US5833950A - Aerosol formulations containing beclomethasone dipropionate-1, 1, 1, 2-tetrafluoroethane solvate - Google Patents

Aerosol formulations containing beclomethasone dipropionate-1, 1, 1, 2-tetrafluoroethane solvate Download PDF

Info

Publication number
US5833950A
US5833950A US08877796 US87779697A US5833950A US 5833950 A US5833950 A US 5833950A US 08877796 US08877796 US 08877796 US 87779697 A US87779697 A US 87779697A US 5833950 A US5833950 A US 5833950A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
beclomethasone
dipropionate
aerosol
solvate
example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08877796
Inventor
Anthony James Taylor
Philip John Neale
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glaxo Group Ltd
Original Assignee
Glaxo Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/008Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy comprising drug dissolved or suspended in liquid propellant for inhalation via a pressurized metered dose inhaler [MDI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane, progesterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane, progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane, progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/12Aerosols; Foams
    • A61K9/124Aerosols; Foams characterised by the propellant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S514/00Drug, bio-affecting and body treating compositions
    • Y10S514/937Dispersion or emulsion

Abstract

This invention relates to novel aerosol formulations for administering drugs, in particular, for the administration of a beclomethasone ester, by inhalation. In particular, the invention provides novel aerosol formulations consisting essentially of (a) beclomethasone dipropionate in the form of a solvate with 1,1,1,2-tetrafluoroethane (CF3 CH2 F) and one or more fluorocarbon or hydrogen-containing chlorofluorocarbon propellants, or (b) anhydrous beclomethasone dipropionate and 1,1,1,2,3,3,3-heptafluoro-n-propane as propellant.

Description

This application is a Continuation of application Ser. No. 08/373,267, filed Jan. 26, 1995, now abandoned, which was filed as a 371 of PCT/EP93/02040, filed Jul. 30, 1993.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to novel aerosol formulations for administering drugs, in particular for administration of a beclomethasone ester by inhalation.

Beclomethasone dipropionate is 9α-chloro-16β-methyl-1,4-pregnadiene-11β, 17α,21-triol-3,20-dione 17α,21-dipropionate and may be represented by the formula (I) ##STR1##

The corticosteroid of formula (I) is known to exhibit topical antiinflammatory activity and is useful in the treatment of asthmatic conditions, particularly in the form of aerosol formulations. The use of such formulations is described in GB-1429184 where it is noted that micronised anhydrous beclomethasone dipropionate tends to display crystal growth, due to solvate formation, when incorporated into aerosol formulations containing chlorofluorocarbon propellants. Crystals having a particle size of more than 20 microns were shown to be too large to penetrate the bronchial system and prone to cause clogging of the metering valve making them unsuitable for administration by inhalation.

2. Description of the Prior Art

A number of potential solutions to this problem have been proposed. These include the use of micronised solvates of beclomethasone dipropionate, for example chlorofluorocarbon solvates (GB-1429184), ethyl acetate solvate (DE-3018550OS), C5-8 alkane solvates (EP-0039369), diisopropyl ether solvate (EP-0172672) and C1-5 alcohol solvates (WO86/03750). GB-2076422A discloses a process for the preparation of chlorofluorocarbon aerosols which incorporates a low temperature (5° to -40° C.) step which is also claimed to inhibit crystal growth.

An alternative solution to the problem of crystal growth in aerosol formulations containing beclomethasone dipropionate has recently been disclosed in WO92/06675. This document describes the preparation of aerosol formulations containing solutions of beclomethasone diproprionate in ethanol, together with hydrofluorocarbon 134a (1,1,1,2-tetrafluoroethane) or hydrofluorocarbon 227 (1,1,1,2,3,3,3-heptafluoropropane) as propellant. Since a solution of beclomethasone dipropionate in ethanol is employed in the aerosols rather than a suspension of particulate beclomethasone diproprionate, elaborate process steps or the preparation of a solvate of the active ingredient prior to incorporation into the aerosol formulation is not required.

Nevertheless, whilst ethanol is pharmaceutically acceptable and generally recognised as safe, it is associated with a number of disadvantages which may restrict is use. In particular, administration of ethanol-containing products to teetotal or alcohol-dependent individuals or to children is undesirable.

A number of other patent applications describe the preparation of aerosol formulations containing drug and a fluorocarbon propellant, together with the addition of one or more adjuvants such as surfactants. Thus, for example WO91/14422 describes the preparation of aerosol formulations containing beclomethasone dipropionate in the form of its 1,1,1,2-tetrafluoroethane clathrate together with 1,1,1,2-tetrafluoroethane and various surface-active dispersing agents.

SUMMARY OF THE INVENTION

We have now found that certain novel aerosol formulations containing particulate beclomethasone diproprionate are surprisingly stable without recourse to the use of any adjuvant or cosolvent in the composition.

