Connect public, paid and private patent data with Google Patents Public Datasets

Energy-base method applied to prosthetics for repairing tissue defects

Download PDF

Info

Publication number
US5972007A
US5972007A US08962602 US96260297A US5972007A US 5972007 A US5972007 A US 5972007A US 08962602 US08962602 US 08962602 US 96260297 A US96260297 A US 96260297A US 5972007 A US5972007 A US 5972007A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
tissue
collagen
prosthetic
defect
patch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08962602
Inventor
Warren D. Sheffield
Scott Wampler
Jesse Kuhns
Jeffrey J. Vaitekunas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon Inc
Original Assignee
Ethicon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0063Implantable repair or support meshes, e.g. hernia meshes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/915Method or apparatus for preparing biological material

Abstract

A method for repairing a defect in tissue includes the steps of placing at least one collagen pad on the tissue surrounding a tissue defect. A prosthetic is then placed over the defect and the collagen pad. Pressure and energy are then applied to the prosthetic at the collagen pad until the tissue and the collagen pad adhere to each other.

Description

FIELD AND BACKGROUND OF THE INVENTION

The present invention relates, in general, to the surgical repair of tissue, and more particularly, to a new and useful method for repairing a defect in tissue such as an inguinal hernia and a novel prosthetic used in carrying out the method.

It is established practice in the surgical field to repair defects in tissue, for instance, an inguinal hernia, through the use of PROLENE™ mesh (manufactured and sold by Ethicon, Inc., Somerville, N.J.). Generally the mesh is cut to a desired size for placement over the inguinal hernia. Once the sized mesh has been placed over the defect, the mesh is attached to the surrounding inguinal tissue using several known attachment means.

Once the mesh is in place, it is important that the mesh serve as a barrier over the defect in order to restrict the lower viscera in the patient's abdomen from protruding through the defect. Accordingly, it is essential that the attachment means used to secure the mesh to the inguinal tissue have an initial strength of several pounds of force in both the tensile and shear directions. Moreover, it is important that the mesh remain in place for several days so that natural adhesions can form to ensure that the mesh is sufficiently anchored to the tissue.

One common way of attaching the mesh to tissue is through the use of suture and needle. As would be expected, the suturing technique for this procedure requires a great deal of skill and is normally conducted by very experienced surgeons, especially for minimally invasive or laparoscopic procedures. Since the learning curve for laparoscopic suturing is extremely steep, many surgeons are slow to adopt this technique.

In response to the challenges associated with suturing, other fastening techniques have evolved. Accordingly, it is now common practice to use a surgical stapler such as the ENDOSCOPIC MULTI-FIRE STAPLER™, (manufactured and sold by Ethicon Endo-Surgery, Inc., Cincinnati, Ohio). U.S. Pat. No. 5,470,010 (Rothfuss et al.) discloses a disposable, endoscopic stapler that is used to place a number of staples at various locations of the placed mesh in order to properly secure the mesh to the tissue. Although the endoscopic stapler is efficient and easy to use for a surgeon, there is a cost issue associated with its use for this type of procedure.

In an effort to alleviate the costs associated with a disposable, multiple fire stapler, some surgeons prefer a re-usable, "single shot" stapler such as disclosed in U.S. Pat. No. 5,246,156 (Rothfss et al.). Although there is a cost savings to the user, the procedure time is extended when using this type of stapler over the disposable, multiple fire stapler.

In addition to using surgical staplers to secure mesh to inguinal tissue to repair a hernia, other types of fasteners have been developed. One of these fasteners is a helical fastener such as disclosed in U.S. Pat. No. 5,258,000 (Gianturco). This type of fastener is also disclosed in WO 96/03925 (Bolduc et al.). However, although these type of fasteners are also easy to use and decrease the procedure time, cost is also an issue.

Up until now, there is no known procedure and/or device that allows for the repair of tissue defects, such as an inguinal hernia, that is minimally invasive, time and cost effective and easy to use.

SUMMARY OF THE INVENTION

The present invention is a novel method for repairing a defect in tissue as well as a novel prosthetic used in facilitating the method. The method and prosthetic according to the present invention is useful for various types of surgical procedures, and is particularly useful for the repair of an inguinal hernia.

A method according to the present invention for repairing a defect in tissue, such as an inguinal hernia, includes placing a prosthetic over a tissue defect and against the tissue surrounding the defect. Pressure and energy are then applied to the prosthetic to at least one location on the prosthetic and the surrounding tissue until the surrounding tissue and the prosthetic adhere to each other.

A prosthetic according to the present invention comprises three embodiments. A first embodiment of the prosthetic consists of two components. The first component is a plurality of collagen patches which are placed on the tissue surrounding the tissue defect. Any number of collagen pads may be utilized and their selection and placement is typically at the preference of the surgeon. After the collagen pads have been positioned, a patch, typically made of PROLENE™ mesh, is placed over the tissue defect and the collagen pads. The combination of the collagen pads and the placed mesh patch form the prosthetic which is the first embodiment according to the present invention. As mentioned above, force and energy are applied to the patch over each collagen pad for anchoring to the tissue.

A second embodiment of the prosthetic according to the present invention comprises a patch having a plurality of collagen pads integrally formed with the patch. The patch may consist of mesh fibers interwoven with the integrally formed collagen fibers of the collagen pads for forming a single, one-piece prosthetic.

A third embodiment of a prosthetic according to the present invention comprises a patch which is placeable over the tissue defect wherein the patch is made entirely of collagen material throughout. Accordingly, after the patch is placed over the tissue defect and against surrounding tissue, the surgeon has the option to apply force and energy at any desired location of the prosthetic in order to cross-link the fibers of the patch with the fibers of the tissue.

With respect to all three embodiments of the prosthetic according to the present invention, once the prosthetic is placed on the tissue surrounding the tissue defect, pressure and energy are applied to the prosthetic and the tissue surrounding the defect in order to break down the mechanical bonds of both the prosthetic and the tissue for forming new cross-linking of the respective fibers. Accordingly, the prosthetic and the tissue adhere to each other and the prosthetic is fixedly anchored in the tissue around and covering the tissue defect in order to provide an effective barrier at the tissue defect.

As it can be well appreciated and understood, the novel method and prosthetics according to the present invention is applicable to many surgical procedures, and more particularly, to a hernia repair surgical procedure for repairing a defect in the tissue of the inguinal anatomy or inguinal hernia.

It is an object of the present invention to provide a method for repairing a defect in tissue that is minimally invasive, time and cost effective and easy to use.

It is another object of the present invention to provide a method for repairing an inguinal hernia that is minimally invasive, time and cost effective and easy to use.

It is another object of the present invention to provide a prosthetic for facilitating the repair of tissue defects that is minimally invasive, time and cost effective and easy to use.

It is another object of the present invention to provide a prosthetic for repairing an inguinal hernia that is minimally invasive, time and cost effective and easy to use.

The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of the disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which the preferred embodiments of the invention are illustrated.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. The invention itself, however, both as to organization and methods of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings in which:

FIG. 1 is a fragmentary perspective view of the lower abdomen particularly the left inguinal anatomy having a defect in the inguinal floor;

FIG. 2 is a fragmentary perspective view of the lower abdomen of FIG. 1 illustrating the placement of collagen pads in preparation for repair of the defect in accordance with the present invention;

FIG. 3 is a fragmentary perspective view of FIG. 2 illustrating the placement of a mesh patch over the collagen pads for securing to tissue through the use of an energy delivery device in accordance with the present invention;

FIG. 4 is a fragmentary perspective view of an alternate embodiment of a hernia prosthetic according to the present invention wherein the mesh patch is provided with integral pads of collagen; and

FIG. 5 is a fragmentary perspective view of another alternate embodiment of a hernia prosthetic according to the present invention wherein the prosthetic is made of collagen.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention pertains to the repair of defects in tissue and includes a novel method for repairing tissue defects as well as a novel prosthetic used in facilitating the repair.

