US6025119A - Antistatic layer for imaging element - Google Patents
Antistatic layer for imaging element Download PDFInfo
- Publication number
- US6025119A US6025119A US09/216,187 US21618798A US6025119A US 6025119 A US6025119 A US 6025119A US 21618798 A US21618798 A US 21618798A US 6025119 A US6025119 A US 6025119A
- Authority
- US
- United States
- Prior art keywords
- electrically
- imaging element
- film
- support
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/76—Photosensitive materials characterised by the base or auxiliary layers
- G03C1/85—Photosensitive materials characterised by the base or auxiliary layers characterised by antistatic additives or coatings
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/76—Photosensitive materials characterised by the base or auxiliary layers
- G03C1/85—Photosensitive materials characterised by the base or auxiliary layers characterised by antistatic additives or coatings
- G03C1/853—Inorganic compounds, e.g. metals
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/76—Photosensitive materials characterised by the base or auxiliary layers
- G03C1/85—Photosensitive materials characterised by the base or auxiliary layers characterised by antistatic additives or coatings
- G03C1/89—Macromolecular substances therefor
Definitions
- This invention relates in general to imaging elements which include a support, an image forming layer and an electrically-conductive layer. More specifically, this invention relates to electrically-conductive layers containing a layered siliceous material, an electrically-conducting polymer that can intercalate inside and/or exfoliate the layered siliceous materials and a film forming polymeric binder.
- the problem of controlling static charge is well known in the field of photography.
- the accumulation of charge on film or paper surfaces leads to the attraction of dirt which can produce physical defects.
- the discharge of accumulated charge during or after the application of the sensitized emulsion layer(s) can produce irregular fog patterns or "static marks" in the emulsion.
- the static problems have been aggravated by increases in the sensitivity of new emulsions, increases in coating machine speeds, and increases in post-coating drying efficiency.
- the charge generated during the coating process may accumulate during winding and unwinding operations, during transport through the coating machines and during finishing operations such as slitting and spooling. Static charge can also be generated during the use of the finished photographic film product.
- Sheet films are especially susceptible to static charging during removal from light-tight packaging.
- Antistatic layers can be applied to one or to both sides of the film base as subbing layers either beneath or on the side opposite to the light-sensitive silver halide emulsion layers.
- An antistatic layer can alternatively be applied as an outer coated layer either over the emulsion layers or on the side of the film base opposite to the emulsion layers or both.
- the antistatic agent can be incorporated into the emulsion layers.
- the antistatic agent can be directly incorporated into the film base itself.
- a wide variety of electrically-conductive materials can be incorporated into antistatic layers to produce a wide range of conductivity. These can be divided into two broad groups: (i) ionic conductors and (ii) electronic conductors. In ionic conductors charge is transferred by the bulk diffusion of charged species through an electrolyte. Here the resistivity of the antistatic layer is dependent on temperature and humidity.
- antistatic layers which contain semiconductive metal halide salts, semiconductive metal oxide particles, etc., have been described previously. However, these antistatic layers typically contain a high volume percentage of electronically conducting materials which are often expensive and impart unfavorable physical characteristics, such as color or reduced transparency, increased brittleness and poor adhesion, to the antistatic layer.
- colloidal metal oxide sols which exhibit ionic conductivity when included in antistatic layers are often used in imaging elements. Typically, alkali metal salts or anionic surfactants are used to stabilize these sols.
- a thin antistatic layer consisting of a gelled network of colloidal metal oxide particles (e.g., silica, antimony pentoxide, alumina, titania, stannic oxide, zirconia) with an optional polymeric binder to improve adhesion to both the support and overlying emulsion layers has been disclosed in EP 250,154.
- An optional ambifunctional silane or titanate coupling agent can be added to the gelled network to improve adhesion to overlying emulsion layers (e.g., U.S. Pat. No.
- Antistatic layers containing electronic conductors such as conjugated conducting polymers, conducting carbon particles, crystalline semiconductor particles, amorphous semiconductive fibrils, and continuous semiconducting thin films can be used more effectively than ionic conductors to dissipate static charge since their electrical conductivity is independent of relative humidity and only slightly influenced by ambient temperature.
- electrically conducting metal-containing particles such as semiconducting metal oxides, are particularly effective when dispersed in suitable polymeric film-forming binders in combination with polymeric non-film-forming particles as described in U.S. Pat. Nos. 5,340,676; 5,466,567; 5,700,623.
- Binary metal oxides doped with appropriate donor heteroatoms or containing oxygen deficiencies have been disclosed in prior art to be useful in antistatic layers for photographic elements, for example, U.S. Pat. Nos. 4,275,103; 4,416,963; 4,495,276; 4,394,441; 4,418,141; 4,431,764; 4,495,276; 4,571,361; 4,999,276; 5,122,445; 5,294,525; 5,382,494; 5,459,021; 5,484,694 and others.
- Suitable claimed conductive metal oxides include: zinc oxide, titania, tin oxide, alumina, indium oxide, silica, magnesia, zirconia, barium oxide, molybdenum trioxide, tungsten trioxide, and vanadium pentoxide.
- Preferred doped conductive metal oxide granular particles include antimony-doped tin oxide, fluorine-doped tin oxide, aluminum-doped zinc oxide, and niobium-doped titania.
- Additional preferred conductive ternary metal oxides disclosed in U.S. Pat. No. 5,368,995 include zinc antimonate and indium antimonate.
- Other conductive metal-containing granular particles including metal borides, carbides, nitrides and suicides have been disclosed in Japanese Kokai No. JP 04-055,492.
- composite conductive particles composed of two dimensional networks of fine antimony-doped tin oxide crystallites in association with amorphous silica deposited on the surface of much larger, non-conducting metal oxide particles (e.g., silica, titania, etc.) and a method for their preparation are disclosed in U.S. Pat. Nos. 5,350,448; 5,585,037 and 5,628,932.
- metal-containing conductive materials, including composite conducting particles, with high aspect ratio can be used to obtain conducting coatings with lighter color due to reduced dry weight coverage (vide, for example, U.S. Pat. Nos. 4,880,703 and 5,273,822).
- these metal containing semiconductive particles can be quite abrasive and cause premature damage to finishing tools, such as, knives, slitters, perforators, etc. and create undesirable dirt and debris which can adhere to the imaging element causing defects.
- Electrically-conductive layers are also commonly used in imaging elements for purposes other than providing static protection.
- imaging elements comprising a support, an electrically-conductive layer that serves as an electrode, and a photoconductive layer that serves as the image-forming layer.
- Electrically-conductive agents utilized as antistatic agents in photographic silver halide imaging elements are often also useful in the electrode layer of electrostatographic imaging elements.
- An abrasion-resistant protective overcoat including a selected polyurethane binder, a lubricant, a matting agent, and a crosslinking agent overlying a conductive backing layer is described in U.S. Pat. No. 5,679,505 for motion picture print films; the abrasion-resistant protective overcoat contains a crosslinked polyurethane binder and, thus, provides a nonpermeable chemical barrier for antistatic layers containing, preferably, colloidal vanadium pentoxide antistatic agent which is known to degrade in contact with photographic processing solutions.
- 5,679,505 can provide certain advantages over conventional carbon black containing backing layers, the use of a crosslinking agent in the topcoat (without which the conductivity of the preferred antistatic layer will be jeopardized) poses some manufacturing concerns: crosslinked polyurethanes of U.S. Pat. No. 5,679,505 may impose additional constraints on the composition and pot-life of the coating solutions as well as other manufacturing parameters; from a health and safety standpoint, some crosslinking agents may require special handling and disposal procedures; removal of a crosslinked polyurethane layer can hinder recycling of the support.
- Electrically conducting polymers have recently received attention from various industries because of their electronic conductivity. Some of these electrically conducting polymers, such as substituted or unsubstituted pyrrole-containing polymers (as mentioned in U.S. Pat. Nos. 5,665,498 and 5,674,654), substituted or unsubstituted thiophene-containing polymers (as mentioned in U.S. Pat. Nos.
- Japanese patent application JP2194071 A disclosed non-conductive pigment coated with conductive polymers for possible use as conductive primers for coating electrostatically non-conductive materials but required the use of an additional conductive filler such as metal powders, semiconducting metal oxide powder, carbon black, etc.
- JP 6167778 A disclosed antistatic films containing amorphous powder and an electroconductive polymer but did not teach of a layered siliceous material which is crystalline and can host an electrically conducting polymer through intercalation, as per the present invention. Moreover, given the ionic nature of the disclosed electroconductive polymers, it is unlikely that the antistatic films of JP 6167778 A would survive a color photographic processing.