The present invention therefore provides a pharmaceutical aerosol formulation which comprises particulate beclomethasone dipropionate or a pharmaceutically acceptable solvate thereof together with a fluorocarbon or hydrogen-containing chlorofluorocarbon propellant, which formulation is substantially free of surfactant. By "substantially free of surfactant" is meant formulations which contain no significant amounts of surfactant, for example less than 0.0001% by weight of the beclomethasone dipropionate.

The particle size of the particulate beclomethasone dipropionate may be reduced by conventional methods, for example by micronisation, fluid energy milling or ball milling and should be such as to permit inhalation of substantially all of the drug into the lungs upon administration of the aerosol formulation. Preferably the particle size of the beclomethasone dipropionate will be less than 20 microns, most preferably less than 10 microns, in particular in the range of 1 to 5 microns.

Suitable pharmaceutically acceptable solvates of beclomethasone dipropionate include solvates with chlorofluorocarbons, ethyl acetate, alkanes, ethers, alcohols and water. However, beclomethasone dipropionate is preferably used in the form of a solvate with 1,1,1,2-tetrafluoroethane (CF3 CH2 F).

The term "beclomethasone dipropionate-1,1,1,2-tetrafluoroethane solvate" as used herein refers to any crystalline material in which beclomethasone dipropionate and 1,1,1,2-tetrafluoroethane are associated. The ratio of the steroid to the solvating species need not be stoichiometric and no particular mechanism of association is implied. The solvate may contain, for example, from about 20 to about 30% by weight of 1,1,1,2-tetrafluoroethane, the precise amount depending on the particular method of preparation used.

Preferably the solvate is prepared by intimate admixture of beclomethasone dipropionate with 1,1,1,2-tetrafluoroethane to form a crystalline solvate therewith. The process is desirably carried out in the absence of other potential solvating species such as water, alcohol, chlorofluorocarbons, ethyl acetate, alkane and diisopropyl ether. Thus, for example, micronised beclomethasone dipropionate may be contacted with dry, preferably liquified, 1,1,1,2-tetrafluoroethane. The crystalline solvate formed can be obtained by conventional means such as filtration and drying.

We have found that the beclomethasone dipropionate-1,1,1,2-tetrafluoroethane solvate is surprisingly stable at ambient temperatures and pressures. In particular, beclomethasone dipropionate-1,1,1,2-tetrafluoroethane solvate has been found to be stable at temperatures up to about 65° C. The particle size of the crystalline solvate may be reduced by conventional methods, for example by micronisation, fluid energy milling or ball milling and should be such as to permit inhalation of substantially all of the medicament into the lungs. Preferably the particle size of the solvate is reduced in an atmosphere or partial atmosphere of 1,1,1,2-tetrafluoroethane. The solvate in micronised form may be incorporated into aerosol formulations and unexpectedly does not exhibit any significant crystal growth or agglomeration. Furthermore, the solvate appears to be more easily wetted than the anhydrous or other known solvates of beclomethasone dipropionate in 1,1,1,2-tetrafluoroethane enabling the preparation of aerosols with improved dispersion characteristics.

Accordingly, one particular aspect of the invention provides a pharmaceutical aerosol formulation which comprises particulate beclomethasone dipropionate-1,1,1,2-tetrafluoroethane solvate together with a fluorocarbon or hydrogen-containing chlorofluorocarbon propellant, which formulation is substantially free of surfactant.

The propellants for use in the invention may be any fluorocarbon or hydrogen-containing chlorofluorocarbon or mixtures thereof having a sufficient vapour pressure to render them effective as propellants. Preferably the propellant will be a non-solvent for the medicament. Suitable propellants include for example C1-4 hydrogen-containing chlorofluorocarbons such as CH2 ClF, CClF2 CHClF, CF3 CHClF, CHF2 CClF2, CHClFCHF2, CF3 CH2 Cl and CClF2 CH3, C1-4 hydrogen-containing fluorocarbons such as CHF2 CHF2, CF3 CH2 F, CHF2 CH3 and CF3 CHFCF3 and C1-4 perfluorocarbons such as CF3 CF3 and CF3 CF2 CF3.

Where mixtures of the fluorocarbons or hydrogen-containing chlorofluorocarbons are employed they may be mixtures of the above identified compounds or mixtures, preferably binary mixtures, with other fluorocarbons or hydrogen-containing chlorofluorocarbons for example CHClF2, CH2 F2 and CF3 CH3.

Preferably a single fluorocarbon or hydrogen-containing chlorofluorocarbon is employed as the propellant. Particularly preferred as propellants are hydrogen-containing fluorocarbons, especially 1,1,1,2-tetrafluoroethane (CF3 CH2 F) and 1,1,1,2,3,3,3-heptafluoro-n-propane (CF3 CHFCF3).

It is desirable that the formulations of the invention contain no components which may provoke the degradation of stratospheric ozone. In particular it is desirable that the formulations are substantially free of chlorofluorocarbons especially non hydrogen-containing chlorofluorocarbons such as CCl3 F, CCl2 F2 and CF3 CCl3. As used herein "substantially free" means less than 1% w/w based upon the fluorocarbon or hydrogen-containing chlorofluorocarbon propellant, in particular less than 0.5%, for example 0.1% or less.