By way of example, the present invention is illustrated and described in conjunction with a repair of an inguinal hernia However, it should be understood that the present invention is applicable to various other surgical procedures that require the repair of defects in tissue.

The Anatomy

Referring now to FIG. 1, one typical application of the present invention is a repair of a defect 45, such as an inguinal hernia, located in inguinal tissue 40 such as the inguinal floor. The delicate anatomical structures of the left inguinal anatomy of a human patient are illustrated in order to particularly point out the usefulness of the present invention.

Generally, the inguinal hernia 45 is accessible through abdominal muscle 20. As can be well appreciated, an extremely sensitive network of vessels and nerves exist in the area of a typical inguinal hernia 45, which requires a surgeon to conduct a hernia repair with great skill and caution.

For instance, in the trasnverse abdominis aponeurosis 24, an internal ring 26 permits gastric vessels 30 and Vas deferens 33 to extend therethrough over an edge of inguinal ligament 28. Femoral canal 34 is located near Cooper's ligament 22 and contains external iliac vessels 36 and inferior epigastric vessels 38.

In many cases, the edge of the inguinal ligament 28 and Cooper's ligament 22 serve as anatomical landmarks and support structures for supporting surgical fasteners such as those mentioned previously. The area containing the external iliac vessels 36 and the Vas deferens 33 is commonly known to surgeons as "the Triangle of Doom". Accordingly, it is critical that the surgeon avoid injuring any of these vessels described above and extreme care must be taken when performing dissection, suturing or stapling within this area.

The Devices

FIGS. 2-5 illustrate three embodiments of a prosthetic according to the present invention that are used to enable a novel surgical procedure.

FIG. 2 shows a plurality of collagen pads 60 which can be sized at the preference of the surgeon prior to placement around the defect 45 on surrounding tissue such as Cooper's ligament 22, the edge of the inguinal ligament 28, the inguinal floor 40, etc.

As illustrated in FIG. 3, the collagen pads 60 are designed to interface with tissue surrounding the tissue defect 45 and a patch 55 to form a two-piece prosthetic 52. The patch 55 may consist of any desired configuration, structure or material. However, the patch 55 is preferably made of PROLENE™ (a known polymer made up of fibers) and preferably configured as mesh. It is within the training and comfort zone for surgeons to use the PROLENE™ mesh patch 55 since the patch 55 is easily sized, such as providing a side slot 57, for accommodating the gastric vessels 30 and the Vas deferens 33.

As illustrated, the patch 55 is placeable over the defect 45 and the collagen pads 60 for providing a sufficient barrier to internal viscera (not shown) of the abdomen which would otherwise have a tendency to protrude through the defect 45 and cause the patient a great deal of pain and discomfort.

The pads 60 are strips of material or mesh made of collagen fiber which are constructed of either man-made or natural collagen fibers. The fibers of the collagen pads 60 are made of long polymer chains that are bundled together through cross-linking to form fibers. One type of collagen that has been found to be useful for the pads 60 is glutaraldehyde cross-linked bovine pericardium (PERI-STRIPS™ manufactured and sold by BioVascular, Inc.). This material is rich in collagen and particularly useful in the present invention.

Moreover, as is well known, collagen makes up the structural support of the extracellular matrix in most human tissue and also consists of polymer fibers.

When energy is applied to all of these fibers, the cross-links are broken and the fibers become "frayed" on their ends. The term "energy" refers to the application of either radio frequency (RF) electricity, ultrasound (acoustic/mechanical) energy, laser (coherent light) energy, ultraviolet light (electro-magnetic) energy, microwave (electro-magnetic) energy, white light (non-coherent light) energy or the like or any combinations of the above.

When pressure or force is used to apply the collagen pads 60 to other polymer or tissue surfaces, e.g. the patch 55 and the tissue, these frayed ends are brought into intimate contact with the polymer chains that make up these other surfaces. The term "pressure" refers to the application of a force applied by any type of instrument or object to the collagen pads 60 and the patch 55 over the cross sectional area of the contact surface of these instruments or objects.

The frayed fiber ends of the collagen pads 60 then recross-link with the polymer chains of the patch 55 and the tissue due to their close proximity to each other. This cross-linking between chains forms a mechanical bond of sufficient strength to hold the collagen pads 60 to both the polymer mesh patch 55 and to the tissue surrounding the defect 45. Accordingly, the collagen pads 60 and patch 55 become mechanically linked or bonded to any object that has sufficient polymer properties to form a new cross-link, (i.e. most human tissue). Accordingly, upon applying energy and pressure to the collagen pads 60, the patch 55 and the tissue, they adhere to each other thereby anchoring or fixating the prosthetic 52 to the tissue. This makes choice of placement of the prosthetic 52 easy, since it can be attached to most structures in the area of the defect 45 without causing any sub-surface damage to the delicate anatomical structures. In addition, the collagen that makes up the pads 60 will be replaced over time by human connective tissue making this aspect of the prosthetic 52 absorbable.

FIG. 4 illustrates a second embodiment of a prosthetic 70 according to the present invention. The prosthetic 70 includes a patch 72 similar to the mesh patch 55 (FIG. 3) described above. However, the patch 72 includes a plurality of collagen pads 75 that are integrally formed in the patch 72. The collagen pads 75 are interwoven and/or integrally combined with the mesh fibers of the patch 72. It is also envisioned that the collagen pad 75 may consist of one or more collagen strands or elongated fibers that are integrally woven with the fibers of the mesh patch 55, e.g. PROLENE™ fibers, in an alternating pattern or other desired pattern. The prosthetic 70 also has the ability to be sized to any dimension or configuration desired by the surgeon and has the ability to permit a side slot 77 to be cut into the patch 72 for accommodating delicate vessel structures or the like.

FIG. 5 illustrates a third embodiment of a prosthetic 80, according to the present invention, which is a patch 82 comprising collagen material throughout. Again, the collagen patch 82 is sized and configured according to preference and accommodates a side slot 87 if the surgeon desires this feature.

The Method

Although the present invention is applicable to various surgical procedures involving the curing or repairing of tissue defects, the method according to the present invention is illustrated in FIGS. 2-5 in accordance with the repair of an inguinal hernia 45 located in the left inguinal region of a human patient.

As best shown in FIG. 2, in repairing a tissue defect 45, the surgeon accesses the defect 45 with caution and carefully identifies the anatomical structures and landmarks as well as the tissue surrounding the defect 45 such as the inguinal floor 40, aponeurosis 24, Cooper's ligament 22, etc. Additionally, if any internal viscera had extended through the defect 45, the surgeon gently moves the viscera back through the defect 45 and into the abdominal cavity. The surgeon then determines the location for placement of the collagen pads 60 on the tissue surrounding the defect 45. The collagen pads 60 are placed on the tissue around the defect 45 using an instrument 50 such as standard forceps or laparoscopic graspers if the repair is being conducted with the aid of an endoscope as part of laparoscopic procedure.