- the present invention provides an auxiliary layer to an imaging element, with antistatic characteristics, before and after a typical color photographic processing, with or without a protective topcoat.
- the present invention is an imaging element which includes a support, an image-forming layer superposed on the support, and an electrically-conductive layer superposed on the support.
- the electrically-conductive layer includes a layered siliceous material, an electrically conducting polymer that can intercalate inside or exfoliate said layered siliceous material and a film-forming binder.
- FIG. 1 shows the X-ray diffraction pattern of clay and electrically conducting polymer at various weight ratios.
- FIG. 2 shows the X-ray diffraction pattern of clay and electrically conducting polymer at various weight ratios.
- the antistatic layer of the present invention comprises a layered siliceous material, as component A, an electrically conducting polymer, that can intercalate inside and/or exfoliate the layered siliceous material, as component B and a film forming binder as component C.
- Such an antistatic layer provides an electrical resistivity of less than 12 log ohms/square in relative humidity of from 50%-5%, but preferably less than 11 log ohms/square, and more preferably 10 log ohms/square. Additionally, such an antistatic layer provides adequate electrical resistivity values of less than 12 log ohms/square, preferably less than 11 log ohms/square, after undergoing typical color photographic processing.
- the electrically conducting polymer is incorporated within a transparent, layered siliceous material, such as a smectite clay. This is accomplished by intercalating the electrically conducting polymer inside the layers of the siliceous material and/or exfoliating the siliceous material in presence of the electrically conducting polymer.
- the resultant material in combination with a suitable polymeric binder, is incorporated in an imaging element, with improved optical and antistatic properties.
- the imaging elements of this invention can be of many different types depending on the particular use for which they are intended. Such elements include, for example, photographic, electrostatographic, photothermographic, migration, electrothermographic, dielectric recording and thermal-dye-transfer imaging elements.
- Photographic elements which can be provided with an antistatic layer in accordance with this invention can differ widely in structure and composition.
- they can vary greatly in regard to the type of support, the number and composition of the image-forming layers, and the kinds of auxiliary layers that are included in the elements.
- the photographic elements can be still films, motion picture films, x-ray films, graphic arts films, paper prints or microfiche, especially CRT-exposed autoreversal and computer output microfiche films.
- They can be black-and-white elements, color elements adapted for use in a negative-positive process, or color elements adapted for use in a reversal process.
- Photographic elements can comprise any of a wide variety of supports.
- Typical supports include cellulose nitrate film, cellulose acetate film, poly(vinyl acetal) film, polystyrene film, poly(ethylene terephthalate) film, poly(ethylene naphthalate) film, polycarbonate film, polyethylene films, polypropylene films, glass, metal, paper (both natural and synthetic), polymer-coated paper, and the like.
- the image-forming layer or layers of the element typically comprise a radiation-sensitive agent, e.g., silver halide, dispersed in a hydrophilic water-permeable colloid.
- Suitable hydrophilic vehicles include both naturally-occurring substances such as proteins, for example, gelatin, gelatin derivatives, cellulose derivatives, polysaccharides such as dextran, gum arabic, and the like, and synthetic polymeric substances such as water-soluble polyvinyl compounds like poly(vinylpyrrolidone), acrylamide polymers, and the like.
- a particularly common example of an image-forming layer is a gelatin-silver halide emulsion layer.
- the support can be surface-treated by various processes including corona discharge, glow discharge, UV exposure, flame treatment, electron-beam treatment, as described in U.S. Pat. No. 5,718,995 or treatment with adhesion-promoting agents including dichloro- and trichloro-acetic acid, phenol derivatives such as resorcinol and p-chloro-m-cresol, solvent washing or overcoated with adhesion promoting primer or tie layers containing polymers such as vinylidene chloride-containing copolymers, butadiene-based copolymers, glycidyl acrylate or methacrylate-containing copolymers, maleic anhydride-containing copolymers, condensation polymers such as polyesters, polyamides, polyurethanes, polycarbonates, mixtures and blends thereof, and the like.
- adhesion-promoting agents including dichloro- and trichloro-acetic acid, phenol derivatives such as resorcinol and p-chloro-m
- the antistatic coating compositions of the invention can be applied to the aforementioned film or paper supports by any of a variety of well-known coating methods.
- Handcoating techniques include using a coating rod or knife or a doctor blade.
- Machine coating methods include skim pan/air knife coating, roller coating, gravure coating, curtain coating, bead coating or slide coating.
- the antistatic layer or layers of the present invention can be applied to a single or multilayered polymeric web by any of the aforementioned methods, and the said polymeric web can subsequently be laminated (either directly or after stretching) to a film or paper support of an imaging element (such as those discussed above) by extrusion, calendering or any other suitable method.
- the antistatic layer or layers of the present invention can be applied to the support in various configurations depending upon the requirements of the specific application.
- an antistatic layer can be applied to a polyester film base during the support manufacturing process after orientation of the cast resin on top of a polymeric undercoat layer.
- the antistatic layer can be applied as a subbing layer under the sensitized emulsion, on the side of the support opposite the emulsion or on both sides of the support. Alternatively, it can be applied over the imaging layers on either or both sides of the support, particularly for a thermally-processed imaging element.
- the antistatic layer When the antistatic layer is applied as a subbing layer under the sensitized emulsion, it is not necessary to apply any intermediate layers such as barrier layers or adhesion promoting layers between it and the sensitized emulsion, although they can optionally be present.
- the antistatic layer can be applied as part of a multi-component curl control layer on the side of the support opposite to the sensitized emulsion.
- the present invention can be used in conjunction with an intermediate layer, containing primarily binder and antihalation dyes, that functions as an antihalation layer. Alternatively, these could be combined into a single layer.
- Detailed description of antihalation layers can be found in U.S. Pat. No. 5,679,505 and references therein which are incorporated herein by reference.
- the antistatic layer can be a subbing layer underlying an abrasion resistant layer as described in 5,679,505 or the function of the antistatic layer can be included in an abrasion resistant layer.
- the combined function can be accomplished by substituting the resultant electrically conductive polymer intercalated/exfoliated siliceous material for the electrically conductive polymer desribed in copending and commonly assigned U.S. Ser. No. 09/173,409.
- the antistatic layer may be used in a single or multilayer backing layer which is applied to the side of the support opposite to the sensitized emulsion.
- Such backing layers which typically provide friction control and scratch, abrasion, and blocking resistance to imaging elements are commonly used, for example, in films for consumer imaging, motion picture imaging, business imaging, and others.
- the antistatic layer can optionally be overcoated with an additional polymeric topcoat, such as, abrasion and scratch resistant polyurethanes, specifically those disclosed in U.S. Pat. No. 5,679,505 for motion picture films, a lubricant layer, and/or an alkali- removable carbon black-containing layer (as described in U.S. Pat. Nos. 2,271,234 and 2,327,828), for antihalation and camera- transport properties, and/or a transparent magnetic recording layer for information exchange, for example, and/or any other layer(s) for other functions.
- an additional polymeric topcoat such as, abrasion and scratch resistant polyurethanes
- the antistatic layer can be applied as a subbing layer on either side or both sides of the film support.
- the antistatic subbing layer is applied to only one side of the film support and the sensitized emulsion coated on both sides of the film support.
- Another type of photographic element contains a sensitized emulsion on only one side of the support and a pelloid containing gelatin on the opposite side of the support.
- An antistatic layer can be applied under the sensitized emulsion or, preferably, the pelloid. Additional optional layers can be present.
- an antistatic subbing layer can be applied either under or over a gelatin subbing layer containing an antihalation dye or pigment.
- both antihalation and antistatic functions can be combined in a single layer containing conductive particles, antihalation dye, and a binder.
- This hybrid layer can be coated on one side of a film support under the sensitized emulsion.
- the electrically-conductive layer described herein can be used in imaging elements in which a relatively transparent layer containing magnetic particles dispersed in a binder is included.
- Transparent magnetic layers are well known and are described, for example, in U.S. Pat. No. 4,990,276, European Patent 459,349, and Research Disclosure, Item 34390, November, 1992, the disclosures of which are incorporated herein by reference.
- the magnetic particles can be of any type available such as ferro- and ferri-magnetic oxides, complex oxides with other metals, ferrites, etc. and can assume known particulate shapes and sizes, may contain dopants, and may exhibit the pH values known in the art.