The propellant may optionally contain an adjuvant having a higher polarity and/or a higher boiling point than the propellant. Polar adjuvants which may be used include (e.g. C2-6) aliphatic alcohols and polyols such as ethanol, isopropanol and propylene glycol, preferably ethanol. In general only small quantities of polar adjuvants (e.g. 0.05-3.0% w/w) are required to improve the stability of the dispersion--the use of quantities in excess of 5% w/w may tend to dissolve the medicament. Formulations in accordance with the invention preferably contain less than 1% w/w, e.g. about 0.1% w/w or less, of polar adjuvants. Suitable volatile adjuvants include saturated hydrocarbons such as propane, n-butane, isobutane, pentane and isopentane and alkyl ethers such as dimethyl ether. In general, up to 50% w/w of the propellant may comprise a volatile adjuvant, for example 1 to 30% w/w of a volatile saturated C1-6 hydrocarbon.

However, it is preferable that the formulations of the invention are substantially free of other potential solvating species such as chlorofluorocarbons, ethyl acetate, alkanes, ethers, alcohols and water. In particular, the formulations are substantially free of water, for example containing less than 250 ppm, preferably less than 200 ppm, more preferably less than 100 ppm, for example less than 50 ppm water.

A particularly preferred embodiment of the invention provides a pharmaceutical aerosol formulation which consists essentially of beclomethasone dipropionate-1,1,1,2-tetrafluoroethane solvate and one or more fluorocarbon or hydrogen-containing chlorofluorocarbon propellants, particularly 1,1,1,2-tetrafluoroethane.

Alternatively, the beclomethasone dipropionate may be employed in anhydrous form in the compositions according to the invention. Thus, a further aspect of the invention provides a pharmaceutical aerosol formulation which comprises particulate anhydrous beclomethasone dipropionate together with a fluorocarbon or hydrogen-containing chlorofluorocarbon propellant, which formulation is substantially free of surfactant.

A particularly preferred embodiment of the invention provides a pharmaceutical aerosol formulation which consists essentially of anhydrous beclomethasone dipropionate and 1,1,1,2,3,3,3-heptafluoro-n-propane as propellant.

The final aerosol formulation desirably contains 0.005-10% w/w, preferably 0.005-5.0% w/w, especially 0.01-1.0% w/w, for example 0.01-0.5% w/w of beclomethasone dipropionate relative to the total weight of the formulation.

It will be appreciated by those skilled in the art that the aerosol formulations according to the invention may, if desired, contain one or more additional active ingredients. Aerosol compositions containing two active ingredients (in a conventional propellant system) are known, for example, for the treatment of respiratory disorders such as asthma. Accordingly the present invention further provides aerosol formulations in accordance with the invention which contain one or more additional particulate medicaments. Additional medicaments may be selected from any other suitable drug useful in inhalation therapy and which may be presented in a form which is substantially completely insoluble in the selected propellant. Appropriate medicaments may thus be selected from, for example, analgesics, e.g. codeine, dihydromorphine, ergotamine, fentanyl or morphine; anginal preparations, e.g. diltiazem; antiallergics, e.g. cromoglycate, ketotifen or nedocromil; antiinfectives e.g. cephalosporins, penicillins, streptomycin, sulphonamides, tetracyclines and pentamidine; antihistamines, e.g. methapyrilene; anti-inflammatories, e.g. fluticasone, flunisolide, budesonide, tipredane or triamcinolone acetonide; antitussives, e.g. noscapine; bronchodilators, e.g. salmeterol, salbutamol, ephedrine, adrenaline, fenoterol, formoterol, isoprenaline, metaproterenol, phenylephrine, phenylpropanolamine, pirbuterol, reproterol, rimiterol, terbutaline, isoetharine, tulobuterol, orciprenaline, or (-)-4-amino-3,5-dichloro-α- 6- 2-(2-pyridinyl)ethoxy!hexyl!-amino!methyl!benzenemethanol; diuretics, e.g. amiloride; anticholinergics e.g. ipratropium, atropine or oxitropium; hormones, e.g. cortisone, hydrocortisone or prednisolone; xanthines e.g. aminophylline, choline theophyllinate, lysine theophyllinate or theophylline; and therapeutic proteins and peptides, e.g. insulin or glucagon. It will be clear to a person skilled in the art that, where appropriate, the medicaments may be used in the form of salts (e.g. as alkali metal or amine salts or as acid addition salts) or as esters (e.g. lower alkyl esters) or as solvates (e.g. hydrates) to optimise the activity and/or stability of the medicament and/or to minimise the solubility of the medicament in the propellant.

Particularly preferred aerosol formulations contain salbutamol (e.g. as the free base or the sulphate salt) or salmeterol (e.g. as the xinafoate salt) in combination with the beclomethasone diproprionate. Combinations of salmeterol xinafoate and beclomethasone dipropionate are preferred.

