US6189208B1 - Flip chip mounting technique - Google Patents

Flip chip mounting technique Download PDF

Info

Publication number
US6189208B1
US6189208B1 US09378847 US37884799A US6189208B1 US 6189208 B1 US6189208 B1 US 6189208B1 US 09378847 US09378847 US 09378847 US 37884799 A US37884799 A US 37884799A US 6189208 B1 US6189208 B1 US 6189208B1
Authority
US
Grant status
Grant
Patent type
Prior art keywords
substrate
adhesive
chip
polymer
bumps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09378847
Inventor
Richard H. Estes
Koji Ito
Masanori Akita
Toshihiro Mori
Minoru Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Epoxy Technology Inc
Original Assignee
Toray Engineering Co Ltd
Polymer Flip Chip Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/1319Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83856Pre-cured adhesive, i.e. B-stage adhesive
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01084Polonium [Po]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49144Assembling to base an electrical component, e.g., capacitor, etc. by metal fusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53174Means to fasten electrical component to wiring board, base, or substrate
    • Y10T29/53178Chip component

Abstract

The invention provides a flip chip mounting process in which a layer of electrically insulating adhesive paste is applied on a substrate having bond pads, covering the bond pads with the adhesive. Electrically conductive polymer bumps are formed on bond pads of a flip chip to be bonded to the substrate, and the polymer bumps are at least partially hardened. The bond pads of the flip chip are then aligned with the bond pads of the substrate, and the at least partially hardened polymer bumps are pushed through the adhesive on the substrate to contact directly and bond the polymer bumps to the bond pads of the substrate. This process results in direct electrical and mechanical bonding of the polymer bumps between the chip and substrate bond pads, even though the adhesive film was applied on the substrate in a manner that covered the substrate bond pads. The polymer bumps displace the adhesive as they are pushed through it and expand laterally on the substrate bond pads. As a result, the area around the polymer bumps between the chip and the substrate is filled with the adhesive, in the manner of an underfill, whereby a separate, post-bond underfill process is not required.

Description

This is a continuation-in-part of application Ser. No. 09/274,748, filed Mar. 23, 1999 pending.

BACKGROUND OF THE INVENTION

This invention relates to methods for electrically connecting a flip chip to a substrate.

Flip chip mounting is an increasingly popular technique for directly electrically connecting an integrated circuit chip to a substrate such as a circuit board. In this configuration, the active face of the chip is mounted face down, or “flipped” on the substrate. The electrical bond pads on the flip chip are aligned with corresponding electrical bond pads on the substrate, with the chip and substrate bond pads electrically connected by way of an electrically conductive material. The flip chip mounting technique eliminates the use of bond wires between a chip or chip package and the substrate, resulting in increased reliability of the chip-to-substrate bond.

A wide range of electrically conducting compositions have been proposed for making the interconnection between flip chip and substrate bond pads. Solder balls, gold bumps, gold stud bumps, and other conventional metal bump configurations have been used extensively. Aside from metallic compositions, electrically conducting polymer compositions are gaining wide acceptance as flip chip interconnection bump materials. In a flip chip mounting technique employing polymer interconnections, electrically conductive polymer bumps are formed on the bond pads, typically of the flip chip, and are polymerized or dried during bonding to the substrate bond pads, whereby both an electrical and a mechanical adhesive bond between the flip chip and the substrate bond pads is produced. Electrically conductive polymer materials are particularly well-suited for flip chip mounting techniques because of their ease of application, because they eliminate many of the unwanted characteristics of metallic interconnections, e.g., solder flux, and because for some polymer materials reworkability of faulty flip chips is enabled by simple heating of the material.

Conventionally, once a flip chip is bonded to a substrate, whether by metallic or by polymer bump interconnections between the chip and substrate bond pads, an underfill material is dispensed between the chip and the substrate. The underfill material is typically provided as a liquid adhesive resin that can be dried or polymerized. The underfill material provides enhanced mechanical adhesion and mechanical and thermal stability between the flip chip and the substrate, and inhibits environmental attack of chip and substrate surfaces.

SUMMARY OF THE INVENTION

The invention provides a process that exploits the superior bonding capabilities of electrically conductive polymer materials for bonding a flip chip to a substrate while providing a highly efficient and effective technique that eliminates the need for conventional post-bond underfill dispensing operations. In this process, a layer of electrically insulating adhesive paste is applied on a substrate having bond pads, covering the bond pads with the adhesive. Electrically conductive polymer bumps are formed on bond pads of a flip chip to be bonded to the substrate, and the polymer bumps are at least partially hardened. The bond pads of the flip chip are then aligned with the bond pads of the substrate, and the at least partially hardened polymer bumps are pushed through the adhesive on the substrate to contact directly and bond the polymer bumps to the bond pads of the substrate.

This process results in direct electrical and mechanical bonding of the polymer bumps between the chip and substrate bond pads, even though the adhesive film was applied on the substrate in a manner that covered the substrate bond pads. The polymer bumps displace the adhesive as they are pushed through it and expand laterally on the substrate bond pads. As a result, the area around the polymer bumps between the chip and the substrate is filled with the adhesive, in the manner of an underfill. A separate, post-bond underfill process is therefore not required. The particular performance advantages of polymer bump material provided by the invention, in combination with the highly efficient adhesive underfill application process provided by the invention, render this flip chip mounting process superior to conventional mounting techniques.

In embodiments provided by the invention, the adhesive paste applied to the substrate can be at least partially dried or at least partially cured, as appropriate for the selected paste material, before the step of pushing the polymer bumps through the adhesive on the substrate. Similarly, the step of at least partially hardening the polymer bumps can be carried out by at least partially drying or by at least partially polymerizing the polymer bumps, as appropriate for the selected bump material.

In further embodiments provided by the invention, heat is applied to the flip chip as the bumps are pushed through the adhesive on the substrate. Heat can also be applied to the flip chip after the polymer bumps contact the bond pads of the substrate. Pressure is preferably applied to the flip chip during the bonding process for a selected duration, based on material characteristics of the adhesive and of the polymer bumps, that vertically compresses the bumps between the flip chip and the substrate to a compressed height that is less than bump height as-formed; e.g., resulting in a compressed bump height that is less than about 80% of bump height as-formed. The polymer bumps, as-formed, preferably have a bump height that is greater than the adhesive paste thickness as-applied on the substrate, more preferably having a bump height that is at least about 25% greater than the adhesive paste thickness.

The polymer bumps and the adhesive paste can each be formed of, e.g., a thermoplastic material, a thermoset material, or a B-stage thermoset material. The polymer bumps can include hard particles, preferably that have jagged edges which protrude from the bump. Such particles can be electrically conductive or electrically nonconductive. The adhesive material can include a solvent to aid in its application to the substrate.

Both the polymer bump formation and the adhesive application to the substrate can be carried out by, e.g., a stenciling process or a screen printing process. The adhesive can further be applied by, e.g., a dispensing or by a spin-coating process.

The flip chip mounting technique of the invention is widely applicable to a range of substrate materials and flip chip mounting configurations. The flexibility in adhesive application and polymer bump formation methods allow for versatility in material formulation for application-specific considerations. In general, the flip chip mounting technique can be employed as a superior alternative for most conventional flip chip mounting processes that employ solder or other metallic bumps and conventional post-bond underfill processes, resulting in enhanced mounting quality and improved process efficiency.

Other features and advantages of the flip chip mounting method of the invention will be apparent from the following description and accompanying drawing, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic cross-sectional view of a flip chip being mounted to a substrate by a method in accordance with the invention;

FIG. 2 is a schematic cross-sectional view of a flip chip held above a substrate, identifying the height, H, of a polymer bump on a flip chip bond pad and identifying the thickness, t, of a layer of adhesive on the substrate; and

FIG. 3 is a schematic cross-sectional view of a flip chip bonded to a substrate by a method in accordance with the invention.

DETAILED DESCRIPTION OF THE INVENTION

As indicated in FIG. 1, with this invention, polymer bumps 2 of an IC chip 1 are directly bonded to the electrodes, i.e., bond pads, 4 of a substrate 3, such as a circuit board, with an electrically insulating adhesive 5 located between the IC chip 1 and the circuit board.

The IC chip is a flip chip, in that the active surface of the chip is bonded face down on the substrate. The polymer bumps 2 are therefore applied to electrode pads of the flip chip on the active surface of the chip. As explained in detail below, direct bonding of the flip chip polymer bumps to the substrate electrodes is accomplished in accordance with the invention by pushing the polymer bumps through the adhesive on the substrate to displace the adhesive in the area of the substrate electrodes such that the polymer bumps are directly bonded to the substrate electrodes. The adhesive around the bonded polymer bumps underfills the volume between the chip and the substrate, and thereby eliminates the need for a post-bond underfill dispensing step.

The polymer bumps are formed by, e.g., stenciling electrically-conductive paste on the electrode pads 6, i.e., bond pads, of the IC chip 1. A metal mask is satisfactory as a plate material for this stenciling of the polymer bumps on the bond pads.

The invention contemplates additional techniques for producing polymer bumps on the bond pads of the flip chip. Screen printing, dispensing, transfer printing, laser jetting, roller coating, vacuum suction through a stencil, photolithographic techniques, and other processes can be employed, in the known conventional manner, and as described below with regard to adhesive application to the substrate, to produce polymer bumps on the bond pads of the flip chip. For many applications, a stenciling process is particularly well-suited due to its ease of control and precision. It is preferred that the polymer bumps be formed on flip chips in wafer form, prior to dicing of the wafer, but such is not required.

Whatever process is selected to form the polymer bumps on the chip bond pads, it is preferred that any oxidizing layer present on the bond pads first be removed, in the conventional manner, and that a layer of a good electrically conducting material be applied to the bond pads. For example, a layer of nickel, nickel-gold, palladium, or other conductor is preferably applied to the bond pads by, e.g., a sputtering, electroplating, or other suitable technique, as is conventional.

Heat-curable resin paste, e.g., epoxy resin paste or other such resin paste, containing electrically-conductive particles, e.g., silver particles, or other such material, can be used as the electrically-conductive paste. Specifically, the polymer bumps can be formed of any of a thermoset, B-stage thermoset, thermoplastic, or other suitable polymer, in each case provided as an electrically conducting polymer by, e.g., the addition of particles, flakes, or other form of an electrically conducting material, e.g., Ag, Ag—Pd, Au, Cu, Ni, or other suitable conducting material to the polymer. It is preferred that the selected polymer bump material be characterized by a relatively high glass transition temperature, such that the bumps remain mechanically robust in the process of directly connecting the polymer bumps to the substrate electrodes by displacing the adhesive on the substrate, in the manner described in detail below.

Well-suited materials for producing polymer bumps include EPO-TEK® E3084PFC and EPO-TEK® H20E175PFC-1, both of which have glass transition temperatures above about 175° C.; EPO-TEK® E2101, EPO-TEK® H20EPFC, and EPO-TEK® E3114PFC, all of which have glass transition temperatures between about 110° C. and about 130° C.; EPO-TEK® K5022-115BE and EPO-TEK® K5022-115BG, both of which are thermoplastic materials having a melting point that is less than about 170° C.; and EPO-TEK® EE149-6, which is a B-stage thermoset having a glass transition temperature of between about 130° C. and about 150° C.

Preferably, the condition of the polymer bump material is that when formed as a bump, the material has sufficient hardness and sufficient morphological features to adequately push through and displace the insulating adhesive on a substrate to which the chip is being mounted, to enable direct connection of the bump to the substrate electrode. Specifically, the bumps should not be coined, i.e., flattened, by the bump forming process. Instead, the bumps preferably are characterized as being substantially half-hemispherical, or cone-shaped or otherwise pointed. Such enables ease of adhesive displacement as the bumps are pushed through the adhesive. This is further enabled if the polymer bumps are characterized by a relatively high Shore-D hardness, e.g., between about 70 and about 90.

The mechanical robustness of the bumps is to be enhanced, in accordance with the invention, once the bumps are formed on the chip, by fully or partially curing the bumps, if formed of a curable, i.e., polymerizable, material, or by fully or partially drying the bumps, if of a thermoplastic material. Correspondingly, reference hereinafter to a process of at least partially “hardening” polymer bumps is meant to refer to any of the processes of partially or fully curing or drying the bumps, depending on the bump composition. For example, a thermoset material can be partially cured by subjecting it to a temperature of about 150° C. for about 15 minutes; a B-stage thermoset material can be at least partially dried by subjecting it to a temperature of about 75° C. for between about 30 minutes to about 40 minutes; and the solvents in a thermoplastic material can be driven off to at least partially dry the material by subjecting it to a temperature of about 100° C. for about 1 hour. These example bump hardening process conditions produce a bump material of sufficient mechanical robustness to successfully push through and displace adhesive on a substrate. Whatever polymerization or drying process conditions are employed, it is preferable that they provide an adequate degree of drying or partial polymerization that renders the polymer, in bump form, sufficiently mechanically robust to push through the adhesive on a substrate.

