US6075103A - Silyl-terminated polymer and method for preparing silyl-terminated polyolefins - Google Patents
Silyl-terminated polymer and method for preparing silyl-terminated polyolefins Download PDFInfo
- Publication number
 - US6075103A US6075103A US08/874,188 US87418897A US6075103A US 6075103 A US6075103 A US 6075103A US 87418897 A US87418897 A US 87418897A US 6075103 A US6075103 A US 6075103A
 - Authority
 - US
 - United States
 - Prior art keywords
 - group
 - radicals
 - sir
 - catalyst
 - carbon atoms
 - Prior art date
 - Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
 - Expired - Fee Related
 
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
 - 229920000098 polyolefin Polymers 0.000 title claims abstract description 10
 - 229920000642 polymer Polymers 0.000 title claims description 38
 - 239000004711 α-olefin Substances 0.000 claims abstract description 27
 - 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 claims abstract description 15
 - 239000000178 monomer Substances 0.000 claims abstract description 7
 - -1 alkyl radicals Chemical class 0.000 claims description 69
 - YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 38
 - 125000004432 carbon atom Chemical group C* 0.000 claims description 31
 - 239000003054 catalyst Substances 0.000 claims description 26
 - 229910052739 hydrogen Inorganic materials 0.000 claims description 24
 - LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 claims description 21
 - 239000003426 co-catalyst Substances 0.000 claims description 21
 - 239000001257 hydrogen Substances 0.000 claims description 18
 - 239000000203 mixture Substances 0.000 claims description 18
 - BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 17
 - QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 17
 - 229910000077 silane Inorganic materials 0.000 claims description 17
 - 150000005840 aryl radicals Chemical class 0.000 claims description 15
 - PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 14
 - OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 14
 - 239000002904 solvent Substances 0.000 claims description 14
 - 125000000217 alkyl group Chemical group 0.000 claims description 13
 - 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 13
 - 150000001875 compounds Chemical class 0.000 claims description 12
 - PARWUHTVGZSQPD-UHFFFAOYSA-N phenylsilane Chemical compound [SiH3]C1=CC=CC=C1 PARWUHTVGZSQPD-UHFFFAOYSA-N 0.000 claims description 11
 - 238000012546 transfer Methods 0.000 claims description 11
 - 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 10
 - 239000003446 ligand Substances 0.000 claims description 10
 - 239000004215 Carbon black (E152) Substances 0.000 claims description 9
 - 229930195733 hydrocarbon Natural products 0.000 claims description 9
 - 150000002430 hydrocarbons Chemical class 0.000 claims description 9
 - 229910052751 metal Inorganic materials 0.000 claims description 8
 - 239000002184 metal Substances 0.000 claims description 8
 - VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 8
 - 125000003118 aryl group Chemical group 0.000 claims description 7
 - 125000004663 dialkyl amino group Chemical group 0.000 claims description 7
 - 229920005645 diorganopolysiloxane polymer Chemical group 0.000 claims description 7
 - HPYIUKIBUJFXII-UHFFFAOYSA-N Cyclopentadienyl radical Chemical compound [CH]1C=CC=C1 HPYIUKIBUJFXII-UHFFFAOYSA-N 0.000 claims description 6
 - 150000001336 alkenes Chemical class 0.000 claims description 6
 - 150000001639 boron compounds Chemical class 0.000 claims description 6
 - 229910052736 halogen Inorganic materials 0.000 claims description 6
 - 150000002367 halogens Chemical class 0.000 claims description 6
 - 229920001519 homopolymer Polymers 0.000 claims description 6
 - KHUXNRRPPZOJPT-UHFFFAOYSA-N phenoxy radical Chemical compound O=C1C=C[CH]C=C1 KHUXNRRPPZOJPT-UHFFFAOYSA-N 0.000 claims description 6
 - 150000004756 silanes Chemical class 0.000 claims description 6
 - 229910052719 titanium Inorganic materials 0.000 claims description 6
 - 239000003153 chemical reaction reagent Substances 0.000 claims description 5
 - 239000003795 chemical substances by application Substances 0.000 claims description 5
 - 229910052735 hafnium Inorganic materials 0.000 claims description 5
 - 230000007935 neutral effect Effects 0.000 claims description 5
 - VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 claims description 4
 - KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 claims description 4
 - 230000002378 acidificating effect Effects 0.000 claims description 4
 - 125000005842 heteroatom Chemical group 0.000 claims description 4
 - 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
 - 238000002156 mixing Methods 0.000 claims description 4
 - TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 4
 - JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 4
 - 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
 - 230000000379 polymerizing effect Effects 0.000 claims description 4
 - 229910052726 zirconium Inorganic materials 0.000 claims description 4
 - BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims description 3
 - 125000000129 anionic group Chemical group 0.000 claims description 3
 - UWAXDPWQPGZNIO-UHFFFAOYSA-N benzylsilane Chemical compound [SiH3]CC1=CC=CC=C1 UWAXDPWQPGZNIO-UHFFFAOYSA-N 0.000 claims description 3
 - 125000004122 cyclic group Chemical group 0.000 claims description 3
 - XUKFPAQLGOOCNJ-UHFFFAOYSA-N dimethyl(trimethylsilyloxy)silicon Chemical compound C[Si](C)O[Si](C)(C)C XUKFPAQLGOOCNJ-UHFFFAOYSA-N 0.000 claims description 3
 - UBHZUDXTHNMNLD-UHFFFAOYSA-N dimethylsilane Chemical compound C[SiH2]C UBHZUDXTHNMNLD-UHFFFAOYSA-N 0.000 claims description 3
 - VDCSGNNYCFPWFK-UHFFFAOYSA-N diphenylsilane Chemical compound C=1C=CC=CC=1[SiH2]C1=CC=CC=C1 VDCSGNNYCFPWFK-UHFFFAOYSA-N 0.000 claims description 3
 - 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 3
 - UIUXUFNYAYAMOE-UHFFFAOYSA-N methylsilane Chemical compound [SiH3]C UIUXUFNYAYAMOE-UHFFFAOYSA-N 0.000 claims description 3
 - OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
 - NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 claims description 2
 - 239000001273 butane Substances 0.000 claims description 2
 - 229910052799 carbon Inorganic materials 0.000 claims description 2
 - 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 claims description 2
 - JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 claims description 2
 - ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 claims description 2
 - IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 2
 - 150000003254 radicals Chemical class 0.000 claims 4
 - 239000013110 organic ligand Substances 0.000 claims 2
 - 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims 1
 - 101150108015 STR6 gene Proteins 0.000 claims 1
 - 238000001816 cooling Methods 0.000 claims 1
 - 239000012968 metallocene catalyst Substances 0.000 abstract description 9
 - 230000002194 synthesizing effect Effects 0.000 abstract description 2
 - OLRJXMHANKMLTD-UHFFFAOYSA-N silyl Chemical class [SiH3] OLRJXMHANKMLTD-UHFFFAOYSA-N 0.000 abstract 1
 - OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 60
 - CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 21
 - 238000006243 chemical reaction Methods 0.000 description 17
 - 238000006116 polymerization reaction Methods 0.000 description 11
 - 238000001035 drying Methods 0.000 description 10
 - 238000003756 stirring Methods 0.000 description 10
 - VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 8
 - 239000005977 Ethylene Substances 0.000 description 8
 - 238000001914 filtration Methods 0.000 description 8
 - XMIJDTGORVPYLW-UHFFFAOYSA-N [SiH2] Chemical compound [SiH2] XMIJDTGORVPYLW-UHFFFAOYSA-N 0.000 description 7
 - 229920001577 copolymer Polymers 0.000 description 7
 - 238000001704 evaporation Methods 0.000 description 7
 - 150000002431 hydrogen Chemical class 0.000 description 7
 - AQZWEFBJYQSQEH-UHFFFAOYSA-N 2-methyloxaluminane Chemical compound C[Al]1CCCCO1 AQZWEFBJYQSQEH-UHFFFAOYSA-N 0.000 description 6
 - 239000000460 chlorine Substances 0.000 description 6
 - 239000000047 product Substances 0.000 description 6
 - 238000005406 washing Methods 0.000 description 6
 - PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 3
 - UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
 - UHOVQNZJYSORNB-MZWXYZOWSA-N benzene-d6 Chemical compound [2H]C1=C([2H])C([2H])=C([2H])C([2H])=C1[2H] UHOVQNZJYSORNB-MZWXYZOWSA-N 0.000 description 3
 - 239000012986 chain transfer agent Substances 0.000 description 3
 - 239000010936 titanium Substances 0.000 description 3
 - YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
 - XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
 - IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
 - TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
 - 239000004743 Polypropylene Substances 0.000 description 2
 - 239000004793 Polystyrene Substances 0.000 description 2
 - VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
 - XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
 - PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
 - 238000007334 copolymerization reaction Methods 0.000 description 2
 - 230000000694 effects Effects 0.000 description 2
 - 230000008030 elimination Effects 0.000 description 2
 - 238000003379 elimination reaction Methods 0.000 description 2
 - 239000007789 gas Substances 0.000 description 2
 - 150000002602 lanthanoids Chemical group 0.000 description 2
 - 239000000463 material Substances 0.000 description 2
 - 125000002524 organometallic group Chemical group 0.000 description 2
 - 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 2
 - YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
 - 230000000704 physical effect Effects 0.000 description 2
 - 239000002685 polymerization catalyst Substances 0.000 description 2
 - 229920001155 polypropylene Polymers 0.000 description 2
 - 229920002223 polystyrene Polymers 0.000 description 2
 - 238000002360 preparation method Methods 0.000 description 2
 - 239000000126 substance Substances 0.000 description 2
 - 125000003944 tolyl group Chemical group 0.000 description 2
 - RJSYPKWVIJGNLO-UHFFFAOYSA-N CCOClOC Chemical compound CCOClOC RJSYPKWVIJGNLO-UHFFFAOYSA-N 0.000 description 1
 - 239000002841 Lewis acid Substances 0.000 description 1
 - 229940123973 Oxygen scavenger Drugs 0.000 description 1
 - 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
 - RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
 - CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical compound [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 description 1
 - 229910052768 actinide Inorganic materials 0.000 description 1
 - 150000001255 actinides Chemical class 0.000 description 1
 - 125000003545 alkoxy group Chemical group 0.000 description 1
 - 150000001450 anions Chemical class 0.000 description 1
 - 229910052786 argon Inorganic materials 0.000 description 1
 - 238000003556 assay Methods 0.000 description 1
 - 239000012298 atmosphere Substances 0.000 description 1
 - QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
 - 230000009286 beneficial effect Effects 0.000 description 1
 - 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
 - 229920001400 block copolymer Polymers 0.000 description 1
 - 238000009835 boiling Methods 0.000 description 1
 - 230000003197 catalytic effect Effects 0.000 description 1
 - 239000011248 coating agent Substances 0.000 description 1
 - 238000000576 coating method Methods 0.000 description 1
 - 238000007796 conventional method Methods 0.000 description 1
 - 239000002274 desiccant Substances 0.000 description 1
 - 239000000539 dimer Substances 0.000 description 1
 - 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
 - 238000009826 distribution Methods 0.000 description 1
 - ALSOCDGAZNNNME-UHFFFAOYSA-N ethene;hex-1-ene Chemical compound C=C.CCCCC=C ALSOCDGAZNNNME-UHFFFAOYSA-N 0.000 description 1
 - BXOUVIIITJXIKB-UHFFFAOYSA-N ethene;styrene Chemical compound C=C.C=CC1=CC=CC=C1 BXOUVIIITJXIKB-UHFFFAOYSA-N 0.000 description 1
 - 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
 - 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
 - 229920001038 ethylene copolymer Polymers 0.000 description 1
 - 125000000524 functional group Chemical group 0.000 description 1
 - 238000010574 gas phase reaction Methods 0.000 description 1
 - 229920000578 graft copolymer Polymers 0.000 description 1
 - 239000002815 homogeneous catalyst Substances 0.000 description 1
 - 239000012456 homogeneous solution Substances 0.000 description 1
 - 238000005984 hydrogenation reaction Methods 0.000 description 1
 - 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
 - 239000004615 ingredient Substances 0.000 description 1
 - 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
 - 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
 - 229910052747 lanthanoid Inorganic materials 0.000 description 1
 - 229910001629 magnesium chloride Inorganic materials 0.000 description 1
 - 238000004519 manufacturing process Methods 0.000 description 1
 - 238000005259 measurement Methods 0.000 description 1
 - 239000000155 melt Substances 0.000 description 1
 - WCYWZMWISLQXQU-UHFFFAOYSA-N methyl Chemical compound [CH3] WCYWZMWISLQXQU-UHFFFAOYSA-N 0.000 description 1
 - 238000012986 modification Methods 0.000 description 1
 - 230000004048 modification Effects 0.000 description 1
 - 229910052757 nitrogen Inorganic materials 0.000 description 1
 - 125000000962 organic group Chemical group 0.000 description 1
 - 239000001301 oxygen Substances 0.000 description 1
 - 229910052760 oxygen Inorganic materials 0.000 description 1
 - 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
 - 239000004033 plastic Substances 0.000 description 1
 - 229920003023 plastic Polymers 0.000 description 1
 - 229920000573 polyethylene Polymers 0.000 description 1
 - 239000002244 precipitate Substances 0.000 description 1
 - 239000002243 precursor Substances 0.000 description 1
 - 230000008929 regeneration Effects 0.000 description 1
 - 238000011069 regeneration method Methods 0.000 description 1
 - 238000001226 reprecipitation Methods 0.000 description 1
 - 229910052710 silicon Inorganic materials 0.000 description 1
 - 239000000377 silicon dioxide Substances 0.000 description 1
 - 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 description 1
 - 101150035983 str1 gene Proteins 0.000 description 1
 - 125000003107 substituted aryl group Chemical group 0.000 description 1
 - 238000006276 transfer reaction Methods 0.000 description 1
 - 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
 - 229910052725 zinc Inorganic materials 0.000 description 1
 