The formulations of the invention may be prepared by dispersal of the medicament in the selected propellant in an appropriate container, e.g. with the aid of sonication.

Minimising and preferably avoiding the use of formulation excipients e.g. surfactants, cosolvents etc in the aerosol formulations according to the invention is advantageous since the formulations may be substantially taste and odour free, less irritant and less toxic than conventional formulations.

The chemical and physical stability and the pharmaceutical acceptability of the aerosol formulations according to the invention may be determined by techniques well known to those skilled in the art. Thus, for example, the chemical stability of the components may be determined by HPLC assay, for example, after prolonged storage of the product. Physical stability data may be gained from other conventional analytical techniques such as, for example, by leak testing, by valve delivery assay (average shot weights per actuation), by dose reproducibility assay (active ingredient per actuation) and spray distribution analysis.

The formulations according to the invention may be filled into canisters suitable for delivering pharmaceutical aerosol formulations. Canisters generally comprise a container capable of withstanding the vapour pressure of the propellant used such as a plastic or plastic-coated glass bottle or preferably a metal can, for example an aluminium can which may optionally be anodised, lacquer-coated and/or plastic-coated, which container is closed with a metering valve. The metering valves are designed to deliver a metered amount of the formulation per actuation and incorporate a gasket to prevent leakage of propellant through the valve. The gasket may comprise any suitable elastomeric material such as for example low density polyethylene, chlorobutyl, black and white butadiene-acrylonitrile rubbers, butyl rubber and neoprene. Suitable valves are commercially available from manufacturers well known in the aerosol industry, for example, from Valois, France (e.g. DF10, DF30, DF60), Bespak plc, UK (e.g. BK300, BK356, BK357) and 3M-Neotechnic Ltd, UK (e.g. Spraymiser™).

Conventional bulk manufacturing methods and machinery well known to those skilled in the art of pharmaceutical aerosol manufacture may be employed for the preparation of large scale batches for the commercial production of filled canisters. Thus, for example, in one bulk manufacturing method a metering valve is crimped onto an aluminium can to form an empty canister. The particulate medicament is added to a charge vessel and liquified propellant is pressure filled through the charge vessel into a manufacturing vessel. The drug suspension is mixed before recirculation to a filling machine and an aliquot of the drug suspension is then filled through the metering valve into the canister. Typically, in batches prepared for pharmaceutical use, each filled canister is check-weighed, coded with a batch number and packed into a tray for storage before release testing.

Each filled canister is conveniently fitted into a suitable channelling device prior to use to form a metered dose inhaler for administration of the medicament into the lungs or nasal cavity of a patient. Suitable channelling devices comprise for example a valve actuator and a cylindrical or cone-like passage through which medicament may be delivered from the filled canister via the metering valve to the nose or mouth of a patient e.g. a mouthpiece actuator. Metered dose inhalers are designed to deliver a fixed unit dosage of medicament per actuation or "puff", for example in the range of 10 to 5000 microgram medicament per puff.

Administration of medicament may be indicated for the treatment of mild, moderate or severe acute or chronic symptoms or for prophylactic treatment. It will be appreciated that the precise dose administered will depend on the age and condition of the patient, the particular particulate medicament used and the frequency of administration and will ultimately be at the discretion of the attendant physician. When combinations of medicaments are employed the dose of each component of the combination will in general be that employed for each component when used alone. Typically, administration may be one or more times, for example from 1 to 8 times per day, giving for example 1,2,3 or 4 puffs each time.

Suitable daily doses, may be, for example in the range 100 to 2000 microgram of beclomethasone dipropionate, depending on the severity of the disease.

Thus, for example, each valve actuation may deliver 50, 100, 200 or 250 microgram beclomethasone dipropionate. Typically each filled canister for use in a metered dose inhaler contains 100, 160 or 240 metered doses or puffs of medicament.

The filled canisters and metered dose inhalers described herein comprise further aspects of the present invention.

A still further aspect of the present invention comprises a method of treating respiratory disorders such as, for example, asthma, which comprises administration by inhalation of an effective amount of a formulation as herein described.

The following non-limitative Examples serve to illustrate the invention.

EXAMPLE 1 Beclomethasone dipropionate-1,1,1,2-tetrafluoroethane solvate

Micronised anhydrous beclomethasone dipropionate (25.2 mg) was weighed into a clean dry plastic-coated glass bottle and dry (<50 ppm H2 O) 1,1,1,2-tetrafluoroethane (to 18.2 g) was added from a vacuum flask. The bottle was quickly sealed with a blank aluminium ferrule. The bottle was allowed to stand at ambient temperature. After several days crystals of the solvate formed were isolated by filtration.

The solvate thus obtained was analysed by various techniques.

Microscopic examination of the solvate showed the crystals to be columnar and prismatic and up to 500 to 1000 microns in length.