If the selected polymer bump material is curable, is not necessarily required to be heat-curable, i.e., polymerizable by heat. Polymer bump material that is polymerized at room temperature or with, e.g., microwave energy, can be employed. Polymer bump material that is photocurable by exposure to, e.g., visible light, an E-beam, or ultraviolet light, can also be employed. If reworkability of a mounted flip chip is important for a given application, then a polymer bump material that is not at all cured, e.g., a thermoplastic, is preferred.

The bump hardness and morphology can be further enhanced by including relatively hard, irregularly-shaped, sharp-edged, abrasive particles in the bump material. When substantially homogeneously mixed in the material, as-formed in a bump, some of the particles' edges can be expected to protrude from the bump surface, forming jagged bump edges that enhance the ability of the bump to push through and displace the insulating adhesive. Such an additive can be electrically conducting or insulating. Preferably the added hard particles are less than about 20 μm in diameter, and more preferably the diameter distribution of the particles is between about 3 μm and about 13 μm.

Well-suited additives include particles, such as flakes, of diamond, either natural or synthetic, boron nitride, aluminum nitride, aluminum oxide, quartz, nickel, silica, and mica, as well as gold flake, palladium flake, silver flake, and powdered electrically conductive or insulating epoxy resin that has been cured and ground, and other suitable particle, powder, or flake materials that are characterized by relatively high degree of hardness. Requirements of a given application must be considered in selecting a suitable additive. For example, if electrical conductivity is of highest consideration, then powdered electrically conductive epoxy resin can be the preferable additive. In general, the harder an additive material, the less must be incorporated in the polymer bump to enhance the mechanical properties of the bump. As a result, nonconducting additives such as diamond and the less costly aluminum oxide can be preferred due to the very small amounts required to be added to achieve enhanced mechanical properties while minimally impacting on the electrical properties of the bump.

For some applications, electrically conductive material added to the bump polymer material to render it electrically conducting will itself provide irregularly-shaped, sharp-edged, abrasive particles. For example, silver flake, although not as hard as, e.g., diamond, when included in a polymer bump to produce electrical conductivity of the bump will produce surface jaggedness and irregularities that enhance the ability of the bump to pierce through and displace the substrate adhesive. It is contemplated in accordance with the invention that additional hard particles beyond the particles included for electrical conductivity of the polymer are to be added to enhance the mechanical properties of the polymer, if such enhancement is desired.

While the hardness of the included particles is of importance, the jagged irregularities of the particles extending from the bump are found to particularly aid in piercing and displacing adhesive as the bump is pushed through the adhesive. Plating of the polymer bump surface with a hard material, rather than inclusion of hard particles in the bump, is not contemplated by the invention, as this alternative is found to not be effective. A hard but generally smooth plating surface does not aid in piercing and displacing adhesive through which the bump is pushed. In addition, given that the bump surface is substantially coated with the plating material, the plating can compromise the electrical conductivity of the bump. Furthermore, a bump plating surface can limit the lateral expansion of the bump as it is pressed against a substrate electrode. As explained in detail below, the polymer bump is a particularly effective interconnection in that the bump laterally expands as it is pressed between a chip and a substrate, whereby the polymer bump covers more of the area of a bond pad than would, say, a conventional metal bump. Limitation of the bump lateral expansion by a plating surface is to be avoided as the reduced bump surface area on the bond pad would result in lower adhesion to the bond pad as well as a higher electrical contact resistance through the bump.

Turning now to the electrically insulating adhesive, the adhesive 5 applied to the substrate can be, e.g., a heat-curable material, such as a thermoset or a B-stage thermoset, a thermoplastic material, or a mixture of the two. The preferred alternative is that of a heat-curable electrically insulating adhesive film. The form of this film is, e.g., a single sheet, but laminated films, or other films, can be used.

It is preferred in accordance with the invention, in general, that the insulating adhesive be substantially completely electrically nonconductive, and be substantially nonvoiding, i.e., not characterized by a tendency to form voids. Because the insulating adhesive eliminates the need for application of a conventional underfill material between the chip and substrate after the chip is bonded to the substrate, it is contemplated by the invention that the adhesive be characterized by the material properties that are desirable for an underfill material, such as relatively high modulus, low coefficient of thermal expansion, and high glass transition temperature. Preferably the adhesive can be snap cured, i.e., polymerized, if curing is desired, but such is not required. Also, if the adhesive is provided as a thermoset or B-stage thermoset, then the adhesive is preferably characterized by a tendency to shrink during polymerization in the chip bonding process, such that the polymer bumps and the chip are held in compression against the substrate. This condition of compression aids in the lateral expansion of the polymer bumps as described above, and maximizes the electrical, mechanical, and dimensional integrity of the direct bond between the polymer bumps and the substrate electrodes, as well as between the chip and the substrate.

If the adhesive is provided as a thermoplastic, it preferably is characterized by a tendency to be easily softened by a heated polymer bump being pushed through the material, whereby the bump can be easily compressed and laterally expanded by pressure applied to the chip on which the bump is connected. This results in maximization of the electrical, mechanical, and dimensional bond integrity in the manner enabled by thermoset and B-stage thermoset materials.

The substrate adhesive can contain a thermally-conductive filler, e.g., aluminum oxide, and/or an insulating filler, such as silica particles, but such is not required. The adhesive further can contain a spacer material that is of a dimensional regime corresponding to a desired chip-to-substrate distance when the chip is bonded to the substrate. Example spacer materials include glass beads, polystyrene particles, or other materials mixed in with the adhesive to set a minimum adhesive thickness once applied to a substrate.

Whatever filler condition is selected, preferably the resulting adhesive is characterized by a relatively high glass transition temperature, e.g., between about 120° C. and about 175° C.; a relatively low thermal expansion coefficient, e.g., between about 10 ppm/° C. and about 40 ppm/° C.; a relatively high temperature degradation temperature, e.g., greater than about 350° C.; and by low outgassing, e.g., less than about 1.0% at about 300° C.

The invention contemplates the provision of the adhesive material in forms other than the single sheet or laminated sheet films mentioned above, and in a range of compositions. Whatever composition is provided, in accordance with the invention the composition is characterized as a paste when it is applied to the substrate. As herein specified, a paste is of sufficient viscosity that it does not readily flow, in the nature of a conventional liquid, once applied to a substrate. But the thixotropy of the paste can be broken by application forces, e.g., shear forces, during the application process, such that the paste becomes fluid enough to be applied, e.g., through a mesh screen, in the manner described below. A paste therefore enables application in a somewhat liquid state, but once applied tends to hold its as-applied shape.

A first general class of adhesive compositions provided by the invention is that of an electrically nonconductive film material, i.e., a material that has been rendered as a dry, non-tacky film after application to a substrate as a paste. The nonconductive film material can include a solvent as-applied to the substrate to aid in application to the substrate, which can be carried out by any of a range of techniques as described below. Examples of suitable nonconductive film materials are thermoplastics, B-stage thermosets, mixtures of the two, and other like compositions. One particularly well-suited thermoplastic material is EPO-TEK® K5022-115BT2, available from Epoxy Technology, of Billerica, Mass. Several particularly well-suited B-stage thermoset materials are EPO-TEK® TE154-8, EPO-TEK® TE154-9, EPO-TEK® TE154-10, EPO-TEK® TE154-15, EPO-TEK® B9021-1, and EPO-TEK® B9021-6, all available from Epoxy Technology, of Billerica, Mass.

Once a selected B-stage thermoset or thermoplastic material is applied to the substrate, solvent in the material, if present, is removed from the material to form a solvent-free, partially- or fully-dried adhesive film. A B-stage thermoset material can be dried by subjecting it to, e.g., a temperature of about 75° C. for between about 30 minutes to about 40 minutes. The solvent can be driven from a thermoplastic material by subjecting it to, e.g., a temperature of about 100° C. for about 1 hour. These example processes are intended only as general guidelines and it is to be recognized that the particular conditions of a given material must be considered in selecting process parameters.

A second general class of adhesive compositions provided by the invention is that of an electrically nonconductive paste material, i.e., a material that is maintained as a paste after it has been applied to a substrate. Example paste materials include thermosets and hot melt thermoplastics. Preferably the selected paste material does not include a solvent, which could likely result in voiding of the material after application to a substrate. The selected nonconductive paste material is applied to a substrate, in the manner described below, without a drying step; the material therefore remains as an adhesive paste, rather than a dry adhesive film.

Thus the distinction between nonconductive pastes of the invention and nonconductive films of the invention is that the nonconductive films are pastes that have been rendered dry or solvent-free, and therefore are in a non-tacky state in which they can be handled, whereas the undried pastes are maintained as such. Given these distinctions, the adhesive material to be employed for a given application is therefore preferably selected based on the particular needs of the application. For example, a bonding process employing a dried nonconductive film requires an added drying step, but enables the pre-production of substrates with the film for introduction into a production line that cannot accommodate an insulating adhesive application step. A bonding process employing a nonconductive paste does not accommodate handling of the substrates, but requires fewer process steps and enables a polymer bump bonding process that requires less chip pressure than for a nonconductive paste adhesive process.

Several thermosets that are particularly well-suited as nonconductive paste materials include EPO-TEK® TE179-1, EPO-TEK® TE179-2, EPO-TEK® TE179-3, EPO-TEK® T6116M, EPO-TEK® B9126-20, EPO-TEK® 353NDT, and EPO-TEK® 115SMT, all available from Epoxy Technology of Billerica, Mass. In general, it is preferred that whatever thermoset is selected, it is characterized by a relatively high modulus, e.g., greater than about 10 GPa.

In general, if the selected substrate is of a flexible material, e.g., polyester, then a thermoplastic adhesive is preferably employed to maintain the flexible nature of the substrate. If a rigid substrate, e.g., a circuit board, is selected, then a thermoset or B-stage thermoset adhesive can be preferable. For any substrate material, if reworkability of flip chips is required, then a thermoplastic adhesive is preferred.

The selected adhesive material can be applied to a substrate in any of a range of techniques provided by the invention. All techniques meet the common requirement that they form a layer of adhesive that substantially entirely covers the substrate area at which a chip is to be bonded, including the bond pads of the substrate. The substrate bond pads are not exposed; they are covered by the adhesive. It is not required to form the adhesive on the substrate in an exact pattern correlation with the expected chip area. It is preferable, however, that the applied adhesive area on the substrate be at least slightly larger than the area of the chip to be attached.

In one example technique, already mentioned above, and generally limited to the class of B-stage thermoset and thermoplastic nonconductive films described above, the film is applied to a stand-alone carrier substrate and then partially or fully dried or cured. After drying or curing, the film is cut to a selected size and shape and then transferred to the intended working substrate destination. Care must be exercised to ensure that air gaps are not formed between the film and the substrate, particularly in the areas of the substrate bond pads.

For many applications, it can be more preferable to employ a screen print or stencil operation that enables application of an adhesive material directly to an intended working substrate. Such application techniques substantially eliminate the production of voids, or air gaps, between the adhesive and the substrate at the location of the substrate bond pads. Both screen printing and stenciling operations are particularly well-suited for use with adhesive materials that include a solvent as-applied to the substrate; the solvent lowers the viscosity of the material, thereby aiding in effective printing or stenciling of the material.

In an example screen printing process provided by the invention, the selected adhesive material, e.g., any of the thermoset, B-stage thermoset, or thermoplastic materials given above, is squeegeed through a wire mesh screen using, e.g., a metal or polymer-based squeegee, onto the intended substrate. The screen can be formed in the conventional manner, of, e.g., stainless steel or other metal, or a polyester-type plastic.

In the conventional manner, the diameter of the wire mesh is selected based on the selected adhesive thickness. For many applications, it is desirable to provide an emulsion pattern on the screen to define the adhesive application area on the substrate. Such an emulsion pattern can be provided, in the conventional manner, on the bottom side of the screen. The emulsion thickness, like the wire mesh diameter, is preferably selected, in the conventional manner, based on the selected adhesive thickness. If the wire mesh is too thick for a desired adhesive thickness, and/or the emulsion is too thin for a desired adhesive thickness, gaps in the adhesive can be formed on the substrate at the location of cross-over of the mesh wires. The general rheology of a selected adhesive material must also be considered with regard to the screen wire diameter and the screen emulsion thickness. With proper selection of wire mesh diameter and emulsion thickness for a selected adhesive thickness, complete coverage of a substrate by a screen printing process can be achieved.

In a stencil operation provided by the invention for applying adhesive material of e.g., thermoset, B-stage thermoset, or thermoplastic directly to a substrate, the adhesive material is pushed by a squeegee through open holes provided in a metal stencil onto the intended working substrate. The metal stencil thickness is selected, in the conventional manner, based on the selected adhesive thickness. The squeegee can be formed of, e.g., metal or polymer. The openings in the stencil can be formed by, e.g., a subtractive chemical etch process, a subtractive laser etch process, an additive electroforming process, or other suitable stencil patterning forming technique.

