US5925431A - Label with integrated coding - Google Patents
Label with integrated coding Download PDFInfo
- Publication number
- US5925431A US5925431A US08/496,479 US49647995A US5925431A US 5925431 A US5925431 A US 5925431A US 49647995 A US49647995 A US 49647995A US 5925431 A US5925431 A US 5925431A
- Authority
- US
- United States
- Prior art keywords
- electrically conductive
- adhesive label
- layer
- adhesive
- label
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000853 adhesive Substances 0.000 claims abstract description 151
- 230000001070 adhesive effect Effects 0.000 claims abstract description 151
- 239000010410 layer Substances 0.000 claims abstract description 124
- 239000011241 protective layer Substances 0.000 claims abstract description 20
- 230000003647 oxidation Effects 0.000 claims abstract description 10
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 89
- 239000011888 foil Substances 0.000 claims description 27
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 22
- 238000010030 laminating Methods 0.000 claims description 21
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 20
- 229910052782 aluminium Inorganic materials 0.000 claims description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 19
- 239000002985 plastic film Substances 0.000 claims description 19
- 229920006255 plastic film Polymers 0.000 claims description 19
- 239000002131 composite material Substances 0.000 claims description 16
- 239000004922 lacquer Substances 0.000 claims description 16
- 238000002372 labelling Methods 0.000 claims description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- 239000011889 copper foil Substances 0.000 claims description 12
- 239000004821 Contact adhesive Substances 0.000 claims description 11
- 229920006378 biaxially oriented polypropylene Polymers 0.000 claims description 11
- 239000011127 biaxially oriented polypropylene Substances 0.000 claims description 11
- 239000004033 plastic Substances 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 239000004743 Polypropylene Substances 0.000 claims description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 8
- -1 polypropylene Polymers 0.000 claims description 8
- 229920001155 polypropylene Polymers 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 239000004332 silver Substances 0.000 claims description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 239000011651 chromium Substances 0.000 claims description 7
- 238000004049 embossing Methods 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 229910052790 beryllium Inorganic materials 0.000 claims description 6
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000010931 gold Substances 0.000 claims description 6
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 6
- 229920006267 polyester film Polymers 0.000 claims description 6
- 239000010935 stainless steel Substances 0.000 claims description 6
- 229910001220 stainless steel Inorganic materials 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 238000003847 radiation curing Methods 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 230000000149 penetrating effect Effects 0.000 claims description 4
- 239000012811 non-conductive material Substances 0.000 claims description 2
- 239000012790 adhesive layer Substances 0.000 claims 29
- 239000012799 electrically-conductive coating Substances 0.000 claims 3
- 230000002401 inhibitory effect Effects 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 description 34
- 239000002184 metal Substances 0.000 description 34
- 239000000976 ink Substances 0.000 description 24
- 238000007639 printing Methods 0.000 description 15
- 238000007789 sealing Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000000049 pigment Substances 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010017 direct printing Methods 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000003678 scratch resistant effect Effects 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000001033 copper pigment Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007645 offset printing Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- NWFNSTOSIVLCJA-UHFFFAOYSA-L copper;diacetate;hydrate Chemical compound O.[Cu+2].CC([O-])=O.CC([O-])=O NWFNSTOSIVLCJA-UHFFFAOYSA-L 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004447 silicone coating Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F3/00—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
- G09F3/02—Forms or constructions
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B7/00—Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
- G03B7/24—Control of exposure by setting shutters, diaphragms or filters, separately or conjointly automatically in accordance with markings or other means indicating film speed or kind of film on the magazine to be inserted in the camera
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F3/00—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
- G09F3/02—Forms or constructions
- G09F3/0297—Forms or constructions including a machine-readable marking, e.g. a bar code
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B2206/00—Systems for exchange of information between different pieces of apparatus, e.g. for exchanging trimming information, for photo finishing
- G03B2206/008—Systems for exchange of information between different pieces of apparatus, e.g. for exchanging trimming information, for photo finishing using holders for the photographic material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/14—Layer or component removable to expose adhesive
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/14—Layer or component removable to expose adhesive
- Y10T428/1405—Capsule or particulate matter containing [e.g., sphere, flake, microballoon, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/14—Layer or component removable to expose adhesive
- Y10T428/1438—Metal containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/14—Layer or component removable to expose adhesive
- Y10T428/1438—Metal containing
- Y10T428/1443—Aluminum
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/14—Layer or component removable to expose adhesive
- Y10T428/1438—Metal containing
- Y10T428/1448—Coloring agent containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/14—Layer or component removable to expose adhesive
- Y10T428/1486—Ornamental, decorative, pattern, or indicia
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24273—Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
- Y10T428/24322—Composite web or sheet
- Y10T428/24331—Composite web or sheet including nonapertured component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
Definitions
- the invention relates to an adhesive label for an article to be labeled, in particular for a film cartridge (for example 35 mm film) for cameras, the adhesive label coding machine-readably properties of the article, in particular of a film in the film cartridge, by the position of at least one boundary between an electrically conductive layer and an electrically nonconductive layer lying thereover.