The solid state infra-red spectrum of the solvate was analysed. The most obvious differences between this spectrum and the solid state infra-red spectrum of anhydrous beclomethasone dipropionate were as follows:

(a)The broad OH band at 3300 cm-1 is raised to near 3500 cm-1 and is sharpened;

(b)The carbonyl band at 1750 cm-1 is split into three distinct peaks indicating the solvated form; and

(c)The 1,4-diene peaks are more widely separated with the 1610 cm-1 peak moved up to about 1630 cm-1.

Other differences were also apparent throughout the whole region examined with most peaks changed in position and intensity after solvation.

Thermogravimetric analysis and differential scanning calorimetry of the solvate at atmospheric pressure was carried out using a Netzsch Simultaneous Thermal Analyser STA409. Loss of 1,1,1,2-tetrafluoroethane started to occur at 65° C. Heat absorption continued to about 90° C. when an exothermic change resulted from 90° to 110° C. which corresponded with completion of the loss of 1,1,1,2-tetrafluoroethane at 120° C. This profile differs significantly from that of the known beclomethasone dipropionate-trichlorofluoromethane solvate in which trichlorofluoromethane loss starts to occur at 30° C.

The thermogravimetric analysis showed a total weight loss of 23.1% on heating the beclomethasone dipropionate-1,1,1,2-tetrafluoroethane solvate indicating a ratio of 3 molecules of 1,1,1,2-tetrafluoroethane to 2 molecules of beclomethasone dipropionate.

EXAMPLE 2 Beclomethasone dipropionate-1,1,1,2-tetrafluoroethane solvate

Micronised anhydrous beclomethasone dipropionate (24.1 mg) and lecithin (3.3 mg) were weighed into a clean dry plastic-coated glass bottle and dry (<50 ppm H2 O) 1,1,1,2-tetrafluoroethane (to 18.2 g) was added from a vacuum flask. The bottle was quickly sealed with a blank aluminium ferrule. The bottle was allowed to stand at ambient temperature. After several days, the solvate crystals were isolated by filtration. The crystal shape, infra-red spectrum and thermal analysis of the solvate obtained was substantially identical with the solvate of Example 1.

EXAMPLE 3 Aerosol Formulation

Micronised beclomethasone dipropionate-1,1,1,2-tetrafluoroethane solvate, prepared according to Example 1 (31 mg), was weighed into a clean, dry, plastic-coated glass bottle and dry (<50 ppm H2 O) 1,1,1,2-tetrafluoroethane (18.2 g) was added from a vacuum flask. The bottle was quickly sealed with a blank aluminium ferrule. The resulting aerosol contained 0.138% (w/w) beclomethasone dipropionate (0.170% w/w solvate).

EXAMPLE 4 Aerosol Formulation

Micronised anhydrous beclomethasone dipropionate (60 mg), was weighed into a clean, dry, plastic-coated glass bottle and dry (<50 ppm H2 O) 1,1,1,2,3,3,3-heptafluoro-n-propane (18.2 g) was added from a vacuum flask. The bottle was quickly sealed with a blank aluminium ferrule. The resulting aerosol contained 0.33% (w/w) beclomethasone dipropionate.

Claims (14)

We claim:
1. A pharmaceutical aerosol formulation which comprises particulate beclomethasone dipropionate-1,1,1,2-tetrafluoroethane solvate having a particle size less than 20 microns together with a fluorocarbon or hydrogen-containing chlorofluorocarbon propellant, which formulation contains less than 0.0001% of surfactant measured by weight of beclomethasone dipropionate.
2. A formulation as claimed in claim 1 wherein the propellant is 1,1,1,2-tetrafluoroethane.
3. A formulation as claimed in claim 1 wherein the propellant is 1,1,1,2,3,3,3-heptafluoro-n-propane.
4. A formulation as claimed in claim 1 which contains 0.005-5.0% w/w of beclomethasone dipropionate relative to the total weight of the formulation.
5. A formulation as claimed in claim 1 which additionally contains salbutamol.
6. A pharmaceutical aerosol formulation which consists essentially of particulate beclomethasone diproprionate-1,1,1,2-tetrafluoroethane solvate having a particle size less than 20 microns and one or more fluorocarbon or hydrogen-containing chlorofluorocarbon propellants.
7. A formulation as claimed in claim 6 wherein the propellant is 1,1,1,2-tetrafluoroethane.
8. A canister suitable for delivering a pharmaceutical aerosol formulation which comprises a container capable of withstanding the vapor pressure of the propellant used, which container is closed with a metering valve and contains a pharmaceutical aerosol formulation as claimed in claim 1.
9. A canister suitable for delivering a pharmaceutical aerosol formulation which comprises a container capable of withstanding the vapor pressure of the propellant used, which container is closed with a metering valve and contains a pharmaceutical aerosol formulation as claimed in claim 6.
10. A metered dose inhaler which comprises a canister as claimed in claim 8 fitted into a suitable channelling device.
11. A metered dose inhaler which comprises a canister as claimed in claim 9 fitted into a suitable channelling device.
12. A method of treating respiratory disorders which comprises administration by inhalation of an effective amount of a pharmaceutical aerosol formulation as claimed in claim 1.
13. A method of treating respiratory disorders which comprises administration by inhalation of an effective amount of a pharmaceutical aerosol formulation as claimed in claim 6.
14. A formulation according to claim 1 which is substantially free of chlorofluorocarbons, ethyl acetate, alkanes, ethers, alcohols and water.
US08877796 1992-07-31 1997-06-18 Aerosol formulations containing beclomethasone dipropionate-1, 1, 1, 2-tetrafluoroethane solvate Expired - Fee Related US5833950A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
GB9216381A GB9216381D0 (en) 1992-07-31 1992-07-31 Medicaments
GB9216382A GB9216382D0 (en) 1992-07-31 1992-07-31 Medicaments
GB9216382 1992-07-31
GB9216381 1992-07-31
US37326795 true 1995-01-26 1995-01-26
US08877796 US5833950A (en) 1992-07-31 1997-06-18 Aerosol formulations containing beclomethasone dipropionate-1, 1, 1, 2-tetrafluoroethane solvate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08877796 US5833950A (en) 1992-07-31 1997-06-18 Aerosol formulations containing beclomethasone dipropionate-1, 1, 1, 2-tetrafluoroethane solvate
US09139115 US6013245A (en) 1995-01-26 1998-08-24 Aerosol formulation containing beclomethasone dipropionate and 1,1,1,2,3,3,3-heptafluoro-n-propane as propellant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US37326795 Continuation 1995-01-26 1995-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09139115 Continuation US6013245A (en) 1992-07-31 1998-08-24 Aerosol formulation containing beclomethasone dipropionate and 1,1,1,2,3,3,3-heptafluoro-n-propane as propellant