For many applications, screen printing can be preferable to stenciling given the relatively large substrate area over which the adhesive material is to be applied. Conversely, for applications employing a relatively thin layer of adhesive, stenciling can be preferable to eliminate the formation of voids in the adhesive at the cross-over locations of a screen printing wire mesh. Stenciling operations also can be expected to be more reliable over the life of a production line in that unlike a mesh screen, a metal stencil general does not clog with material being stenciled and exhibits a longer operational time to fatigue.

Alternative to screen printing and stenciling operations, the invention further provides a dispensing operation for applying the adhesive material as, e.g., a thermoset, B-stage thermoset, or thermoplastic, directly to an intended working substrate. Here the selected adhesive material is dispensed from a dispenser onto the substrate. The dispenser can be provided as, e.g., a single needle, or a showerhead needle of multiple parallel dispensing points, or other suitable needle configuration. Dispenser pumps can be provided as conventional air piston or positive displacement pump configurations. Whether configured as a single needle, showerhead needle, or other configuration, the dispenser is preferably controlled to produce a selected dispensed drop pattern on the substrate at each chip attachment location on the substrate. Suitable patterns include concentric circles and squares of dispensed drops, centered at the locations of chip attachment to the substrate; but it is to be recognized that lines of dispensed drops and complex patterns of dispensed drops can be preferable for some applications. The needle diameter and the volume of adhesive pushed out of the needle during one dispensing operation determine the dispensed drop dimensions. In general, a single needle dispenser is preferred over a showerhead needle for its ability to produce a dispensed drop that reliably expands to provide continuous coverage of a selected substrate area.

In a further adhesive material application process provided by the invention, a polymer such as a thermoset, B-stage thermoset, or thermoplastic adhesive material is applied to an intended working substrate by a transfer print, pad print, stamp print, or roller print process. In general, in all of these operations, a transfer element is employed to pick up, or collect, the selected adhesive from an adhesive reservoir and then to deposit the collected adhesive on the intended working substrate. The adhesive is released from the transfer element to the substrate typically as a result of differing surface tensions between the adhesive and the substrate and the transfer element and the adhesive.

The transfer element can be provided as, e.g., a patterned pad of suitable material such as metal or rubber, as a patterned roller, as an array of pins fastened to a support plate, or other configuration in which can be provided a differentiated pattern. The pattern preferably corresponds to the chip attachment locations on the substrate. If a patterned roller coater is employed, it is preferably designed such that adhesive is collected on a patterned portion of the roller when the roller is rolled through an adhesive reservoir, the patterned portion then applying the adhesive to the substrate when the substrate is passed under the roller or the roller is passed over the substrate.

In a further adhesive material application technique, a selected adhesive material, here specifically a thermoset polymer, is spin-coated on the substrate. A solvent-based adhesive is here preferably employed to enable spread of the material and to maximize planarity across the substrate. Conventional spin-coating process parameters can here be employed. For some applications it can be preferable to apply multiple layers of spin-coated material to the substrate to obtain a desired adhesive layer thickness.

It is to be recognized that the details of the adhesive material application techniques just described are applicable to the corresponding polymer bump formation techniques earlier described.

The invention is not limited to the example adhesive material application operations described above. All that is required is a technique that enables the formation of a selected adhesive on an intended working substrate at locations of the substrate corresponding to chip attachment areas with the adhesive coating, i.e., covering, the bond pads of the substrate so that the bond pads are not exposed through the adhesive. It is preferable that the viscosity and the specific gravity of a selected adhesive material be tailored for a selected adhesive application technique. For screen printing and stenciling operations, the adhesive preferably is characterized by relatively high viscosity and thixotropy. For dispensing operations, the adhesive preferably is characterized by relatively low to medium viscosity and by relatively high thixotropy. For transfer printing and for spin coating operations, the adhesive preferably is characterized by relatively low viscosity and by relatively medium thixotropy.

It is preferred in accordance with the invention that the adhesive material be applied to the substrate rather than the chip. Adhesive material application to the substrate prior to attachment of any components to the substrate enables the production of a uniform and planar layer of adhesive across the extent of the substrate, resulting in repeatable, reliable mechanical and electrical characteristics of the chip-to-substrate bond.

Furthermore, most adhesive application techniques, like various of the example techniques described above, are not optimally compatible with application on a chip or wafer on which has been formed interconnection bumps. Most adhesive application processes are likely to destroy or irreparably damage the bumps. Those techniques that might not damage the bumps, e.g., adhesive dispensing, are not feasible at either the wafer or chip levels; the dicing of the wafer would likely damage the adhesive and dispensing on single chips is not practical; the dispensed paste cannot be reliably maintained on the chip. Even if adhesive application could be reliably carried out on a bumped chip or wafer, such would negate the ability to verify the functionality of the chip just prior to its attachment to a substrate. It is therefore contemplated in accordance with the invention that the adhesive material be applied to the intended working substrate, not the chip, and that the interconnection bumps be applied to the chip, not the working substrate.

Referring to FIG. 2, in accordance with the invention, the thickness of the applied layer of adhesive on the substrate is to be selected in tandem with the height of the polymer bumps formed on the flip chip. It is to be recognized that the bump diameter and the Shore-D of the bump must be considered in selecting the bump height, but in general, the height, H, of a polymer bump is preferably greater than the thickness, t, of the layer of adhesive. In the figure, the heights of the chip bond pads 6 and the substrate electrodes 4 are greatly exaggerated; under typical conditions, the bump height and the adhesive layer can be specified to meet this condition while neglecting the electrode and bond pad heights. If a higher degree of precision is desired, then the height, H, should include the height of the bump as well as the height of the bond pad supporting the bump on the chip. It is further to be recognized that for any bump height, the adhesive layer must cover the substrate bond pads and thus must be at least as thick as the height of the substrate bond pads.

A condition in which the bump height is greater than the adhesive thickness ensures two desirable conditions. First, it ensures that when the chip is pressed against the adhesive layer on the substrate, the bumps do not act as stand-offs holding the chip above the adhesive layer. Contact of the face of the chip with the adhesive layer is required for the adhesive layer to act as an underfill that fills the distance between the chip face and the substrate. Secondly, it ensures that the bump will be vertically compressed between the chip and the substrate when the face of the chip is pushed until it is in contact with the top of the adhesive layer. This results in the desirable lateral expansion of the chip on the bond pad, a preferable condition as explained above.

A bump height greater than adhesive layer thickness therefore maximizes the mechanical and electrical integrity of both the chip and bump bond. Such cannot be reliably expected if the bump is not compressed, a condition that would occur if the bump height is less than or the same as the adhesive layer thickness. The optimal bump height for a given adhesive layer thickness is preferably selected based on considerations for a given application, but in general, a larger bump height is better than a smaller bump height, and a bump height compression of between about 20% and about 50%, i.e., a compressed bump height of between about 50% and about 80% of pre-bonded bump height, is desirable. For many applications the bump height is optimally about twice the thickness of the adhesive layer. In one example, a bump height of about 50 μm is employed and an adhesive thickness of about 25 μm is employed.

It is preferred that the substrate 3, if a circuit board, be a resin film, i.e., polymeric, board, but other types of substrates can be used. For example, the substrate can be formed of polyimide, paper, epoxy glass, plastic, ceramic, acetylbutylstyrene(ABS), polyester (PET), polyvinylchloride (PVC), and other suitable substrate materials.

Referring back to FIG. 1, it is preferred that the substrate be held via suction, i.e., vacuum, on a suction stage 7 to prevent the substrate from shifting as pressure is applied to the chip against the substrate during the bonding process. Such suction is particularly important for bonding chips to relatively flexible substrates such as polyimide. In one particularly well-suited configuration, the suction stage is provided as a metal plate having an array of holes through the thickness of the plate, through which suction can be drawn against the substrate. An array of suction holes enables a uniform degree of suction across the substrate, in turn reducing the possibility of bending or wrinkling thin and flexible substrates. It is also found to be preferable to apply a reduced level of suction through many holes rather than to apply an increased level of suction through only a few or one hole. In the latter instance, a condition of bending or wrinkling of a thin substrate is difficult to avoid.

For an application in which a nonconducting film is first formed on a carrier substrate and then applied to an intended working substrate, when the substrate 3 is held via suction on a suction stage 7, it is best if the insulating adhesive film 5 is first set on the substrate 3, with heat thereafter applied while pressing the film against the substrate 3, for an application in which a nonconductive film is first formed and then applied to the substrate. Bonding of the film to the substrate can then be accomplished after bringing the film into close contact with the electrodes 4 of the circuit board 3 using the suction in this way. Applying heat, e.g., a heating temperature of about 80° C., while pressing the insulating adhesive film 5 against the substrate 3 can be accomplished using a reserve heating tool, and then bonding of the flip chip to the substrate can be accomplished using a bonding tool 8. This procedure is not required for the other adhesive application techniques described above.

The bonding tool 8 is preferably mounted to enable movement of the tool in all three axis directions, X, Y, and Z, as well as rotation to a specified angle. Furthermore, the bonding tool preferably has a built-in heater (not indicated in the figure), and is set to enable vacuum suction holding of the IC chip 1 to the tool 8.

Once the adhesive layer has been applied to the substrate in the desired manner, an individual flip chip, having polymer bumps formed on the chip bond pads in the manner described above, is provided on the bonding tool 8, typically, e.g., a collet, and heated to the desired bonding temperature. Preheating of the chip is not required by the invention, but can be preferred for many bonding applications, because heated polymer bumps are characterized by a relatively lower viscosity and a corresponding increased ability to penetrate the substrate adhesive. If preheating is to be carried out, such is preferably maintained until the heat is transferred completely through the chip and the polymer bumps on the chip.

Thereafter, heat-pressure attachment, i.e., bonding, is achieved by precisely positioning the polymer bumps 2 of the IC chip 1 on the electrodes 4 of the underlying circuit board. This requires the lateral alignment of the chip bond pads with the substrate bond pads. In one example configuration, this can be achieved by employing fiducials on the chip and the substrate, in the conventional manner, in an alignment process employing an upper microscope and a lower microscope, with a camera, e.g., a CCD camera, provided for controlling the alignment process.

Once the respective bond pads of the chip and substrate are aligned, bonding can be satisfactorily achieved by piercing through the insulating film 5 with the polymer bumps 2 of the IC chip 1. The heating temperature and the pressure for the bonding are preferably controlled to specified values. As explained above, as each polymer bump is pushed through the adhesive 5 it displaces the adhesive in the region of its path such that the polymer bump makes direct contact with a corresponding substrate electrode. Application of pressure to the chip is maintained at least until the chip face is in contact with the top surface of the adhesive on the substrate and the polymer bumps of the chip are in contact with the substrate electrodes.

With chip heating maintained during the bonding, the chip surface wets the adhesive upon contact with the layer. If the adhesive material is a thermoset or B-stage thermoset, conduction of heat from the chip and bumps to the adhesive layer cures the adhesive, causing the adhesive layer to shrink and pull the bumps and chip into compression against the substrate. Compression of the chip against the adhesive layer is desirable, as explained above, to ensure that no gap space exists between the chip and the substrate, i.e., to ensure that the adhesive layer is completely filling the distance between the chip and the substrate. Compression of the chip further ensures that the polymer bumps are compressed and laterally expanded on substrate bond pads, whereby lateral gaps between the bumps and the adhesive are eliminated.

If the adhesive material is a thermoplastic, it is softened by the heated bumps as they push through it. As a result, pressure applied to the chip compresses the bumps and laterally expands the bumps in the manner described above, resulting in an equally effective bond.

In accordance with the invention, a heating schedule can be selected in which no preheating of the chip and bumps is carried out. Alternatively, the polymer bumps can be fully pushed through the adhesive and contacted to the substrate electrodes prior to heating of the completed assembly for curing the adhesive.

The following guidelines are examples of parameter values that can be generally applied to the bonding process, with the caveat that the chemistry of particular polymer bump and adhesive materials employed in the bonding process must be considered:

Parameter Range of Values
Adhesive Film Thickness 25 μm-75 μm
Polymer Bump Height 50 μm-150 μm
Polymer Bump Hardness Shore-D 70-90
Bond Temperature 150° C.-350° C.
Bond Pressure 10 grams-1000 grams
Pressure Dwell Time 0.3 seconds-5 seconds
Bump Compression 20%-50%
Contact Coverage of Bump on Electrode >50%

It is to be recognized that consideration must also be made for the number of polymer bumps to be bonded between a given chip and a substrate and the bond pressure required for each bump. Because the required bond pressure of each bump is cumulative to the chip, a relatively high total pressure can be required on the chip to enable bonding of all chip bumps. This can result in damage to the chip where very large numbers of bumps are provided. It is therefore preferable to determine the total pressure necessary for bonding the total number of polymer bumps of a chip and then to verify that the required total pressure will not damage the chip. If damage appears to be possible, a reduced pressure application is warranted, with compensating adjustment of materials properties as required.