Classifications
- 
        
- C—CHEMISTRY; METALLURGY
 - C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
 - C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
 - C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
 
 - 
        
- C—CHEMISTRY; METALLURGY
 - C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
 - C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
 - C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
 - C08F110/04—Monomers containing three or four carbon atoms
 - C08F110/06—Propene
 
 - 
        
- C—CHEMISTRY; METALLURGY
 - C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
 - C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
 - C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
 - C08F110/14—Monomers containing five or more carbon atoms
 
 - 
        
- C—CHEMISTRY; METALLURGY
 - C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
 - C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
 - C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
 - C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
 
 - 
        
- C—CHEMISTRY; METALLURGY
 - C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
 - C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
 - C08F4/00—Polymerisation catalysts
 - C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
 - C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
 - C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
 - C08F4/62—Refractory metals or compounds thereof
 - C08F4/64—Titanium, zirconium, hafnium or compounds thereof
 - C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
 - C08F4/65908—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
 
 
Definitions
- the present invention relates to a method for the preparation of silyl-terminated polyolefins. More particularly, the invention relates to a method for synthesizing polyolefins having a silyl group at one terminus, said method comprising polymerizing ⁇ -olefins in the presence of a metallocene catalyst using a silane as a chain transfer agent.
 - Catalyst systems for the polymerization of olefins are well known in the art. Typically, these systems include a Ziegler-Natta type polymerization catalyst; a co-catalyst, usually an organoaluminum compound; an electron donor compound (optional), and an olefin monomer.
 - Control of molecular weight is important as it influences the final physical properties of the polymer. The molecular weight is controlled by chain transfer reactions which terminate the growth of the polymer chains. A number of such chain transfer processes, including ⁇ -H elimination, ⁇ -alkyl elimination and chain transfer to MR n (M ⁇ Zn, Al, etc.), monomer, and hydrogen have been identified.
 - Terminally functionalized polymers are of great current interest. Such a polymer could be used as precursor for making block or graft polymers and would be expected to exhibit modified chemical and physical properties.
 - a further object of the subject invention is a catalyst which permits better control over molecular weight and molecular weight distribution of such polymers of higher ⁇ -olefins.
 - Another object of the subject invention is a Ziegler-Natta type catalyst system which reduces the use of excess co-catalyst.
 - silyl-capped polyolefins and the silyl-capped polyolefins thereby prepared.
 - This method includes polymerization of ⁇ -olefins with silanes as chain transfer reagents using group 4 Ziegler-Natta homogeneous catalysts.
 - the primary component of the present invention is selected from an ⁇ -olefin (C ⁇ 3) or a combination of two or more such ⁇ -olefins.
 - ⁇ -olefins include styrene, propene, 1-butene, 1-pentene, 1-hexene, and 1-octene.
 - Another component of the instant method is a silane having the formula
 - R, R 2 , R 3 and R 4 each may represent a monovalent group independently selected from hydrogen, halogen, alkyl radicals having 1 to 20 carbon atoms, aryl radicals such as phenyl and tolyl, alkylaryl radicals such as ethylphenyl and ethyltolyl, arylalkyl radicals such as phenylethyl and benzyl, alkoxy or amide radicals having 1 to 20 carbon atoms, phenoxy radicals, fluorinated alkyl radicals having 3 to 6 carbon atoms such as 3,3,3-trifluoropropyl, a dialkylamino group in which the alkyl groups contain 1 to 20 carbon atoms and a diorganopolysiloxane chain containing 1 to about 10 siloxane units in which the organic groups are independently selected from alkyl radicals having 1 to 6 carbon atoms, aryl radicals, fluorinated alkyl radicals, silyl groups
 - Preferred groups which are bonded to the silicon atom of the above formula (i) include hydrogen, methyl, ethyl, isopropyl, isobutyl, phenyl, methoxy, ethoxy, chlorine, 3,3,3-trifluoropropyl, dimethylamino and siloxane groups of the formula
 - R' is independently selected from methyl, phenyl, 3,3,3-trifluoropropyl, methoxy or ethoxy groups and j has a value of 0 to 10.
 - Highly preferred silanes are phenylsilane, diphenylsilane, phenylmethylsilane, pentamethyldisiloxane, methylsilane, and dimethylsilane.
 - the catalyst is selected from a metallocene catalyst or a metallocene catalyst in combination with a co-catalyst.
 - the metallocene catalyst of the invention has a general composition of Cp m MX n Y p or C p MX d and a co-catalyst, where the catalyst is typically a constrained geometry catalyst: ##STR1## wherein Cp denotes a cyclopentadienyl, a substituted cyclopentadienyl radical, or a fused cyclopentadienyl radical, such as an indenyl radical.
 - substituted Cp groups include C 5 R* 4 , in which R* is selected from the group consisting of hydrogen, alkyl having 1 to 20 carbon atoms, aryl having 6 to 18 carbon atoms and triorganosilyl, such as trimethylsilyl.
 - R* is selected from the group consisting of hydrogen, alkyl having 1 to 20 carbon atoms, aryl having 6 to 18 carbon atoms and triorganosilyl, such as trimethylsilyl.
 - M is a metal of group 3, 4, 5, 6, 7, 8, 9, 10 or an element of the actinide or lanthanide groups, and preferably Ti, Zr or Hf;
 - X is an inert anionic ligand (C ⁇ 20);
 - Y is a heteroatom ligand, such as --O--, --S--, --NR*--, --PR*-- or a neutral two electron donor ligand such as --CR*, --SR*, --NR* 2 , and --PR* 2 ;
 - Z is SiR* 2 , CR* 2 , SiR 2 SiR * 2 SiR* 2 , CR* 2 CR* 2 , CR* ⁇ CR*, CR* 2 SiR* 2 , GeR* 2 , SnR 2 *, wherein:
 - R* each occurrence, is independently selected from the group consisting of hydrogen, alkyl, aryl, silyl, halogenated alkyl, halogenated aryl groups having up to 20 carbon or non-hydrogen atoms, and mixtures thereof, or two or more R* groups from Y, Z or both Y and Z form a fused ring system.
 - p 0, 1 or 2;
 - d is 1 or 2;
 - the co-catalyst may be weakly acidic and can be any of the compatible, noncoordinating or weakly coordinated anions (preferably BR - 4 ), organo-Lewis acids, preferably BR* 3 , methylalumoxane (MAO) and AlX q R* 3-q , etc., wherein R* independently is alkyl or aryl or substituted aryl, X is a halogen, 0 ⁇ q ⁇ 3.
 - metallocene catalysts include compounds having the following formulas, in which Me, Cp' and Cp" have their previously defined meanings:
 - catalysts are known in the art and they may be employed in particulate form, as a homogeneous solution or supported on inert materials such as alumina, methylalumoxane-activated silica, silica, silica-alumina and magnesium chloride, inter alia. They may be prepared by e.g., methods taught by Den Haan et al. in Organometallics, vol. 5, 1726-33, 1986; Mohring et al. in Journal of Organometallic Chemistry vol. 479, 1-29, 1994; U.S. Pat. Nos. 4,871,705 and 5,001,205 to Hoel; U.S. Pat. Nos. 4,801,666 and 4,668,773 to Marks and by Marks et al. in Journal of the American Chemical Society, vol. 107, 8091-8103, 1985.
 - This co-catalyst is used, for example, to activate the metallocene catalyst and may be selected from alkylalumoxanes, trialkyl boron compounds in which the alkyl radicals have 1 to 8 carbon atoms or triaryl boron compounds in which the aryl radicals have 6 to 8 carbon atoms or borate reagents such as R' 3 NH + BR - 4 or Ph 3 C + BR - 4 where R' is an alkyl, aryl group or perfluoroaryl group.
 - a highly preferred co-catalyst is methylalumoxane (MAO).
 - MAO methylalumoxane
 - the co-catalyst can be a compound having the formula AlG k R 6 .sub.(3-k) in which G is selected from hydrogen, halogen, alkyl radicals having 1-8 carbon atoms or aryl radicals having 6 to 8 carbon atoms, R 6 is an alkyl radical having 1-8 carbon atoms and k is an integer having a value of 0 to 3.
 - the catalyst and silane are first mixed, preferably in a non-polar hydrocarbon solvent, such as toluene, butane, pentane, hexane, octane and iso-octane, for example.
 - a non-polar hydrocarbon solvent such as toluene, butane, pentane, hexane, octane and iso-octane, for example.
 - the solvent is toluene.
 - the silane itself can act as a solvent if a low molecular weight polymer is desired.
 - the above mixing operation must avoid the introduction of moisture or oxygen. The latter condition may be satisfied by running the reaction under an inert atmosphere, such as nitrogen or argon, as is standard in the art.
 - the ⁇ -olefin (or a mixture of an ⁇ -olefin and another different ⁇ -olefin) is introduced while the ingredients are vigorously agitated and the polymerization reaction is carried out at a temperature of about -100° C. to +200° C., preferably -20° C. to +150° C.
 - the pressure during polymerization is typically controlled at 1 to 100 atmospheres, preferably 1 to 5 atmospheres, and is determined by temperature in a closed system or by the pressure of the volatile components in a continuous polymerization.
 - a second ⁇ -olefin having a boiling point above the reaction conditions it may be added simultaneously with the first ⁇ -olefin.
 - the silane When the silane is a gas under the reaction conditions, it may also be added simultaneously with the ⁇ -olefin in the desired ratio to produce the silyl-terminated polymer or co-polymer. Upon completion of the reaction, the silyl-terminated polymer sometimes precipitates out of solution when a solvent is used. The polymer can also be recovered by evaporating the solvent. If the reaction is to be carried out without the use of a solvent (e.g., in a gas phase reaction using a supported catalyst), the reaction temperature is preferably adjusted such that the silane and ⁇ -olefin are both gases. In this case, the mixture of ⁇ -olefin and silane is exposed to the catalyst and the polymer formed may be removed as a melt from the bottom of the reactor. The polymer or copolymer may be purified by re-precipitation or by some other conventional technique.
 - n represents the average degree of polymerization.
 - the chain transfer step involves the transfer of the polyolefin to the silicon moiety and the molecular weight of resulting polymer is controlled by the concentration of silane chain transfer reagent and the simultaneous regeneration of active catalyst, which readily participates in the next catalytic cycle. This is best shown in Table 1.
 - the method of the invention clearly demonstrates that a silane compound as disclosed can serve as an effective chain transfer agent in the polymerization of olefins using a metallocene-containing catalyst. Therefore, the molecular weight of the resulting polymer or copolymer can be controlled by adding the appropriate amount of the silane.
 - the instant method may be used to prepare novel silyl-terminated co-polymers wherein one terminus of the co-polymer is a silyl group preferably of the formula: ##STR3## or R(SiR 2 R 3 R 4 ) n in which R, R 2 , R 3 , and R 4 are defined as above.
 - silyl-terminated polymers or interpolymers produced according to the method of the present invention find utility in the preparation of block copolymers or star lock copolymers (e.g., when the silyl end group contains one or more reactive sites such as SiH) for application as polymer compatibilizers. They may also be used to modify the surface of plastics such as polyolefins for coating or adhesion purposes.
 - the reaction was next quenched by the addition of 2.0 mL of methanol.
 - the polymer was collected by filtration and then extracted with n-pentane (50 mL).
 - the polymer was isolated by evaporating the solvent and washing the product with methanol and acetone, followed by drying under vacuum.
 - the reaction is next quenched by the addition of 2.0 mL of methanol.
 - the polymer is collected by filtration and then extracted with n-pentane (50 mL).
 - the polymer is isolated by evaporating the solvent and washing the product with methanol and acetone, followed by drying under vacuum.
 - the reaction was next quenched by the addition of 2.0 mL of methanol.
 - the polymer was collected by filtration and then extracted with n-pentane (50 mL).
 - the polymer was isolated by evaporating the solvent and washing the product with methanol and acetone, followed by drying under vacuum.
 - the reaction is next quenched by the addition of 2.0 mL of methanol.
 - the polymer is collected by filtration and then extracted with n-pentane (50 mL).
 - the polymer is isolated by evaporating the solvent and washing the product with methanol and acetone, followed by drying under vacuum.
 
Landscapes
- Chemical & Material Sciences (AREA)
 - Health & Medical Sciences (AREA)
 - Chemical Kinetics & Catalysis (AREA)
 - Medicinal Chemistry (AREA)
 - Polymers & Plastics (AREA)
 - Organic Chemistry (AREA)
 - Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
 - Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
 
Abstract
There is disclosed a method for synthesizing polyolefins having a silyl group at one terminus, the method comprising reacting a monomer of an α-olefin (C≦3≦10) and a tetrasubstituted silyl radical in the presence of a metallocene catalyst.
  Description
This invention is made with government support under Grant No. CHE 910 4112 awarded by the National Science Foundation. The government has certain rights in the invention.
    
