and apparatus for interconnecting multiple devices on a circuit board
KR100340285B1 (en) Memory module having series-connected printed circuit boards
US7113418B2 (en) Memory systems and methods
JP4569913B2 (en) Memory module
US5502621A (en) Mirrored pin assignment for two sided multi-chip layout
KR100607892B1 (en) Memory module and memory system
US6202110B1 (en) Memory cards with symmetrical pinout for back-to-back mounting in computer system
US8462535B2 (en) Memory module and layout method therefor
US6891729B2 (en) Memory module
KR100213965B1 (en) High speed electrical signal interconnect structure
US20050047250A1 (en) Semiconductor memory module
KR101257912B1 (en) Semiconductor memory device and method of arranging terminals of the same, and memory module comprising the device and method of arranging terminals and lines on board of the same
US20010009782A1 (en) Interleaved signal trace routing
JP2007525769A (en) Interchangeable connection array for double-sided DIMM placement
JP2001256175A (en) Memory system
JP2002117000A (en) Memory system and connection member
US6417462B1 (en) Low cost and high speed 3-load printed wiring board bus topology
JP2003108512A (en) Data bus wiring method, memory system and memory module base board
US20050091440A1 (en) Memory system and memory module
US6449166B1 (en) High capacity memory module with higher density and improved manufacturability
US6930904B2 (en) Circuit topology for high-speed memory access
US6496404B1 (en) Memory system for use on a circuit board in which the number of loads is minimized
WO2007098946A1 (en) Signal routing in a multilayered printed circuit board
US20050007807A1 (en) Apparatus and method for mounting microelectronic devices on a mirrored board assembly
US6362973B1 (en) Multilayer printed circuit board with placebo vias for controlling interconnect skew

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTEL CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZENG, MING;DABRAL, SANJAY;REEL/FRAME:010053/0277

Effective date: 19990617

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12