Referring to FIG. 3, once the bonding process is complete, the polymer bumps 2 are directly connected between the bond pads 6 of the flip chip and the electrodes 4 of the substrate. There is no electrically insulating adhesive between the bond pads and electrodes—only the polymer bump material. The entire region surrounding the polymer bumps between the chip and the substrate is filled by the adhesive; as a result, no gaps exist between the chip and the substrate. The adhesive layer thereby functions as an underfill material between the chip and the substrate. No additional material need be applied between the chip and the substrate to provide the functionality of an underfill.

Thus, in accordance with the invention, the IC chip 1 bumps are composed of polymer bumps 2 formed from electrically conductive paste. Compared with other bumps, like solder bumps formed with a ball bonding method, or Au bumps formed with a plating method, the polymer bumps 2 provide unexpectedly superior performance. Specifically, the polymer bumps successfully enable piercing and displacement of the insulating adhesive film to a degree comparable with that of the metal bumps. This is enabled, in part, by heating of the polymer bumps as they are pressed against the adhesive, whereby the insulating adhesive is effectively displaced due to its lower viscosity. But in addition, the polymer bumps differ greatly from e.g., solder bumps or Au bumps in that during the bonding process the polymer bumps can be compressed to expand across the contact area of the electrodes 4 of the substrate 3. This substantially enhances the quality of the mechanical and electrical bond over that made with a conventional metal bump. This also enables a condition in which the chip is compressed against the adhesive layer on the substrate, thereby ensuring that the adhesive layer completely fills the volume between the chip and the substrate around the polymer bumps.

In addition, the polymer bumps have the characteristic that in the state where the bump surface is suitable for bonding, the material added to the polymer to render it electrically conducting, e.g., silver particles, provided as is conventional substantially homogeneously through the polymer bump, are deposited, i.e., are inherently found to exist, on the surface of the bump. The particles form minute concave and convex surface regions that aid in the piercing through and displacement of the substrate adhesive layer as the polymer bumps are pushed through the layer. As explained above, additional particles or flakes can be added to the polymer bump material to enhance its material properties for pushing through and displacing the substrate adhesive. Such is not generally available for conventional metal bump technology. There is also a notable difference between the polymer bumps and conventional metal bumps in that, during bonding, the bump resin paste plays the role of an adhesive, where conventional metal bumps generally do not provide an adhesive mechanism.

Therefore, even though minute through-holes are not provided in the insulating adhesive film 5 for inserting the polymer bumps 2 of the IC chip 1, direct bonding of the bumps to the substrate electrodes can be achieved by piercing the film with the bumps. The method thus makes the preparation of the insulating adhesive film 5 easier, thereby greatly improving the general applicability of the technique. Mechanically strong bonding of the chip to the substrate can be achieved with superior reliability.

It is therefore found that as described above, it is possible to directly bond IC chip polymer bumps to circuit board electrodes using an insulating film with no through-holes. This condition facilitates preparation of the insulating adhesive film, and markedly improves the general applicability of the technique. It also enables strong bonding in a state with adequate reliability.

Based on the discussion above, it is found that the flip chip mounting method of the invention accomplishes polymer bump-to-substrate bonding and chip-to-substrate underfilling simultaneously. The process therefore eliminates the need for an additional underfill step, eliminating the capital cost of equipment for the additional underfill step and resulting in increased production throughput and lower process cost. Because the electrically nonconducting adhesive layer can be formed and applied by any of a wide range of techniques, the mounting method of the invention enables production of flip chip assemblies on virtually any substrate material, including low-temperature plastics such as polyvinylchloride, as well as paper and other exotic substrate materials. The flexibility of the adhesive application also enables the mounting method to be automated for a selected process, e.g., for reel-to-reel processing where the adhesive layer is applied as a film that is first formed on a carrier substrate. The flexibility of the adhesive application also allows versatility in material formulation for application-specific considerations, e.g., with the inclusion of thermally-conductive fillers.

The operation of the flip chip mounting method of the invention in vertically compressing and laterally expanding polymer bumps as they are bonded to substrate electrodes substantially eliminates the production of voids between the bumps and the adhesive located around the bumps, due, e.g., to entrapped air, solvents, or other volatiles. The bump compression is a result of the pressing of the chip against the adhesive layer on the substrate, of the shrinking of the adhesive layer as it is fully polymerized, in the case of thermoset and B-stage thermoset adhesives, and of ease of lateral bump expansion against a softened adhesive, in the case of thermoplastic adhesives. As a result, the flip chip mounting method of the invention produces an underfill between the chip and the substrate that is more robust than conventional underfill materials that are dispensed between the chip and the substrate after the chip is bonded to the substrate. Virtually complete coverage of adhesive material between the flip chip and the substrate is enabled by the mounting method of the invention.

It is recognized, of course, that those skilled in the art may make various modifications and additions to the flip chip bonding techniques described above without departing from the spirit and scope of the present contribution to the art. Accordingly, it is to be understood that the protection sought to be afforded hereby should be deemed to extend to the subject matter of the claims and all equivalents thereof fairly within the scope of the invention.

Claims (27)

We claim:
1. A method for mounting a flip chip on a substrate, comprising the steps of:
applying a layer of electrically insulating adhesive paste on a substrate having bond pads, covering the bond pads with the adhesive;
forming electrically conductive polymer bumps on bond pads of a flip chip;
at least partially hardening the polymer bumps;
aligning the bond pads of the flip chip with the bond pads of the substrate;
pushing the at least partially hardened polymer bumps through the adhesive on the substrate to contact directly and bond the polymer bumps to the bond pads of the substrate.
2. The method of claim 1 further comprising a step of at least partially drying the adhesive paste applied to the substrate before the step of pushing the polymer bumps through the adhesive on the substrate.
3. The method of claim 1 wherein the step of at least partially hardening the polymer bumps comprises at least partially drying the polymer bumps.
4. The method of claim 1 wherein the step of at least partially hardening the polymer bumps comprises at least partially polymerizing the polymer bumps.
5. The method of claim 1 wherein the step of pushing the polymer bumps through the adhesive on the substrate further comprises applying heat to the flip chip as the bumps are pushed through the adhesive.
6. The method of claim 1 further comprising a step of applying heat to the flip chip after the polymer bumps contact the bond pads of the substrate.
7. The method of claim 1 wherein the step of pushing the polymer bumps through the adhesive on the substrate comprises applying pressure to the flip chip for a duration selected, based on material characteristics of the adhesive and of the polymer bumps, that vertically compresses the bumps between the flip chip and the substrate to a compressed height that is less than bump height as-formed.
8. The method of claim 7 wherein the compressed bump height is less than about 80% of bump height as-formed.
9. The method of claim 1 wherein the step of forming polymer bumps comprises forming polymer bumps each having a bump height that is greater than adhesive paste thickness as-applied on the substrate.
10. The method of claim 9 wherein the bump height is at least about 25% greater than adhesive paste thickness.
11. The method of claim 1 wherein the polymer bumps are formed of a thermoplastic material.
12. The method of claim 1 wherein the polymer bumps are formed of a thermoset material.
13. The method of claim 1 wherein the polymer bumps are formed of a B-stage thermoset material.
14. The method of claim 1 wherein the step of forming polymer bumps comprises stenciling polymer bumps.
15. The method of claim 1 wherein the step of forming polymer bumps comprises screen printing polymer bumps.
16. The method of claim 1 wherein the applied layer of insulating adhesive paste comprises a thermoplastic.
17. The method of claim 1 wherein the applied layer of insulating adhesive paste comprises a thermoset.
18. The method of claim 1 wherein the applied layer of insulating adhesive paste comprises a B-stage thermoset.
19. The method of claim 1 wherein the applied layer of insulating adhesive paste includes a solvent.
20. The method of claim 1 wherein the step of applying the adhesive paste to the substrate comprises stenciling the adhesive paste on the substrate.
21. The method of claim 1 wherein the step of applying the adhesive paste to the substrate comprises screen printing the adhesive paste on the substrate.
22. The method of claim 1 wherein the step of applying the adhesive paste to the substrate comprises dispensing the adhesive paste on the substrate.
23. The method of claim 1 wherein the step of applying the adhesive paste to the substrate comprises spin-coating the adhesive paste on the substrate.
24. The method of claim 1 wherein the formed polymer bumps include hard particles.
25. The method of claim 1 wherein the formed polymer bumps include particles having jagged edges and wherein edges of included particles protrude from bump surfaces.
26. The method of claim 25 wherein the particles included in the polymer bumps are electrically nonconductive.
27. The method of claim 25 wherein the particles included in the polymer bumps are electrically conductive.
US09378847 1998-03-23 1999-08-23 Flip chip mounting technique Expired - Fee Related US6189208B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP27666898 1998-09-11
US09274748 US6219911B1 (en) 1998-03-23 1999-03-23 Flip chip mounting technique
US09378847 US6189208B1 (en) 1998-09-11 1999-08-23 Flip chip mounting technique

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09378847 US6189208B1 (en) 1998-09-11 1999-08-23 Flip chip mounting technique
EP19990944059 EP1119873A1 (en) 1998-09-11 1999-09-01 Flip chip mounting technique
PCT/US1999/020132 WO2000016395A1 (en) 1998-09-11 1999-09-01 Flip chip mounting technique
US09724019 US6410415B1 (en) 1999-03-23 2000-11-28 Flip chip mounting technique

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09274748 Continuation-In-Part US6219911B1 (en) 1998-03-23 1999-03-23 Flip chip mounting technique

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09724019 Continuation-In-Part US6410415B1 (en) 1998-03-23 2000-11-28 Flip chip mounting technique

Publications (1)

Publication Number Publication Date
US6189208B1 true US6189208B1 (en) 2001-02-20

Family

ID=26552048

Family Applications (1)

Application Number Title Priority Date Filing Date
US09378847 Expired - Fee Related US6189208B1 (en) 1998-03-23 1999-08-23 Flip chip mounting technique

Country Status (3)

Country Link
US (1) US6189208B1 (en)
EP (1) EP1119873A1 (en)
WO (1) WO2000016395A1 (en)