    
    The present invention relates to a method for the preparation of silyl-terminated polyolefins. More particularly, the invention relates to a method for synthesizing polyolefins having a silyl group at one terminus, said method comprising polymerizing α-olefins in the presence of a metallocene catalyst using a silane as a chain transfer agent.
    Catalyst systems for the polymerization of olefins are well known in the art. Typically, these systems include a Ziegler-Natta type polymerization catalyst; a co-catalyst, usually an organoaluminum compound; an electron donor compound (optional), and an olefin monomer. Control of molecular weight is important as it influences the final physical properties of the polymer. The molecular weight is controlled by chain transfer reactions which terminate the growth of the polymer chains. A number of such chain transfer processes, including β-H elimination, β-alkyl elimination and chain transfer to MRn (M═Zn, Al, etc.), monomer, and hydrogen have been identified. Of these, hydrogen has been found to be the most practical chain transfer agent since it is generally easy to use and normally does not affect the activity of the catalyst. However, there are many cases where even hydrogen does not provide the optimum results due to some undesired side effects (e.g., unresponsive M--R bonds, overactivation of the catalyst, too rapid hydrogenation of other functional groups). Therefore, alternative chain transfer agents for use in the production of polyolefin homopolymers and copolymers, are highly desirable.
    Terminally functionalized polymers are of great current interest. Such a polymer could be used as precursor for making block or graft polymers and would be expected to exhibit modified chemical and physical properties.
    It has previously been disclosed in U.S. Pat. No. 5,578,690 that certain silanes can be used as chain transfer agents when ethylene, or a combination of ethylene and an α-olefin, is polymerized with certain metallocene catalysts. There the method resulted in an ethylene polymer, or co-polymer of ethylene and an α-olefin, having a silyl group at one terminus of its chain. Unfortunately, this organolanthanide polymerization system is limited to ethylene polymerization and copolymerization and cannot be expanded to homopolymers of higher α-olefins.
    Accordingly, it is an object of the subject invention to prepare and utilize a new class of olefin polymerization catalysts.
    A further object of the subject invention is a catalyst which permits better control over molecular weight and molecular weight distribution of such polymers of higher α-olefins.
    Another object of the subject invention is a Ziegler-Natta type catalyst system which reduces the use of excess co-catalyst.
    These and other objects are attained in the subject invention whereby in one embodiment there is a method to produce silyl-capped polyolefins and the silyl-capped polyolefins thereby prepared. This method includes polymerization of α-olefins with silanes as chain transfer reagents using group 4 Ziegler-Natta homogeneous catalysts. The method involves reacting α-olefins (C≧3), catalyzed by group 4 metal catalysts in hydrocarbon solvents in the presence of a silane having the formula R(SiR2 R3 R4)n, wherein R is H, a hydrocarbon (1≦C≦10) or silyl group each having a valence equal to or and, at least, one of R2, R3 and R4 is H and the other of R2, R3 and R4 may be a monovalent group independently selected from the group consisting of: hydrogen, alkyl radicals, aryl radicals, alkylaryl radicals, arylalkyl radicals, alkoxy radicals (1≦C≦20); phenoxy radical, fluorinated alkyl radicals (3≦C≦6), dialkylamino group in which the alkyl groups contain 1 to 4 carbon atoms, a diorganopolysiloxane chain containing 1 to 10 siloxane units and n=1-6 and when R is H, n is 1.
    The primary component of the present invention is selected from an α-olefin (C≧3) or a combination of two or more such α-olefins. Specific examples of suitable α-olefins include styrene, propene, 1-butene, 1-pentene, 1-hexene, and 1-octene.
    Another component of the instant method is a silane having the formula
    R.paren open-st.SiR.sup.2 R.sup.3 R.sup.4).sub.n (i)
wherein R is H, a hydrocarbon, or silyl group each having a valence equal to n and at least one of R2, R3, and R4 is H, and the other of R2, R3 and R4 is a monovalent group independently selected from the group consisting of: hydrogen, alkyl radicals, aryl radicals, alkylaryl radicals, arylalkyl radicals, alkoxy radicals (1≦C≦20); phenoxy radical, fluorinated alkyl radicals (3≦C≦6), dialkylamino group in which the alkyl groups contain 1 to 4 carbon atoms, a diorganopolysiloxane chain containing 1 to 10 siloxane units and n=1-6 and when R is H, n is 1.
    More specifically, R, R2, R3 and R4 each may represent a monovalent group independently selected from hydrogen, halogen, alkyl radicals having 1 to 20 carbon atoms, aryl radicals such as phenyl and tolyl, alkylaryl radicals such as ethylphenyl and ethyltolyl, arylalkyl radicals such as phenylethyl and benzyl, alkoxy or amide radicals having 1 to 20 carbon atoms, phenoxy radicals, fluorinated alkyl radicals having 3 to 6 carbon atoms such as 3,3,3-trifluoropropyl, a dialkylamino group in which the alkyl groups contain 1 to 20 carbon atoms and a diorganopolysiloxane chain containing 1 to about 10 siloxane units in which the organic groups are independently selected from alkyl radicals having 1 to 6 carbon atoms, aryl radicals, fluorinated alkyl radicals, silyl groups or alkoxy radicals having 1 to 4 carbon atoms.
    Preferred groups which are bonded to the silicon atom of the above formula (i) include hydrogen, methyl, ethyl, isopropyl, isobutyl, phenyl, methoxy, ethoxy, chlorine, 3,3,3-trifluoropropyl, dimethylamino and siloxane groups of the formula
    R'.sub.3 SiO(SiR'.sub.2 O).sub.j -- (ii)
in which R' is independently selected from methyl, phenyl, 3,3,3-trifluoropropyl, methoxy or ethoxy groups and j has a value of 0 to 10. Highly preferred silanes, according to the instant method, are phenylsilane, diphenylsilane, phenylmethylsilane, pentamethyldisiloxane, methylsilane, and dimethylsilane.
    The catalyst is selected from a metallocene catalyst or a metallocene catalyst in combination with a co-catalyst. The metallocene catalyst of the invention has a general composition of Cpm MXn Yp or Cp MXd and a co-catalyst, where the catalyst is typically a constrained geometry catalyst: ##STR1## wherein Cp denotes a cyclopentadienyl, a substituted cyclopentadienyl radical, or a fused cyclopentadienyl radical, such as an indenyl radical.
    Examples of substituted Cp groups include C5 R*4, in which R* is selected from the group consisting of hydrogen, alkyl having 1 to 20 carbon atoms, aryl having 6 to 18 carbon atoms and triorganosilyl, such as trimethylsilyl. A specific Cp group includes tetramethylcyclopentadienyl (Cp'=η5 -C5 Me4), wherein Me hereinafter denotes a methyl radical and η5 indicates pentahapto coordination to the metal.
    Further:
    M is a metal of group 3, 4, 5, 6, 7, 8, 9, 10 or an element of the actinide or lanthanide groups, and preferably Ti, Zr or Hf;
    X is an inert anionic ligand (C≦20);
    Y is a heteroatom ligand, such as --O--, --S--, --NR*--, --PR*-- or a neutral two electron donor ligand such as --CR*, --SR*, --NR*2, and --PR*2 ;
    Z is SiR*2, CR*2, SiR2 SiR *2 SiR*2, CR*2 CR*2, CR*═CR*, CR*2 SiR*2, GeR*2, SnR2 *, wherein:
    R*, each occurrence, is independently selected from the group consisting of hydrogen, alkyl, aryl, silyl, halogenated alkyl, halogenated aryl groups having up to 20 carbon or non-hydrogen atoms, and mixtures thereof, or two or more R* groups from Y, Z or both Y and Z form a fused ring system.
    m, n and p are independent;
    p is 0, 1 or 2;
    m is 0, 1, 2 or 3; n is 1, 2, 3 or 4;
    the sum of m and n is equal to the valence of M;
    d is 1 or 2;
    The co-catalyst may be weakly acidic and can be any of the compatible, noncoordinating or weakly coordinated anions (preferably BR- 4), organo-Lewis acids, preferably BR*3, methylalumoxane (MAO) and AlXq R*3-q, etc., wherein R* independently is alkyl or aryl or substituted aryl, X is a halogen, 0≦q≦3.
    It should be noted that whereas formula iii and the following formulas indicate a cyclic structure for the catalysts, when Y is a neutral two electron donor ligand, the bond between M and Y is more accurately referred to as a coordinate-covalent bond. Also, it should be noted that the complex may exist as a dimer or higher oligomer.
    Specific examples of the above metallocene catalysts include compounds having the following formulas, in which Me, Cp' and Cp" have their previously defined meanings:
    ______________________________________                                    
Me.sub.2 SiCp"(t-BuN)TiMe.sub.2                                           
              Cp'ZrMe.sub.3                                               
                        rac-C.sub.2 H.sub.5 (Indenyl).sub.2 TiMe.sub.2    
                         Me.sub.2 SiCp"(t-BuN)HfMe.sub.2 Cp'TiMe.sub.3    
                        Cp' = η.sup.5 --C.sub.5 Me.sub.4              
  Me.sub.2 SiCp"(t-BuN)ZrMe.sub.2 Cp'HfMe.sub.3 Cp' = η.sup.5         
                        --C.sub.5 Me.sub.5                                
______________________________________                                    
    