- the particles may be shell coated and may be applied over the range of typical laydown.
- Imaging elements incorporating conductive layers of this invention that are useful for other specific applications such as color negative films, color reversal films, black-and-white films, color and black-and-white papers, electrophotographic media, thermal dye transfer recording media etc., can also be prepared by the procedures described hereinabove.
- Other addenda such as polymer latices to improve dimensional stability, hardeners or crosslinking agents, and various other conventional additives can be present optionally in any or all of the layers of the various aforementioned imaging elements.
- the antistatic layer of the present invention has a layered siliceous material, as component A, an electrically conducting polymer, that can intercalate inside and/or exfoliate the layered siliceous material, as component B and a film forming binder, as component C.
- Preferred choice of component A includes various types of clay belonging to the general class of phyllosilicates. More preferred choice includes smectite clays, both natural and synthetic.
- One such material for this invention is a commercially available synthetic smectite clay which closely resembles the natural clay mineral hectorite in both structure and composition.
- Hectorite is a natural swelling clay which is relatively rare and occurs contaminated with other minerals such as quartz which are difficult and expensive to remove.
- Synthetic smectite is free from natural impurities, prepared under controlled conditions and commercially marketed under the tradename Laponite by Laporte Industries, Ltd of UK through its US subsidiary, Southern Clay Products, Inc.
- suitable monovalent ions such as lithium, sodium, potassium and/or vacancies
- Laponite there are many grades of Laponite such as RD, RDS, J, S, etc. each with unique characteristics and can be used for the present invention. Some of these products contain a polyphosphate peptizing agent such as tetrasodium pyrophosphate for rapid dispersion capability; alternatively, a suitable peptizer can be incorporated into Laponite later on for the same purpose. Typical chemical analyses of various grades of Laponite RDS and their physical properties, are disclosed in Laponite Product Bulletins.
- Laponite separates into tiny platelets of lateral dimension of 25-50 nm and a thickness of 1-5 nm in deionized aqueous dispersions, commonly referred to as "sols."
- Typical concentration of Laponite in a sol can be 0.1 % through 10%.
- sols containing electrolytes introduced from tap water or other ingredients the double layer can be reduced resulting in attraction between the platelets forming a "House of Cards" structure.
- clay particles with a polymer can result in the formation of three general types of structures as discussed by Lan et al (T. Lan, P. D. Kaviratna and T. J. Pinnavia, Chem. Mater.7,2144(1995)).
- Conventional composites may contain clay with the layers unintercalated in a face-to-face aggregation. Here the clay platelet aggregates are simply dispersed with macroscopic segregation.
- Intercalated clay composites are intercalation compounds of definite structure formed by the insertion of one or more molecular layers of polymer into the clay host galleries.
- exfoliated clay-polymer composites where singular clay platelets are dispersed in a continuous polymer matrix. According to the present invention, the latter two arrangements of the clay in the electrically conducting polymer impart the desired properties to the antistatic layers.
- Intercalation and exfoliation of clay can be conveniently monitored by measuring the basal (001) spacing of the clay platelets using x-ray diffraction technique, as illustrated in U.S. Pat. No. 5,554,670 and in copending applications U.S. Ser. Nos. 08/937,685 and 08/940,860.
- x-ray diffraction technique as illustrated in U.S. Pat. No. 5,554,670 and in copending applications U.S. Ser. Nos. 08/937,685 and 08/940,860.
- Component B can be chosen from any or a combination of electrically-conducting polymers, specifically electronically conducting polymers, such as substituted or unsubstituted pyrrole-containing polymers (as mentioned in U.S. Pat. Nos. 5,665,498 and 5,674,654), substituted or unsubstituted thiophene-containing polymers (as mentioned in U.S. Pat. Nos.
- the electrically conducting polymer may be soluble or dispersible in organic solvents or water or mixtures thereof. For environmental reasons, aqueous systems are preferred.
- Polyanions used in these electrically conducting polymers are the anions of polymeric carboxylic acids such as polyacrylic acids, polymethacrylic acids or polymaleic acids and polymeric sulfonic acids such as polystyrenesulfonic acids and polyvinylsulfonic acids, the polymeric sulfonic acids being those preferred for this invention.
- These polycarboxylic and polysulfonic acids may also be copolymers of vinylcarboxylic and vinylsulfonic acids with other polymerizable monomers such as the esters of acrylic acid and styrene.
- the molecular weight of the polyacids providing the polyanions preferably is 1,000 to 2,000,000, particularly preferably 2,000 to 500,000.
- the polyacids or their alkali salts are commonly available, e.g., polystyrenesulfonic acids and polyacrylic acids, or they may be produced based on known methods. Instead of the free acids required for the formation of the electrically conducting polymers and polyanions, mixtures of alkali salts of polyacids and appropriate amounts of monoacids may also be used.
- Preferred electrically conducting polymers for the present invention include polypyrrole styrene sulfonate (referred to as polypyrrole/poly (styrene sulfonic acid) in U.S. Pat. No.
- substituted electrically conductive polymers include poly(3,4-ethylene dioxypyrrole styrene sulfonate) and poly(3,4-ethylene dioxythiophene styrene sulfonate).
- the film forming polymeric binders chosen as component C are preferably water processable polymers which may include water soluble polymers (e.g., polyvinyl alcohol, polyethylene oxide, polystyrene sulfonate, polyacrylamide), hydrophilic colloids (e.g., gelatin) or water insoluble latex polymers and interpolymers (e.g., those containing acrylics, styrenes, acrylonitriles, vinylidene halides, butadienes, olefins and others), or water dispersible condensation polymers (e.g., polyurethanes, polyesters, polyester ionomers, polyamides, epoxides), and the like.
- Particularly preferred latex polymers are vinylidene chloride containing polymers, polyesters, and polyurethanes.
- the electrically conducting polymer (component B) is intercalated inside the layered siliceous material (component A) or the layered siliceous material (component A) is exfoliated in presence of the electrically conducting polymer (component B), as can be detected by X-ray diffraction techniques.
- the electrically conducting polymer (component B) is intercalated inside the layered siliceous material (component A) or the layered siliceous material (component A) is exfoliated in presence of the electrically conducting polymer (component B), as can be detected by X-ray diffraction techniques.
- it may be necessary to adjust their pH or ionic strength. Suitable agents for pH adjustment are ammonium hydroxide, sodium hydroxide, potassium hydroxide, triethyl amine, sulfuric acid, acetic acid, etc.
- the antistatic layer can be optionally crosslinked or hardened by adding a crosslinking agent that reacts with functional groups present in any of the polymers, such as carboxyl groups.
- Crosslinking agents such as aziridines, carbodiimides, epoxies, and the like are suitable for this purpose.
- the crosslinking agent can be used at about 0.5 to about 30 weight % based on the polymer. However, a crosslinking agent concentration of 2 to 12 weight % based on the polymer is preferred.
- a suitable lubricating agent can be included in the layer of this invention to achieve a coefficient of friction that ensures good transport characteristics during manufacturing and customer handling.
- the desired values of the coefficient of friction and examples of suitable lubricating agents are disclosed in U.S. Pat. No. 5,679,505, and are incorporated herein by reference.
- the relative weight ratio of the layered siliceous material (component A) to the electrically-conducting polymer (component B) can vary from 1:99 to 99:1 but preferably from 10:90 to 90:10.
- the relative weight % of the layered siliceous material (component A) in the dried antistatic layer can vary from 1-99% but preferably from 10-90%.
- the relative weight % of the electrically conductive polymer (component B) in the dried antistatic layer can vary from 1-99% but preferably from 10-90%.
- the relative weight % of the polymeric binder (component C) in the dried antistatic layer can vary from 1-99% but preferably from 10-90%.
- the coating composition is coated at a dry weight coverage of between 5 mg/m 2 and 10,000 mg/m 2 , but preferably between 10-2000 mg/m 2 .
- components A, B and C may also be present in the electrically-conductive antistatic layer.
- additional components include: solvents, surfactants and coating aids, thickeners, coalescing aids, crosslinking agents or hardeners, soluble and/or solid particle dyes, antifoggants, matte beads, lubricants, and others.