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277222B2 (en) * 1998-04-30 2001-08-21 Murata Manufacturing Co., Ltd. Electronic component connecting method
US6368890B1 (en) * 1999-05-05 2002-04-09 Mitel Semiconductor Ab Top contact VCSEL with monitor
US20020060092A1 (en) * 1999-07-21 2002-05-23 Sony Chemicals Corp. Method for connecting electrical components
US6400035B1 (en) * 2000-03-27 2002-06-04 Kabushiki Kaisha Toshiba Microwave semiconductor device with improved heat discharge and electrical properties and manufacturing method thereof
US6410415B1 (en) * 1999-03-23 2002-06-25 Polymer Flip Chip Corporation Flip chip mounting technique
US6515591B2 (en) 1999-08-12 2003-02-04 Micron Technology, Inc. Termite sensing methods
US6518093B1 (en) * 1999-09-22 2003-02-11 Nec Corporation Semiconductor device and method for manufacturing same
US6519842B2 (en) * 1999-12-10 2003-02-18 Ebara Corporation Method for mounting semiconductor device
US6538898B1 (en) * 2000-05-01 2003-03-25 Micron Technology, Inc. Method and apparatus of die attachment for BOC and F/C surface mount
US20030080437A1 (en) * 2001-10-26 2003-05-01 Intel Corporation Electronic assembly with filled no-flow underfill and methods of manufacture
US6586843B2 (en) 2001-11-08 2003-07-01 Intel Corporation Integrated circuit device with covalently bonded connection structure
US6595404B2 (en) * 2000-01-13 2003-07-22 Hitachi, Ltd. Method of producing electronic part with bumps and method of producing electronic part
US20030139029A1 (en) * 1999-03-10 2003-07-24 Belgacem Haba Joining semiconductor units with bonding material
US20030136503A1 (en) * 2002-01-18 2003-07-24 Avery Dennison Corporation RFID label technique
US20030170010A1 (en) * 2002-03-08 2003-09-11 Shining Technology, Inc. A California Corporation System and method for direct recording of audio, video and/or images for easy access and editing
US6622380B1 (en) * 2002-02-12 2003-09-23 Micron Technology, Inc. Methods for manufacturing microelectronic devices and methods for mounting microelectronic packages to circuit boards
US6625857B2 (en) * 1998-11-05 2003-09-30 International Business Machines Corporation Method of forming a capacitive element
US20030183951A1 (en) * 2002-03-29 2003-10-02 Achyuta Achari Flip-chip bonding method
US6630887B2 (en) * 1999-08-27 2003-10-07 Micron Technology, Inc. Electrical apparatuses, and methods of forming electrical apparatuses
US6649833B1 (en) 2002-08-09 2003-11-18 International Business Machines Corporation Negative volume expansion lead-free electrical connection
US6659512B1 (en) 2002-07-18 2003-12-09 Hewlett-Packard Development Company, L.P. Integrated circuit package employing flip-chip technology and method of assembly
US20040012094A1 (en) * 2002-07-18 2004-01-22 Harper Timothy V. Flip-chip integrated circuit package and method of assembly
US6718604B1 (en) * 1999-06-22 2004-04-13 Murata Manufacturing Co., Ltd. Mounting method for electronic device elements
US20040070080A1 (en) * 2001-02-27 2004-04-15 Chippac, Inc Low cost, high performance flip chip package structure
US20040087128A1 (en) * 2000-10-24 2004-05-06 Neuhaus Herbert J Method and materials for printing particle-enhanced electrical contacts
EP1428246A1 (en) * 2001-08-24 2004-06-16 International Rectifier Corporation Wafer level underfill and interconnect process
US6767818B1 (en) * 2000-08-07 2004-07-27 Industrial Technology Research Institute Method for forming electrically conductive bumps and devices formed
US20040157359A1 (en) * 2003-02-07 2004-08-12 Lockheed Martin Corporation Method for planarizing bumped die
US20040154161A1 (en) * 2003-02-07 2004-08-12 Hallys Corporation Random-period chip transfer apparatus
US20040183182A1 (en) * 2002-01-23 2004-09-23 Susan Swindlehurst Apparatus incorporating small-feature-size and large-feature-size components and method for making same
US20040198023A1 (en) * 2003-03-18 2004-10-07 Shijian Luo Methods for forming protective layers on semiconductor device components so as to reduce or eliminate the occurrence of delamination thereof and cracking therein
US6815252B2 (en) * 2000-03-10 2004-11-09 Chippac, Inc. Method of forming flip chip interconnection structure
US20050017256A1 (en) * 2001-07-23 2005-01-27 Slater David B. Flip-chip bonding of light emitting devices
US6853087B2 (en) 2000-09-19 2005-02-08 Nanopierce Technologies, Inc. Component and antennae assembly in radio frequency identification devices
US20050056944A1 (en) * 2001-02-27 2005-03-17 Chippac, Inc. Super-thin high speed flip chip package
US20050098887A1 (en) * 2001-05-14 2005-05-12 Ball Michael B. Using backgrind wafer tape to enable wafer mounting of bumped wafers
US20050218513A1 (en) * 2004-03-30 2005-10-06 Toshiharu Seko Semiconductor apparatus, manufacturing method thereof, semiconductor module apparatus using semiconductor apparatus, and wire substrate for semiconductor apparatus
US20050218510A1 (en) * 1996-05-21 2005-10-06 Farnworth Warren M Use of palladium in IC manufacturing with conductive polymer bump
US20050270757A1 (en) * 2001-05-31 2005-12-08 Credelle Thomas L Electronic devices with small functional elements supported on a carrier
US20060021242A1 (en) * 2004-07-23 2006-02-02 Ludwig Boge Sensor and method of mounting it
US20060022323A1 (en) * 2004-07-29 2006-02-02 Swee Seng Eric T Assemblies including stacked semiconductor dice having centrally located, wire bonded bond pads
US20060063323A1 (en) * 2004-09-22 2006-03-23 Jason Munn High-speed RFID circuit placement method and device
US20060109129A1 (en) * 2004-11-22 2006-05-25 Curt Carrender Transponder incorporated into an electronic device
US20060109130A1 (en) * 2004-11-22 2006-05-25 Hattick John B Radio frequency identification (RFID) tag for an item having a conductive layer included or attached
US20060118602A1 (en) * 2004-12-06 2006-06-08 Unaxis International Trading Ltd. Method for mounting a semiconductor chip onto a substrate
US20060148166A1 (en) * 2004-11-08 2006-07-06 Craig Gordon S Assembly comprising functional devices and method of making same
US20060202319A1 (en) * 2004-08-19 2006-09-14 Swee Seng Eric T Assemblies and multi-chip modules including stacked semiconductor dice having centrally located, wire bonded bond pads
US20060238345A1 (en) * 2005-04-25 2006-10-26 Ferguson Scott W High-speed RFID circuit placement method and device
US20070040686A1 (en) * 2005-08-16 2007-02-22 X-Cyte, Inc., A California Corporation RFID inlays and methods of their manufacture
US20070040688A1 (en) * 2005-08-16 2007-02-22 X-Cyte, Inc., A California Corporation RFID inlays and methods of their manufacture
US20070068622A1 (en) * 2004-02-26 2007-03-29 Sony Chemicals Corp. Method for establishing anisotropic conductive connection and anisotropic conductive adhesive film
US20070144662A1 (en) * 2005-12-22 2007-06-28 Armijo Edward A Method of manufacturing RFID devices
US7253735B2 (en) 2003-03-24 2007-08-07 Alien Technology Corporation RFID tags and processes for producing RFID tags
US20070183920A1 (en) * 2005-02-14 2007-08-09 Guo-Quan Lu Nanoscale metal paste for interconnect and method of use
US7288432B2 (en) 1999-03-16 2007-10-30 Alien Technology Corporation Electronic devices with small functional elements supported on a carrier
US20080268570A1 (en) * 2005-09-22 2008-10-30 Chipmos Technologies Inc. Fabricating process of a chip package structure
US20080268572A1 (en) * 2005-09-22 2008-10-30 Chipmos Technologies Inc. Chip package
CN100433320C (en) 2005-10-28 2008-11-12 南茂科技股份有限公司;百慕达南茂科技股份有限公司 Chip package structure and lug manufacturing process
US7452748B1 (en) 2004-11-08 2008-11-18 Alien Technology Corporation Strap assembly comprising functional block deposited therein and method of making same
US20080295318A1 (en) * 2004-02-04 2008-12-04 Martin Bohn Method and Device for Continuously Producing Electronic Film Components and an Electronic Film Component
US20090079093A1 (en) * 2007-09-20 2009-03-26 Moran John D Flip chip structure and method of manufacture
CN100479635C (en) 2001-04-10 2009-04-15 日本电气株式会社 Circuit board, circuit board mounting method, and electronic device using the circuit board
US7542301B1 (en) 2005-06-22 2009-06-02 Alien Technology Corporation Creating recessed regions in a substrate and assemblies having such recessed regions
US7551141B1 (en) 2004-11-08 2009-06-23 Alien Technology Corporation RFID strap capacitively coupled and method of making same
US20090200064A1 (en) * 2004-09-24 2009-08-13 Oberthur Card Systems Sa Method for mounting an electronic component on a preferably soft support, and resulting electronic entity, such as a passport
US20090243937A1 (en) * 2008-03-31 2009-10-01 Tdk Corporation Two-tier wide band antenna
CN100547856C (en) 2006-11-30 2009-10-07 台湾薄膜电晶体液晶显示器产业协会;中华映管股份有限公司;友达光电股份有限公司;瀚宇彩晶股份有限公司;奇美电子股份有限公司;财团法人工业技术研究院;统宝光电股份有限公司 Connected structure with elastic conductive projection and its manufacture method
CN100561695C (en) 2007-02-06 2009-11-18 南茂科技股份有限公司 Connection method for chip and bearer
US20090321778A1 (en) * 2008-06-30 2009-12-31 Advanced Optoelectronic Technology, Inc. Flip-chip light emitting diode and method for fabricating the same
US7688206B2 (en) 2004-11-22 2010-03-30 Alien Technology Corporation Radio frequency identification (RFID) tag for an item having a conductive layer included or attached
US7847414B2 (en) 2005-09-22 2010-12-07 Chipmos Technologies Inc. Chip package structure
US20110074022A1 (en) * 2000-03-10 2011-03-31 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Flipchip Interconnect Structure
US20110074028A1 (en) * 2004-10-07 2011-03-31 Stats Chippac, Ltd. Semiconductor Device and Method of Dissipating Heat From Thin Package-on-Package Mounted to Substrate
US20120228768A1 (en) * 2011-03-07 2012-09-13 Reza Argenty Pagaila Integrated circuit packaging system using b-stage polymer and method of manufacture thereof
CN102842517A (en) * 2011-09-07 2012-12-26 日月光半导体制造股份有限公司 Flip-chip bonding method and device
USRE44438E1 (en) 2001-02-27 2013-08-13 Stats Chippac, Ltd. Semiconductor device and method of dissipating heat from thin package-on-package mounted to substrate
CN103985643A (en) * 2013-02-07 2014-08-13 中芯国际集成电路制造(上海)有限公司 Chip mounting process for semiconductor chip packaging process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512183B2 (en) * 2000-10-10 2003-01-28 Matsushita Electric Industrial Co., Ltd. Electronic component mounted member and repair method thereof
DE10141753A1 (en) * 2001-08-29 2003-03-20 Orga Kartensysteme Gmbh Method for installing electronic component on support structure, involves using face-down technology

Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157932A (en) * 1976-11-04 1979-06-12 Canon Kabushiki Kaisha Connecting method
JPS601849A (en) 1983-06-17 1985-01-08 Sharp Corp Connecting method of electronic part
US4554033A (en) 1984-10-04 1985-11-19 Amp Incorporated Method of forming an electrical interconnection means
US4612083A (en) 1984-07-20 1986-09-16 Nec Corporation Process of fabricating three-dimensional semiconductor device
US4640981A (en) 1984-10-04 1987-02-03 Amp Incorporated Electrical interconnection means
US4680226A (en) 1985-01-28 1987-07-14 Sharp Kabushiki Kaisha Heat sensitive type adhesive connector
JPS63122133A (en) 1986-11-11 1988-05-26 Matsushita Electric Ind Co Ltd Electrically connecting method for semiconductor chip
US4749120A (en) * 1986-12-18 1988-06-07 Matsushita Electric Industrial Co., Ltd. Method of connecting a semiconductor device to a wiring board
EP0303256A2 (en) 1987-08-13 1989-02-15 Shin-Etsu Polymer Co., Ltd. A method for electrically connecting IC chips, a resinous bump-forming composition used therein and a liquid-crystal display unit electrically connected thereby
US4818728A (en) * 1986-12-03 1989-04-04 Sharp Kabushiki Kaisha Method of making a hybrid semiconductor device
US4868979A (en) 1988-05-24 1989-09-26 Taiyo Yuden Co., Ltd. Method of and apparatus for mounting chips
EP0360971A2 (en) 1988-08-31 1990-04-04 MITSUI MINING & SMELTING CO., LTD. Mounting substrate and its production method, and printed wiring board having connector function and its connection method
JPH02155257A (en) 1988-12-07 1990-06-14 Matsushita Electric Ind Co Ltd Mounting device for semiconductor
US4967314A (en) 1988-03-28 1990-10-30 Prime Computer Inc. Circuit board construction
JPH0316147A (en) 1989-03-09 1991-01-24 Hitachi Chem Co Ltd Connection of circuits and adhesive film used therefor
US5074947A (en) * 1989-12-18 1991-12-24 Epoxy Technology, Inc. Flip chip technology using electrically conductive polymers and dielectrics
US5084961A (en) * 1990-04-09 1992-02-04 Micro Gijutsu Kenkyujyo Co., Ltd. Method of mounting circuit on substrate and circuit substrate for use in the method
US5086558A (en) 1990-09-13 1992-02-11 International Business Machines Corporation Direct attachment of semiconductor chips to a substrate with a substrate with a thermoplastic interposer
US5136365A (en) 1990-09-27 1992-08-04 Motorola, Inc. Anisotropic conductive adhesive and encapsulant material
US5147210A (en) 1988-03-03 1992-09-15 Western Digital Corporation Polymer film interconnect
JPH0669278A (en) 1992-08-18 1994-03-11 Toshiba Corp Connecting method for semiconductor element
US5296063A (en) * 1990-03-20 1994-03-22 Sharp Kabushiki Kaisha Method for mounting a semiconductor device
US5298279A (en) 1991-11-14 1994-03-29 Sharp Kabushiki Kaisha Method for connecting terminals of heat seal film substrate
US5318651A (en) 1991-11-27 1994-06-07 Nec Corporation Method of bonding circuit boards
US5329423A (en) 1993-04-13 1994-07-12 Scholz Kenneth D Compressive bump-and-socket interconnection scheme for integrated circuits
US5341564A (en) 1992-03-24 1994-08-30 Unisys Corporation Method of fabricating integrated circuit module
EP0620701A2 (en) 1993-04-16 1994-10-19 Kabushiki Kaisha Toshiba Circuit devices and fabrication method of the same
US5363277A (en) 1991-12-20 1994-11-08 Rohm Co., Ltd. Structure and method for mounting semiconductor device
US5384952A (en) 1990-12-26 1995-01-31 Nec Corporation Method of connecting an integrated circuit chip to a substrate
US5477419A (en) * 1993-04-08 1995-12-19 Sony Corporation Method and apparatus for electrically connecting an electronic part to a circuit board
JPH0823657A (en) 1994-07-06 1996-01-23 Alps Electric Co Ltd Motor and recording and reproducing device using it
US5543585A (en) * 1994-02-02 1996-08-06 International Business Machines Corporation Direct chip attachment (DCA) with electrically conductive adhesives
US5611140A (en) 1989-12-18 1997-03-18 Epoxy Technology, Inc. Method of forming electrically conductive polymer interconnects on electrical substrates
JPH0997815A (en) 1995-09-29 1997-04-08 Sumitomo Metal Mining Co Ltd Flip-chip junction method and semiconductor package to be obtained thereby
US5637176A (en) 1994-06-16 1997-06-10 Fry's Metals, Inc. Methods for producing ordered Z-axis adhesive materials, materials so produced, and devices, incorporating such materials
US5667884A (en) 1993-04-12 1997-09-16 Bolger; Justin C. Area bonding conductive adhesive preforms
US5674780A (en) 1995-07-24 1997-10-07 Motorola, Inc. Method of forming an electrically conductive polymer bump over an aluminum electrode
US5686702A (en) 1991-07-26 1997-11-11 Nippon Electric Co Polyimide multilayer wiring substrate
US5714252A (en) 1995-08-29 1998-02-03 Minnesota Mining And Manufacturing Company Deformable substrate assembly for adhesively bonded electronic device
JPH10199932A (en) 1997-01-09 1998-07-31 Fujitsu Ltd Method of mounting semiconductor chip component
US5861678A (en) 1997-12-23 1999-01-19 Micron Technology, Inc. Method and system for attaching semiconductor dice to substrates
US5863970A (en) * 1995-12-06 1999-01-26 Polyset Company, Inc. Epoxy resin composition with cycloaliphatic epoxy-functional siloxane
WO1999004430A1 (en) 1997-07-21 1999-01-28 Aguila Technologies, Inc. Semiconductor flip-chip package and method for the fabrication thereof
US5925930A (en) * 1996-05-21 1999-07-20 Micron Technology, Inc. IC contacts with palladium layer and flexible conductive epoxy bumps
WO1999049507A1 (en) 1998-03-23 1999-09-30 Polymer Flip Chip Corporation Flip chip mounting technique
US5975408A (en) * 1997-10-23 1999-11-02 Lucent Technologies Inc. Solder bonding of electrical components
US6027575A (en) * 1997-10-27 2000-02-22 Ford Motor Company Metallic adhesive for forming electronic interconnects at low temperatures