At the surgeon's preference, the surgeon may use one or several collagen pads 60 for strategic placement on the tissue surrounding the defect 45. Additionally, the surgeon may opt to customize the size and configuration of each collagen pad 60 to take into account the unique anatomical structures encountered. For instance, a corner of one of the collagen pads 60 may be removed for accommodating the external iliac vessels 36.

After pre-positioning the collagen pads 60, the surgeon introduces the patch 55 into the surgical site at the defect 45 as shown in FIG. 3. The patch 55 which may be standard PROLENE™ mesh, is sized and configured, for a customized fit at the site and is placed over the defect 45 and each collagen pad 60. Again standard forceps 50 are used to introduce and place the mesh patch 55. The side slot 57 is used to accommodate vessel structures 30 and 33 in a safe and convenient manner. Accordingly, the gastric vessels 30 and the Vas deferens 33 are positioned in the side slot 57 and surrounded by the remainder of the mesh patch 55.

Once the patch 55 is placed over the defect 45 and the collagen pads 60, an energy-based device 100, such as an RF electrosurgical device, is placed on the patch directly over each collagen pad 60 in order to form the prosthetic 52. The energy device 100 is then used to apply force and energy to the patch 55 and the pads 60 sufficient enough to denature or break the mechanical bonds of the patch 55, the collagen pads 60 and the tissue. As mentioned above, new cross-linking occurs between the tissue, the collagen pads 60 and the patch 55 to ensure that the tissue and the prosthetic 52 adhere to each other. With newly formed cross-linking of the fibers of the prosthetic 52, e.g. the collagen pads 60 and the patch 55 and the tissue surrounding the defect 45, the prosthetic 52 is anchored over the defect 45 and fixedly attached to the surrounding tissue. Accordingly, a sufficient barrier is provided to the defect 45 and internal viscera are prevented from entering through the defect 45.

It can also be appreciated that the prosthetic 70 (FIG. 4) and prosthetic 80 (FIG. 5) are used in a similar manner to that described above. When utilizing the prosthetic 70 with integrally formed collagen pads 75 in the mesh patch 72, the surgeon performs a single placement step for the prosthetic 70 by placing the prosthetic 70 over the tissue defect 45 as opposed to the two step placement step with the prosthetic 52 (FIGS. 2 and 3) outlined above. Moreover, in utilizing the prosthetic 70, the surgeon may optionally utilize any number of the integrally-formed collagen pads 75 for adhering the prosthetic 70 to the tissue.

Additionally, the prosthetic 80 (FIG. 5) is another convenient device for facilitating the repair of the defect 45 because it allows the surgeon to select any desired location on the prosthetic 80 itself to apply the force and energy for to anchoring the prosthetic 80 to the tissue because the patch 82 itself is made of collagen material throughout.

While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.

Claims (14)

What is claimed is:
1. A method for repairing a defect in tissue comprising the steps of:
covering a tissue defect and surrounding tissue with a prosthetic by placing said prosthetic over said defect and against said surrounding tissue; and
applying both pressure and energy to said prosthetic on said surrounding tissue on at least one location on said prosthetic and said surrounding tissue until said surrounding tissue and said prosthetic adhere to each other.
2. The method according to claim 1, including applying said energy to said prosthetic at several locations on said prosthetic and said surrounding tissue.
3. The method according to claim 1, wherein said prosthetic is made of a collagen material.
4. The method according to claim 3, wherein said defect is an inguinal hernia.
5. The method according to claim 3, including applying said energy to said prosthetic at several locations on said prosthetic and said surrounding tissue.
6. The method according to claim 2, wherein said defect is an inguinal hernia.
7. The method according to claim 1, wherein said prosthetic comprises a mesh patch having at least one collagen pad integrally formed therein.
8. The method according to claim 7, wherein said mesh patch has a plurality of collagen pads integrally formed therein.
9. The method according to claim 8, including applying said pressure and said energy to said collagen pads until said tissue and said collagen pads adhere to each other.
10. The method according to claim 9, wherein said defect is an inguinal hernia.
11. A method for repairing a defect in tissue comprising the steps of:
placing at least one collagen pad on tissue surrounding a tissue defect;
placing an individual patch over said defect and said at least one collagen pad, said at least one collagen pad and said individual patch forming a two-piece prosthetic; and
securing said two-piece prosthetic to said surrounding tissue by applying both pressure and energy to said individual patch at said collagen pad on said tissue until said individual patch, said collagen pad and said tissue adhere to each other.
12. The method according to claim 11, including placing a plurality of collagen pads on said tissue surrounding said tissue defect.
13. The method according to claim 12, including applying said pressure and said energy to each collagen pad until said tissue and said each collagen pad adhere to each other.
14. The method according to claim 13, wherein said defect is an inguinal hernia.
US08962602 1997-10-31 1997-10-31 Energy-base method applied to prosthetics for repairing tissue defects Expired - Lifetime US5972007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08962602 US5972007A (en) 1997-10-31 1997-10-31 Energy-base method applied to prosthetics for repairing tissue defects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08962602 US5972007A (en) 1997-10-31 1997-10-31 Energy-base method applied to prosthetics for repairing tissue defects

Publications (1)

Publication Number Publication Date
US5972007A true US5972007A (en) 1999-10-26

Family

ID=25506123

Family Applications (1)

Application Number Title Priority Date Filing Date
US08962602 Expired - Lifetime US5972007A (en) 1997-10-31 1997-10-31 Energy-base method applied to prosthetics for repairing tissue defects

Country Status (1)

Country Link
US (1) US5972007A (en)