- the coding may be a so-called CAS ("Camera Auto Sensing") coding, which contains information on the photographic film contained--film speed, film length and exposure tolerance.
- the coding takes place by defined arrangement of electrically conducting and nonconducting fields or their common boundaries at a fixed point on the film cartridge, the electrically conducting fields being interconnected electrically conductively.
- the items of information are scanned by an electrically active system--comprising two rows of contacts in the camera housing. In this case, current is introduced via one contact each per row, and then, depending on the field scanned (conductive or nonconductive), a current flow can be detected or not detected via the contacts following in the row. The respective combination of current-carrying contacts then provides the corresponding information, which is processed by the camera.
- the CAS coding is in this case achieved by the conductivity of the sleeve material, which is covered by electrically insulating printing inks at the points which are not to be conducting, so that no current can flow at these points via the contacts of the CAS system when the cartridge is inserted into the camera.
- the cartridge sleeves are provided with a combination of direct printing and adhesive label, it not having been possible in any case so far for the CAS coding to be integrated in the label, but instead always having been realized by means of the direct printing.
- the cartridges comprise the following components: cartridge sleeve, winding spindle, lid, base and sealing lips of felt at the film exit opening.
- the cartridge sleeves are formed from a 0.3 mm thick, chromium-plated steel sheet.
- the printing onto the sheets takes place by offset printing or a combination of offset printing with screen printing, in any case a special, highly scratch-resistant, electrically nonconducting printing ink being printed repeatedly (at least twice) over itself in the region of the CAS coding.
- the nonconducting printing ink which insulates established CAS fields, must withstand unharmed the abrasive stress occurring in practice due to the contacts, since otherwise erroneous items of information are read out due to unintended current flow and the film is incorrectly exposed.
- the high ink layer thickness of the repeated overprinting of a special, highly scratch-resistant printing ink is consequently indispensable in the region of the CAS coding due to the necessity of achieving a high abrasion resistance.
- the punchings necessary for forming the film opening are carried out on the printed-on metal sheet and then the metal sheet is cut into strips suitable for the cartridge-assembly machine.
- the strips are delivered to the film manufacturer in this form.
- the punching out of the lips for the film opening and the cutting into strips does not take place until at the film manufacturer's.
- the prefabricated sheet-metal strips are introduced from a stack into the assembly machine and, from the left and right, the sealing lips are fed in from a roll and adhesively bonded (in some cases the sealing lips are also already applied in advance in a separate operation). After cutting off an individual blank from the strip, this is bent into a sleeve and the cartridge is completed by inserting the winding spindle and flanging on base part and lid part.
- the charging of the cartridges with the photographic film takes place either in a separate operation after completion of the cartridge or in combination with the insertion of the winding spindle.
- Photographic films are offered in a large number of types, color negative films, black-and-white films, slide films, various film speeds, various film lengths, special fabrications for promotional purposes, private brands, etc. A range of over 100 types, up to 250, is therefore normal for a film manufacturer.
- the labeling of the film cartridges makes it possible for the abrasion resistance to be achieved not only by the customary process of overprinting highly scratch-resistant special inks but also by an overlamination, or to be made unimportant as a functional criterion by partially applying a conductive layer only in the corresponding regions which are to be conductive.
- labeling is associated with an enormous expansion in the possible forms of design, ranging up to high-quality halftone printing, whereby the label can be given an attractive and promotionally effective design, for example multicolored, high-gloss, with tone shading.
- the label can additionally be provided with an optically scannable bar code.
- One object of the invention is therefore to present a coding for a film cartridge which avoids the stated disadvantages.
- an adhesive label for an article to be labeled comprises an electrically conductive layer; an electrically nonconductive layer lying thereover, and at least one boundary between the electrically conductive layer and the electrically nonconductive layer; wherein the conductive layer is covered by a further conductive protective layer, which inhibits oxidation of the conductive layer lying thereunder and itself either does not oxidize or the oxide of which does not impair or only minimally impairs the conductivity, and wherein the adhesive label codes machine-readable properties of the article, by the position of the at least one boundary.
- an adhesive label for an article to be labeled comprises an electrically conductive layer; an electrically nonconductive layer lying thereover; and at least one boundary at a position between the electrically conductive layer and the electrically nonconductive layer; wherein the electrically conductive layer rests on a nonconductive base material; and wherein the adhesive label codes machine-readable properties of the article by the position of the at least one boundary.
- an adhesive label for an article to be labeled comprises a base material; an electrically conductive subarea; an electrically nonconductive subarea; and at least one boundary, at a position between the electrically conductive subarea and the electrically nonconductive subarea, established by a border of a clearance penetrating the base material of the adhesive label; wherein the adhesive label is adapted to be coded machine-readably on its outer side for properties of the article by the position of the at least one boundary.
- an adhesive label for an article to be labeled comprises an electrically conductive subarea; an electrically nonconductive subarea; and at least one boundary at a position between the electrically conductive subarea and the electrically nonconductive subarea; wherein the adhesive label is covered by a nonconductive laminating film cleared in a region of the conductive subarea; and wherein the adhesive label is adapted to be coded machine-readably on its outer side for properties of the article by the position of the at least one boundary.