    The above described catalysts are known in the art and they may be employed in particulate form, as a homogeneous solution or supported on inert materials such as alumina, methylalumoxane-activated silica, silica, silica-alumina and magnesium chloride, inter alia. They may be prepared by e.g., methods taught by Den Haan et al. in Organometallics, vol. 5, 1726-33, 1986; Mohring et al. in Journal of Organometallic Chemistry vol. 479, 1-29, 1994; U.S. Pat. Nos. 4,871,705 and 5,001,205 to Hoel; U.S. Pat. Nos. 4,801,666 and 4,668,773 to Marks and by Marks et al. in Journal of the American Chemical Society, vol. 107, 8091-8103, 1985.
    For the purposes of the present invention, a co-catalyst is also added when m=1, p=0, and n=3 and when M=Ti, Zr or Hf. This co-catalyst is used, for example, to activate the metallocene catalyst and may be selected from alkylalumoxanes, trialkyl boron compounds in which the alkyl radicals have 1 to 8 carbon atoms or triaryl boron compounds in which the aryl radicals have 6 to 8 carbon atoms or borate reagents such as R'3 NH+ BR- 4 or Ph3 C+ BR- 4 where R' is an alkyl, aryl group or perfluoroaryl group. A highly preferred co-catalyst is methylalumoxane (MAO). Certain co-catalysts, such as MAO, also act as oxygen scavengers and desiccants and are beneficial for these functions as well. Alternatively, the co-catalyst can be a compound having the formula AlGk R6.sub.(3-k) in which G is selected from hydrogen, halogen, alkyl radicals having 1-8 carbon atoms or aryl radicals having 6 to 8 carbon atoms, R6 is an alkyl radical having 1-8 carbon atoms and k is an integer having a value of 0 to 3.
    Various metallocene catalysts which require a co-catalyst are described in above-cited U.S. Pat. Nos. 4,871,705 and 5,001,205 to Hoel, the disclosures of which are hereby incorporated by reference. Particularly, catalysts wherein X=halogen require a co-catalyst, MAO is preferably used in combination therewith.
    Based on the instant disclosure and the patent as well as scientific literature, those skilled in the art will readily identify circumstances wherein a co-catalyst is desirable by routine experimentation (e.g., based on rate of reaction, polymer yield and molecular weight).
    In a preferred embodiment of the instant method, the catalyst and silane are first mixed, preferably in a non-polar hydrocarbon solvent, such as toluene, butane, pentane, hexane, octane and iso-octane, for example. Preferably the solvent is toluene. Alternatively, the silane itself can act as a solvent if a low molecular weight polymer is desired. The above mixing operation must avoid the introduction of moisture or oxygen. The latter condition may be satisfied by running the reaction under an inert atmosphere, such as nitrogen or argon, as is standard in the art.
    The α-olefin (or a mixture of an α-olefin and another different α-olefin) is introduced while the ingredients are vigorously agitated and the polymerization reaction is carried out at a temperature of about -100° C. to +200° C., preferably -20° C. to +150° C. The pressure during polymerization is typically controlled at 1 to 100 atmospheres, preferably 1 to 5 atmospheres, and is determined by temperature in a closed system or by the pressure of the volatile components in a continuous polymerization. When a second α-olefin having a boiling point above the reaction conditions is used, it may be added simultaneously with the first α-olefin. When the silane is a gas under the reaction conditions, it may also be added simultaneously with the α-olefin in the desired ratio to produce the silyl-terminated polymer or co-polymer. Upon completion of the reaction, the silyl-terminated polymer sometimes precipitates out of solution when a solvent is used. The polymer can also be recovered by evaporating the solvent. If the reaction is to be carried out without the use of a solvent (e.g., in a gas phase reaction using a supported catalyst), the reaction temperature is preferably adjusted such that the silane and α-olefin are both gases. In this case, the mixture of α-olefin and silane is exposed to the catalyst and the polymer formed may be removed as a melt from the bottom of the reactor. The polymer or copolymer may be purified by re-precipitation or by some other conventional technique.
    The above polymerization reaction may be summarized by the following generalized equation: ##STR2## wherein where R is H, a hydrocarbon or silyl group, and M is a metal, as previously defined n represents the average degree of polymerization. Although the inventors of the instant method do not wish to be bound by a particular mechanism or theory, it is believed that, at least for the lanthanide catalysts and titanium constrained geometry catalysts of the invention, the chain transfer step involves the transfer of the polyolefin to the silicon moiety and the molecular weight of resulting polymer is controlled by the concentration of silane chain transfer reagent and the simultaneous regeneration of active catalyst, which readily participates in the next catalytic cycle. This is best shown in Table 1.
                                      TABLE I                                 
__________________________________________________________________________
Propylene and 1-Hexene Polymerization; Ethylene 1-Hexene and Ethylene-    
 Styrene Copolymerization in the Presence of [Me.sub.2 Si:(Me.sub.4       
C.sub.5)(t-                                                               
  BuN)]TiMe.sup.+ B(C.sub.6 F.sub.5).sub.4 .sup.- and PhSiH.sub.3         
          monomer                                                         
               comonomer                                                  
                     PhSiH.sub.3                                          
                         Polymer                                          
                             comonomer                                    
  Entry Time/Temp. (1 atm) (M) (M) yield incorp(M %) M                    
                                       .sub.n .sup.b M.sub.w .sup.b       
__________________________________________________________________________
1   3 min/25° C.                                                   
          propylene  1.13                                                 
                         3.2 g     890 4,500                              
  2  2 min/25° C. propylene  0.73 3.8 g  1,100 4,800               
  3  3 min/25° C. propylene  0.41 2.5 g  3,500 7,900               
  4  3 min/25° C. propylene  0.24 3.0 g  3,800 9,400               
  5  3 min/25° C. propylene  0.080 4.0 g  11,000 95,000            
  6  2 min/25° C. propylene  0.030 3.0 g  43,000 150,000           
  7  10 min/0° C. propylene  0.020 4.0 g  67,000 210,000           
  8  60 min/25° C. 1-hexene.sup.c  0.030 3.1 g  2,500 6,200        
                                        9 180 min/25° C. ethylene  
                                       0.17.sup.d 0.050 2.8 g 50 72,000   
                                       100,000                            
  10  180 min/25° C. ethylene 0.32.sup.e 0.060 2.6 g 52 50,000     
                                       120,000                            
__________________________________________________________________________
 .sup.a Concentration range of catalyst = 2.65-3.05 mM                    
 .sup.b By GPC in 1,2,4trichlorobenzene vs. polystyrene standards.        
 .sup.c Concentration of 1hexene = 6.00M                                  
 .sup.d Styrene                                                           
 .sup.e 1Hexene                                                           
    
    The method of the invention clearly demonstrates that a silane compound as disclosed can serve as an effective chain transfer agent in the polymerization of olefins using a metallocene-containing catalyst. Therefore, the molecular weight of the resulting polymer or copolymer can be controlled by adding the appropriate amount of the silane.
    Furthermore, the instant method may be used to prepare novel silyl-terminated co-polymers wherein one terminus of the co-polymer is a silyl group preferably of the formula: ##STR3## or R(SiR2 R3 R4)n in which R, R2, R3, and R4 are defined as above.
    The silyl-terminated polymers or interpolymers produced according to the method of the present invention find utility in the preparation of block copolymers or star lock copolymers (e.g., when the silyl end group contains one or more reactive sites such as SiH) for application as polymer compatibilizers. They may also be used to modify the surface of plastics such as polyolefins for coating or adhesion purposes.
    