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6257241B1 (en) * 1999-03-31 2001-07-10 Ethicon Endo-Surgery, Inc. Method for repairing tissue defects using ultrasonic radio frequency energy
US6287344B1 (en) * 1999-03-31 2001-09-11 Ethicon Endo-Surgery, Inc. Method for repairing tissue defects using an ultrasonic device
US20020049503A1 (en) * 2000-10-20 2002-04-25 Michael Milbocker Surgical repair of tissue defects
WO2002047578A1 (en) * 2000-12-16 2002-06-20 Kornel Tordy Implant, method for inserting a reinforcing element, and method for producing an implant
US6482235B1 (en) 1999-08-18 2002-11-19 Intrinsic Orthopedics, Inc. Devices and methods of vertebral disc augmentation
US20030083543A1 (en) * 1999-07-28 2003-05-01 Enrico Nicolo Hernia prosthesis
US20030135238A1 (en) * 2001-12-12 2003-07-17 Milbocker Michael T. In situ bonds
US20040049289A1 (en) * 2000-12-16 2004-03-11 Kornel Tordy Implant, method for inserting a reinforcing element, and method for producing an implant
US6747218B2 (en) 2002-09-20 2004-06-08 Sherwood Services Ag Electrosurgical haptic switch including snap dome and printed circuit stepped contact array
US6790213B2 (en) 2002-01-07 2004-09-14 C.R. Bard, Inc. Implantable prosthesis
US20040260315A1 (en) * 2003-06-17 2004-12-23 Dell Jeffrey R. Expandable tissue support member and method of forming the support member
US20070239260A1 (en) * 2006-03-31 2007-10-11 Palanker Daniel V Devices and methods for tissue welding
US20080086216A1 (en) * 2006-10-06 2008-04-10 Wilson Jeffrey A Apparatus and Method for Limiting Surgical Adhesions
US20080114334A1 (en) * 2006-11-10 2008-05-15 Voegele James W Adhesive Marker
WO2009036094A2 (en) * 2007-09-12 2009-03-19 The Brigham And Women's Hospital, Inc. Magnetic prosthetic materials for implantation using natural orifice transluminal endoscopic methods
US7614258B2 (en) 2006-10-19 2009-11-10 C.R. Bard, Inc. Prosthetic repair fabric
US20090304773A1 (en) * 2003-12-09 2009-12-10 Promethean Surgical Devices, Llc Surgical adhesive and uses therefore
US7658765B2 (en) 1999-08-18 2010-02-09 Intrinsic Therapeutics, Inc. Resilient intervertebral disc implant
US7670379B2 (en) 1999-10-20 2010-03-02 Anulex Technologies, Inc. Spinal disc annulus reconstruction method
US7717961B2 (en) 1999-08-18 2010-05-18 Intrinsic Therapeutics, Inc. Apparatus delivery in an intervertebral disc
US7727241B2 (en) 2003-06-20 2010-06-01 Intrinsic Therapeutics, Inc. Device for delivering an implant through an annular defect in an intervertebral disc
US20100137677A1 (en) * 2008-11-20 2010-06-03 Evan Friedman Method for treatment and prevention of parastomal hernias
US7749275B2 (en) 1999-08-18 2010-07-06 Intrinsic Therapeutics, Inc. Method of reducing spinal implant migration
US7749273B2 (en) 1999-10-20 2010-07-06 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US7753941B2 (en) 2000-04-04 2010-07-13 Anulex Technologies, Inc. Devices and methods for annular repair of intervertebral discs
US7828794B2 (en) 2005-08-25 2010-11-09 Covidien Ag Handheld electrosurgical apparatus for controlling operating room equipment
US7828850B2 (en) 1999-10-20 2010-11-09 Anulex Technologies, Inc. Methods and devices for spinal disc annulus reconstruction and repair
US20100305560A1 (en) * 2009-05-29 2010-12-02 Vivant Medical, Inc. Microwave Ablation Safety Pad, Microwave Safety Pad System and Method of Use
US20100312357A1 (en) * 2008-02-18 2010-12-09 PolyTouch Medical, Inc. Device and method for deploying and attaching an implant to a biological tissue
US20100331865A1 (en) * 2009-06-30 2010-12-30 Gino Bradica Biphasic implant device providing joint fluid therapy
US7867278B2 (en) 1999-08-18 2011-01-11 Intrinsic Therapeutics, Inc. Intervertebral disc anulus implant
US7879033B2 (en) 2003-11-20 2011-02-01 Covidien Ag Electrosurgical pencil with advanced ES controls
US20110034942A1 (en) * 2008-02-18 2011-02-10 PolyTouch Medical, Inc. Device and method for rolling and inserting a prosthetic patch into a body cavity
US20110040310A1 (en) * 2009-08-17 2011-02-17 PolyTouch Medical, Inc. Means and method for reversibly connecting an implant to a deployment device
US20110054500A1 (en) * 2008-02-18 2011-03-03 PolyTouch Medical, Inc. Device and method for deploying and attaching an implant to a biological tissue
US20110066166A1 (en) * 2008-02-18 2011-03-17 PolyTouch Medical, Inc. Means and method for reversibly connecting a patch to a patch deployment device
US7922768B2 (en) 1999-10-20 2011-04-12 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and deformable spinal disc annulus stent
US7935147B2 (en) 1999-10-20 2011-05-03 Anulex Technologies, Inc. Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus
US7951201B2 (en) 1999-10-20 2011-05-31 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US7955327B2 (en) 2003-02-20 2011-06-07 Covidien Ag Motion detector for controlling electrosurgical output
US7959633B2 (en) 2003-11-20 2011-06-14 Covidien Ag Electrosurgical pencil with improved controls
US7959679B2 (en) 1999-08-18 2011-06-14 Intrinsic Therapeutics, Inc. Intervertebral anulus and nucleus augmentation
US7972337B2 (en) 2005-12-28 2011-07-05 Intrinsic Therapeutics, Inc. Devices and methods for bone anchoring
US20110184407A1 (en) * 2010-01-26 2011-07-28 Tyco Healthcare Group Lp Hernia Repair System
US20110208320A1 (en) * 2010-02-19 2011-08-25 Lifecell Corporation Abdominal wall treatment devices
US20110208217A1 (en) * 2004-05-19 2011-08-25 Felix Checa Ayet Prosthesis and method for surgical treatment of inguinal hernias
US8016824B2 (en) 2002-07-25 2011-09-13 Covidien Ag Electrosurgical pencil with drag sensing capability
US8100902B2 (en) 2005-06-28 2012-01-24 Covidien Ag Electrode with rotatably deployable sheath
US8128622B2 (en) 2002-11-05 2012-03-06 Covidien Ag Electrosurgical pencil having a single button variable control
US8128698B2 (en) 1999-10-20 2012-03-06 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
WO2012042522A2 (en) 2010-09-28 2012-04-05 Medizn Technologies Ltd. Bioadhesive composition and device for repairing tissue damage
US8162937B2 (en) 2008-06-27 2012-04-24 Tyco Healthcare Group Lp High volume fluid seal for electrosurgical handpiece
US8163022B2 (en) 2008-10-14 2012-04-24 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US8182545B2 (en) 2000-09-14 2012-05-22 C.R. Bard, Inc. Implantable prosthesis
US8231678B2 (en) 1999-08-18 2012-07-31 Intrinsic Therapeutics, Inc. Method of treating a herniated disc
US8231620B2 (en) 2009-02-10 2012-07-31 Tyco Healthcare Group Lp Extension cutting blade
US8235987B2 (en) 2007-12-05 2012-08-07 Tyco Healthcare Group Lp Thermal penetration and arc length controllable electrosurgical pencil
US8323341B2 (en) 2007-09-07 2012-12-04 Intrinsic Therapeutics, Inc. Impaction grafting for vertebral fusion
US8449540B2 (en) 2003-11-20 2013-05-28 Covidien Ag Electrosurgical pencil with improved controls
US8454612B2 (en) 2007-09-07 2013-06-04 Intrinsic Therapeutics, Inc. Method for vertebral endplate reconstruction
US8460319B2 (en) 2010-01-11 2013-06-11 Anulex Technologies, Inc. Intervertebral disc annulus repair system and method
US8506565B2 (en) 2007-08-23 2013-08-13 Covidien Lp Electrosurgical device with LED adapter
US8556977B2 (en) 1999-10-20 2013-10-15 Anulex Technologies, Inc. Tissue anchoring system and method
US20130296657A1 (en) * 2012-05-03 2013-11-07 Covidien Lp Methods of using light to repair hernia defects
US8591509B2 (en) 2008-03-31 2013-11-26 Covidien Lp Electrosurgical pencil including improved controls
US8597292B2 (en) 2008-03-31 2013-12-03 Covidien Lp Electrosurgical pencil including improved controls
US8636733B2 (en) 2008-03-31 2014-01-28 Covidien Lp Electrosurgical pencil including improved controls
US8668688B2 (en) 2006-05-05 2014-03-11 Covidien Ag Soft tissue RF transection and resection device
US8764835B2 (en) 2006-06-13 2014-07-01 Bret A. Ferree Intervertebral disc treatment methods and apparatus
US8821549B2 (en) 2006-06-13 2014-09-02 Anova Corporation Methods and apparatus for anulus repair
US8834496B2 (en) 2006-06-13 2014-09-16 Bret A. Ferree Soft tissue repair methods and apparatus
US20140309626A1 (en) * 2013-04-12 2014-10-16 Covidien Lp System and method having an electromagnetic manipulator with a uv tacking mechanism
US8888811B2 (en) 2008-10-20 2014-11-18 Covidien Lp Device and method for attaching an implant to biological tissue
US8906045B2 (en) 2009-08-17 2014-12-09 Covidien Lp Articulating patch deployment device and method of use
US8936642B2 (en) 1999-05-28 2015-01-20 Anova Corporation Methods for treating a defect in the annulus fibrosis
US9034002B2 (en) 2008-02-18 2015-05-19 Covidien Lp Lock bar spring and clip for implant deployment device
US9044235B2 (en) 2008-02-18 2015-06-02 Covidien Lp Magnetic clip for implant deployment device
US9072586B2 (en) 2008-10-03 2015-07-07 C.R. Bard, Inc. Implantable prosthesis
US9232938B2 (en) 2006-06-13 2016-01-12 Anova Corp. Method and apparatus for closing fissures in the annulus fibrosus
US9241796B2 (en) 1999-05-28 2016-01-26 Bret A. Ferree Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US9271821B2 (en) 2012-01-24 2016-03-01 Lifecell Corporation Elongated tissue matrices
US9301826B2 (en) 2008-02-18 2016-04-05 Covidien Lp Lock bar spring and clip for implant deployment device
US9393093B2 (en) 2008-02-18 2016-07-19 Covidien Lp Clip for implant deployment device
US9393002B2 (en) 2008-02-18 2016-07-19 Covidien Lp Clip for implant deployment device
US9398944B2 (en) 2008-02-18 2016-07-26 Covidien Lp Lock bar spring and clip for implant deployment device
CN106073939A (en) * 2016-06-30 2016-11-09 申英末 Tissue repair sheet used under laparoscope
US9532863B2 (en) 2011-12-20 2017-01-03 Lifecell Corporation Sheet tissue products
US9549805B2 (en) 2011-12-20 2017-01-24 Lifecell Corporation Flowable tissue products
US9592062B2 (en) 1999-05-28 2017-03-14 Anova Corp. Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US9737294B2 (en) 2013-01-28 2017-08-22 Cartiva, Inc. Method and system for orthopedic repair
US9750595B2 (en) 2012-09-28 2017-09-05 Covidien Lp Implantable medical devices which include grip-members and methods of use thereof
US9833240B2 (en) 2008-02-18 2017-12-05 Covidien Lp Lock bar spring and clip for implant deployment device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3272204A (en) * 1965-09-22 1966-09-13 Ethicon Inc Absorbable collagen prosthetic implant with non-absorbable reinforcing strands
US3376869A (en) * 1964-02-21 1968-04-09 Ethicon Inc Surgical collagen film formed from random lengths of collagen tapes or strands
US3563228A (en) * 1969-02-28 1971-02-16 Maurice Seiderman Process of forming adherent films on animal tissue
US4452245A (en) * 1980-06-06 1984-06-05 Usher Francis C Surgical mesh and method
US5209776A (en) * 1990-07-27 1993-05-11 The Trustees Of Columbia University In The City Of New York Tissue bonding and sealing composition and method of using the same
US5246156A (en) * 1991-09-12 1993-09-21 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
US5258000A (en) * 1991-11-25 1993-11-02 Cook Incorporated Tissue aperture repair device
US5290296A (en) * 1991-04-05 1994-03-01 Phillips Edward H Surgical fastener system
EP0667452A1 (en) * 1992-10-29 1995-08-16 Kabushiki Kaisha Komatsu Seisakusho Capacity control device in variable capacity hydraulic pump
US5470010A (en) * 1991-04-04 1995-11-28 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
WO1996003925A1 (en) * 1994-08-05 1996-02-15 Origin Medsystems, Inc. Surgical helical fastener with applicator
WO1996007355A1 (en) * 1994-09-06 1996-03-14 Fusion Medical Technologies, Inc. Structure and method for bonding or fusion of biological materials
WO1996009795A1 (en) * 1994-09-29 1996-04-04 Surgical Sense, Inc. Hernia mesh patches and methods of use
US5733337A (en) * 1995-04-07 1998-03-31 Organogenesis, Inc. Tissue repair fabric
US5824015A (en) * 1991-02-13 1998-10-20 Fusion Medical Technologies, Inc. Method for welding biological tissue