- FIG. 1 shows a first configuration of the adhesive label on a blank for a film cartridge case
- FIG. 1a shows a diagrammatic section through the adhesive label of the first configuration
- FIG. 2 shows a second configuration of the adhesive label on a backing strip
- FIG. 2a shows a diagrammatic section through the adhesive label of the second configuration
- FIG. 3 shows a third configuration of the adhesive label on a backing strip
- FIG. 3a shows a diagrammatic section through the adhesive label of the third configuration
- FIG. 4 shows an arrangement for applying a continuous adhesive strip on a sheet-metal strip for the production of film cartridge sleeves
- FIG. 5 shows another arrangement for transferring individual labels, adhering on a common backing strip, onto a sheet-metal strip for the production of film cartridge sleeves;
- FIG. 6 shows a diagrammatic section through an adhesive label of a fourth configuration
- FIG. 7 shows a diagrammatic section through an adhesive label of a fifth configuration
- FIG. 8 shows an arrangement for transferring an adhesive label onto a film cartridge sleeve
- FIG. 9 shows a further arrangement for transferring an adhesive label onto a film cartridge sleeve.
- One solution achieving the object of the invention consists in that the conductive layer is covered by a further conductive, in particular oxidation-inhibiting, protective layer.
- the protective layer is preferably designed in such a way that it inhibits the oxidation of the conductive layer lying thereunder and itself either does not oxidize or the oxide of which does not impair or only minimally impairs the conductivity.
- any oxidation of the electrically conductive layer can be reliably prevented and, as a result, the scanning reliability of the coding can be increased.
- discolorations of the metal layer as the electrically conductive layer caused by oxidation for instance verdigris in the case of a copper-containing metal layer, are avoided. Therefore, protective layers which inhibit oxidation of the conductive layer lying thereunder and themselves either do not oxidize or the oxide of which does not impair or only minimally impairs the conductivity or optics are used.
- the protective layer may be vapor-deposited or sputtered, plated, electroplated or electrochemically applied in some other way to the conductive layer as a metallic layer.
- the vaporized metal may consist of aluminum or chromium.
- the sputtered-on coating may comprise gold, silver, chromium, stainless steel, titanium or indium-tin oxide alloy or electrically conductive plastic.
- These layers may be applied very thinly and are--with respect to a conceivable use as a conductive base layer--reasonable with regard to costs.
- the conductive base layer lying thereunder the resistance to mechanical stress is retained.
- Vapor-deposited or sputtered aluminum has in comparison with rolled aluminum a different crystal structure and builds up a substantially thinner oxide layer, which only minimally impairs the conductivity.
- the protective layer may be applied, in particular printed, onto the conductive layer in the form of a solvent-containing ink or such a lacquer.
- a solvent-containing ink is such an ink with silver pigments, graphite pigments, nickel pigments and/or copper pigments as conductive constituents.
- a radiation-curing in particular UV-radiation-curing, lacquer or such an ink is also suitable.
- the protective layer may be applied by means of plating, electroplating or electrochemically.
- the electrically conductive layer may rest on a nonconducting base material and form with the latter a composite, in particular of a soft or hard aluminum foil of a thickness of 8 to 30 ⁇ m with a biaxially oriented polypropylene or polyester film of a thickness of 12 to 60 ⁇ m.
- the electrically conductive material may also comprise electrically conductive plastic, soft or hard copper foil or soft or hard foil of an alloy of copper and zinc, nickel, iron and/or beryllium of a thickness of 8 to 30 ⁇ m and a biaxially oriented polypropylene or polyester film of a thickness of 12 to 60 ⁇ m.
- Such composite materials provide a reliably scannable and durable coding given a stable base material, so that in the case of standard use in the mass production of film cartridges there is no risk of deformation of the labels and the coding is reliably scannable during use.
- the electrically conductive material may comprise a soft or hard aluminum foil of a thickness of 15 to 80 ⁇ m.
- the electrically conductive material may also comprise electrically conductive plastaic, soft or hard copper foil or soft or hard foil of an alloy of copper and zinc, nickel, iron and/or beryllium of a thickness of 15 to 80 ⁇ m.
- the base material of the adhesive label may be formed from paper or plastic film.
- a thickness of 25 to 120 ⁇ m is preferred, in the case of biaxially oriented polyester film a thickness of 35 to 70 ⁇ m.
- the base material may comprise at least two layers of paper and plastic film or two plastic films of a total thickness of 20 to 120 ⁇ m, in particular two films of biaxially oriented polyester of a total thickness of 35 to 70 ⁇ m.
- the base material of paper preferably has an area-related mass of 40 to 150 g/m 2 , in particular 60 to 80 g/m 2 .
- a low-cost alternative for the base material is a biaxially stretched polypropylene film which is foamed or provided with pinholes and has a thickness of 35 to 60 ⁇ m.