    
    The following examples are presented to further illustrate the method of this invention, but are not to be construed as limiting the invention, which is delineated in the appended claims. All parts and percentages in the examples are on a weight basis and all measurements were obtained at 25° C. unless indicated to the contrary. The notation Ph is used to denote phenyl radical.
    In the glove box, 10 mg (0.031 mmol) of [Me2 Si(Me4 C5)(t-BuN)]TiMe2 and 28 mg (0.030 mmol) of Ph3 C+ B(C6 F5)4 -  were loaded into a 100 mL round bottom flask. On the vacuum line, 50 mL of toluene was added to the flask via a syringe under an Ar counterflow. Next, 0.20 mL (2.0 mmol) of PhSiH3 was vacuum transferred into the flask at -78° C. The mixture was then warmed to room temperature and exposed to propylene (1 atm) while rapidly stirring for 3 min. The reaction was next quenched by the addition of 2.0 mL of methanol. The polymer was collected by filtration and then extracted with n-pentane (50 mL). The polymer was isolated by evaporating the solvent and washing the product with methanol and acetone, followed by drying under vacuum. (Yield, 4.0 g; Mn =43,000, Mw =150,000 by GPC; 1 H NMR (benzene-d6, relative intensity); δ 7.50 (Ph, 0.2), 7.20 (Ph, 0.2), 4.48 (SiH2, 0.2), 1.74 (--CH--, 31), 1.21 (--CH2 --, 63), 0.96 (--CH3, 100), 0.78 (--CH2 --, 0.2). 13 C NMR (C6 D6, 75.5 Mhz): δ 136.2, 130.1, 129.8, 128.7, 47.4, 47.1, 46.7, 46.3, 45.9, 44.8, 32.3, 29.5, 27.8, 23.1, 21.3, 20.9, 20.6, 20.4, 20.0, 19.6, 14.5, 1.95.
    In the glove box, 10 mg (0.031 mmol) of [Me2 Si(Me4 C5)(t-BuN)]TiMe2 and 28 mg (0.030 mmol) of Ph3 C+ B(C6 F5)4 -  were loaded into a 100 mL round bottom flask. On the vacuum line, 10 mL of toluene was added to the flask via syringe under an Ar counterflow. After evacuation, 0.40 mL (3.0 mmol) of PhSiH3 and 7.5 mL (0.060 mol) of 1-hexene were then vacuum transferred into the flask at -78° C. The mixture was then warmed to room temperature while rapidly stirring for 60 min. The reaction was then quenched by the addition of 2.0 mL of methanol. The polymer was isolated by evaporating the solvent and then washing the product with methanol and acetone, followed by drying under vacuum. (Yield, 3.1 g; Mn =2,500, Mw =6,200 by GPC; 1 H NMR (benzene-d6, relative intensity); δ 7.50 (Ph, 0.2), 7.20 (Ph, 0.2), 4.48 (SiH2, 0.2), 1.65 (--CH--, 9.6), 1.46 (--CH2 --, 100), 1.13 (--CH3, 39). 13 C NMR (C6 D6, 75.5 MHz): δ 136.5, 136.2, 135.5, 129.6, 46.0, 45.6, 40.9, 35.7, 34.6, 32.9, 32.4, 29.2, 27.2, 25.1, 23.8, 23.4, 17.5, 16.9, 16.8, 14.5, 14.4, 10.4.
    In the glove box, 10 mg (0.031 mmol) of [Me2 Si(Me4 C5)(t-BuN)]TiMe2 and 28 mg (0.030 mmol) of Ph3 C+ B(C6 F5)4 -  were loaded into a 100 mL round bottom flask. On the vacuum line, 10 mL of toluene was added to the flask via syringe under an Ar counterflow. Next, 0.70 mL (5.0 mmol) of PhSiH3 and 2.0 mL (0.017 mol) of styrene were vacuum transferred into the flask at -78° C. The mixture was then warmed to room temperature and exposed to ethylene (1 atm) while rapidly stirring for 60 min. The reaction was quenched by the addition of 2.0 mL of methanol. The polymer was collected by filtration, and then washed with methanol and acetone, followed by drying under high vacuum. Yield, 2.78 g (50%). Polymer composition: atactic polystyrene having PhSiH2 endcaps; Mn =72,000, Mw =100,000 by GPC. 1 H NMR (C2 D2 Cl4, 120° C.): δ 7.70˜6.95 (m, Ph), 4.35 (m, SiH2), 2.80˜2.30 (m, --CH(Ph)--), 1.70˜1.40 (m, --CH2 CHPh--), 1.40˜0.90 (m, --CH2 CH2 --). 13 C NMR (C2 D2 Cl4, 75.5 MHz, 120° C.): δ  146.3, 145.8, 129.0, 128.0, 127.8, 127.6, 125.5, 41.0, 36.8, 34.3, 31.8, 29.6, 29.4, 27.5, 25.3, 24.2, 22.5, 13.7.
    In the glove box, 10 mg (0.031 mmol) of [Me2 Si(Me4 C5)(t-BuN)]TiMe2 and 28 mg (0.030 mmol) of Ph3 C+ B(C6 F5)4 -  were loaded into a 100 mL round bottom flask. On the vacuum line, 10 mL of toluene was added to the flask via syringe under an Ar counterflow. After evacuation, 1.0 mL (6.0 mmol) of PhSiH3 and 4.0 mL (0.032 mol) of 1-hexene were vacuum transferred into the flask at -78° C. The mixture was then warmed to room temperature and exposed to ethylene (1 atm) while rapidly stirring for 60 min. The reaction was then quenched by the addition of 2.0 mL of methanol. The polymer was collected by filtration and then washed with methanol and acetone, followed by drying under high vacuum. Yield, 2.56 g (52%), Polymer composition: poly(1-hexene) having PhSiH2 endcaps; Mn =50,000, Mw =120,000 by GPC. 1 H NMR (C2 D2 Cl4, 120° C.): δ  7.50 (m, Ph), 7.20 (m, Ph), 4.49 (m, SiH2), 1.18 (m, --CH--), 1.47 (m, --CH2 CH2 --). 1.03 (m, --CH3). 13 C NMR (C2 D2 Cl4, 75.5 MHz, 120° C.): δ  136.2, 131.2, 129.7, 126.9, 45.0, 40.9, 40.3, 39.4, 39.0, 37.9, 35.3, 34.8, 34.6, 34.3, 33.9, 32.9, 32.4, 31.9, 30.7, 30.2, 29.2, 27.1, 23.7, 23.1, 20.7, 15.6, 14.5.
    In the glove box, 10 mg (0.030 mmol) of rac-ethylene diindenyl titanium dimethyl and 24 mg (0.026 mmol) of PhC+ B(C6 F5)4 -  were loaded into a 100 mL round bottom flask. On the vacuum line, 10 mL of toluene was added to the flask via syringe under an Ar counterflow. After evacuation, 1.0 mL (6.0 mmol) of PhSiH3 was vacuum transferred into the flask at -78° C. The mixture was then warmed to -45° C. and exposed to propylene (1 atm) while rapidly stirring for 10 min. The reaction was then quenched by the addition of 2.0 mL of methanol. The polymer was collected by filtration, and then washed with methanol, acetone and n-hexane, followed by drying under high vacuum. (Yield, 0.040 g). The isotacticity is >94% (based on 13 C NMR assay of mmmm pentad composition). Mn =8,200 by NMR. 1 H NMR (C2 D2 Cl4, 120° C.): δ  7.522 (m, Ph), 7.35 (m, Ph), 4.22 (m, SiH2), 1.62 (m, (--CH--), 1.28 (m, (--CH2 --). 0.88 (m, --CH3).
    In the glove box, 13 mg (0.057 mmol) of (C5 Me5)TiMe3 and 33 mg (0.036 mmol) of Ph3 C+ B(C6 F5)4 -  were loaded into a 100 mL round bottom flask. On the vacuum line, 10 mL of toluene was added to the flask via syringe under an Ar counterflow. The mixture was then warmed to 45° C. and 1.0 mL (6.0 mmol) of PhSiH3 and 5 mL of styrene were injected via a syringe while stirring for 3 minutes. The reaction was then quenched by the addition of 2.0 mL of methanol. The polymer was collected by filtration, and then washed with methanol and acetone, followed by drying under high vacuum. (Yield, 4.48 g). The syndiotacticity is >98% (based on 13 C NMR). Mn =52,000 by NMR. 1 H NMR (C2 D2 Cl4, 120° C.): δ 7.40-6.60 (m, Ph), 7.35 (m, Ph), 4.21 (m, SiH2), 1.85 cm, (--CH--), 1.35 (m, (--CH2 --). 0.90 (d, --CH3).
    In the glove box, 10 mg (0.027 mmol) of [Me2 Si(Me4 C5)(t-BuN)]ZrMe2 and 28 mg (0.030 mmol) of Ph3 C+ B(C6 F5)4 -  are loaded into a 100 mL round bottom flask. On the vacuum line, 50 mL of toluene is added to the flask via a syringe under an Ar counterflow. Next, 0.20 mL (2.0 mmol) of PhSiH3 is vacuum transferred into the flask at -78° C. The mixture is then warmed to room temperature and exposed to propylene (1 atm) while rapidly stirring for 3 min. The reaction is next quenched by the addition of 2.0 mL of methanol. The polymer is collected by filtration and then extracted with n-pentane (50 mL). The polymer is isolated by evaporating the solvent and washing the product with methanol and acetone, followed by drying under vacuum.
    In the glove box, 10 mg (0.022 mmol) of [Me2 Si(Me4 C5)(t-BuN)]HfMe2 and 28 mg (0.030 mmol) of Ph3 C+ B(C6 F5)4 -  is loaded into a 100 mL round bottom flask. On the vacuum line, 10 mL of toluene is added to the flask via syringe under an Ar counterflow. After evacuation, 0.40 mL (3.0 mmol) of PhSiH3 and 7.5 mL (0.060 mol) of 1-hexene is then vacuum transferred into the flask at -78° C. The mixture is then warmed to room temperature while rapidly stirring for 60 min. The reaction is then quenched by the addition of 2.0 mL of methanol. The polymer is isolated by evaporating the solvent and then washing the product with methanol and acetone, followed by drying under vacuum.
    In the glove box, 10 mg (0.031 mmol) of [Me2 Si(Me4 C5)(t-BuN)]TiMe2 and 28 mg (0.030 mmol) of Ph3 C+ B(C6 F5)4 -  was loaded into a 100 mL round bottom flask. On the vacuum line, 50 mL of toluene was added to the flask via a syringe under an Ar counterflow. Next, 0.40 mL (2.6 mmol) of 1,4-disilybenzene is vacuum transferred into the flask at -78° C. The mixture is then warmed to room temperature and exposed to polypropylene (1 atm) while rapidly stirring for 5 min. The reaction was next quenched by the addition of 2.0 mL of methanol. The polymer was collected by filtration and then extracted with n-pentane (50 mL). The polymer was isolated by evaporating the solvent and washing the product with methanol and acetone, followed by drying under vacuum. (Yield, 3.0 g; Mn =190,000, Mw =330,600 by GPC; 1 H NMR (benzene-d6); δ  7.50 (Ph, m), 7.20 (Ph, m), 4.47 (SiH2, m), 1.74 (--CH--, br), 1.21 (--CH2 --, br), 0.96 (--CH3, br), 0.78 (--CH2 --, br).
    In the glove box, 10 mg (0.031 mmol) of [Me2 Si(Me4 C5)(t-BuN)]TiMe2 and 28 mg (0.030 mmol) of Ph3 C+ B(C6 F5)4 -  is loaded into a 100 mL round bottom flask. On the vacuum line, 50 mL of toluene is added to the flask via a syringe under an Ar counterflow. Next, 0.50 g (3.0 mmol) of 1,3,5-trisilybenzene is transferred by syringe into the flask at -78° C. The mixture is then warmed to room temperature and exposed to polypropylene (1 atm) while rapidly stirring for 5 min. The reaction is next quenched by the addition of 2.0 mL of methanol. The polymer is collected by filtration and then extracted with n-pentane (50 mL). The polymer is isolated by evaporating the solvent and washing the product with methanol and acetone, followed by drying under vacuum.
    While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments and equivalents falling within the scope of the appended claims.
    Various features of the invention are set forth in the following claims.
    