Patent Citations (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4157932A (en) * 1976-11-04 1979-06-12 Canon Kabushiki Kaisha Connecting method
JPS601849A (en) 1983-06-17 1985-01-08 Sharp Corp Connecting method of electronic part
US4612083A (en) 1984-07-20 1986-09-16 Nec Corporation Process of fabricating three-dimensional semiconductor device
US4554033A (en) 1984-10-04 1985-11-19 Amp Incorporated Method of forming an electrical interconnection means
US4640981A (en) 1984-10-04 1987-02-03 Amp Incorporated Electrical interconnection means
US4680226A (en) 1985-01-28 1987-07-14 Sharp Kabushiki Kaisha Heat sensitive type adhesive connector
JPS63122133A (en) 1986-11-11 1988-05-26 Matsushita Electric Ind Co Ltd Electrically connecting method for semiconductor chip
US4818728A (en) * 1986-12-03 1989-04-04 Sharp Kabushiki Kaisha Method of making a hybrid semiconductor device
US4749120A (en) * 1986-12-18 1988-06-07 Matsushita Electric Industrial Co., Ltd. Method of connecting a semiconductor device to a wiring board
EP0303256A2 (en) 1987-08-13 1989-02-15 Shin-Etsu Polymer Co., Ltd. A method for electrically connecting IC chips, a resinous bump-forming composition used therein and a liquid-crystal display unit electrically connected thereby
US4917466A (en) 1987-08-13 1990-04-17 Shin-Etsu Polymer Co., Ltd. Method for electrically connecting IC chips, a resinous bump-forming composition used therein and a liquid-crystal display unit electrically connected thereby
US5147210A (en) 1988-03-03 1992-09-15 Western Digital Corporation Polymer film interconnect
US4967314A (en) 1988-03-28 1990-10-30 Prime Computer Inc. Circuit board construction
US4868979A (en) 1988-05-24 1989-09-26 Taiyo Yuden Co., Ltd. Method of and apparatus for mounting chips
EP0360971A2 (en) 1988-08-31 1990-04-04 MITSUI MINING & SMELTING CO., LTD. Mounting substrate and its production method, and printed wiring board having connector function and its connection method
JPH02155257A (en) 1988-12-07 1990-06-14 Matsushita Electric Ind Co Ltd Mounting device for semiconductor
JPH0316147A (en) 1989-03-09 1991-01-24 Hitachi Chem Co Ltd Connection of circuits and adhesive film used therefor
US5843251A (en) * 1989-03-09 1998-12-01 Hitachi Chemical Co., Ltd. Process for connecting circuits and adhesive film used therefor
US5918364A (en) 1989-12-18 1999-07-06 Polymer Flip Chip Corporation Method of forming electrically conductive polymer interconnects on electrical substrates
US5879761A (en) 1989-12-18 1999-03-09 Polymer Flip Chip Corporation Method for forming electrically conductive polymer interconnects on electrical substrates
US5074947A (en) * 1989-12-18 1991-12-24 Epoxy Technology, Inc. Flip chip technology using electrically conductive polymers and dielectrics
US5196371A (en) * 1989-12-18 1993-03-23 Epoxy Technology, Inc. Flip chip bonding method using electrically conductive polymer bumps
US5237130A (en) 1989-12-18 1993-08-17 Epoxy Technology, Inc. Flip chip technology using electrically conductive polymers and dielectrics
US5611140A (en) 1989-12-18 1997-03-18 Epoxy Technology, Inc. Method of forming electrically conductive polymer interconnects on electrical substrates
US5296063A (en) * 1990-03-20 1994-03-22 Sharp Kabushiki Kaisha Method for mounting a semiconductor device
US5084961A (en) * 1990-04-09 1992-02-04 Micro Gijutsu Kenkyujyo Co., Ltd. Method of mounting circuit on substrate and circuit substrate for use in the method
US5086558A (en) 1990-09-13 1992-02-11 International Business Machines Corporation Direct attachment of semiconductor chips to a substrate with a substrate with a thermoplastic interposer
US5136365A (en) 1990-09-27 1992-08-04 Motorola, Inc. Anisotropic conductive adhesive and encapsulant material
US5384952A (en) 1990-12-26 1995-01-31 Nec Corporation Method of connecting an integrated circuit chip to a substrate
US5686702A (en) 1991-07-26 1997-11-11 Nippon Electric Co Polyimide multilayer wiring substrate
US5298279A (en) 1991-11-14 1994-03-29 Sharp Kabushiki Kaisha Method for connecting terminals of heat seal film substrate
US5318651A (en) 1991-11-27 1994-06-07 Nec Corporation Method of bonding circuit boards
US5545281A (en) * 1991-11-27 1996-08-13 Nec Corporation Method of bonding circuit boards
US5363277A (en) 1991-12-20 1994-11-08 Rohm Co., Ltd. Structure and method for mounting semiconductor device
US5341564A (en) 1992-03-24 1994-08-30 Unisys Corporation Method of fabricating integrated circuit module
JPH0669278A (en) 1992-08-18 1994-03-11 Toshiba Corp Connecting method for semiconductor element
US5477419A (en) * 1993-04-08 1995-12-19 Sony Corporation Method and apparatus for electrically connecting an electronic part to a circuit board
US5667884A (en) 1993-04-12 1997-09-16 Bolger; Justin C. Area bonding conductive adhesive preforms
US5840417A (en) 1993-04-12 1998-11-24 Bolger; Justin C. Multilayer electrical devices comprising area bonding conductive adhesive preforms
US5329423A (en) 1993-04-13 1994-07-12 Scholz Kenneth D Compressive bump-and-socket interconnection scheme for integrated circuits
EP0620701A2 (en) 1993-04-16 1994-10-19 Kabushiki Kaisha Toshiba Circuit devices and fabrication method of the same
US5747101A (en) 1994-02-02 1998-05-05 International Business Machines Corporation Direct chip attachment (DCA) with electrically conductive adhesives
US5543585A (en) * 1994-02-02 1996-08-06 International Business Machines Corporation Direct chip attachment (DCA) with electrically conductive adhesives
US5637176A (en) 1994-06-16 1997-06-10 Fry's Metals, Inc. Methods for producing ordered Z-axis adhesive materials, materials so produced, and devices, incorporating such materials
JPH0823657A (en) 1994-07-06 1996-01-23 Alps Electric Co Ltd Motor and recording and reproducing device using it
US5674780A (en) 1995-07-24 1997-10-07 Motorola, Inc. Method of forming an electrically conductive polymer bump over an aluminum electrode
US5714252A (en) 1995-08-29 1998-02-03 Minnesota Mining And Manufacturing Company Deformable substrate assembly for adhesively bonded electronic device
JPH0997815A (en) 1995-09-29 1997-04-08 Sumitomo Metal Mining Co Ltd Flip-chip junction method and semiconductor package to be obtained thereby
US5863970A (en) * 1995-12-06 1999-01-26 Polyset Company, Inc. Epoxy resin composition with cycloaliphatic epoxy-functional siloxane
US5925930A (en) * 1996-05-21 1999-07-20 Micron Technology, Inc. IC contacts with palladium layer and flexible conductive epoxy bumps
JPH10199932A (en) 1997-01-09 1998-07-31 Fujitsu Ltd Method of mounting semiconductor chip component
WO1999004430A1 (en) 1997-07-21 1999-01-28 Aguila Technologies, Inc. Semiconductor flip-chip package and method for the fabrication thereof
US5975408A (en) * 1997-10-23 1999-11-02 Lucent Technologies Inc. Solder bonding of electrical components
US6027575A (en) * 1997-10-27 2000-02-22 Ford Motor Company Metallic adhesive for forming electronic interconnects at low temperatures
US5861678A (en) 1997-12-23 1999-01-19 Micron Technology, Inc. Method and system for attaching semiconductor dice to substrates
WO1999049507A1 (en) 1998-03-23 1999-09-30 Polymer Flip Chip Corporation Flip chip mounting technique

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Wafer Surface Protection Achieved with Screen Printable Polymide," Industry News, Semiconductor International, Jun. 1987.
EPO-TEK(R) H20E-PFC Electrically Conductive Silver Epoxy, Epoxy Technology Product Specification, Sep 1992.
EPO-TEK(R)600, Epoxy Technology Product Specification, Jun.1987.
EPO-TEK(R)688-PFC PFC Silicon Wafer Coating , Epoxy Technology Product Specification, Oct.1992.
EPO-TEK® H20E-PFC Electrically Conductive Silver Epoxy, Epoxy Technology Product Specification, Sep 1992.
EPO-TEK®600, Epoxy Technology Product Specification, Jun.1987.
EPO-TEK®688-PFC PFC Silicon Wafer Coating , Epoxy Technology Product Specification, Oct.1992.
Estes, "Fabrication and Assembly Processes for Solderless Flip Chip Assemblies," Proc., 1992.
Hatada et al., "A New LSI Bonding Technology "Micron Bump Bonding Assembly Technology, '"0 5th IEEE CHMT Int. Elect. Man. Tech. Symp. ,pp. 23-27, 1988.
Hatada et al., "A New LSI Bonding Technology ‘Micron Bump Bonding Assembly Technology, ’"0 5th IEEE CHMT Int. Elect. Man. Tech. Symp. ,pp. 23-27, 1988.
Int. Society For Hybrid Microelectronics Conf., pp. 322-335, San Fran., CA, Oct. 19-21, 1992.
Kulesza et al., "A Better Bump. Polymers' Promise to Flip Chip Assembly,"0 Advanced Packaging, pp. 26-29, vol. 6, No. 6, Nov./Dec. 1997.
Kulesza et al., "A Screen-Printable Polyimide Coating for Silicon Wafers,"0 Solid State Technology, Jan. 1988.
Kulesza et al., "Solderless Flip Chip Technology," Hybrid Circuit Technology Feb. 1992.
Patent Abstracts of Japan , vol. 14. No. 222 (E-0926), JP 2054945, Toshiba Corp., May 10, 1990.
Patent Abstracts of Japan, vol. 1998, No. 12, JP 10 199932 A, Fujitsu Ltd., Oct. 31, 1998.