- Table I lists the (001) spacing of Laponite RDS clay when mixed with varying amounts of electrically conducting polypyrrole-containing polymers, derived from an aqueous dispersion of polypyrrole/poly (styrene sulfonic acid) prepared by oxidative polymerization of pyrrole in aqueous solution in the presence of poly (styrene sulfonic acid) using ammonium persulfate as the oxidant (henceforth referred to as polypyrrole), following U.S. Pat. No. 5,674,654. It is clear that the incorporation of increasing amount of polypyrrole in the mixture increases the (001) spacing of Laponite RDS indicating intercalation of the polymer in the clay gallery.
- the X-ray diffraction patterns are shown in FIG. 1.
- the shift in the main (001) peak towards lower 2-theta with increasing amount of polypyrrole illustrates the increase in basal plane spacing, and, thus intercalation of polypyrrole in the clay lattice.
- Table II lists the (001) spacing of Laponite RDS clay when mixed with varying amounts of electrically conducting polyethylene dioxythiophene polystyrene sulfonate (henceforth referred to as polythiophene), commercially supplied by Bayer Corporation as Baytron P. It is clear that the incorporation of increasing amount of polythiophene in the mixture increases the (001) spacing of Laponite RDS indicating intercalation of the polymer in the clay gallery.
- the X-ray diffraction patterns are shown in FIG. 2.
- the shift in the main (001) peak towards lower 2-theta with increasing amount of polythiophene illustrates the increase in basal plane spacing, and, thus intercalation of polythiophene in the clay lattice.
- the layered siliceous material (component A) used in the following samples is a commercially available synthetic smectite clay, Laponite RDS, supplied by Southern Clay Products.
- the electrically conducting polymer (component B) used in the following samples is a polypyrrole derivative.
- the conducting polypyrrole is derived from an aqueous dispersion of polypyrrole/poly (styrene sulfonic acid) prepared by oxidative polymerization of pyrrole in aqueous solution in the presence of poly (styrene sulfonic acid) using ammonium persulfate as the oxidant, following U.S. Pat. No. 5,674,654.
- This electrically conducting polymer is henceforth referred to as polypyrrole.
- the polymeric binder (component C) used in the following samples is either latex polymer X which is a terpolymer of acrylonitrile, vinylidene chloride and acrylic acid in the weight ratio of 15/79/6 and having a glass transition temperature of 42° C. or latex polymer Y which is a terpolymer of methyl acrylate, vinylidene chloride and itaconic acid in the weight ratio 15/83/2 and having a glass transition temperature of 24° C.
- Aqueous sol of Laponite RDS (component A) and aqueous dispersion of Polypyrrole (component B) after pH adjustment were mixed in a dry weight ratio of Laponite RDS: Polypyrrole of 30:70 and stirred for 24 hours to allow sufficient intercalation of polypyrrole in the Laponite RDS lattice.
- the resultant was subsequently mixed with an aqueous dispersion of latex X or Y (component C) to obtain a 4% solids dispersion where the dry weight ratio of component A; component B: component C was maintained at 7.5:17.5:75.
- Such a dispersion was stirred for 12 hours until coating on a film based web.
- Poly(ethylene terephthalate) or PET film base that had been previously coated with a subbing layer of vinylidene chloride-acrylonitrile-acrylic acid terpolymer latex was used as the web on which aqueous coatings were applied by a suitable coating method.
- the coatings were dried nominally at 100° C. The coating coverage varied between 300 mg/m 2 and 1000 mg/m 2 when dried.
- Dry adhesion was evaluated by scribing a small cross-hatched region into the coating with a razor blade. A piece of high-tack adhesive tape was placed over the scribed region and quickly removed. The relative amount of coating removed is a qualitative measure of the dry adhesion.
- Total optical and ultraviolet densities were evaluated at 530 nm and 380 nm, respectively with a X-Rite Model 361T densitometer. Net or Delta UV D min and Delta ortho D min values were calculated by correcting the total optical and ultraviolet densities for the contributions of the uncoated support which then corresponds to the contribution of either the combined conductive and protective layers in the case of multilayer backings or of the single-layer backings.
- Samples 1-3 were prepared with Laponite RDS as component A, Polypyrrole as component B and latex X as component C, in accordance with the present invention.
- Sample 4 was coated similar to sample 2 but was additionally overcoated with a protective topcoat of Witcobond 232, a commercially available aliphatic polyurethane which satisfies the criteria specified in U.S. Pat. No. 5,679,505, for application as an abrasion resistant backing for motion picture print films.
- Samples 5-7 were prepared similar to samples 1-3, respectively, but with latex Y (instead of latex X) as component C, in accordance with the present invention.
- Samples Comp. 1 and 2 were prepared similar to samples 1 and 5, respectively, of working examples (which were prepared as per the present invention) but containing only the electrically conducting polypyrrole (component B) and the polymeric binder latex X (for Comp. 1) or Y (for Comp. 2) but no layered siliceous material (component A) as required by the present invention.
- the dry weight ratio of polypyrrole:binder was so chosen for Comp. 1 and 2 as to match the Net or Delta UV D min and Delta ortho D min values of working examples, samples 1 and 5, respectively, to ensure similar optical performance for all four samples. Details about these comparative samples and the corresponding SER values, before any photographic processing, are listed in Table IV. It is clear that samples Comp. 1 and 2 have inferior conductivity compared to samples 1 and 5, prepared as per the present invention.
- Samples Comp. 3-5 were prepared containing only Laponite RDS (component A) and the polymeric binder latex X (component C) but no electrically conducting polymer (component B).
- Sample Comp. 6 was prepared similar to sample Comp. 5 but was additionally overcoated with a protective polyurethane topcoat of Witcobond 232, similar to sample 4 of working examples.
- Sample Comp. 7 and 8 were prepared similar to samples Comp. 4 and 5, respectively, but with polymeric binder latex Y (instead of X).
- Sample Comp. 9 was prepared similar to sample Comp. 6, wherein the antistatic layer was additionally overcoated with a protective polyurethane topcoat of Witcobond 232. The details about all these comparative samples and the corresponding SER (for samples Comp.
- the antistatic layers have either inferior conductivity or they lose conductivity when overcoated with an abrasion resistant polyurethane topcoat, as recommended in U.S. Pat. No. 5,679,505 for applications in motion picture print films. None of the samples Comp. 3-5, 7 and 8 provided any significant conductivity, after C-41 color processing, further illustrating their inferiority to the samples prepared in accordance with the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Laminated Bodies (AREA)
Abstract
Description
TABLE I ______________________________________ Laponite RDS: Polypyrrole (001) spacing Basal plane weight % of weight % of (001) spacing, Angstroms Laponite RDS polypyrrole @ 42% RH ______________________________________ 100 0 13.1 70 30 21.4 50 50 26.0 30 70 40.0 ______________________________________
TABLE II ______________________________________ Laponite RDS: Polythiophene (001) spacing Basal plane weight % of weight % of (001) spacing, Angstroms Laponite RDS polythiophene @ 60% RH ______________________________________ 100 0 14.2 70 30 19.8 50 50 23.2 30 70 28.1 ______________________________________
TABLE III __________________________________________________________________________ WORKING EXAMPLES antistat. layer composition antistat. topcoat post C-41 dry wt. % of components dry dry pre-processing processing comp. A comp. B coverage coverage SER/WER SER/WER sample Laponite polypyrrole comp. C mg/m.sup.2 mg/m.sup.2 log Ω/□ log Ω/□ __________________________________________________________________________latex X 1 7.5 17.5 75 300 none 9.1 10.6 2 7.5 17.5 75 600 none 8.1 9.7 3 7.5 17.5 75 1000 none 7.8 9.3 4 7.5 17.5 75 600 1000 7.9 8.9latex Y 5 7.5 17.5 75 300 none 8.9 10.5 6 7.5 17.5 75 600 none 7.9 9.3 7 7.5 17.5 75 1000 none 7.9 8.8 __________________________________________________________________________