  Claims (15)
1. A process for polymerizing α-olefins (3≦C≦10) with silanes as chain-transfer agents preparing and forming a silyl-terminated homopolymer comprising:
    mixing
 (A) an α-olefin (3≦C≦10);
 (B) a silane;
 (C) and a catalyst comprising a metallocene compound with a formula of Cpm MXn Yp or CpMXd and a co-catalyst or ##STR4## wherein Cp denotes a cyclopentadienyl radical;
 Z is SiR*2, CR*2, SiR2 SiR*2 SiR*2, CR*2 CR*2, CR*═CR*, CR*2 SiR*2, GeR*2, SnR2 *;
 R,R* is selected from the group consisting of alkyl radicals having 1 to 4 carbon atoms, aryl radicals and methoxy;
 M is a metal selected from the group consisting of Ti, Hf, and Zr;
 X is an inert anionic organic ligand (C≦20);
 Y is a heteroatom ligand, selected from the group consisting of --O--, --S--, --NR*--, --PR*-- and a neutral two electron donor ligand selected from the group consisting of --CR*, --SR*, --NR*2 and --PR*2 ;
 n and m are integers, (n≦3, m≦4) such that (m+n)=the valence of said metal M;
 p is 1 or 2;
 d is 1 or 2;
 said co-catalyst is acidic thereby forming a homopolymer consisting essentially of polymerized monomers (3≦C≦10) with a silyl termination.
 2. The process of claim 1, wherein said catalyst consists essentially of a combination of said metallocene compound and a co-catalyst selected from the group consisting of an alkylalumoxane, a trialkyl boron compound in which the alkyl radicals have 1 to 8 carbon atoms, a triaryl boron compound having 6 to 8 carbon atoms, a borate reagent of R3 N+ BR4 -  or (C6 H5)3 C+ BR4 -, and a compound of the formula AlGk R5.sub.(3-k) in which G is selected from the group consisting of hydrogen, halogen, alkyl radicals having 1-8 carbon atoms, and aryl radicals having 6 to 8 carbon atoms, R5 is an alkyl radical having 1-8 carbon atoms and k is an integer having a value of 0 to 3.
    3. The process according to claim 1, wherein said olefin is propylene, hexene or styrene.
    4. The process according to claim 1, wherein said process is conducted in a solvent selected from the group consisting of toluene, butane, pentane, hexane, octane and iso-octane.
    5. The process according to claim 1, wherein said olefin is a combination of compounds selected from the group consisting of propylene, styrene, 1-butene, 1-octene and 1-hexene.
    6. The process according to claim 1 further including the step of cooling said monomer and said silane to about -78° C. in the presence of said catalyst.
    7. The process according to claim 1, wherein said silane is selected from the group consisting of phenylsilane, diphenylsilane, phenylmethylsilane, pentamethyldisiloxane, methylsilane and dimethylsilane.
    8. The process according to claim 1, wherein silane has the formula R(SiR2 R3 R4)n, wherein R is H, a hydrocarbon (1≦C≦10), or silyl group each having a valence equal to n and at least one of R2, R3, and R4 is H, and the other of R2, R3 and R4 is a monovalent group independently selected from the group consisting of:
    hydrogen,
 alkyl radicals, aryl radicals, alkylaryl radicals, arylalkyl radicals, alkoxy radicals (1≦C≦20 for all radicals);
 phenoxy radical,
 fluorinated alkyl radicals (3≦C≦6),
 dialkylamino group in which the alkyl groups contain 1 to 4 carbon atoms, and
 a diorganopolysiloxane chain containing 1 to 10 siloxane units; and
 n=1-6 and when R is H, n is 1.
 9. A polymer of an α-olefin (3≦C≦10), wherein a terminus of said polymer is a silyl group of the formula R(SiR2 R3 R4)n, wherein R is H, a hydrocarbon (1≦C≦10), or silyl group each having a valence equal to n and at least one of R2, R3, and R4 is H, and the other of R2, R3 and R4 is a monovalent group independently selected from the group consisting of:
    hydrogen,
 alkyl radicals, aryl radicals, alkylaryl radicals, arylalkyl radicals, alkoxy radicals (1≦C≦20 for all radicals);
 phenoxy radical,
 fluorinated alkyl radicals (3≦C≦6),
 dialkylamino group in which the allyl groups contain 1 to 4 carbon atoms, and
 a diorganopolysiloxane chain containing 1 to 10 siloxane units; and
 n=1-6 and when R is H, n is 1.
 10. The polymer according to claim 9, wherein said α-olefin is selected from the group consisting of styrene, propene, and 1-hexene.
    11. The polymer according to claim 9, wherein R2, R3 and R4 are independently selected from the group consisting of hydrogen, methyl, and phenyl.
    12. The process of claim 1, wherein said catalyst consists essentially of a combination of said metallocene compound and a co-catalyst selected from the group consisting of an alkylalumoxane, a trialkyl boron compound in which he alkyl radicals have 1 to 8 carbon atoms, a triaryl boron compound with aryl radicals having 6 to 8 carbon atoms, a borate reagent of R3 NH+ BR4 - or Ph3 C+ BR4 -  and a compound of the formula AlGk R5.sub.(3-k) in which G is selected from the group consisting of hydrogen, halogen, alkyl radicals having 1-8 carbon atoms, and aryl radicals having 6 to 8 carbon atoms, R5 is an alkyl radical having 1-8 carbon atoms and k is an integer having a value of 0 to 3.
    13. The process of claim 12, wherein said silane is selected from the group consisting of phenylsilane, diphenylsilane, phenylmethylsilane, pentamethyldisiloxane, methylsilane and dimethylsilane.
    14. A process for polymerizing α-olefins (3≦C≦10) with silanes as chain transfer agents to form a silyl-terminated polyolefin comprising:
    mixing
 (A) an α-olefin (3≦C≦10);
 (B) a silane having the formula R(SiR2 R3 R4)n wherein R is H, a hydrocarbon (1≦C≦10), or silyl group each having a valence equal to n and at least one of R2, R3, and R4 is H, and the other of R2, R3 and R4 is a monovalent group independently selected from the group consisting of:
 hydrogen,
 alkyl radicals, aryl radicals, alkylaryl radicals, arylalkyl radicals, alkoxy radicals (1≦C≦20 for all radicals);
 phenoxy radical,
 fluorinated alkyl radicals (3≦C≦6),
 dialkylamino group in which the alkyl groups contain 1 to 4 carbon atoms, and
 a diorganopolysiloxane chain containing 1 to 10 siloxane units; and
 n=1-6 and when R is H, n is 1;
 (C) adding a catalyst comprising a metallocene compound with a formula of Cpm MXn Yp and co-catalyst
 or ##STR5## wherein Cp denotes a cyclopentadienyl, a substituted cyclopentadienyl radical, or a fused cyclopentadienyl radical;
 M is Ti, Zr or Hf;
 Z is SIR*2, CR*2, SiR2 SiR*2 SiR*2, CR*2 CR*2, CR*═CR*, CR*2 SiR*2, GeR*2, SnR2 *;
 wherein:
 X is an inert anionic organic ligand (C≦20);
 Y is a heteroatom ligand, selected from the group consisting of --O--, --S--, --NR*--, --PR*-- and a neutral two electron donor ligand selected from the group consisting of --CR*, --SR*, --NR*2 and --PR*2 ;
 R,R*, each occurrence, is independently selected from the group consisting of hydrogen, alkyl, aryl, silyl, halogenated alkyl, halogenated aryl groups having up to 20 carbon or non-hydrogen atoms, and mixtures thereof, or two or more R* groups from Y, Z or both Y and Z form a fused ring system;
 n and m are integers, each having a value of 1 to 3 such that (m+n) is selected to satisfy the valence of said metal M;
 p is 1 or2;
 d is 1 or 2; and
 said co-catalyst is acidic; and
 (D) forming a silyl-capped homopolymer.
 15. A process for polymerizing an a α-olefin (3≦C≦10), with silanes as chain transfer agents, comprising:
    mixing
 (A) an α-olefin (3≦C≦10);
 (B) a silane having the formula R(SiR2 R3 R4)n wherein R is H, a hydrocarbon (1≦C≦10), or silyl group each having a valence equal to n and at least one of R2, R3, and R4 is H, and the other of R2, R3 and R4 is a monovalent group independently selected from the group consisting of:
 hydrogen,
 alkyl radicals, aryl radicals, alkylaryl radicals, arylalkyl radicals, alkoxy radicals (1≦C≦20 for all radicals);
 phenoxy radical,
 fluorinated alkyl radicals (3≦C≦6),
 dialkylamino group in which the alkyl groups contain 1 to 4 carbon atoms, and
 a diorganopolysiloxane chain containing 1 to 10 siloxane units and
 n=1-6 and when R is H, n is 1;
 (C) and a catalyst comprising a metallocene compound with a formula of Cpm MXn Yp and co-catalyst or ##STR6## wherein Cp denotes a cyclopentadienyl radical;
 Z is SiR*2, CR*2, SiR2 SiR*2 SiR*2, CR*2 CR*2, CR*═CR*, CR*2 SiR*2, GeR*2, or SnR2 *;
 M is Ti, Hf, or Zr;
 X is methyl;
 Y is a heteroatom ligand, selected from the group consisting of --O--, --S--, --NR*--, --PR*-- and a neutral two electron donor ligand selected from the group consisting of SR*CR*, SR*SR*, SR*NR*2 and SR*PR*2 ;
 R,R* is selected from the group consisting of alkyl radicals having 1 to 4 carbon atoms, aryl radicals and methoxy;
 n and m are integers, (n≦3, m≦4) such that (m+n)=the valence of said metal M;
 p is 1 or 2;
 d is 1; and
 said co-catalyst is acidic and thereby forming a silyl-capped homopolymer consisting essentially of polymerized monomers (3≦C≦10).
 Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| US08/874,188 US6075103A (en) | 1997-06-13 | 1997-06-13 | Silyl-terminated polymer and method for preparing silyl-terminated polyolefins | 
| PCT/US1998/012308 WO1998056835A1 (en) | 1997-06-13 | 1998-06-12 | Silyl-terminated polymer and method for preparing silyl-terminated polyolefins | 
| AU82562/98A AU8256298A (en) | 1997-06-13 | 1998-06-12 | Silyl-terminated polymer and method for preparing silyl-terminated polyolefins | 
| US09/096,918 US6077919A (en) | 1997-06-13 | 1998-06-12 | Silyl-terminated polymer and method for preparing silyl-terminated polyolefins | 
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| US08/874,188 US6075103A (en) | 1997-06-13 | 1997-06-13 | Silyl-terminated polymer and method for preparing silyl-terminated polyolefins | 
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| US09/096,918 Continuation-In-Part US6077919A (en) | 1997-06-13 | 1998-06-12 | Silyl-terminated polymer and method for preparing silyl-terminated polyolefins | 
Publications (1)
| Publication Number | Publication Date | 
|---|---|
| US6075103A true US6075103A (en) | 2000-06-13 | 
Family
ID=25363183
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| US08/874,188 Expired - Fee Related US6075103A (en) | 1997-06-13 | 1997-06-13 | Silyl-terminated polymer and method for preparing silyl-terminated polyolefins | 
| US09/096,918 Expired - Fee Related US6077919A (en) | 1997-06-13 | 1998-06-12 | Silyl-terminated polymer and method for preparing silyl-terminated polyolefins | 
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| US09/096,918 Expired - Fee Related US6077919A (en) | 1997-06-13 | 1998-06-12 | Silyl-terminated polymer and method for preparing silyl-terminated polyolefins | 
Country Status (3)
| Country | Link | 
|---|---|
| US (2) | US6075103A (en) | 
| AU (1) | AU8256298A (en) | 
| WO (1) | WO1998056835A1 (en) | 
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US6376636B1 (en) * | 1998-10-28 | 2002-04-23 | The Regents Of The University Of California | Modular, energy-dissipating material and method for using it | 
| US6630547B1 (en) | 2002-06-11 | 2003-10-07 | Equistar Chemicals, Lp | Use of silanes to control molecular weight in olefin polymerizations | 
| US6642326B1 (en) | 2002-05-03 | 2003-11-04 | Equistar Chemicals, Lp | Use of silanes to enhance activity in single-site polymerizations | 
| US20050054793A1 (en) * | 2003-09-09 | 2005-03-10 | Reinking Mark K. | Hydrosilane additives for increased polyolefin molecular weight | 
| US20060041079A1 (en) * | 2004-08-19 | 2006-02-23 | Tsrc Corporation | Hydrogenation catalyst composition and process for hydrogenation of conjugated diene polymer | 
| US20100130708A1 (en) * | 2005-07-26 | 2010-05-27 | Basell Polyolefine Gmbh | Method of Controlling the Relative Activity of the Different Active Centers of Hybrid Catalysts | 
| WO2021262777A1 (en) | 2020-06-24 | 2021-12-30 | Dow Global Technologies Llc | Compositions made from crosslinkable olefin/silane interpolymer | 
| WO2021262774A1 (en) | 2020-06-24 | 2021-12-30 | Dow Global Technologies Llc | Olefin/siloxane interpolymers and olefin/cyclic silane interpolymers | 
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US6624254B1 (en) | 1999-01-21 | 2003-09-23 | The Dow Chemical Company | Silane functionalized olefin interpolymer derivatives | 
| DE60018870T2 (en) * | 1999-01-22 | 2006-04-13 | Mitsui Chemicals, Inc. | METHOD FOR PRODUCING AN OLEFIN POLYMER AND OLEFIN POLYMER | 
| EP2414405A1 (en) | 2009-03-30 | 2012-02-08 | Basell Polyolefine GmbH | Catalyst system for the polymerization of alpha-olefins | 
| CN110183599B (en) * | 2019-05-15 | 2021-07-09 | 大连理工大学 | A kind of double silylation functionalized star polymer suitable for hydrosilylation chemical reaction and preparation method thereof | 
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US5096867A (en) * | 1990-06-04 | 1992-03-17 | Exxon Chemical Patents Inc. | Monocyclopentadienyl transition metal olefin polymerization catalysts | 
| US5494874A (en) * | 1992-03-26 | 1996-02-27 | The Dow Chemical Company | Homogenous, stabilized, reduced metal addition polymerization catalysts, process for preparation and method of use | 
| US5552358A (en) * | 1994-08-08 | 1996-09-03 | Exxon Chemical Patents Inc. | Polymerization catalyst systems, their production and use | 
| US5578690A (en) * | 1995-04-28 | 1996-11-26 | Northwestern University | Silyl-terminated interpolymer of ethylene and method for preparing silyl-terminated polyolefins | 
| US5672669A (en) * | 1993-12-23 | 1997-09-30 | Union Carbide Chemicals & Plastics Technology Corporation | Spray dried, filled metallocene catalyst composition for use in polyolefin manufacture | 
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US4801666A (en) * | 1985-03-25 | 1989-01-31 | Northwestern University | Olefin and cycloalkene polymerization with organolanthanide catalysts | 
| US4668773A (en) * | 1985-03-25 | 1987-05-26 | Northwestern University | Organolanthanide catalysts | 
| US4871705A (en) * | 1988-06-16 | 1989-10-03 | Exxon Chemical Patents Inc. | Process for production of a high molecular weight ethylene a-olefin elastomer with a metallocene alumoxane catalyst | 
| US5001205A (en) * | 1988-06-16 | 1991-03-19 | Exxon Chemical Patents Inc. | Process for production of a high molecular weight ethylene α-olefin elastomer with a metallocene alumoxane catalyst | 
| JP3398426B2 (en) * | 1993-08-30 | 2003-04-21 | 三井化学株式会社 | Method for producing polyolefin | 
| JP2000509747A (en) * | 1996-05-07 | 2000-08-02 | ザ ダウ ケミカル カンパニー | Improved syndiotactic vinylidene aromatic polymerization method | 
- 
        1997
        