Publications (1)

Publication Number Publication Date
US5833950A true US5833950A (en) 1998-11-10

Family

ID=27266312

Family Applications (1)

Application Number Title Priority Date Filing Date
US08877796 Expired - Fee Related US5833950A (en) 1992-07-31 1997-06-18 Aerosol formulations containing beclomethasone dipropionate-1, 1, 1, 2-tetrafluoroethane solvate

Country Status (1)

Country Link
US (1) US5833950A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200549B1 (en) 1991-12-12 2001-03-13 Glaxo Group Limited Aerosol formulation containing P134a and particulate medicament
US6238647B1 (en) 1991-12-12 2001-05-29 Glaxo Group Limited Aerosol formulations containing salmeterol xinafoate, an anticholinergic agent and tetrafluoroethane
US20030103907A1 (en) * 1991-12-18 2003-06-05 Schultz Robert K. Suspension aerosol formulations
US6598603B1 (en) * 1997-12-31 2003-07-29 Astra Aktiebolag Method for treating respiratory diseases
US6743413B1 (en) 1991-12-18 2004-06-01 3M Company Suspension aerosol formulations
US20050238632A1 (en) * 2004-04-23 2005-10-27 Alburty David S Propellant formulations
US7101534B1 (en) 1991-12-18 2006-09-05 3M Innovative Properties Company Suspension aerosol formulations
US7105152B1 (en) 1991-12-18 2006-09-12 3M Innovative Properties Company Suspension aerosol formulations
US20080287451A1 (en) * 2007-02-11 2008-11-20 Cook Robert O Method of therapeutic administration of DHE to enable rapid relief of migraine while minimizing side effect profile
US8080236B2 (en) 2002-04-17 2011-12-20 Nektar Therapeutics Uk, Ltd Particulate materials
WO2013026269A1 (en) 2011-03-17 2013-02-28 益得生物科技股份有限公司 Method for preparing metered dose sprayed inhaler for treating respiratory disease
WO2015195711A3 (en) * 2014-06-16 2016-02-18 Shurtleff, James, Kevin Method and devices for manufacturing and delivering of aerosolized formulations

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044126A (en) * 1972-04-20 1977-08-23 Allen & Hanburys Limited Steroidal aerosol compositions and process for the preparation thereof
US4810488A (en) * 1984-12-19 1989-03-07 Riker Laboratories, Inc. Physically modified beclomethasone dipropionate suitable for use in aerosols
WO1991011495A1 (en) * 1990-02-03 1991-08-08 Boehringer Ingelheim Kg Novel vehicle gas mixtures and their use in medical preparations
WO1992006675A1 (en) * 1990-10-18 1992-04-30 Minnesota Mining And Manufacturing Company Aerosol formulation comprising beclomethasone 17,21 dipropionate
US5118494A (en) * 1990-03-23 1992-06-02 Minnesota Mining And Manufacturing Company Use of soluble fluorosurfactants for the preparation of metered-dose aerosol formulations
EP0518600A1 (en) * 1991-06-10 1992-12-16 Schering Corporation Non-chlorofluorocarbon aerosol formulations
WO1992022287A1 (en) * 1991-06-10 1992-12-23 Schering Corporation Non-chlorofluorocarbon aerosol formulations
EP0372777B1 (en) * 1988-12-06 1993-01-07 Riker Laboratories, Inc. Medicinal aerosol formulations
WO1993011743A1 (en) * 1991-12-12 1993-06-24 Glaxo Group Limited Medicaments
US5653962A (en) * 1991-12-12 1997-08-05 Glaxo Group Limited Aerosol formulations containing P134a and particulate medicaments
US5658549A (en) * 1991-12-12 1997-08-19 Glaxo Group Limited Aerosol formulations containing propellant 134a and fluticasone propionate
US5674471A (en) * 1991-12-12 1997-10-07 Glaxo Group Limited Aerosol formulations containing P134a and salbutamol
US5688782A (en) * 1992-02-06 1997-11-18 Glaxo Group Limited Medicaments for treating respiratory disorders