- the electrically nonconductive layer is preferably covered at least partially by a nonconductive laminating film cleared in the region of the conductive layer free from the nonconductive layer.
- a lamination ideally with biaxially oriented polypropylene film, gives rise to the advantage that a very thin base material, preferably polypropylene film which is foamed or provided with pinholes, of a thickness of 35 to 50 ⁇ m, can be used and part of the deformation energy is taken up by the flexible connection between the films.
- the lamination ensures the flexural rigidity required for processing. This configuration is particularly inexpensive.
- the adhesive label in particular its base material, preferably has an electrically nonconducting outer surface, a surface area of the adhesive label corresponding to an electrically conducting subarea being cleared.
- the nonconducting subarea is formed by the adhesive label
- the conducting subarea is formed by the film cartridge to be labeled, in particular in the case of a film cartridge made from metal sheet.
- the common boundary between the conducting and nonconducting subareas, which forms the coding by its position, results from the position of the border of the clearance, while the unlabeled film cartridge itself may have a surface which is conductive throughout and consequently it can be used universally for various film types.
- the adhesive label may have an electrically nonconducting outer surface, a surface area of the adhesive label corresponding to an electrically conductive subarea bearing an electrically conducting coating.
- the conducting and nonconducting subareas and their common boundary are formed by the adhesive label, so that a possible conductivity of the film cartridge material is no longer crucial.
- the electrically conducting coating may be printed on or be applied from electrically conductive embossing foil, in particular hot-embossing foil.
- the adhesive label bears at least two mutually separate conductive subareas which are connected to each other by a web of electrically conductive material
- this web is preferably subsequently covered in an insulating manner in order that the at least two electrically conductive subareas are not detected as a continuous area.
- the insulating covering of the web can be achieved by simple printing on of a nonconducting ink or by a nonconducting laminating film which is cleared only in the region of the conductive subareas and covers the web in an insulating manner.
- the webs may run such that they cannot touch the contacts of the camera and thus the abrasion resistance of the nonconducting ink is only of little significance.
- the adhesive label in particular its base material, may have an electrically conductive outer surface, a surface area of the adhesive label corresponding to an electrically nonconductive subarea bearing an electrically nonconductive coating.
- the base material of the adhesive label itself preferably comprises electrically conductive material, in particular aluminum-laminated paper or plastic of a thickness up to 70 ⁇ m.
- the nonconductive coating is then printed on or formed by a laminating film of nonconductive material which has clearances in the region of the conductive subareas.
- the labeling preferably takes place directly before the cutting off of the individual blanks from a sheet-metal strip and the sleeve formation in the assembly unit, that is to say on the still flat-lying sheet-metal strips.
- the label may be designed such that the upper and lower label borders disappear under the lid and base flanges and thus the label is not immediately recognizable as such.
- the label material can take up without any adverse effects the deformation energy produced in the following processing steps.
- the tensile stress occurring in the label material may cause the reorientation or rupture of the label material.
- the forces occurring may also have the effect of the borders of the labels lifting off and distortions in the label material or printed image.
- label materials and printing inks which are adequately flexible to take up the deformation energy without destruction and at the same time have a low proportion of reversible deformation are used.
- the preconditions are met by thinnest possible flexibly laminated composites of biaxially oriented polyester films, and aluminum-laminated paper.
- systems which remain flexible, such as gravure printing and conventional screen printing, are to be preferred.
- the application of the labels ideally takes place automatically from a roll--finished with a contact adhesive and arranged on a backing strip. This form of application allows high machine feeds and at the same time close tolerances with regard to positioning.
- a multiplicity of adhesive labels according to the invention can be arranged on a common backing strip, for automatic application by an adhesive-label dispenser.
- a strip of label material For producing a film cartridge provided with a label according to the invention, one may apply a strip of label material to a sheet-metal strip moved in its longitudinal direction and then cut the sheet-metal strip, together with the label strip adhering thereupon, into individual blanks for the formation in each case of a film cartridge sleeve.
- the separate labels adhering on a common backing strip are brought up to the upper part of the film exit opening and then the trailing part of the label is rolled onto the cartridge by rotation of said cartridge and by a roller pressing against the latter.
- a so-called CAS coding which contains information on the photographic film contained in the film cartridge formed later--film speed, film length and exposure tolerance--, is integrated in an adhesive label which uses an electrically nonconducting label material.
- the electric conductivity of the sleeve material comprising sheet metal is used by cutting out and removing the label material at the points at which there are to be electrically conducting fields.
- FIGS. 1 and 1a show such an adhesive label 1, which adheres on a substrate 3, that is a sheet-steel blank, from which a film cartridge sleeve is later produced.
- the adhesive label 1 comprises an electrically nonconducting base layer 5, which is provided on its underside with a contact adhesive 7.
- the base layer 5 bears an imprint 16, which in turn may be protected by a nonconducting laminating film 31.
- two subareas 11, 13 are punched out from the label 1 and the laminating film 31. Between the two punched-out subareas 11, 13 there is a nonconducting subarea 15.