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3376869A (en) * 1964-02-21 1968-04-09 Ethicon Inc Surgical collagen film formed from random lengths of collagen tapes or strands
US3272204A (en) * 1965-09-22 1966-09-13 Ethicon Inc Absorbable collagen prosthetic implant with non-absorbable reinforcing strands
US3563228A (en) * 1969-02-28 1971-02-16 Maurice Seiderman Process of forming adherent films on animal tissue
US4452245A (en) * 1980-06-06 1984-06-05 Usher Francis C Surgical mesh and method
US5209776A (en) * 1990-07-27 1993-05-11 The Trustees Of Columbia University In The City Of New York Tissue bonding and sealing composition and method of using the same
US5824015A (en) * 1991-02-13 1998-10-20 Fusion Medical Technologies, Inc. Method for welding biological tissue
US5470010A (en) * 1991-04-04 1995-11-28 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
US5290296A (en) * 1991-04-05 1994-03-01 Phillips Edward H Surgical fastener system
US5290297A (en) * 1991-04-05 1994-03-01 Phillips Edward H Surgical fastener system
US5246156A (en) * 1991-09-12 1993-09-21 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
US5258000A (en) * 1991-11-25 1993-11-02 Cook Incorporated Tissue aperture repair device
EP0667452A1 (en) * 1992-10-29 1995-08-16 Kabushiki Kaisha Komatsu Seisakusho Capacity control device in variable capacity hydraulic pump
WO1996003925A1 (en) * 1994-08-05 1996-02-15 Origin Medsystems, Inc. Surgical helical fastener with applicator
WO1996007355A1 (en) * 1994-09-06 1996-03-14 Fusion Medical Technologies, Inc. Structure and method for bonding or fusion of biological materials
WO1996009795A1 (en) * 1994-09-29 1996-04-04 Surgical Sense, Inc. Hernia mesh patches and methods of use
US5733337A (en) * 1995-04-07 1998-03-31 Organogenesis, Inc. Tissue repair fabric

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Laparoscopic Hernia Repair, Robert J. Fitzgibbones, Jr., M.D., F.A.C.S., J. Barry McKernan, M.D., Ph.D., F.A.C.S., Leonard S. Schultz, M.D., F.A.S.A., Albert T.Spaw, M.D., F.A.C.S. Techniques in Endoscopic Surgery, Ethicon Endo Surgery . *
Laparoscopic Hernia Repair, Robert J. Fitzgibbones, Jr., M.D., F.A.C.S., J. Barry McKernan, M.D., Ph.D., F.A.C.S., Leonard S. Schultz, M.D., F.A.S.A., Albert T.Spaw, M.D., F.A.C.S. Techniques in Endoscopic Surgery, Ethicon Endo-Surgery .
Nerve injury associated with laparoscopic inguinal herniorrhaphy, Prakash Sampath, MD, Charles J. Yeo, MD, and James N. Campbell, MD, Baltimore, MD Surgery, 1995;118:829 33. *
Nerve injury associated with laparoscopic inguinal herniorrhaphy, Prakash Sampath, MD, Charles J. Yeo, MD, and James N. Campbell, MD, Baltimore, MD Surgery, 1995;118:829-33.