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044126A (en) * 1972-04-20 1977-08-23 Allen & Hanburys Limited Steroidal aerosol compositions and process for the preparation thereof
US4810488A (en) * 1984-12-19 1989-03-07 Riker Laboratories, Inc. Physically modified beclomethasone dipropionate suitable for use in aerosols
EP0372777B1 (en) * 1988-12-06 1993-01-07 Riker Laboratories, Inc. Medicinal aerosol formulations
WO1991011495A1 (en) * 1990-02-03 1991-08-08 Boehringer Ingelheim Kg Novel vehicle gas mixtures and their use in medical preparations
US5118494A (en) * 1990-03-23 1992-06-02 Minnesota Mining And Manufacturing Company Use of soluble fluorosurfactants for the preparation of metered-dose aerosol formulations
WO1992006675A1 (en) * 1990-10-18 1992-04-30 Minnesota Mining And Manufacturing Company Aerosol formulation comprising beclomethasone 17,21 dipropionate
EP0518600A1 (en) * 1991-06-10 1992-12-16 Schering Corporation Non-chlorofluorocarbon aerosol formulations
WO1992022287A1 (en) * 1991-06-10 1992-12-23 Schering Corporation Non-chlorofluorocarbon aerosol formulations
WO1993011743A1 (en) * 1991-12-12 1993-06-24 Glaxo Group Limited Medicaments
US5653962A (en) * 1991-12-12 1997-08-05 Glaxo Group Limited Aerosol formulations containing P134a and particulate medicaments
US5658549A (en) * 1991-12-12 1997-08-19 Glaxo Group Limited Aerosol formulations containing propellant 134a and fluticasone propionate
US5674472A (en) * 1991-12-12 1997-10-07 Glaxo Group Limited Canisters containing aerosol formulations containing P134a and fluticasone propionate
US5674471A (en) * 1991-12-12 1997-10-07 Glaxo Group Limited Aerosol formulations containing P134a and salbutamol
US5676929A (en) * 1991-12-12 1997-10-14 Glaxo Group Limited Canister containing aerosol formulations containing P134a and particulate medicaments
US5683676A (en) * 1991-12-12 1997-11-04 Glaxo Group Limited Canister containing aerosol formulations containing P134a and particulate medicaments
US5688782A (en) * 1992-02-06 1997-11-18 Glaxo Group Limited Medicaments for treating respiratory disorders