- the coding is obtained, provided by the electrically conductive subareas 11, 13, which are electrically connected to each other by the sheet-steel material, and the electrically nonconducting subareas 15 of the adhesive label.
- the coding can be scanned by a multiplicity of electrical contacts of a camera, into which the film cartridge is inserted.
- the electrical contacts are in contact with the electrically conductive subareas 11, 13 or the nonconducting subarea 15, so that electric current can flow via the electrical contacts and the substrate 3, which connects the electrically conductive subareas 11, 13 electrically conductively to each other, while no electric current can flow in the region of the nonconducting subarea 15 due to the insulating effect of the label base material 5.
- the camera can automatically detect with its contacts, on the basis of the position of the boundary shared by the subareas of different electric conductivity, the film speed, film length and the exposure tolerance of the film contained in the cartridge.
- the base material 5 consists of paper with an area-related mass of 40 to 150 g/m 2 , in particular an area-related mass of 60 to 80 g/m 2 .
- the base material 5 comprises a plastic film with a thickness of 20 to 120 ⁇ m, in particular a biaxially oriented polypropylene film with a thickness of 50 to 70 ⁇ m.
- the label material may also comprise a biaxially stretched, foamed polypropylene film of a thickness between 35 and 60 ⁇ m, which is additionally covered by the nonconducting laminating film 31, in particular a biaxially oriented polypropylene film.
- the lamination lends the label the flexural rigidity required for its processing.
- the integration of the CAS coding into the adhesive label relies on using an electrically nonconductive label material and realizing the coding by partial printing of electrically conductive inks or an electrically conductive embossing and nonconductive inks.
- FIGS. 2 and 2a show such an adhesive label 100, which adheres on a backing strip 150 for automatic application by an adhesive-label dispenser.
- the adhesive label 100 comprises an electrically nonconducting base layer 105, which is provided on its underside with a contact-adhesive layer 107.
- the adhesive label 100 comprises an electrically nonconducting base layer 105, which is provided on its underside with a contact-adhesive layer 107.
- two electrically conductive subareas 111, 113 are delimited from each other. Between the two electrically conductive subareas 111, 113 there is a nonconducting subarea 115.
- the electrically conductive subareas 111, 113 are printed onto the nonconducting base material 105 with electrically conductive ink or are embossed on with electrically conductive embossing foil, in particular hot-embossing foil.
- the conductive subareas 111, 113 geometrically separated from each other by the nonconducting subarea 115, are connected to each other by an electrically conductive web 117, which was applied to the base material in one operation with the conductive subareas 111, 113.
- the web 117 is covered in an insulating manner by an electrically nonconducting printing ink and/or lacquer 116.
- the nonconducting subarea 115 located between the conductive subareas 111, 113 is either unprinted or printed with electrically nonconducting inks or lacquers 116.
- the imprint 116 may be protected by a nonconducting laminating film 131 which is removed, for instance punched through, in the region of the conductive subareas 111, 113.
- Those contacts of the camera which touch the conductive subareas 111, 113 are in electrical connection with one another within a single conductive subarea, and, through the web 117, with the respectively other conductive subarea, while contacts located on the electrically nonconducting subarea 115 are insulated from the other contacts, from which the camera can read information for the film contained in the cartridge.
- the base material 105 consists of paper with an area-related mass of 40 to 150 g/m 2 , in particular an area-related mass of 50 to 80 g/m 2 .
- the base material 105 comprises a plastic film of a thickness of 20 to 120 ⁇ m, in particular a biaxially oriented polypropylene film of a thickness of 50 to 70 ⁇ m.
- a biaxially stretched, foamed polypropylene film of a thickness between 35 and 60 ⁇ m which is additionally covered with the nonconducting laminating film 113, in particular a biaxially oriented polypropylene film.
- the laminating film 113 lends the label the flexural rigidity required for its processing.
- the integration of the CAS coding into the adhesive label relies on using electrically conductive base material and utilizing the electric conductivity of the base material to the extent that the base material is not printed on by insulating lacquer or inks at the points at which the electrically conductive subareas are to be, while the remaining surface areas of the label are printed on with electrically nonconducting ink or lacquering.
- FIGS. 3 and 3a show such an adhesive label 200, which adheres on a backing strip 250 for automatic application by an adhesive-label dispenser.
- the adhesive label 200 comprises an electrically conductive base layer 205, which is provided on its underside with a contact adhesive 207.
- the base material 205 is covered on its outer surface by electrically nonconducting lacquers and/or printing inks 216, apart from the electrically conductive subareas 211, 213, on which there is no nonconducting lacquer 216.
- the boundary 209 determining a coding by its position and arrangement, is established by the application of the electrically nonconducting lacquer 216.
- nonconducting subarea 215 which is likewise formed from electrically nonconducting lacquer or nonconducting printing ink.
- the electrical contacts of the camera are partially in contact with one another through the base material 205 or, depending on the position of the boundaries 209, are insulated from one another by the electrically nonconducting lacquer layer 219, 215, which results in the coding effect.