Cited By (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287344B1 (en) * 1999-03-31 2001-09-11 Ethicon Endo-Surgery, Inc. Method for repairing tissue defects using an ultrasonic device
US6257241B1 (en) * 1999-03-31 2001-07-10 Ethicon Endo-Surgery, Inc. Method for repairing tissue defects using ultrasonic radio frequency energy
US9592062B2 (en) 1999-05-28 2017-03-14 Anova Corp. Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US9084616B2 (en) 1999-05-28 2015-07-21 Anova Corporation Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US8936642B2 (en) 1999-05-28 2015-01-20 Anova Corporation Methods for treating a defect in the annulus fibrosis
US9241796B2 (en) 1999-05-28 2016-01-26 Bret A. Ferree Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft
US20030083543A1 (en) * 1999-07-28 2003-05-01 Enrico Nicolo Hernia prosthesis
US7658765B2 (en) 1999-08-18 2010-02-09 Intrinsic Therapeutics, Inc. Resilient intervertebral disc implant
US7959679B2 (en) 1999-08-18 2011-06-14 Intrinsic Therapeutics, Inc. Intervertebral anulus and nucleus augmentation
US7867278B2 (en) 1999-08-18 2011-01-11 Intrinsic Therapeutics, Inc. Intervertebral disc anulus implant
US7749275B2 (en) 1999-08-18 2010-07-06 Intrinsic Therapeutics, Inc. Method of reducing spinal implant migration
US8257437B2 (en) 1999-08-18 2012-09-04 Intrinsic Therapeutics, Inc. Methods of intervertebral disc augmentation
US8231678B2 (en) 1999-08-18 2012-07-31 Intrinsic Therapeutics, Inc. Method of treating a herniated disc
US9333087B2 (en) 1999-08-18 2016-05-10 Intrinsic Therapeutics, Inc. Herniated disc repair
US6482235B1 (en) 1999-08-18 2002-11-19 Intrinsic Orthopedics, Inc. Devices and methods of vertebral disc augmentation
US8021425B2 (en) 1999-08-18 2011-09-20 Intrinsic Therapeutics, Inc. Versatile method of repairing an intervertebral disc
US9706947B2 (en) 1999-08-18 2017-07-18 Intrinsic Therapeutics, Inc. Method of performing an anchor implantation procedure within a disc
US7717961B2 (en) 1999-08-18 2010-05-18 Intrinsic Therapeutics, Inc. Apparatus delivery in an intervertebral disc
US8025698B2 (en) 1999-08-18 2011-09-27 Intrinsic Therapeutics, Inc. Method of rehabilitating an anulus fibrosus
US7879097B2 (en) 1999-08-18 2011-02-01 Intrinsic Therapeutics, Inc. Method of performing a procedure within a disc
US7998213B2 (en) 1999-08-18 2011-08-16 Intrinsic Therapeutics, Inc. Intervertebral disc herniation repair
US8002836B2 (en) 1999-08-18 2011-08-23 Intrinsic Therapeutics, Inc. Method for the treatment of the intervertebral disc anulus
US8409284B2 (en) 1999-08-18 2013-04-02 Intrinsic Therapeutics, Inc. Methods of repairing herniated segments in the disc
US7670379B2 (en) 1999-10-20 2010-03-02 Anulex Technologies, Inc. Spinal disc annulus reconstruction method
US8034112B2 (en) 1999-10-20 2011-10-11 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and spinal disc annulus stent
US8088165B2 (en) 1999-10-20 2012-01-03 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and deformable spinal disc annulus stent
US8048160B2 (en) 1999-10-20 2011-11-01 Anulex Technologies, Inc. Intervertebral disc annulus stent
US7993405B2 (en) 1999-10-20 2011-08-09 Anulex Technologies, Inc. Spinal disc annulus repair system and methods
US8128698B2 (en) 1999-10-20 2012-03-06 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US7985257B2 (en) 1999-10-20 2011-07-26 Anulex Technologies, Inc. Methods and devices for spinal disc annulus reconstruction and repair
US7963992B2 (en) 1999-10-20 2011-06-21 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US8556977B2 (en) 1999-10-20 2013-10-15 Anulex Technologies, Inc. Tissue anchoring system and method
US7828850B2 (en) 1999-10-20 2010-11-09 Anulex Technologies, Inc. Methods and devices for spinal disc annulus reconstruction and repair
US9675347B2 (en) 1999-10-20 2017-06-13 Krt Investors, Inc. Apparatus for the treatment of tissue
US7951201B2 (en) 1999-10-20 2011-05-31 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US9114025B2 (en) 1999-10-20 2015-08-25 Krt Investors, Inc. Methods and devices for spinal disc annulus reconstruction and repair
US9095442B2 (en) 1999-10-20 2015-08-04 Krt Investors, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US8632590B2 (en) 1999-10-20 2014-01-21 Anulex Technologies, Inc. Apparatus and methods for the treatment of the intervertebral disc
US7922768B2 (en) 1999-10-20 2011-04-12 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and deformable spinal disc annulus stent
US7909879B2 (en) 1999-10-20 2011-03-22 Anulex Technologies, Inc. Intervertebral disc annulus stent
US7935147B2 (en) 1999-10-20 2011-05-03 Anulex Technologies, Inc. Method and apparatus for enhanced delivery of treatment device to the intervertebral disc annulus
US7749273B2 (en) 1999-10-20 2010-07-06 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US7905923B2 (en) 2000-04-04 2011-03-15 Anulex Technologies, Inc. Devices and methods for annular repair of intervertebral discs
US7753941B2 (en) 2000-04-04 2010-07-13 Anulex Technologies, Inc. Devices and methods for annular repair of intervertebral discs
US8182545B2 (en) 2000-09-14 2012-05-22 C.R. Bard, Inc. Implantable prosthesis
US20060198816A1 (en) * 2000-09-29 2006-09-07 Milbocker Michael T In situ bulking composition
US7927619B2 (en) 2000-09-29 2011-04-19 Promethean Surgical Devices Llc In situ bulking composition
US7044982B2 (en) 2000-10-20 2006-05-16 Michael Milbocker Surgical repair of tissue defects
US20020049503A1 (en) * 2000-10-20 2002-04-25 Michael Milbocker Surgical repair of tissue defects
US20110135700A1 (en) * 2000-10-20 2011-06-09 Promethean Surgical Devices, Inc. In situ bulking composition
WO2002047578A1 (en) * 2000-12-16 2002-06-20 Kornel Tordy Implant, method for inserting a reinforcing element, and method for producing an implant
US20040049289A1 (en) * 2000-12-16 2004-03-11 Kornel Tordy Implant, method for inserting a reinforcing element, and method for producing an implant
US20030135238A1 (en) * 2001-12-12 2003-07-17 Milbocker Michael T. In situ bonds
US9050388B2 (en) 2001-12-12 2015-06-09 Promethean Surgical Devices, Llc In situ bonds
US9339583B2 (en) 2001-12-12 2016-05-17 Promethean Surgical Devices, Llc In situ bonds
US8501165B2 (en) 2001-12-12 2013-08-06 Promethean Surgical Devices Llc In situ bonds
US6790213B2 (en) 2002-01-07 2004-09-14 C.R. Bard, Inc. Implantable prosthesis
US7824420B2 (en) 2002-01-07 2010-11-02 C.R. Bard, Inc. Implantable prosthesis
US8016824B2 (en) 2002-07-25 2011-09-13 Covidien Ag Electrosurgical pencil with drag sensing capability
US6747218B2 (en) 2002-09-20 2004-06-08 Sherwood Services Ag Electrosurgical haptic switch including snap dome and printed circuit stepped contact array
US8128622B2 (en) 2002-11-05 2012-03-06 Covidien Ag Electrosurgical pencil having a single button variable control
US7955327B2 (en) 2003-02-20 2011-06-07 Covidien Ag Motion detector for controlling electrosurgical output
US20040260315A1 (en) * 2003-06-17 2004-12-23 Dell Jeffrey R. Expandable tissue support member and method of forming the support member
US7727241B2 (en) 2003-06-20 2010-06-01 Intrinsic Therapeutics, Inc. Device for delivering an implant through an annular defect in an intervertebral disc
US8449540B2 (en) 2003-11-20 2013-05-28 Covidien Ag Electrosurgical pencil with improved controls
US7879033B2 (en) 2003-11-20 2011-02-01 Covidien Ag Electrosurgical pencil with advanced ES controls
US7959633B2 (en) 2003-11-20 2011-06-14 Covidien Ag Electrosurgical pencil with improved controls
US20090304773A1 (en) * 2003-12-09 2009-12-10 Promethean Surgical Devices, Llc Surgical adhesive and uses therefore
US8690961B2 (en) * 2004-05-19 2014-04-08 Felix Checa Ayet Prosthesis and method for surgical treatment of inguinal hernias
US20110208217A1 (en) * 2004-05-19 2011-08-25 Felix Checa Ayet Prosthesis and method for surgical treatment of inguinal hernias
US8100902B2 (en) 2005-06-28 2012-01-24 Covidien Ag Electrode with rotatably deployable sheath
US8460289B2 (en) 2005-06-28 2013-06-11 Covidien Ag Electrode with rotatably deployable sheath
US7828794B2 (en) 2005-08-25 2010-11-09 Covidien Ag Handheld electrosurgical apparatus for controlling operating room equipment
US8394146B2 (en) 2005-12-28 2013-03-12 Intrinsic Therapeutics, Inc. Vertebral anchoring methods
US9039741B2 (en) 2005-12-28 2015-05-26 Intrinsic Therapeutics, Inc. Bone anchor systems
US9610106B2 (en) 2005-12-28 2017-04-04 Intrinsic Therapeutics, Inc. Bone anchor systems
US7972337B2 (en) 2005-12-28 2011-07-05 Intrinsic Therapeutics, Inc. Devices and methods for bone anchoring
US8114082B2 (en) 2005-12-28 2012-02-14 Intrinsic Therapeutics, Inc. Anchoring system for disc repair