- 1997-06-13 US US08/874,188 patent/US6075103A/en not_active Expired - Fee Related
 
 - 
        1998
        
- 1998-06-12 WO PCT/US1998/012308 patent/WO1998056835A1/en active Application Filing
 - 1998-06-12 AU AU82562/98A patent/AU8256298A/en not_active Abandoned
 - 1998-06-12 US US09/096,918 patent/US6077919A/en not_active Expired - Fee Related
 
 
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US5096867A (en) * | 1990-06-04 | 1992-03-17 | Exxon Chemical Patents Inc. | Monocyclopentadienyl transition metal olefin polymerization catalysts | 
| US5494874A (en) * | 1992-03-26 | 1996-02-27 | The Dow Chemical Company | Homogenous, stabilized, reduced metal addition polymerization catalysts, process for preparation and method of use | 
| US5672669A (en) * | 1993-12-23 | 1997-09-30 | Union Carbide Chemicals & Plastics Technology Corporation | Spray dried, filled metallocene catalyst composition for use in polyolefin manufacture | 
| US5552358A (en) * | 1994-08-08 | 1996-09-03 | Exxon Chemical Patents Inc. | Polymerization catalyst systems, their production and use | 
| US5578690A (en) * | 1995-04-28 | 1996-11-26 | Northwestern University | Silyl-terminated interpolymer of ethylene and method for preparing silyl-terminated polyolefins | 
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US6376636B1 (en) * | 1998-10-28 | 2002-04-23 | The Regents Of The University Of California | Modular, energy-dissipating material and method for using it | 
| US6642326B1 (en) | 2002-05-03 | 2003-11-04 | Equistar Chemicals, Lp | Use of silanes to enhance activity in single-site polymerizations | 
| US6630547B1 (en) | 2002-06-11 | 2003-10-07 | Equistar Chemicals, Lp | Use of silanes to control molecular weight in olefin polymerizations | 
| US20050054793A1 (en) * | 2003-09-09 | 2005-03-10 | Reinking Mark K. | Hydrosilane additives for increased polyolefin molecular weight | 
| WO2005026221A1 (en) | 2003-09-09 | 2005-03-24 | Equistar Chemicals, Lp | Hydrosilane additives for increased polyolefin molecular weight | 
| US6939930B2 (en) | 2003-09-09 | 2005-09-06 | Equistar Chemicals, Lp | Hydrosilane additives for increased polyolefin molecular weight | 
| US20060041079A1 (en) * | 2004-08-19 | 2006-02-23 | Tsrc Corporation | Hydrogenation catalyst composition and process for hydrogenation of conjugated diene polymer | 
| US7186782B2 (en) * | 2004-08-19 | 2007-03-06 | Tsrc Corporation | Hydrogenation catalyst composition and process for hydrogenation of conjugated diene polymer | 
| US20100130708A1 (en) * | 2005-07-26 | 2010-05-27 | Basell Polyolefine Gmbh | Method of Controlling the Relative Activity of the Different Active Centers of Hybrid Catalysts | 
| US8003740B2 (en) | 2005-07-26 | 2011-08-23 | Basell Polyolefine Gmbh | Method of controlling the relative activity of the different active centers of hybrid catalysts | 
| WO2021262777A1 (en) | 2020-06-24 | 2021-12-30 | Dow Global Technologies Llc | Compositions made from crosslinkable olefin/silane interpolymer | 
| WO2021262774A1 (en) | 2020-06-24 | 2021-12-30 | Dow Global Technologies Llc | Olefin/siloxane interpolymers and olefin/cyclic silane interpolymers | 
Also Published As
| Publication number | Publication date | 
|---|---|
| AU8256298A (en) | 1998-12-30 | 
| WO1998056835A1 (en) | 1998-12-17 | 
| US6077919A (en) | 2000-06-20 | 
Similar Documents
| Publication | Publication Date | Title | 
|---|---|---|
| EP0956307B1 (en) | New activator system for metallocene compounds | |
| EP0548257B2 (en) | Supported monocyclopentadienyl transition metal olefin polymerization catalysts | |
| RU2161161C2 (en) | Components and catalysts for polymerization of olefins | |
| JP4951351B2 (en) | Activating support for metallocene catalysts | |
| JP3093795B2 (en) | Supported catalyst for (co) polymerization of 1-olefins | |
| AU760139B2 (en) | Supported olefin polymerization catalyst composition | |
| US6133187A (en) | Hetergeneous metallocene catalysts and use thereof in olefin polymerization process | |
| CA1268753A (en) | Supported polymerization catalyst | |
| US5578690A (en) | Silyl-terminated interpolymer of ethylene and method for preparing silyl-terminated polyolefins | |
| US6111046A (en) | Atactic copolymers of propylene with ethylene | |
| HU221255B1 (en) | Metallocenes, method for their preparation and use | |
| HU204291B (en) | Process for producing polymerizing catalyst component on carrier and polymerizing process | |
| EP0260130A1 (en) | New supported polymerization catalyst | |
| EP0775707A1 (en) | Ionic compounds and catalyst for olefin polymerization using the compounds | |
| AU5095499A (en) | Aluminum-based lewis acid cocatalysts for olefin polymerization | |
| JPH0725845B2 (en) | Supported catalysts for the copolymerization of 1-olefins and 1,4-diolefins | |
| US6075103A (en) | Silyl-terminated polymer and method for preparing silyl-terminated polyolefins | |
| US20010008926A1 (en) | Metal complex containing one or more silsesouioxane ligands | |
| KR20050115888A (en) | Propylene polymerization process | |
| JP3572325B2 (en) | Olefin polymerization catalyst and method for producing polyolefin using the same | |
| JP3393985B2 (en) | Heterogeneous catalyst component for olefin polymerization and its production and use | |
| WO1997042237A1 (en) | A process for making polyolefins having broad molecular weight distributions | |
| WO1999032531A1 (en) | Slurry polymerization process with alkyl-substituted biscyclopentadienyl metallocenes | |
| EP1559730A1 (en) | Activating supports for metallocene catalysis | |
| KR100209859B1 (en) | Method for preparation of polyethylene copolymer | 
Legal Events
| Date | Code | Title | Description | 
|---|---|---|---|
| AS | Assignment | 
             Owner name: NORTHWESTERN UNIVERSITY, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARKS, TOBIN J.;KOO, KWANGMO;REEL/FRAME:008828/0176 Effective date: 19970703  | 
        |
| FPAY | Fee payment | 
             Year of fee payment: 4  | 
        |
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation | 
             Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362  | 
        |
| FP | Lapsed due to failure to pay maintenance fee | 
             Effective date: 20080613  |