- the printed label may be additionally covered by a nonconducting laminating film 231, the laminating film 231 being punched-out in the region of the electrically conducting subareas 211, 213.
- conductive base materials 205 metal foil, for example bare copper foil, bare aluminum foil, copper foil or aluminum foil with tin, lead/tin or nickel coating or conductive protective lacquering; paper or plastic film which is laminated over its full surface area or partially with one of the above metal foils; film of electrically conductive plastic; composite of paper or plastic film with a film of electrically conductive plastic and metalized paper or plastic film.
- the conductive base material 205 preferably comprises aluminum-laminated paper or plastic film of a maximum thickness of 70 ⁇ m.
- FIG. 4 diagrammatically shows an arrangement for the labeling of film cartridges.
- a continuous strip 310 of label material is stuck by means of a laminating roller 320 on a continuous sheet-metal strip 300 moved in its longitudinal direction L. Subsequently, later border regions are punched out at 321 for the formation of a film exit opening of the finished film cartridge.
- sealing felt strips 330 are stuck on along both longitudinal borders of the underside, not adhered to by the label strip 310, of the sheet-metal strip 300. The sealing felts later form a light and dust guard of the film exit opening of the finished film cartridge.
- FIG. 5 shows another arrangement of the film cartridge labeling.
- a sheet-steel strip 400 moved in its longitudinal direction L, is labeled with the aid of an automatic label dispenser 410, known per se, with a multiplicity of individual labels 411 already separated from one another in advance.
- the sheet-steel strip 400 has sealing felt strips 430 adhered to it on its side not to be labeled, along its longitudinal borders.
- the labels 411, fed in from the label dispenser 410 are located before their transfer onto the sheet-metal strip 400 on a common backing strip 413, which is formed from paper, polyester film or polypropylene film which is finished, for example with a single-sided silicone coating, such that it repels the contact adhesive of the label.
- the backing strip 413 is drawn around a dispensing edge 415 of the label dispenser 410, the labels 411 detaching themselves from the backing strip 413 and being transferred onto said sheet-metal strip. Subsequently, at 423, the sheet-metal strip 400 is cut through, together with the sealing felts 430, between the labels 411 applied at intervals, transversely to the running direction L, so that a multiplicity of ready-labeled sheet-metal sections 440 are obtained, which are subsequently formed in each case into a film cartridge sleeve 450.
- FIG. 6 shows in diagrammatic section a fourth configuration of the adhesive label.
- a base layer 505 of nonconducting material for instance plastic film or paper, is coated on the underside with contact adhesive 507 and adheres on a siliconized backing strip 550.
- the base layer 505 is provided with a conductive layer 523 and forms with the base layer 505 a composite. It comprises electrically conductive plastic, aluminum foil, unrefined aluminum foil, copper-containing foil with zinc, nickel, iron and/or beryllium-alloyed copper foil of a thickness of 80 to 30 ⁇ m. If the base layer 505 is absent, a somewhat thicker conductive layer of a thickness of 15 to 80 ⁇ m is used.
- the conductive layer 523 is protected by an oxidation-inhibiting layer 521, in the form of a vaporized metal of aluminum or chromium or a sputtered-on coating of gold, silver, chromium, stainless steel, titanium or indium-tin oxide alloy or electrically conductive plastic.
- an oxidation-inhibiting layer 521 in the form of a vaporized metal of aluminum or chromium or a sputtered-on coating of gold, silver, chromium, stainless steel, titanium or indium-tin oxide alloy or electrically conductive plastic.
- a solvent-containing lacquer or a radiation-curing for instance UV-curing, lacquer with silver pigments, graphite pigments, nickel pigments or copper pigments as conductive constituents.
- the conductive protective layer 521 is covered by an insulating layer 519, which is cleared in the region of the conductive subarea 511 and in turn bears an imprint 516.
- the imprint 516 is protected by a nonconductive laminating film 531, which is cleared in the region of the conductive subarea 511.
- the boundary separating conductive and nonconductive subareas, which establishes the coding, is denoted by 509.
- FIG. 7 shows in diagrammatic section a fifth configuration of the adhesive label similar to FIG. 6, but without a protective layer.
- the electrically conductive layer 623 comprises electically conductive plastic, aluminum, gold, silver, stainless steel, titanium, indium-tin oxide alloy or copper with anticorrosive properties.
- the layer structure and the materials used correspond to the configuration of FIG. 6, corresponding layers being provided with reference numbers increased by 100.
- FIG. 8 shows an arrangement for the transfer of adhesive labels 711, adhering separately in the longitudinal direction on a backing strip 713, onto the peripheral surface area of a film cartridge sleeve 750.
- the backing strip 713 is drawn around a fixed dispensing edge 710, the adhesive label 711 detaching itself from the backing strip 713.
- the adhesive label 711 is pressed with its leading end by means of a pressure roller 717 against a radially protruding border 751 of the film cartridge sleeve 750, turning with its film exit opening 753 ahead.