TABLE IV __________________________________________________________________________ COMPARATIVE EXAMPLES antistat. layer composition antistat. topcoat post C-41 dry wt. % of components dry dry pre-processing processing comp. A comp. B coverage coverage SER/WER SER/WER sample Laponite polypyrrole comp. C mg/m.sup.2 mg/m.sup.2 log Ω/□ log Ω/□ __________________________________________________________________________ latex X Comp. 1 0 5 95 600 none >13.9 latex Y Comp. 2 0 5 95 600 none 11.9 latex X Comp. 3 10 0 90 600 none 13.3 >13.9 Comp. 4 15 0 85 600 none 12.6 >13.9 Comp. 5 30 0 70 600 none 9.5 >13.9 Comp. 6 30 0 70 600 1000 >13 latex Y Comp. 7 15 0 85 600 none 11.8 >13.9 Comp. 8 30 0 70 600 none 8.9 >13.9 Comp. 9 30 0 70 600 1000 >13 __________________________________________________________________________
Claims (17)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/216,187 US6025119A (en) | 1998-12-18 | 1998-12-18 | Antistatic layer for imaging element |
EP99204144A EP1020762B1 (en) | 1998-12-18 | 1999-12-06 | Antistatic layer for imaging element |
DE69909956T DE69909956T2 (en) | 1998-12-18 | 1999-12-06 | Antistatic layer for imaging element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/216,187 US6025119A (en) | 1998-12-18 | 1998-12-18 | Antistatic layer for imaging element |
Publications (1)
Publication Number | Publication Date |
---|---|
US6025119A true US6025119A (en) | 2000-02-15 |
Family
ID=22806075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/216,187 Expired - Lifetime US6025119A (en) | 1998-12-18 | 1998-12-18 | Antistatic layer for imaging element |
Country Status (3)
Country | Link |
---|---|
US (1) | US6025119A (en) |
EP (1) | EP1020762B1 (en) |
DE (1) | DE69909956T2 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6250555B1 (en) * | 1998-09-22 | 2001-06-26 | Canon Kabushiki Kaisha | Card with built-in electronic part and production process thereof |
EP1170630A1 (en) * | 2000-07-07 | 2002-01-09 | Agfa-Gevaert naamloze vennootschap | Improved subbed polyester support for imaging elements. |
US20030015691A1 (en) * | 2001-02-16 | 2003-01-23 | Elecon, Incorporated | Compositions produced by solvent exchange methods and articles of manufacture comprising same |
US6521398B2 (en) | 2000-07-07 | 2003-02-18 | Agfa-Gevaert | Subbed polyester film and to imaging materials having such a polyester as support |
US6555610B1 (en) | 2000-07-17 | 2003-04-29 | Eastman Kodak Company | Reduced crystallinity polyethylene oxide with intercalated clay |
US6566033B1 (en) | 2002-06-20 | 2003-05-20 | Eastman Kodak Company | Conductive foam core imaging member |
US20030100654A1 (en) * | 2001-06-29 | 2003-05-29 | Theary Chheang | Devices, compositions, and methods incorporating adhesives whose performance is enhanced by organophilic clay constituents |
EP1347333A1 (en) * | 2002-03-22 | 2003-09-24 | Fuji Photo Film Co. Ltd. | Silver halide photographic light-sensitive material |
EP1379581A1 (en) * | 2001-03-08 | 2004-01-14 | The Board of Governors for higher education, State of Rhode Island and providence plantations | Conductive polymer-inorganic hybrid composites |
US20040067703A1 (en) * | 2002-10-03 | 2004-04-08 | Grunden Bradley L. | Electrostatic charge dissipating hard laminate surfaces |
US20050064198A1 (en) * | 2001-12-06 | 2005-03-24 | Toray Industries, Inc,. | Layered film and process for producing layered film |
US6953615B2 (en) * | 1999-06-28 | 2005-10-11 | Xerox Corporation | Polythiophene xerographic component coatings |
US20060131546A1 (en) * | 2001-08-28 | 2006-06-22 | Tokai Rubber Industries, Ltd. | Elastic member of semiconductive polymer and OA equipment using the same |
US20060181658A1 (en) * | 2005-02-16 | 2006-08-17 | Eastman Kodak Company | Conductive absorption layer for flexible displays |
US20060215077A1 (en) * | 2005-03-22 | 2006-09-28 | Eastman Kodak Company | High performance flexible display with improved mechanical properties |
US20060262245A1 (en) * | 2005-05-20 | 2006-11-23 | Eastman Kodak Company | Conductive layer to reduce drive voltage in displays |
US20060262260A1 (en) * | 2005-05-18 | 2006-11-23 | Eastman Kodak Company | Barrier layers for coating conductive polymers on liquid crystals |
US7367592B1 (en) * | 1998-06-16 | 2008-05-06 | Whd Elektronische Prueftechnik Gmbh | Marking substance and security markings for testing the authenticity of documents |
CN101125933B (en) * | 2007-09-18 | 2011-01-19 | 佛山塑料集团股份有限公司 | Plastic film and preparation method thereof |
WO2011028230A1 (en) | 2009-08-27 | 2011-03-10 | Eastman Kodak Company | Image receiver elements |
US20150144796A1 (en) * | 2012-02-28 | 2015-05-28 | Timothy J. Tredwell | Radiographic detector arrays including scintillators and methods for same |
CN107615172A (en) * | 2015-06-02 | 2018-01-19 | 富士胶片株式会社 | Image-receiving sheet |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004014645A1 (en) | 2004-03-25 | 2005-10-13 | Mitsubishi Polyester Film Gmbh | Transparent, electrically conductive, coated polyester film, process for its preparation and its use |
CN105683307A (en) * | 2013-04-18 | 2016-06-15 | 3M创新有限公司 | Buried clay/nanosilica static dissipative coatings |
Citations (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4173480A (en) * | 1975-08-04 | 1979-11-06 | Wiggins Teape Limited | Photographic sheet with synthetic hectorite antistatic additive as sizing or backcoat |
US4275103A (en) * | 1978-07-12 | 1981-06-23 | Matsushita Electric Industrial Co., Ltd. | Electrographic recording medium with conductive layer containing metal oxide semiconductor |
US4394441A (en) * | 1981-01-14 | 1983-07-19 | Fuji Photo Film Co., Ltd. | Photographic sensitive materials |
US4416963A (en) * | 1980-04-11 | 1983-11-22 | Fuji Photo Film Co., Ltd. | Electrically-conductive support for electrophotographic light-sensitive medium |
US4418141A (en) * | 1980-12-23 | 1983-11-29 | Fuji Photo Film Co., Ltd. | Photographic light-sensitive materials |
US4431764A (en) * | 1980-11-18 | 1984-02-14 | Mitsubishi Kinzoku Kabushiki Kaisha | Antistatic transparent coating composition |
US4442168A (en) * | 1981-10-07 | 1984-04-10 | Swedlow, Inc. | Coated substrate comprising a cured transparent abrasion resistant filled organo-polysiloxane coatings containing colloidal antimony oxide and colloidal silica |
US4495276A (en) * | 1980-04-11 | 1985-01-22 | Fuji Photo Film Co., Ltd. | Photosensitive materials having improved antistatic property |
US4571361A (en) * | 1981-04-06 | 1986-02-18 | Fuji Photo Film Co., Ltd. | Antistatic plastic films |
US4571365A (en) * | 1977-10-27 | 1986-02-18 | Swedlow, Inc. | Transparent, abrasion resistant coating compositions |
EP0250154A2 (en) * | 1986-06-18 | 1987-12-23 | Minnesota Mining And Manufacturing Company | Photographic element on a polymeric substrate with novel subbing layer |
US4731408A (en) * | 1985-12-20 | 1988-03-15 | Polaroid Corporation | Processable conductive polymers |
US4880703A (en) * | 1986-11-11 | 1989-11-14 | Ishihara Sangyo Kaisha, Ltd. | Acicular electroconductive titanium oxide and process for producing same |
US4937060A (en) * | 1987-07-23 | 1990-06-26 | Cookson Group Plc | Coated inorganic materials |
JPH02194071A (en) * | 1989-01-24 | 1990-07-31 | Kansai Paint Co Ltd | Conductive coating composition |
US4987042A (en) * | 1988-04-22 | 1991-01-22 | Bayer Aktiengesellschaft | Polythiophenes, process for their preparation and their use |
US4999276A (en) * | 1988-06-29 | 1991-03-12 | Fuji Photo Film Co., Ltd. | Silver halide photographic materials |
JPH0455492A (en) * | 1990-06-22 | 1992-02-24 | Konica Corp | Antistatic-treated plastic film |
US5093439A (en) * | 1989-10-19 | 1992-03-03 | Ohio State University Research Foundation | Processes for preparation of sulfonated polyaniline compositions and uses thereof |
US5122445A (en) * | 1989-06-20 | 1992-06-16 | Fuji Photo Film Co., Ltd. | Silver halide photographic materials |