WO2007126906A3 (en) * 2006-03-31 2008-05-02 Peak Surgical Inc Devices and methods for tissue welding
WO2007126906A2 (en) * 2006-03-31 2007-11-08 Peak Surgical, Inc. Devices and methods for tissue welding
US20070239260A1 (en) * 2006-03-31 2007-10-11 Palanker Daniel V Devices and methods for tissue welding
US8668688B2 (en) 2006-05-05 2014-03-11 Covidien Ag Soft tissue RF transection and resection device
US8821549B2 (en) 2006-06-13 2014-09-02 Anova Corporation Methods and apparatus for anulus repair
US9232938B2 (en) 2006-06-13 2016-01-12 Anova Corp. Method and apparatus for closing fissures in the annulus fibrosus
US8834496B2 (en) 2006-06-13 2014-09-16 Bret A. Ferree Soft tissue repair methods and apparatus
US8764835B2 (en) 2006-06-13 2014-07-01 Bret A. Ferree Intervertebral disc treatment methods and apparatus
US20080086216A1 (en) * 2006-10-06 2008-04-10 Wilson Jeffrey A Apparatus and Method for Limiting Surgical Adhesions
US9289279B2 (en) 2006-10-06 2016-03-22 Promethean Surgical Devices, Llc Apparatus and method for limiting surgical adhesions
US7614258B2 (en) 2006-10-19 2009-11-10 C.R. Bard, Inc. Prosthetic repair fabric
US7900484B2 (en) 2006-10-19 2011-03-08 C.R. Bard, Inc. Prosthetic repair fabric
US20080114334A1 (en) * 2006-11-10 2008-05-15 Voegele James W Adhesive Marker
US8506565B2 (en) 2007-08-23 2013-08-13 Covidien Lp Electrosurgical device with LED adapter
US9226832B2 (en) 2007-09-07 2016-01-05 Intrinsic Therapeutics, Inc. Interbody fusion material retention methods
US8454612B2 (en) 2007-09-07 2013-06-04 Intrinsic Therapeutics, Inc. Method for vertebral endplate reconstruction
US8361155B2 (en) 2007-09-07 2013-01-29 Intrinsic Therapeutics, Inc. Soft tissue impaction methods
US8323341B2 (en) 2007-09-07 2012-12-04 Intrinsic Therapeutics, Inc. Impaction grafting for vertebral fusion
WO2009036094A3 (en) * 2007-09-12 2009-05-14 Brigham & Womens Hospital Magnetic prosthetic materials for implantation using natural orifice transluminal endoscopic methods
WO2009036094A2 (en) * 2007-09-12 2009-03-19 The Brigham And Women's Hospital, Inc. Magnetic prosthetic materials for implantation using natural orifice transluminal endoscopic methods
US8945124B2 (en) 2007-12-05 2015-02-03 Covidien Lp Thermal penetration and arc length controllable electrosurgical pencil
US8235987B2 (en) 2007-12-05 2012-08-07 Tyco Healthcare Group Lp Thermal penetration and arc length controllable electrosurgical pencil
US9398944B2 (en) 2008-02-18 2016-07-26 Covidien Lp Lock bar spring and clip for implant deployment device
US8317808B2 (en) 2008-02-18 2012-11-27 Covidien Lp Device and method for rolling and inserting a prosthetic patch into a body cavity
US20110034942A1 (en) * 2008-02-18 2011-02-10 PolyTouch Medical, Inc. Device and method for rolling and inserting a prosthetic patch into a body cavity
US9044235B2 (en) 2008-02-18 2015-06-02 Covidien Lp Magnetic clip for implant deployment device
US20100312357A1 (en) * 2008-02-18 2010-12-09 PolyTouch Medical, Inc. Device and method for deploying and attaching an implant to a biological tissue
US9393002B2 (en) 2008-02-18 2016-07-19 Covidien Lp Clip for implant deployment device
US20110054500A1 (en) * 2008-02-18 2011-03-03 PolyTouch Medical, Inc. Device and method for deploying and attaching an implant to a biological tissue
US9107726B2 (en) 2008-02-18 2015-08-18 Covidien Lp Device and method for deploying and attaching an implant to a biological tissue
US9005241B2 (en) 2008-02-18 2015-04-14 Covidien Lp Means and method for reversibly connecting a patch to a patch deployment device
US9034002B2 (en) 2008-02-18 2015-05-19 Covidien Lp Lock bar spring and clip for implant deployment device
US8758373B2 (en) 2008-02-18 2014-06-24 Covidien Lp Means and method for reversibly connecting a patch to a patch deployment device
US9393093B2 (en) 2008-02-18 2016-07-19 Covidien Lp Clip for implant deployment device
US8808314B2 (en) 2008-02-18 2014-08-19 Covidien Lp Device and method for deploying and attaching an implant to a biological tissue
US20110066166A1 (en) * 2008-02-18 2011-03-17 PolyTouch Medical, Inc. Means and method for reversibly connecting a patch to a patch deployment device
US9301826B2 (en) 2008-02-18 2016-04-05 Covidien Lp Lock bar spring and clip for implant deployment device
US8753359B2 (en) 2008-02-18 2014-06-17 Covidien Lp Device and method for deploying and attaching an implant to a biological tissue
US9833240B2 (en) 2008-02-18 2017-12-05 Covidien Lp Lock bar spring and clip for implant deployment device
US8663218B2 (en) 2008-03-31 2014-03-04 Covidien Lp Electrosurgical pencil including improved controls
US8663219B2 (en) 2008-03-31 2014-03-04 Covidien Lp Electrosurgical pencil including improved controls
US9198720B2 (en) 2008-03-31 2015-12-01 Covidien Lp Electrosurgical pencil including improved controls
US8597292B2 (en) 2008-03-31 2013-12-03 Covidien Lp Electrosurgical pencil including improved controls
US8591509B2 (en) 2008-03-31 2013-11-26 Covidien Lp Electrosurgical pencil including improved controls
US8636733B2 (en) 2008-03-31 2014-01-28 Covidien Lp Electrosurgical pencil including improved controls
US8632536B2 (en) 2008-03-31 2014-01-21 Covidien Lp Electrosurgical pencil including improved controls
US8162937B2 (en) 2008-06-27 2012-04-24 Tyco Healthcare Group Lp High volume fluid seal for electrosurgical handpiece
US9072586B2 (en) 2008-10-03 2015-07-07 C.R. Bard, Inc. Implantable prosthesis
US9192372B2 (en) 2008-10-14 2015-11-24 Krt Investors, Inc. Method for the treatment of tissue
US8163022B2 (en) 2008-10-14 2012-04-24 Anulex Technologies, Inc. Method and apparatus for the treatment of the intervertebral disc annulus
US8454697B2 (en) 2008-10-14 2013-06-04 Anulex Technologies, Inc. Method and apparatus for the treatment of tissue
US8888811B2 (en) 2008-10-20 2014-11-18 Covidien Lp Device and method for attaching an implant to biological tissue
US20100137677A1 (en) * 2008-11-20 2010-06-03 Evan Friedman Method for treatment and prevention of parastomal hernias
US8323352B2 (en) 2008-11-20 2012-12-04 Lifecell Corporation Method for treatment and prevention of parastomal hernias
US8231620B2 (en) 2009-02-10 2012-07-31 Tyco Healthcare Group Lp Extension cutting blade
US8734473B2 (en) 2009-02-18 2014-05-27 Covidien Lp Device and method for rolling and inserting a prosthetic patch into a body cavity
US8834460B2 (en) 2009-05-29 2014-09-16 Covidien Lp Microwave ablation safety pad, microwave safety pad system and method of use
US20100305560A1 (en) * 2009-05-29 2010-12-02 Vivant Medical, Inc. Microwave Ablation Safety Pad, Microwave Safety Pad System and Method of Use
US20100331865A1 (en) * 2009-06-30 2010-12-30 Gino Bradica Biphasic implant device providing joint fluid therapy
US20110040310A1 (en) * 2009-08-17 2011-02-17 PolyTouch Medical, Inc. Means and method for reversibly connecting an implant to a deployment device
US8906045B2 (en) 2009-08-17 2014-12-09 Covidien Lp Articulating patch deployment device and method of use
US9795372B2 (en) 2010-01-11 2017-10-24 Krt Investors, Inc. Intervertebral disc annulus repair system and bone anchor delivery tool
US8652153B2 (en) 2010-01-11 2014-02-18 Anulex Technologies, Inc. Intervertebral disc annulus repair system and bone anchor delivery tool
US8460319B2 (en) 2010-01-11 2013-06-11 Anulex Technologies, Inc. Intervertebral disc annulus repair system and method
US8617157B2 (en) * 2010-01-26 2013-12-31 Covidien Lp Hernia repair system
US20110184407A1 (en) * 2010-01-26 2011-07-28 Tyco Healthcare Group Lp Hernia Repair System
US20140094800A1 (en) * 2010-01-26 2014-04-03 Covidien Lp Hernia repair system
US20110208320A1 (en) * 2010-02-19 2011-08-25 Lifecell Corporation Abdominal wall treatment devices
WO2012042522A2 (en) 2010-09-28 2012-04-05 Medizn Technologies Ltd. Bioadhesive composition and device for repairing tissue damage
US9549805B2 (en) 2011-12-20 2017-01-24 Lifecell Corporation Flowable tissue products
US9532863B2 (en) 2011-12-20 2017-01-03 Lifecell Corporation Sheet tissue products
US9271821B2 (en) 2012-01-24 2016-03-01 Lifecell Corporation Elongated tissue matrices
US9186053B2 (en) * 2012-05-03 2015-11-17 Covidien Lp Methods of using light to repair hernia defects
US20130296657A1 (en) * 2012-05-03 2013-11-07 Covidien Lp Methods of using light to repair hernia defects
US9750595B2 (en) 2012-09-28 2017-09-05 Covidien Lp Implantable medical devices which include grip-members and methods of use thereof
US9737294B2 (en) 2013-01-28 2017-08-22 Cartiva, Inc. Method and system for orthopedic repair
US20140309626A1 (en) * 2013-04-12 2014-10-16 Covidien Lp System and method having an electromagnetic manipulator with a uv tacking mechanism
CN106073939A (en) * 2016-06-30 2016-11-09 申英末 Tissue repair sheet used under laparoscope