- the film cartridge 750 is located with respect to the adhesive label 711 on the same side as the backing strip 713. In the course of the further rotation, the adhesive label 711 is transferred onto the periphery of the film cartridge 750.
- FIG. 9 shows another possibility of transferring an adhesive label 811, adhering separately in the longitudinal direction on a backing strip 813, onto the peripheral surface area of a film cartridge sleeve 850.
- the backing strip 813 is drawn around a fixed dispensing edge 810, the adhesive label 811 detaching itself from the backing strip 813 and being transferred onto a suction drum 817.
- the suction drum 817 contains in its peripheral surface area suction holes 819, which are connected to a reduced-pressure source, and is located on the side of the adhesive label 811 opposite from the backing strip 813. From the rotating suction drum 817, the adhesive label 811, facing with its side bearing contact adhesive outward, is transferred onto the film cartridge 850.
- the adhesive label 811 is pressed with its leading end first against a radially protruding border 851 of the film cartridge sleeve 850, turning with its film exit opening 853 ahead, and in the course of the further rotation is transferred onto the periphery of the film cartridge sleeve 850.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Claims (69)
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE9410522U DE9410522U1 (en) | 1994-06-29 | 1994-06-29 | Label with integrated coding |
| DE9410522U | 1994-06-29 | ||
| EP95109141A EP0690427B1 (en) | 1994-06-29 | 1995-06-13 | Label with build-in coding |
| EP95109141 | 1995-06-13 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US5925431A true US5925431A (en) | 1999-07-20 |
Family
ID=25962211
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/496,479 Expired - Fee Related US5925431A (en) | 1994-06-29 | 1995-06-29 | Label with integrated coding |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US5925431A (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6112982A (en) * | 1998-05-29 | 2000-09-05 | Eastman Kodak Company | Equipment for coating photographic media |
| US20020149378A1 (en) * | 1998-11-26 | 2002-10-17 | Dierk Schroder | Method and apparatus for applying microwaves to measure the moisture content of material |
| US20030194523A1 (en) * | 2002-04-16 | 2003-10-16 | Nitto Denko Corporation | Pressure-sensitive adhesive identification label |
| US6808792B1 (en) * | 1999-08-27 | 2004-10-26 | Leonard Kurz Gmbh & Co. | Transfer foil for applying a decorative layer arrangement to a substrate |
| US20090317708A1 (en) * | 2006-07-24 | 2009-12-24 | Oliver Brandl | Plastic laminate film |
| US20100245112A1 (en) * | 2007-09-12 | 2010-09-30 | Polyic Gmbh & Co. Kg | Multilayer flexible film body |
| CN104553454A (en) * | 2013-10-14 | 2015-04-29 | 白纱科技印刷股份有限公司 | Roll-to-roll printing method capable of simulating optical laser printing and its printed products |
| CN104553455A (en) * | 2013-10-23 | 2015-04-29 | 白纱科技印刷股份有限公司 | Sheet-type in-line printing method capable of simulating optical laser printing and its printed products |
| EP3614310A1 (en) * | 2018-08-22 | 2020-02-26 | Spot Tracker, LLC | Label compatible with holiday testing |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3421440A1 (en) * | 1983-06-08 | 1984-12-13 | Asahi Kogaku Kogyo K.K., Tokio/Tokyo | STICKER WITH AN ELECTRONIC READABLE CODE FOR A FILM MAGAZINE |
| EP0143755A2 (en) * | 1983-11-15 | 1985-06-05 | Sales S.p.A. | Label having an electrically readable indentification code, particularly for photographic film cartridges, and a method for its manufacture |
| DE8807296U1 (en) * | 1988-06-04 | 1988-10-20 | Weße, Joachim, 2000 Hamburg | Facility for changing the coding of films, especially slide films and black-and-white films |
| US4918471A (en) * | 1989-03-17 | 1990-04-17 | Harling Roy E | Film speed code changer for use with an encoded film cartridge |
| DE3939575A1 (en) * | 1989-11-30 | 1991-06-06 | Dornier Luftfahrt | Metal bar code carrier - is of aluminium or aluminium alloy eloxadised black capable of being etched away by laser |
| GB2240081A (en) * | 1989-11-14 | 1991-07-24 | Christopher Sidney Cripps | DX re-rating labels for 35mm film cassettes |
-
1995
- 1995-06-29 US US08/496,479 patent/US5925431A/en not_active Expired - Fee Related
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3421440A1 (en) * | 1983-06-08 | 1984-12-13 | Asahi Kogaku Kogyo K.K., Tokio/Tokyo | STICKER WITH AN ELECTRONIC READABLE CODE FOR A FILM MAGAZINE |
| EP0143755A2 (en) * | 1983-11-15 | 1985-06-05 | Sales S.p.A. | Label having an electrically readable indentification code, particularly for photographic film cartridges, and a method for its manufacture |