US5204219A (en) * | 1987-07-30 | 1993-04-20 | Minnesota Mining And Manufacturing Company | Photographic element with novel subbing layer |
US5236818A (en) * | 1992-11-02 | 1993-08-17 | Minnesota Mining And Manufacturing Company | Antistatic coatings |
US5273822A (en) * | 1991-03-29 | 1993-12-28 | Mitsui Mining & Smelting Co., Ltd. | Fibrous electrically-conductive filler and process for producing the same |
US5294525A (en) * | 1991-04-30 | 1994-03-15 | Konica Corporation | Silver halide photographic light-sensitive material capable of magnetic-recording |
US5300573A (en) * | 1988-04-11 | 1994-04-05 | Advanced Elastomer Systems, L.P. | High temperature stable, low solvent swelling thermoplastic elastomer compositions |
US5312681A (en) * | 1989-04-27 | 1994-05-17 | Agfa-Gevaert, N.V. | Sheet or web material having antistatic properties |
JPH06167778A (en) * | 1992-12-01 | 1994-06-14 | Konica Corp | Antistatic film |
US5340676A (en) * | 1993-03-18 | 1994-08-23 | Eastman Kodak Company | Imaging element comprising an electrically-conductive layer containing water-insoluble polymer particles |
US5350448A (en) * | 1992-04-25 | 1994-09-27 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Electrically conductive pigments |
US5354613A (en) * | 1992-10-14 | 1994-10-11 | Agfa-Gevaert, N.V. | Antistatic coating on hydrophobic resin or paper support |
US5368995A (en) * | 1994-04-22 | 1994-11-29 | Eastman Kodak Company | Imaging element comprising an electrically-conductive layer containing particles of a metal antimonate |
US5370981A (en) * | 1992-04-06 | 1994-12-06 | Agfa-Gevaert Ag | Antistatic plastic articles |
US5372924A (en) * | 1992-05-21 | 1994-12-13 | Agfa Gevaert Aktiengesellschaft | Antistatic plastic moldings |
US5382494A (en) * | 1993-03-01 | 1995-01-17 | Konica Corporation | Silver halide photographic light-sensitive material having excellent transporting ability |
US5391472A (en) * | 1992-12-17 | 1995-02-21 | Agfa-Gevaert, N.V. | Permanent antistatic primer layer |
US5403467A (en) * | 1992-01-29 | 1995-04-04 | Bayer Ag | Process for through-hole plating of two-layer circuit boards and multilayers |
US5443944A (en) * | 1992-11-16 | 1995-08-22 | Agta-Gevaert Ag | Photographic material |
US5459021A (en) * | 1993-07-15 | 1995-10-17 | Konica Corporation | Silver halide photographic light-sensitive material |
US5466567A (en) * | 1994-10-28 | 1995-11-14 | Eastman Kodak Company | Imaging element comprising an electrically-conductive layer containing conductive fine particles, a film-forming hydrophilic colloid and pre-crosslinked gelatin particles |
US5478709A (en) * | 1993-09-17 | 1995-12-26 | Agfa-Gevaert, N.V. | Photographic light-sensitive material applicable for rapid processing |
US5484694A (en) * | 1994-11-21 | 1996-01-16 | Eastman Kodak Company | Imaging element comprising an electrically-conductive layer containing antimony-doped tin oxide particles |
US5494738A (en) * | 1990-03-01 | 1996-02-27 | Agfa-Gevaert, N.V. | Sheet or web material having antistatic properties |
US5575898A (en) * | 1994-10-12 | 1996-11-19 | Bayer Ag | Process for through-hole plating of two-layer printed circuit boards and multilayers |
US5585037A (en) * | 1989-08-02 | 1996-12-17 | E. I. Du Pont De Nemours And Company | Electroconductive composition and process of preparation |
US5665498A (en) * | 1996-11-22 | 1997-09-09 | Eastman Kodak Company | Imaging element containing poly(3,4-ethylene dioxypyrrole/styrene sulfonate) |
US5674654A (en) * | 1996-09-19 | 1997-10-07 | Eastman Kodak Company | Imaging element containing an electrically-conductive polymer blend |
US5679505A (en) * | 1995-11-02 | 1997-10-21 | Eastman Kodak Company | Photographic element useful as a motion picture print film |
US5700623A (en) * | 1997-01-21 | 1997-12-23 | Eastman Kodak Company | Thermally stable photographic bar code label containing an antistatic layer |
EP0644454B1 (en) * | 1993-09-17 | 1997-12-29 | Agfa-Gevaert N.V. | Photographic light-sensitive material with preserved antistatic properties |
US5716550A (en) * | 1995-08-10 | 1998-02-10 | Eastman Kodak Company | Electrically conductive composition and elements containing solubilized polyaniline complex and solvent mixture |
US5869217A (en) * | 1996-07-24 | 1999-02-09 | Fuji Photo Film Co., Ltd. | Silver halide photographic material and photographic element |
US5869227A (en) * | 1997-12-18 | 1999-02-09 | Eastman Kodak Company | Antistatic layer with smectite clay and an interpolymer containing vinylidene halide |
US5891611A (en) * | 1997-09-29 | 1999-04-06 | Eastman Kodak Company | Clay containing antistatic layer for photographic paper |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4937163A (en) * | 1989-01-27 | 1990-06-26 | Xerox Corporation | Imaging member and processes thereof |
US5981126A (en) * | 1997-09-29 | 1999-11-09 | Eastman Kodak Company | Clay containing electrically-conductive layer for imaging elements |
-
1998
- 1998-12-18 US US09/216,187 patent/US6025119A/en not_active Expired - Lifetime
-
1999
- 1999-12-06 EP EP99204144A patent/EP1020762B1/en not_active Expired - Lifetime
- 1999-12-06 DE DE69909956T patent/DE69909956T2/en not_active Expired - Fee Related
Patent Citations (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4173480A (en) * | 1975-08-04 | 1979-11-06 | Wiggins Teape Limited | Photographic sheet with synthetic hectorite antistatic additive as sizing or backcoat |
US4571365A (en) * | 1977-10-27 | 1986-02-18 | Swedlow, Inc. | Transparent, abrasion resistant coating compositions |
US4571365B1 (en) * | 1977-10-27 | 1995-05-16 | Pilkington Aerospace Inc | Transparent abrasion resistant coating compositions |
US4275103A (en) * | 1978-07-12 | 1981-06-23 | Matsushita Electric Industrial Co., Ltd. | Electrographic recording medium with conductive layer containing metal oxide semiconductor |
US4416963A (en) * | 1980-04-11 | 1983-11-22 | Fuji Photo Film Co., Ltd. | Electrically-conductive support for electrophotographic light-sensitive medium |
US4495276A (en) * | 1980-04-11 | 1985-01-22 | Fuji Photo Film Co., Ltd. | Photosensitive materials having improved antistatic property |
US4431764A (en) * | 1980-11-18 | 1984-02-14 | Mitsubishi Kinzoku Kabushiki Kaisha | Antistatic transparent coating composition |
US4418141A (en) * | 1980-12-23 | 1983-11-29 | Fuji Photo Film Co., Ltd. | Photographic light-sensitive materials |
US4394441A (en) * | 1981-01-14 | 1983-07-19 | Fuji Photo Film Co., Ltd. | Photographic sensitive materials |
US4571361A (en) * | 1981-04-06 | 1986-02-18 | Fuji Photo Film Co., Ltd. | Antistatic plastic films |
US4442168A (en) * | 1981-10-07 | 1984-04-10 | Swedlow, Inc. | Coated substrate comprising a cured transparent abrasion resistant filled organo-polysiloxane coatings containing colloidal antimony oxide and colloidal silica |
US4731408A (en) * | 1985-12-20 | 1988-03-15 | Polaroid Corporation | Processable conductive polymers |
EP0250154A2 (en) * | 1986-06-18 | 1987-12-23 | Minnesota Mining And Manufacturing Company | Photographic element on a polymeric substrate with novel subbing layer |
US4880703A (en) * | 1986-11-11 | 1989-11-14 | Ishihara Sangyo Kaisha, Ltd. | Acicular electroconductive titanium oxide and process for producing same |
US4956441A (en) * | 1987-07-23 | 1990-09-11 | Cookson Group Plc | Electroconductive copolymers |
US4937060A (en) * | 1987-07-23 | 1990-06-26 | Cookson Group Plc | Coated inorganic materials |
US5204219A (en) * | 1987-07-30 | 1993-04-20 | Minnesota Mining And Manufacturing Company | Photographic element with novel subbing layer |
US5300573A (en) * | 1988-04-11 | 1994-04-05 | Advanced Elastomer Systems, L.P. | High temperature stable, low solvent swelling thermoplastic elastomer compositions |
US4987042A (en) * | 1988-04-22 | 1991-01-22 | Bayer Aktiengesellschaft | Polythiophenes, process for their preparation and their use |
US4999276A (en) * | 1988-06-29 | 1991-03-12 | Fuji Photo Film Co., Ltd. | Silver halide photographic materials |
JPH02194071A (en) * | 1989-01-24 | 1990-07-31 | Kansai Paint Co Ltd | Conductive coating composition |
US5312681A (en) * | 1989-04-27 | 1994-05-17 | Agfa-Gevaert, N.V. | Sheet or web material having antistatic properties |
US5122445A (en) * | 1989-06-20 | 1992-06-16 | Fuji Photo Film Co., Ltd. | Silver halide photographic materials |