Cited By (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335988B2 (en) * 1996-05-21 2008-02-26 Micron Technology, Inc. Use of palladium in IC manufacturing with conductive polymer bump
US20050218510A1 (en) * 1996-05-21 2005-10-06 Farnworth Warren M Use of palladium in IC manufacturing with conductive polymer bump
US6277222B2 (en) * 1998-04-30 2001-08-21 Murata Manufacturing Co., Ltd. Electronic component connecting method
US6625857B2 (en) * 1998-11-05 2003-09-30 International Business Machines Corporation Method of forming a capacitive element
US20030139029A1 (en) * 1999-03-10 2003-07-24 Belgacem Haba Joining semiconductor units with bonding material
US6651321B2 (en) * 1999-03-10 2003-11-25 Tessera, Inc. Microelectronic joining processes
US6750539B2 (en) 1999-03-10 2004-06-15 Tessera, Inc. Joining semiconductor units with bonding material
US20040035519A1 (en) * 1999-03-10 2004-02-26 Tessera, Inc. Microelectronic joining processes
US7425467B2 (en) 1999-03-16 2008-09-16 Alien Technology Corporation Web process interconnect in electronic assemblies
US7288432B2 (en) 1999-03-16 2007-10-30 Alien Technology Corporation Electronic devices with small functional elements supported on a carrier
US6410415B1 (en) * 1999-03-23 2002-06-25 Polymer Flip Chip Corporation Flip chip mounting technique
US6368890B1 (en) * 1999-05-05 2002-04-09 Mitel Semiconductor Ab Top contact VCSEL with monitor
US6678292B2 (en) * 1999-05-05 2004-01-13 Zarlink Semiconductor Ab Top contact VCSEL with monitor
US6718604B1 (en) * 1999-06-22 2004-04-13 Murata Manufacturing Co., Ltd. Mounting method for electronic device elements
US20020060092A1 (en) * 1999-07-21 2002-05-23 Sony Chemicals Corp. Method for connecting electrical components
US6760969B2 (en) 1999-07-21 2004-07-13 Sony Chemicals Corp. Method for connecting electrical components
US6515591B2 (en) 1999-08-12 2003-02-04 Micron Technology, Inc. Termite sensing methods
US6630887B2 (en) * 1999-08-27 2003-10-07 Micron Technology, Inc. Electrical apparatuses, and methods of forming electrical apparatuses
US6518093B1 (en) * 1999-09-22 2003-02-11 Nec Corporation Semiconductor device and method for manufacturing same
US6519842B2 (en) * 1999-12-10 2003-02-18 Ebara Corporation Method for mounting semiconductor device
US6595404B2 (en) * 2000-01-13 2003-07-22 Hitachi, Ltd. Method of producing electronic part with bumps and method of producing electronic part
US6695200B2 (en) 2000-01-13 2004-02-24 Hitachi, Ltd. Method of producing electronic part with bumps and method of producing electronic part
US6815252B2 (en) * 2000-03-10 2004-11-09 Chippac, Inc. Method of forming flip chip interconnection structure
US20110074022A1 (en) * 2000-03-10 2011-03-31 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Flipchip Interconnect Structure
US6528347B2 (en) * 2000-03-27 2003-03-04 Kabushiki Kaisha Toshiba Manufacturing method for making a microwave semiconductor device with improved heat discharge and electric properties
US6400035B1 (en) * 2000-03-27 2002-06-04 Kabushiki Kaisha Toshiba Microwave semiconductor device with improved heat discharge and electrical properties and manufacturing method thereof
US6538898B1 (en) * 2000-05-01 2003-03-25 Micron Technology, Inc. Method and apparatus of die attachment for BOC and F/C surface mount
US6691406B2 (en) 2000-05-01 2004-02-17 Micron Technology, Inc. Methods of die attachment for BOC and F/C surface mount
US6767818B1 (en) * 2000-08-07 2004-07-27 Industrial Technology Research Institute Method for forming electrically conductive bumps and devices formed
US6853087B2 (en) 2000-09-19 2005-02-08 Nanopierce Technologies, Inc. Component and antennae assembly in radio frequency identification devices
US20040087128A1 (en) * 2000-10-24 2004-05-06 Neuhaus Herbert J Method and materials for printing particle-enhanced electrical contacts
US9495632B2 (en) 2001-02-02 2016-11-15 Avery Dennison Corporation RFID label technique
US20040070080A1 (en) * 2001-02-27 2004-04-15 Chippac, Inc Low cost, high performance flip chip package structure
US8941235B2 (en) 2001-02-27 2015-01-27 Stats Chippac, Ltd. Semiconductor device and method of dissipating heat from thin package-on-package mounted to substrate
US20050056944A1 (en) * 2001-02-27 2005-03-17 Chippac, Inc. Super-thin high speed flip chip package
USRE44438E1 (en) 2001-02-27 2013-08-13 Stats Chippac, Ltd. Semiconductor device and method of dissipating heat from thin package-on-package mounted to substrate
CN100479635C (en) 2001-04-10 2009-04-15 日本电气株式会社 Circuit board, circuit board mounting method, and electronic device using the circuit board
US20050098887A1 (en) * 2001-05-14 2005-05-12 Ball Michael B. Using backgrind wafer tape to enable wafer mounting of bumped wafers
US7260882B2 (en) 2001-05-31 2007-08-28 Alien Technology Corporation Methods for making electronic devices with small functional elements supported on a carriers
US20070256291A1 (en) * 2001-05-31 2007-11-08 Credelle Thomas L Electronic devices with small functional elements supported on a carrier
US20050270757A1 (en) * 2001-05-31 2005-12-08 Credelle Thomas L Electronic devices with small functional elements supported on a carrier
US20090271973A1 (en) * 2001-05-31 2009-11-05 Thomas Lloyd Credelle Methods of Making a Radio Frequency Identification (RFID) Tags
US8516683B2 (en) 2001-05-31 2013-08-27 Alien Technology Corporation Methods of making a radio frequency identification (RFID) tags
US7608860B2 (en) 2001-07-23 2009-10-27 Cree, Inc. Light emitting devices suitable for flip-chip bonding
US20070241360A1 (en) * 2001-07-23 2007-10-18 Cree, Inc. Light emitting devices suitable for flip-chip bonding
US20050017256A1 (en) * 2001-07-23 2005-01-27 Slater David B. Flip-chip bonding of light emitting devices
US7259033B2 (en) * 2001-07-23 2007-08-21 Cree, Inc. Flip-chip bonding of light emitting devices
EP1428246A4 (en) * 2001-08-24 2009-08-26 Int Rectifier Corp Wafer level underfill and interconnect process
EP1428246A1 (en) * 2001-08-24 2004-06-16 International Rectifier Corporation Wafer level underfill and interconnect process
US7498678B2 (en) 2001-10-26 2009-03-03 Intel Corporation Electronic assemblies and systems with filled no-flow underfill
US7323360B2 (en) * 2001-10-26 2008-01-29 Intel Corporation Electronic assemblies with filled no-flow underfill
US20030080437A1 (en) * 2001-10-26 2003-05-01 Intel Corporation Electronic assembly with filled no-flow underfill and methods of manufacture
US7000821B2 (en) 2001-11-08 2006-02-21 Intel Corporation Method and apparatus for improving an integrated circuit device
US20040104261A1 (en) * 2001-11-08 2004-06-03 Terry Sterrett Method and apparatus for improving an integrated circuit device
US6586843B2 (en) 2001-11-08 2003-07-01 Intel Corporation Integrated circuit device with covalently bonded connection structure
US7361251B2 (en) 2002-01-18 2008-04-22 Avery Dennison Corporation RFID label technique
US20060213609A1 (en) * 2002-01-18 2006-09-28 Alan Green RFID label technique
US20050252605A1 (en) * 2002-01-18 2005-11-17 Alan Green RFID label technique
US20030136503A1 (en) * 2002-01-18 2003-07-24 Avery Dennison Corporation RFID label technique
US6951596B2 (en) 2002-01-18 2005-10-04 Avery Dennison Corporation RFID label technique
US20080142154A1 (en) * 2002-01-18 2008-06-19 Alan Green Rfid label technique
US8246773B2 (en) 2002-01-18 2012-08-21 Avery Dennison Corporation RFID label technique
US7368032B2 (en) 2002-01-18 2008-05-06 Avery Dennison Corporation RFID label technique
US7214569B2 (en) * 2002-01-23 2007-05-08 Alien Technology Corporation Apparatus incorporating small-feature-size and large-feature-size components and method for making same
US20040183182A1 (en) * 2002-01-23 2004-09-23 Susan Swindlehurst Apparatus incorporating small-feature-size and large-feature-size components and method for making same
US20070117274A1 (en) * 2002-01-23 2007-05-24 Susan Swindlehurst Apparatus incorporating small-feature-size and large-feature-size components and method for making same
US7122905B2 (en) 2002-02-12 2006-10-17 Micron Technology, Inc. Microelectronic devices and methods for mounting microelectronic packages to circuit boards
US6622380B1 (en) * 2002-02-12 2003-09-23 Micron Technology, Inc. Methods for manufacturing microelectronic devices and methods for mounting microelectronic packages to circuit boards
US20030170010A1 (en) * 2002-03-08 2003-09-11 Shining Technology, Inc. A California Corporation System and method for direct recording of audio, video and/or images for easy access and editing
US20030183951A1 (en) * 2002-03-29 2003-10-02 Achyuta Achari Flip-chip bonding method
US6998293B2 (en) 2002-03-29 2006-02-14 Visteon Global Technologies, Inc. Flip-chip bonding method
US6659512B1 (en) 2002-07-18 2003-12-09 Hewlett-Packard Development Company, L.P. Integrated circuit package employing flip-chip technology and method of assembly
US7002254B2 (en) 2002-07-18 2006-02-21 Hewlett-Packard Development Company, L.P. Integrated circuit package employing flip-chip technology and method of assembly
US20040012094A1 (en) * 2002-07-18 2004-01-22 Harper Timothy V. Flip-chip integrated circuit package and method of assembly
US20040036152A1 (en) * 2002-07-18 2004-02-26 Harper Timothy V. Integrated circuit package employing flip-chip technology and method of assembly
US20040046263A1 (en) * 2002-07-18 2004-03-11 Harper Timothy V. Integrated circuit package employing flip-chip technology and method of assembly
US6649833B1 (en) 2002-08-09 2003-11-18 International Business Machines Corporation Negative volume expansion lead-free electrical connection
US6869832B2 (en) 2003-02-07 2005-03-22 Lockheed Martin Corporation Method for planarizing bumped die
US20040154161A1 (en) * 2003-02-07 2004-08-12 Hallys Corporation Random-period chip transfer apparatus
US20040157359A1 (en) * 2003-02-07 2004-08-12 Lockheed Martin Corporation Method for planarizing bumped die
US7278203B2 (en) 2003-02-07 2007-10-09 Hallys Corporation Random-period chip transfer apparatus
WO2004073059A1 (en) * 2003-02-07 2004-08-26 Lockheed Martin Corporation Method for planarizing bumped die
US7199464B2 (en) 2003-03-18 2007-04-03 Micron Technology, Inc. Semiconductor device structures including protective layers formed from healable materials
US20050156328A1 (en) * 2003-03-18 2005-07-21 Shijian Luo Semiconductor device structures including protective layers formed from healable materials
US20040198023A1 (en) * 2003-03-18 2004-10-07 Shijian Luo Methods for forming protective layers on semiconductor device components so as to reduce or eliminate the occurrence of delamination thereof and cracking therein
US20090167534A1 (en) * 2003-03-24 2009-07-02 Gengel Glenn W Rfid tags and processes for producing rfid tags
US8912907B2 (en) 2003-03-24 2014-12-16 Alien Technology, Llc RFID tags and processes for producing RFID tags
US7253735B2 (en) 2003-03-24 2007-08-07 Alien Technology Corporation RFID tags and processes for producing RFID tags
US9418328B2 (en) 2003-03-24 2016-08-16 Ruizhang Technology Limited Company RFID tags and processes for producing RFID tags
US8350703B2 (en) 2003-03-24 2013-01-08 Alien Technology Corporation RFID tags and processes for producing RFID tags
US7868766B2 (en) 2003-03-24 2011-01-11 Alien Technology Corporation RFID tags and processes for producing RFID tags
US20080295318A1 (en) * 2004-02-04 2008-12-04 Martin Bohn Method and Device for Continuously Producing Electronic Film Components and an Electronic Film Component
US20070068622A1 (en) * 2004-02-26 2007-03-29 Sony Chemicals Corp. Method for establishing anisotropic conductive connection and anisotropic conductive adhesive film
US7655107B2 (en) * 2004-02-26 2010-02-02 Sony Corporation Method for establishing anisotropic conductive connection and anisotropic conductive adhesive film
CN100552929C (en) 2004-03-30 2009-10-21 夏普株式会社 Semiconductor apparatus, manufacturing method thereof, semiconductor module apparatus and wiring substrate
US20080251946A1 (en) * 2004-03-30 2008-10-16 Toshiharu Seko Semiconductor apparatus, manufacturing method thereof, semiconductor module apparatus using semiconductor apparatus, and wire substrate for semiconductor apparatus
US7750457B2 (en) 2004-03-30 2010-07-06 Sharp Kabushiki Kaisha Semiconductor apparatus, manufacturing method thereof, semiconductor module apparatus using semiconductor apparatus, and wire substrate for semiconductor apparatus
US20050218513A1 (en) * 2004-03-30 2005-10-06 Toshiharu Seko Semiconductor apparatus, manufacturing method thereof, semiconductor module apparatus using semiconductor apparatus, and wire substrate for semiconductor apparatus
US7188433B2 (en) * 2004-07-23 2007-03-13 Optolab Licensing Gmbh Sensor and method of mounting it
US20060021242A1 (en) * 2004-07-23 2006-02-02 Ludwig Boge Sensor and method of mounting it
US8237290B2 (en) 2004-07-29 2012-08-07 Micron Technology, Inc. Assemblies and multi-chip modules including stacked semiconductor dice having centrally located, wire bonded bond pads
US7276790B2 (en) * 2004-07-29 2007-10-02 Micron Technology, Inc. Methods of forming a multi-chip module having discrete spacers
US9070641B2 (en) 2004-07-29 2015-06-30 Micron Technology, Inc. Methods for forming assemblies and multi-chip modules including stacked semiconductor dice
US20060022323A1 (en) * 2004-07-29 2006-02-02 Swee Seng Eric T Assemblies including stacked semiconductor dice having centrally located, wire bonded bond pads
US20090121338A1 (en) * 2004-07-29 2009-05-14 Micron Technology, Inc. Assemblies and multi chip modules including stacked semiconductor dice having centrally located, wire bonded bond pads
US7492039B2 (en) 2004-08-19 2009-02-17 Micron Technology, Inc. Assemblies and multi-chip modules including stacked semiconductor dice having centrally located, wire bonded bond pads
US20060202319A1 (en) * 2004-08-19 2006-09-14 Swee Seng Eric T Assemblies and multi-chip modules including stacked semiconductor dice having centrally located, wire bonded bond pads
US7500307B2 (en) 2004-09-22 2009-03-10 Avery Dennison Corporation High-speed RFID circuit placement method
US20060063323A1 (en) * 2004-09-22 2006-03-23 Jason Munn High-speed RFID circuit placement method and device
US20100172737A1 (en) * 2004-09-22 2010-07-08 Avery Dennison Corporation High-speed rfid circuit placement method and device
US7669318B2 (en) 2004-09-22 2010-03-02 Avery Dennison Corporation High-speed RFID circuit placement method
US8020283B2 (en) 2004-09-22 2011-09-20 Avery Dennison Corporation High-speed RFID circuit placement device
US20090200064A1 (en) * 2004-09-24 2009-08-13 Oberthur Card Systems Sa Method for mounting an electronic component on a preferably soft support, and resulting electronic entity, such as a passport
US7948764B2 (en) * 2004-09-24 2011-05-24 Oberthur Technologies Method for mounting an electronic component on a preferably soft support, and resulting electronic entity, such as a passport
US8143108B2 (en) 2004-10-07 2012-03-27 Stats Chippac, Ltd. Semiconductor device and method of dissipating heat from thin package-on-package mounted to substrate
US20110074028A1 (en) * 2004-10-07 2011-03-31 Stats Chippac, Ltd. Semiconductor Device and Method of Dissipating Heat From Thin Package-on-Package Mounted to Substrate
US20060148166A1 (en) * 2004-11-08 2006-07-06 Craig Gordon S Assembly comprising functional devices and method of making same
US7353598B2 (en) 2004-11-08 2008-04-08 Alien Technology Corporation Assembly comprising functional devices and method of making same
US7452748B1 (en) 2004-11-08 2008-11-18 Alien Technology Corporation Strap assembly comprising functional block deposited therein and method of making same
US7967204B2 (en) 2004-11-08 2011-06-28 Alien Technology Corporation Assembly comprising a functional device and a resonator and method of making same
US7615479B1 (en) 2004-11-08 2009-11-10 Alien Technology Corporation Assembly comprising functional block deposited therein
US20090056113A1 (en) * 2004-11-08 2009-03-05 Craig Gordon S W Strap assembly comprising functional block deposited therein and method of making same
US7500610B1 (en) 2004-11-08 2009-03-10 Alien Technology Corporation Assembly comprising a functional device and a resonator and method of making same
US7551141B1 (en) 2004-11-08 2009-06-23 Alien Technology Corporation RFID strap capacitively coupled and method of making same
US20090320139A1 (en) * 2004-11-22 2009-12-24 Curt Carrender Transponder incorporated into an electronic device
US20060109129A1 (en) * 2004-11-22 2006-05-25 Curt Carrender Transponder incorporated into an electronic device
US20060109130A1 (en) * 2004-11-22 2006-05-25 Hattick John B Radio frequency identification (RFID) tag for an item having a conductive layer included or attached
US9070063B2 (en) 2004-11-22 2015-06-30 Ruizhang Technology Limited Company Radio frequency identification (RFID) tag for an item having a conductive layer included or attached
US7688206B2 (en) 2004-11-22 2010-03-30 Alien Technology Corporation Radio frequency identification (RFID) tag for an item having a conductive layer included or attached
US7385284B2 (en) 2004-11-22 2008-06-10 Alien Technology Corporation Transponder incorporated into an electronic device
US8471709B2 (en) 2004-11-22 2013-06-25 Alien Technology Corporation Radio frequency identification (RFID) tag for an item having a conductive layer included or attached
US7407084B2 (en) * 2004-12-06 2008-08-05 Unaxis Trading Ltd Method for mounting a semiconductor chip onto a substrate
US20060118602A1 (en) * 2004-12-06 2006-06-08 Unaxis International Trading Ltd. Method for mounting a semiconductor chip onto a substrate
US20070183920A1 (en) * 2005-02-14 2007-08-09 Guo-Quan Lu Nanoscale metal paste for interconnect and method of use
US20100043203A1 (en) * 2005-04-25 2010-02-25 Avery Dennison Corporation High-speed rfid circuit placement method and device
US7623034B2 (en) 2005-04-25 2009-11-24 Avery Dennison Corporation High-speed RFID circuit placement method and device
US8531297B2 (en) 2005-04-25 2013-09-10 Avery Dennison Corporation High-speed RFID circuit placement method and device
US20060238345A1 (en) * 2005-04-25 2006-10-26 Ferguson Scott W High-speed RFID circuit placement method and device
US7542301B1 (en) 2005-06-22 2009-06-02 Alien Technology Corporation Creating recessed regions in a substrate and assemblies having such recessed regions
US20070040686A1 (en) * 2005-08-16 2007-02-22 X-Cyte, Inc., A California Corporation RFID inlays and methods of their manufacture
US20070040688A1 (en) * 2005-08-16 2007-02-22 X-Cyte, Inc., A California Corporation RFID inlays and methods of their manufacture
US20080268570A1 (en) * 2005-09-22 2008-10-30 Chipmos Technologies Inc. Fabricating process of a chip package structure
US7749806B2 (en) 2005-09-22 2010-07-06 Chipmos Technologies Inc. Fabricating process of a chip package structure
US20080268572A1 (en) * 2005-09-22 2008-10-30 Chipmos Technologies Inc. Chip package
US7960214B2 (en) 2005-09-22 2011-06-14 Chipmos Technologies Inc. Chip package
US7847414B2 (en) 2005-09-22 2010-12-07 Chipmos Technologies Inc. Chip package structure
CN100433320C (en) 2005-10-28 2008-11-12 南茂科技股份有限公司;百慕达南茂科技股份有限公司 Chip package structure and lug manufacturing process
US7555826B2 (en) 2005-12-22 2009-07-07 Avery Dennison Corporation Method of manufacturing RFID devices
US20070144662A1 (en) * 2005-12-22 2007-06-28 Armijo Edward A Method of manufacturing RFID devices
US7874493B2 (en) 2005-12-22 2011-01-25 Avery Dennison Corporation Method of manufacturing RFID devices
CN100547856C (en) 2006-11-30 2009-10-07 台湾薄膜电晶体液晶显示器产业协会;中华映管股份有限公司;友达光电股份有限公司;瀚宇彩晶股份有限公司;奇美电子股份有限公司;财团法人工业技术研究院;统宝光电股份有限公司 Connected structure with elastic conductive projection and its manufacture method
CN100561695C (en) 2007-02-06 2009-11-18 南茂科技股份有限公司 Connection method for chip and bearer
US20090079093A1 (en) * 2007-09-20 2009-03-26 Moran John D Flip chip structure and method of manufacture
US8501612B2 (en) 2007-09-20 2013-08-06 Semiconductor Components Industries, Llc Flip chip structure and method of manufacture
US20090243937A1 (en) * 2008-03-31 2009-10-01 Tdk Corporation Two-tier wide band antenna
US20090321778A1 (en) * 2008-06-30 2009-12-31 Advanced Optoelectronic Technology, Inc. Flip-chip light emitting diode and method for fabricating the same
US20120228768A1 (en) * 2011-03-07 2012-09-13 Reza Argenty Pagaila Integrated circuit packaging system using b-stage polymer and method of manufacture thereof
CN102842517A (en) * 2011-09-07 2012-12-26 日月光半导体制造股份有限公司 Flip-chip bonding method and device
CN102842517B (en) * 2011-09-07 2015-10-28 日月光半导体制造股份有限公司 Flip-chip bonding method and apparatus
CN103985643A (en) * 2013-02-07 2014-08-13 中芯国际集成电路制造(上海)有限公司 Chip mounting process for semiconductor chip packaging process