| DE8807296U1 (en) * | 1988-06-04 | 1988-10-20 | Weße, Joachim, 2000 Hamburg | Facility for changing the coding of films, especially slide films and black-and-white films |
| US4918471A (en) * | 1989-03-17 | 1990-04-17 | Harling Roy E | Film speed code changer for use with an encoded film cartridge |
| GB2240081A (en) * | 1989-11-14 | 1991-07-24 | Christopher Sidney Cripps | DX re-rating labels for 35mm film cassettes |
| DE3939575A1 (en) * | 1989-11-30 | 1991-06-06 | Dornier Luftfahrt | Metal bar code carrier - is of aluminium or aluminium alloy eloxadised black capable of being etched away by laser |
Non-Patent Citations (2)
| Title |
|---|
| Anonymous "Film Cartridge" Research Disclosure, May 1984, No. 241, No. 24156. |
| Anonymous Film Cartridge Research Disclosure, May 1984, No. 241, No. 24156. * |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6112982A (en) * | 1998-05-29 | 2000-09-05 | Eastman Kodak Company | Equipment for coating photographic media |
| US20020149378A1 (en) * | 1998-11-26 | 2002-10-17 | Dierk Schroder | Method and apparatus for applying microwaves to measure the moisture content of material |
| US7199592B2 (en) * | 1998-11-26 | 2007-04-03 | Hauni Maschinenbau Ag | Method and apparatus for applying microwaves to measure the moisture content of material |
| US6808792B1 (en) * | 1999-08-27 | 2004-10-26 | Leonard Kurz Gmbh & Co. | Transfer foil for applying a decorative layer arrangement to a substrate |
| US20030194523A1 (en) * | 2002-04-16 | 2003-10-16 | Nitto Denko Corporation | Pressure-sensitive adhesive identification label |
| US20090317708A1 (en) * | 2006-07-24 | 2009-12-24 | Oliver Brandl | Plastic laminate film |
| US20100245112A1 (en) * | 2007-09-12 | 2010-09-30 | Polyic Gmbh & Co. Kg | Multilayer flexible film body |
| US8604907B2 (en) * | 2007-09-12 | 2013-12-10 | Polyic Gmbh & Co. Kg | Multilayer flexible film body |
| CN104553454A (en) * | 2013-10-14 | 2015-04-29 | 白纱科技印刷股份有限公司 | Roll-to-roll printing method capable of simulating optical laser printing and its printed products |
| CN104553455A (en) * | 2013-10-23 | 2015-04-29 | 白纱科技印刷股份有限公司 | Sheet-type in-line printing method capable of simulating optical laser printing and its printed products |
| EP3614310A1 (en) * | 2018-08-22 | 2020-02-26 | Spot Tracker, LLC | Label compatible with holiday testing |
| US11443656B2 (en) | 2018-08-22 | 2022-09-13 | Spot Tracker, LLC | Label compatible with holiday testing |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5925431A (en) | Label with integrated coding | |
| US4204706A (en) | Method and multi-layer label having pressure-sensitive mark transfer system | |
| AU704761B2 (en) | Strip coated adhesive products | |
| US4159586A (en) | Multilayered labeling system | |
| US4801514A (en) | Multilayer adhesive label | |
| US5200253A (en) | Hologram forming sheet and process for producing the same | |
| US4966282A (en) | Electronic component carrier | |
| CA2183593A1 (en) | Adhesive Label | |
| EP0541713A1 (en) | Shipping and return mailing label | |
| WO1996042115A9 (en) | Single ply psa label for battery applications | |
| US6127024A (en) | Single ply battery label including varnish with patterned edges | |
| US4166144A (en) | Electrosensitive metalized label stock | |
| EP0230566B1 (en) | Format patterning method for magnetic recording media | |
| EP0606699A1 (en) | Metallized labels | |
| US5766795A (en) | Multilayer adhesive label | |
| EP0225301A1 (en) | Label structure for protected printing | |
| MXPA04012806A (en) | Adhesive coated label having tactile feel. | |
| TWI235971B (en) | Plastics film composed of rigid polyvinyl chloride (RPVC) and process for its production | |
| US6811883B2 (en) | Self-adhesive display film | |
| EP0690427B1 (en) | Label with build-in coding | |
| JPH03175093A (en) | Magnetic layer concealing card and its manufacture | |
| JPH09106248A (en) | Adhesive label with built-in coding | |
| EP0143755A2 (en) | Label having an electrically readable indentification code, particularly for photographic film cartridges, and a method for its manufacture | |
| US6357798B1 (en) | Business form with repositional adhesive label | |
| JP2991723B2 (en) | Pre-imaged high resolution foil stamping transfer foils, articles and methods |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ZWECKFORM ETIKETTIERTECHNIK GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHOENFELDER, HELMUT;REEL/FRAME:007687/0704 Effective date: 19950823 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| AS | Assignment |
Owner name: STEINBEIS PPL GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STEINBEIS PACKAGING GMBH;REEL/FRAME:010404/0600 Effective date: 19991011 Owner name: STEINBEIS PACKAGING GMBH, GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:ZWECKFORM ETIKETTIERTECHNIK GMBH;REEL/FRAME:010404/0603 Effective date: 19990623 |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20070720 |