US5585037A (en) * | 1989-08-02 | 1996-12-17 | E. I. Du Pont De Nemours And Company | Electroconductive composition and process of preparation |
US5628932A (en) * | 1989-08-02 | 1997-05-13 | E. I. Du Pont De Nemours And Company | Electroconductive composition and process of preparation |
US5093439A (en) * | 1989-10-19 | 1992-03-03 | Ohio State University Research Foundation | Processes for preparation of sulfonated polyaniline compositions and uses thereof |
US5494738A (en) * | 1990-03-01 | 1996-02-27 | Agfa-Gevaert, N.V. | Sheet or web material having antistatic properties |
JPH0455492A (en) * | 1990-06-22 | 1992-02-24 | Konica Corp | Antistatic-treated plastic film |
US5273822A (en) * | 1991-03-29 | 1993-12-28 | Mitsui Mining & Smelting Co., Ltd. | Fibrous electrically-conductive filler and process for producing the same |
US5294525A (en) * | 1991-04-30 | 1994-03-15 | Konica Corporation | Silver halide photographic light-sensitive material capable of magnetic-recording |
US5403467A (en) * | 1992-01-29 | 1995-04-04 | Bayer Ag | Process for through-hole plating of two-layer circuit boards and multilayers |
US5370981A (en) * | 1992-04-06 | 1994-12-06 | Agfa-Gevaert Ag | Antistatic plastic articles |
US5350448A (en) * | 1992-04-25 | 1994-09-27 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Electrically conductive pigments |
US5372924A (en) * | 1992-05-21 | 1994-12-13 | Agfa Gevaert Aktiengesellschaft | Antistatic plastic moldings |
US5354613A (en) * | 1992-10-14 | 1994-10-11 | Agfa-Gevaert, N.V. | Antistatic coating on hydrophobic resin or paper support |
US5236818A (en) * | 1992-11-02 | 1993-08-17 | Minnesota Mining And Manufacturing Company | Antistatic coatings |
US5443944A (en) * | 1992-11-16 | 1995-08-22 | Agta-Gevaert Ag | Photographic material |
JPH06167778A (en) * | 1992-12-01 | 1994-06-14 | Konica Corp | Antistatic film |
US5391472A (en) * | 1992-12-17 | 1995-02-21 | Agfa-Gevaert, N.V. | Permanent antistatic primer layer |
US5382494A (en) * | 1993-03-01 | 1995-01-17 | Konica Corporation | Silver halide photographic light-sensitive material having excellent transporting ability |
US5340676A (en) * | 1993-03-18 | 1994-08-23 | Eastman Kodak Company | Imaging element comprising an electrically-conductive layer containing water-insoluble polymer particles |
US5459021A (en) * | 1993-07-15 | 1995-10-17 | Konica Corporation | Silver halide photographic light-sensitive material |
EP0644454B1 (en) * | 1993-09-17 | 1997-12-29 | Agfa-Gevaert N.V. | Photographic light-sensitive material with preserved antistatic properties |
US5478709A (en) * | 1993-09-17 | 1995-12-26 | Agfa-Gevaert, N.V. | Photographic light-sensitive material applicable for rapid processing |
US5368995A (en) * | 1994-04-22 | 1994-11-29 | Eastman Kodak Company | Imaging element comprising an electrically-conductive layer containing particles of a metal antimonate |
US5575898A (en) * | 1994-10-12 | 1996-11-19 | Bayer Ag | Process for through-hole plating of two-layer printed circuit boards and multilayers |
US5466567A (en) * | 1994-10-28 | 1995-11-14 | Eastman Kodak Company | Imaging element comprising an electrically-conductive layer containing conductive fine particles, a film-forming hydrophilic colloid and pre-crosslinked gelatin particles |
US5484694A (en) * | 1994-11-21 | 1996-01-16 | Eastman Kodak Company | Imaging element comprising an electrically-conductive layer containing antimony-doped tin oxide particles |
US5716550A (en) * | 1995-08-10 | 1998-02-10 | Eastman Kodak Company | Electrically conductive composition and elements containing solubilized polyaniline complex and solvent mixture |
US5679505A (en) * | 1995-11-02 | 1997-10-21 | Eastman Kodak Company | Photographic element useful as a motion picture print film |
US5869217A (en) * | 1996-07-24 | 1999-02-09 | Fuji Photo Film Co., Ltd. | Silver halide photographic material and photographic element |
US5674654A (en) * | 1996-09-19 | 1997-10-07 | Eastman Kodak Company | Imaging element containing an electrically-conductive polymer blend |
US5665498A (en) * | 1996-11-22 | 1997-09-09 | Eastman Kodak Company | Imaging element containing poly(3,4-ethylene dioxypyrrole/styrene sulfonate) |
US5700623A (en) * | 1997-01-21 | 1997-12-23 | Eastman Kodak Company | Thermally stable photographic bar code label containing an antistatic layer |
US5891611A (en) * | 1997-09-29 | 1999-04-06 | Eastman Kodak Company | Clay containing antistatic layer for photographic paper |
US5869227A (en) * | 1997-12-18 | 1999-02-09 | Eastman Kodak Company | Antistatic layer with smectite clay and an interpolymer containing vinylidene halide |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7367592B1 (en) * | 1998-06-16 | 2008-05-06 | Whd Elektronische Prueftechnik Gmbh | Marking substance and security markings for testing the authenticity of documents |
US6250555B1 (en) * | 1998-09-22 | 2001-06-26 | Canon Kabushiki Kaisha | Card with built-in electronic part and production process thereof |
US6953615B2 (en) * | 1999-06-28 | 2005-10-11 | Xerox Corporation | Polythiophene xerographic component coatings |
EP1170630A1 (en) * | 2000-07-07 | 2002-01-09 | Agfa-Gevaert naamloze vennootschap | Improved subbed polyester support for imaging elements. |
US6521398B2 (en) | 2000-07-07 | 2003-02-18 | Agfa-Gevaert | Subbed polyester film and to imaging materials having such a polyester as support |
US6555610B1 (en) | 2000-07-17 | 2003-04-29 | Eastman Kodak Company | Reduced crystallinity polyethylene oxide with intercalated clay |
US20040258952A1 (en) * | 2001-02-16 | 2004-12-23 | Haghighat R. Ross | Compositions produced by solvent exchange methods and uses thereof |
US20030015691A1 (en) * | 2001-02-16 | 2003-01-23 | Elecon, Incorporated | Compositions produced by solvent exchange methods and articles of manufacture comprising same |
US6852250B2 (en) | 2001-02-16 | 2005-02-08 | Elecon, Inc. | Compositions produced by solvent exchange methods and articles of manufacture comprising same |
US20040258951A1 (en) * | 2001-02-16 | 2004-12-23 | Haghighat R. Ross | Compositions produced by solvent exchange methods and uses thereof |
EP1379581A1 (en) * | 2001-03-08 | 2004-01-14 | The Board of Governors for higher education, State of Rhode Island and providence plantations | Conductive polymer-inorganic hybrid composites |
EP1379581A4 (en) * | 2001-03-08 | 2005-03-23 | Rhode Island Education | Conductive polymer-inorganic hybrid composites |
US20030100654A1 (en) * | 2001-06-29 | 2003-05-29 | Theary Chheang | Devices, compositions, and methods incorporating adhesives whose performance is enhanced by organophilic clay constituents |
US6884833B2 (en) * | 2001-06-29 | 2005-04-26 | 3M Innovative Properties Company | Devices, compositions, and methods incorporating adhesives whose performance is enhanced by organophilic clay constituents |
US20060131546A1 (en) * | 2001-08-28 | 2006-06-22 | Tokai Rubber Industries, Ltd. | Elastic member of semiconductive polymer and OA equipment using the same |
US7678455B2 (en) * | 2001-12-06 | 2010-03-16 | Toray Industries, Inc. | Layered film and process for producing layered film |
US20050064198A1 (en) * | 2001-12-06 | 2005-03-24 | Toray Industries, Inc,. | Layered film and process for producing layered film |
EP1347333A1 (en) * | 2002-03-22 | 2003-09-24 | Fuji Photo Film Co. Ltd. | Silver halide photographic light-sensitive material |
US20030228547A1 (en) * | 2002-03-22 | 2003-12-11 | Tadashi Ito | Silver halide photographic light-sensitive material |
US6790584B2 (en) | 2002-03-22 | 2004-09-14 | Fuji Photo Film Co., Ltd. | Silver halide photographic light-sensitive material |
US6566033B1 (en) | 2002-06-20 | 2003-05-20 | Eastman Kodak Company | Conductive foam core imaging member |
US20040067703A1 (en) * | 2002-10-03 | 2004-04-08 | Grunden Bradley L. | Electrostatic charge dissipating hard laminate surfaces |
US20060181658A1 (en) * | 2005-02-16 | 2006-08-17 | Eastman Kodak Company | Conductive absorption layer for flexible displays |
US7630029B2 (en) | 2005-02-16 | 2009-12-08 | Industrial Technology Research Institute | Conductive absorption layer for flexible displays |