Also Published As

Publication number Publication date Type
WO2000016395A1 (en) 2000-03-23 application
EP1119873A1 (en) 2001-08-01 application

Similar Documents

Publication Publication Date Title
US5667884A (en) Area bonding conductive adhesive preforms
US5637176A (en) Methods for producing ordered Z-axis adhesive materials, materials so produced, and devices, incorporating such materials
US6399426B1 (en) Semiconductor flip-chip package and method for the fabrication thereof
US6011307A (en) Anisotropic conductive interconnect material for electronic devices, method of use and resulting product
US5371328A (en) Component rework
US7170185B1 (en) Solvent assisted burnishing of pre-underfilled solder bumped wafers for flipchip bonding
US6172422B1 (en) Semiconductor device and a manufacturing method thereof
US6184577B1 (en) Electronic component parts device
US6586843B2 (en) Integrated circuit device with covalently bonded connection structure
US6113728A (en) Process for connecting circuits and adhesive film used therefor
US6150717A (en) Direct die contact (DDC) semiconductor package
US7214569B2 (en) Apparatus incorporating small-feature-size and large-feature-size components and method for making same
US6258625B1 (en) Method of interconnecting electronic components using a plurality of conductive studs
US5842273A (en) Method of forming electrical interconnects using isotropic conductive adhesives and connections formed thereby
US6555906B2 (en) Microelectronic package having a bumpless laminated interconnection layer
US20060014309A1 (en) Temporary chip attach method using reworkable conductive adhesive interconnections
EP0920058A2 (en) Circuit component built-in module and method for producing the same
US6821878B2 (en) Area-array device assembly with pre-applied underfill layers on printed wiring board
US6316289B1 (en) Method of forming fine-pitch interconnections employing a standoff mask
US6150726A (en) Component carrier with raised bonding sites
US6331679B1 (en) Multi-layer circuit board using anisotropic electro-conductive adhesive layer
EP0757386A2 (en) Systems interconnected by bumps of joining material
US20010013653A1 (en) Array of electrodes reliable, durable and economical and process for fabrication thereof
US6774497B1 (en) Flip-chip assembly with thin underfill and thick solder mask
US6919642B2 (en) Method for bonding IC chips to substrates incorporating dummy bumps and non-conductive adhesive and structures formed

Legal Events

Date Code Title Description
AS Assignment

Owner name: POLYMER FLIP CHIP CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ESTES, RICHARD H.;ITO, KOJI;AKITA, MASANORI;AND OTHERS;REEL/FRAME:011821/0234

Effective date: 20010106

Owner name: TORAY ENGINEERING CO. LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ESTES, RICHARD H.;ITO, KOJI;AKITA, MASANORI;AND OTHERS;REEL/FRAME:011821/0234

Effective date: 20010106

CC Certificate of correction
AS Assignment

Owner name: EPOXY TECHNOLOGY, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:POLYMER FLIP CHIP CORPORATION;REEL/FRAME:014646/0385

Effective date: 20031017

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

SULP Surcharge for late payment

Year of fee payment: 7

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 20130220