Similar Documents

Publication Publication Date Title
US6123667A (en) Retracting tissue using photoadhering adhesive
US7776060B2 (en) Circular stapler buttress combination
Jenkins et al. A comparison of prosthetic materials used to repair abdominal wall defects
US6575897B1 (en) Suspension device for treating prolapse and urinary incontinence
EP1070487B1 (en) Graft fixation device
US5511565A (en) Guided bone and tissue generation device and method to be used during or after dental surgery or jaw surgery
Hecker et al. Pull-out strength of suture anchors for rotator cuff and Bankart lesion repairs
Lundborg et al. Ulnar nerve repair by the silicone chamber technique
US8202306B2 (en) Mesh reinforced tissue anchor
Craft et al. Fixation strength of rotator cuff repair swith suture anchors and the transosseous suture technique
US20070299538A1 (en) Ease of use tissue repair patch
US20080021474A1 (en) Methods and devices for intracorporeal bonding of implants with thermal energy
US6017346A (en) Wedge for fastening tissue to bone
US5723008A (en) Splint for repair of tendons or ligaments and method
Filipi et al. Laparoscopic herniorrhaphy
US20090228021A1 (en) Matrix material
US7309355B2 (en) Flexible tibial sheath
US5702462A (en) Method of meniscal repair
US20050267529A1 (en) Devices, systems and methods for tissue repair
Baker et al. The science of stapling and leaks
US20050010239A1 (en) Hernia mesh-device with tissue adhesive
US6344042B1 (en) Bone augmentation device
US7510566B2 (en) Multi-point tissue tension distribution device and method, a chin lift variation
US20040092937A1 (en) Absorbable fastener and applying apparatus
US20080051888A1 (en) Synthetic structure for soft tissue repair

Legal Events

Date Code Title Description
AS Assignment

Owner name: ETHICON ENDO-SURGERY, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHEFFIELD, WARREN D.;WAMPLER, SCOTT;KUHNS, JESSE;AND OTHERS;REEL/FRAME:008801/0138

Effective date: 19971028

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12