US7557875B2 (en) | 2005-03-22 | 2009-07-07 | Industrial Technology Research Institute | High performance flexible display with improved mechanical properties having electrically modulated material mixed with binder material in a ratio between 6:1 and 0.5:1 |
US20060215077A1 (en) * | 2005-03-22 | 2006-09-28 | Eastman Kodak Company | High performance flexible display with improved mechanical properties |
US7532290B2 (en) * | 2005-05-18 | 2009-05-12 | Industrial Technology Research Institute | Barrier layers for coating conductive polymers on liquid crystals |
US20060262260A1 (en) * | 2005-05-18 | 2006-11-23 | Eastman Kodak Company | Barrier layers for coating conductive polymers on liquid crystals |
US7564528B2 (en) | 2005-05-20 | 2009-07-21 | Industrial Technology Research Institute | Conductive layer to reduce drive voltage in displays |
US20060262245A1 (en) * | 2005-05-20 | 2006-11-23 | Eastman Kodak Company | Conductive layer to reduce drive voltage in displays |
CN101125933B (en) * | 2007-09-18 | 2011-01-19 | 佛山塑料集团股份有限公司 | Plastic film and preparation method thereof |
WO2011028230A1 (en) | 2009-08-27 | 2011-03-10 | Eastman Kodak Company | Image receiver elements |
US20150144796A1 (en) * | 2012-02-28 | 2015-05-28 | Timothy J. Tredwell | Radiographic detector arrays including scintillators and methods for same |
US9494697B2 (en) * | 2012-02-28 | 2016-11-15 | Carestream Health, Inc. | Digital radiographic imaging arrays including patterned anti-static protective coating with systems and methods for using the same |
CN107615172A (en) * | 2015-06-02 | 2018-01-19 | 富士胶片株式会社 | Image-receiving sheet |
US20180043719A1 (en) * | 2015-06-02 | 2018-02-15 | Fujifilm Corporation | Image receiving sheet |
CN107615172B (en) * | 2015-06-02 | 2020-09-29 | 富士胶片株式会社 | Image receiving sheet |
Also Published As
Publication number | Publication date |
---|---|
EP1020762A3 (en) | 2000-09-06 |
EP1020762B1 (en) | 2003-07-30 |
DE69909956T2 (en) | 2004-04-22 |
EP1020762A2 (en) | 2000-07-19 |
DE69909956D1 (en) | 2003-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6025119A (en) | Antistatic layer for imaging element | |
EP0994387B1 (en) | Abrasion resistant antistatic layer with electrically conducting polymer for imaging element | |
US6124083A (en) | Antistatic layer with electrically conducting polymer for imaging element | |
EP1324124B1 (en) | Composition containing electronically conductive polythiophene particles | |
US5484694A (en) | Imaging element comprising an electrically-conductive layer containing antimony-doped tin oxide particles | |
EP0916996B1 (en) | Imaging element comprising an electrically-conductive layer | |
US6096491A (en) | Antistatic layer for imaging element | |
US6811724B2 (en) | Composition for antistat layer | |
EP0709729A2 (en) | Imaging element comprising an electrically conductive layer containing conductive fine particles | |
US5888712A (en) | Electrically-conductive overcoat for photographic elements | |
US6300049B2 (en) | Imaging element containing an electrically-conductive layer | |
EP1081548A1 (en) | Coating composition containing polythiophene and solvent mixture | |
US5955250A (en) | Electrically-conductive overcoat layer for photographic elements | |
EP1081546A1 (en) | Coating composition containing electrically-conductive polymer and solvent mixture | |
US6060229A (en) | Imaging element containing an electrically-conductive layer and a transparent magnetic recording layer | |
EP1081547A1 (en) | Imaging elements containing an electrically-conductive layer comprising polythiophene and a cellulosic polymer binder | |
EP1039343B2 (en) | Antistatic layer for imaging element containing electrically conductive polymer and modified gelatin | |
EP1324125A2 (en) | Element with antistat layer | |
US20040135126A1 (en) | Coating composition containing polythiophene and solvent mixture | |
EP1081549A1 (en) | Coating composition containing polythiophene, film-forming binder, and solvent mixture | |
EP1324126B1 (en) | Imaging materials with conductive layers containing polythiophene particles | |
US6225039B1 (en) | Imaging element containing an electrically-conductive layer containing a sulfonated polyurethane and a transparent magnetic recording layer | |
US20030025106A1 (en) | Coating composition containing polythiophene and solvent mixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAJUMDAR, DEBASIS;SAVAGE, DENNIS J.;EICHORST, DENNIS J.;AND OTHERS;REEL/FRAME:009666/0090 Effective date: 19981215 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: CITICORP NORTH AMERICA, INC., AS AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:EASTMAN KODAK COMPANY;PAKON, INC.;REEL/FRAME:028201/0420 Effective date: 20120215 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS AGENT, MINNESOTA Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:EASTMAN KODAK COMPANY;PAKON, INC.;REEL/FRAME:030122/0235 Effective date: 20130322 Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS AGENT, Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:EASTMAN KODAK COMPANY;PAKON, INC.;REEL/FRAME:030122/0235 Effective date: 20130322 |
|
AS | Assignment |
Owner name: BANK OF AMERICA N.A., AS AGENT, MASSACHUSETTS Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (ABL);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031162/0117 Effective date: 20130903 Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE, DELAWARE Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (FIRST LIEN);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031158/0001 Effective date: 20130903 Owner name: BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT, NEW YORK Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (SECOND LIEN);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031159/0001 Effective date: 20130903 Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE, DELA Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (FIRST LIEN);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031158/0001 Effective date: 20130903 Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNORS:CITICORP NORTH AMERICA, INC., AS SENIOR DIP AGENT;WILMINGTON TRUST, NATIONAL ASSOCIATION, AS JUNIOR DIP AGENT;REEL/FRAME:031157/0451 Effective date: 20130903 Owner name: PAKON, INC., NEW YORK Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNORS:CITICORP NORTH AMERICA, INC., AS SENIOR DIP AGENT;WILMINGTON TRUST, NATIONAL ASSOCIATION, AS JUNIOR DIP AGENT;REEL/FRAME:031157/0451 Effective date: 20130903 Owner name: BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT, NEW YO Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (SECOND LIEN);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031159/0001 Effective date: 20130903 |
|
AS | Assignment |
Owner name: QUALEX, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK AMERICAS, LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK AVIATION LEASING LLC, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: LASER PACIFIC MEDIA CORPORATION, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: FPC, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: FAR EAST DEVELOPMENT LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: CREO MANUFACTURING AMERICA LLC, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: PAKON, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK REALTY, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: NPEC, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK (NEAR EAST), INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK PHILIPPINES, LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK PORTUGUESA LIMITED, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK IMAGING NETWORK, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 |
|
AS | Assignment |
Owner name: KODAK PHILIPPINES LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: KODAK (NEAR EAST) INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: QUALEX INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: KODAK AMERICAS LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: LASER PACIFIC MEDIA CORPORATION, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: KODAK REALTY INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: NPEC INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: FPC INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: FAR EAST DEVELOPMENT LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 |