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6200549B1 (en) 1991-12-12 2001-03-13 Glaxo Group Limited Aerosol formulation containing P134a and particulate medicament
US6238647B1 (en) 1991-12-12 2001-05-29 Glaxo Group Limited Aerosol formulations containing salmeterol xinafoate, an anticholinergic agent and tetrafluoroethane
US6251368B1 (en) 1991-12-12 2001-06-26 Glaxo Group Limited Pharmaceutical aerosol formulation containing a particulate medicament, a propellant and substantially free of a surfactant
US6303103B1 (en) 1991-12-12 2001-10-16 Glaxo Group Limited Aerosols containing salmeterol xinafoate and an anticholinergic medicament
US6306369B1 (en) 1991-12-12 2001-10-23 Glaxo Group Limited Aerosol formulations containing P134a and particulate medicament
US20050207991A1 (en) * 1991-12-12 2005-09-22 Glaxo Group Limited Aerosol formulations containing P134a and particulate medicament
US20090188491A1 (en) * 1991-12-12 2009-07-30 Glaxo Group Limited Medicaments
US20030143163A1 (en) * 1991-12-12 2003-07-31 Glaxo Group Limited Medicaments
US20030165437A1 (en) * 1991-12-12 2003-09-04 Glaxo Group Limited Aerosos formulations containing P134a and particulate medicament
US7498020B2 (en) 1991-12-12 2009-03-03 Glaxo Group Limited Medicaments
US6893628B2 (en) 1991-12-12 2005-05-17 Glaxo Group Limited Aerosol formulations containing P134a and particulate medicament
US20050089477A1 (en) * 1991-12-12 2005-04-28 Glaxo Group Limited Medicaments
US20040197273A1 (en) * 1991-12-18 2004-10-07 3M Company Suspension aerosol formulations
US6743413B1 (en) 1991-12-18 2004-06-01 3M Company Suspension aerosol formulations
US20030103907A1 (en) * 1991-12-18 2003-06-05 Schultz Robert K. Suspension aerosol formulations
US7105152B1 (en) 1991-12-18 2006-09-12 3M Innovative Properties Company Suspension aerosol formulations
US7101534B1 (en) 1991-12-18 2006-09-05 3M Innovative Properties Company Suspension aerosol formulations
US20050222111A1 (en) * 1997-12-31 2005-10-06 Astrazeneca Ab, A Sweden Corporation Method for treating a respiratory disease
US20080108592A1 (en) * 1997-12-31 2008-05-08 Astrazeneca Ab New method
US6899099B2 (en) * 1997-12-31 2005-05-31 Astrazeneca Ab Method for treating a respiratory disease
US6598603B1 (en) * 1997-12-31 2003-07-29 Astra Aktiebolag Method for treating respiratory diseases
US8470301B2 (en) 2002-04-17 2013-06-25 Nektar Therapeutics Particulate materials
US8828359B2 (en) 2002-04-17 2014-09-09 Nektar Therapeutics Particulate materials
US8080236B2 (en) 2002-04-17 2011-12-20 Nektar Therapeutics Uk, Ltd Particulate materials
US9616060B2 (en) 2002-04-17 2017-04-11 Nektar Therapeutics Particulate materials
US20050238632A1 (en) * 2004-04-23 2005-10-27 Alburty David S Propellant formulations
EP2425820A1 (en) 2007-02-11 2012-03-07 MAP Pharmaceuticals Inc Method of therapeutic administration of dhe to enable rapid relief of migraine while minimizing side effect profile
EP2425819A1 (en) 2007-02-11 2012-03-07 MAP Pharmaceuticals Inc Method of therapeutic administration of dhe to enable rapid relief of migraine while minimizing side effect profile
US8148377B2 (en) 2007-02-11 2012-04-03 Map Pharmaceuticals, Inc. Method of therapeutic administration of DHE to enable rapid relief of migraine while minimizing side effect profile
US8119639B2 (en) 2007-02-11 2012-02-21 Map Pharmaceuticals, Inc. Method of therapeutic administration of DHE to enable rapid relief of migraine while minimizing side effect profile
US7994197B2 (en) 2007-02-11 2011-08-09 Map Pharmaceuticals, Inc. Method of therapeutic administration of DHE to enable rapid relief of migraine while minimizing side effect profile
US20080287451A1 (en) * 2007-02-11 2008-11-20 Cook Robert O Method of therapeutic administration of DHE to enable rapid relief of migraine while minimizing side effect profile
US9833451B2 (en) 2007-02-11 2017-12-05 Map Pharmaceuticals, Inc. Method of therapeutic administration of DHE to enable rapid relief of migraine while minimizing side effect profile
WO2013026269A1 (en) 2011-03-17 2013-02-28 益得生物科技股份有限公司 Method for preparing metered dose sprayed inhaler for treating respiratory disease
WO2015195711A3 (en) * 2014-06-16 2016-02-18 Shurtleff, James, Kevin Method and devices for manufacturing and delivering of aerosolized formulations

Similar Documents

Publication Publication Date Title
US5126123A (en) Aerosol drug formulations
US5292499A (en) Method of preparing medical aerosol formulations including drug dissolved in reverse micelles
US6461591B1 (en) Medical aerosol formulations
US5676930A (en) Stabilized medicinal aerosol solution formulations
US6585958B1 (en) Medicinal aerosol formulations
US6475467B1 (en) Medicinal aerosol formulations
US6416743B1 (en) Aerosol formulations of albuterol and 1,1,1,2-tetrafluoroethane
EP0372777B1 (en) Medicinal aerosol formulations
US6644306B1 (en) Valve for aerosol container
US20030089369A1 (en) Pressurised metered dose inhalers (MDI)
US5766573A (en) Medicinal aerosol formulations
US5681545A (en) Medicinal aerosol formulations
US20070286814A1 (en) Stable aerosol pharmaceutical formulations
US5474759A (en) Non-chlorofluorocarbon aerosol formulations
US5439670A (en) Medicinal aerosol formulations
US5776432A (en) Beclomethasone solution aerosol formulations
US20040136918A1 (en) Pharmaceutical formulations
US5415853A (en) Compressed gas packages using polyoxyethylene glyceryl oleates
US6737044B1 (en) Aerosol composition
US20040101483A1 (en) Medical aerosol formulations
US20030206870A1 (en) Pharaceutical aerosol composition
US5536444A (en) Compressed-gas packages using polyoxyethylene glyceryl fatty-acid esters as suspension stabilizers and valve lubricants
US5919435A (en) Aerosol formulation containing a particulate medicament
WO1992000062A1 (en) The use of soluble fluorosurfactants for the preparation of metered-dose aerosol formulations
WO1996019198A1 (en) Aerosol drug formulations

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 20101110