Connect public, paid and private patent data with Google Patents Public Datasets

Apparatus for printing with ink chambers utilizing a plurality of orifices

Download PDF

Info

Publication number
US5767873A
US5767873A US08530946 US53094695A US5767873A US 5767873 A US5767873 A US 5767873A US 08530946 US08530946 US 08530946 US 53094695 A US53094695 A US 53094695A US 5767873 A US5767873 A US 5767873A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
ink
chambers
orifices
jet
fig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08530946
Inventor
Robert L. Rogers
Arthur Mikalsen
Jeffrey G. Cartin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dataproducts Corp
Original Assignee
Dataproducts Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J25/00Actions or mechanisms not otherwise provided for
    • B41J25/001Mechanisms for bodily moving print heads or carriages parallel to the paper surface
    • B41J25/003Mechanisms for bodily moving print heads or carriages parallel to the paper surface for changing the angle between a print element array axis and the printing line, e.g. for dot density changes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04525Control methods or devices therefor, e.g. driver circuits, control circuits reducing occurrence of cross talk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04581Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14274Structure of print heads with piezoelectric elements of stacked structure type, deformed by compression/extension and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • B41J2/15Arrangement thereof for serial printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • B41J2/155Arrangement thereof for line printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1607Production of print heads with piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1607Production of print heads with piezoelectric elements
    • B41J2/1618Fixing the piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Production of nozzles manufacturing processes
    • B41J2/1623Production of nozzles manufacturing processes bonding and adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14387Front shooter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14475Structure thereof only for on-demand ink jet heads characterised by nozzle shapes or number of orifices per chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, e.g. INK-JET PRINTERS, THERMAL PRINTERS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/11Embodiments of or processes related to ink-jet heads characterised by specific geometrical characteristics

Abstract

A dense array of ink jets is achieved by a fanning-in of chambers to a linear array of orifices. The ends of the chambers remote from the orifices have actuation locations which are coupled to elongated transducers having axes of elongation which are parallel to the axes of ejection of droplets from the orifices.

Description

CROSS-REFERENCE TO RELATED APPLICATION

This is a continuation-in-part of U.S. patent application Ser. No. 08/310,967, filed Sep. 23, 1994.

BACKGROUND OF THE INVENTION

This invention relates to impulse or drop-on demand ink jet printers employing an array of ink jets which are capable of printing a substantial field of droplets on demand.

U.S. Pat. No. 4,714,934 discloses an ink jet apparatus of the type shown in FIGS. 1 through 3. The apparatus includes a print head 10 having a reservoir 12 and an imaging head of 14. The print head 10 is juxtaposed to a target 16 which is advanced by means of a transport system, including rollers 18 and 20, in an incremental fashion. As shown in FIG. 1, print head 10 includes an orifice plate 22, including orifices 24. In FIG. 1, the orifices are shown further apart from each other than they are in practice for purposes of illustration.

The orifices 24 actually comprise a plurality of sets of orifices which are more fully described with reference to FIGS. 2 and 3. The sets of orifices 24 are vertically displaced as a result of the inclination of the print head 10 with respect to the scanning direction depicted by arrow 26. The orifices 24 are arranged in groups of three (3) and inclined on the orifice plate 22 so as to be substantially vertical when the print head 10 is inclined with respect to the scanning direction 26 as shown in FIG. 1. The hash marks 28 and the orifice plate actually show this angle of inclination. The angle of the orifices 24 in each group with respect to the vertical as shown in FIG. 2 is chosen such that when the orifice plate 22 is inclined as shown in FIG. 1, sets of orifices 24 will be vertical. As scanning in the direction depicted by the arrow 26 proceeds, there is no overlap of any droplets projected from the orifices so as to permit the apparatus as shown in FIGS. 1 through 3 to create a vertical bar when the droplets are ejected sequentially in the proper timed relationship of course, the droplets can also produce an alphanumeric character by ejecting appropriate droplets on demand.

By changing the angle of inclination of the hash marks 28, it is possible to change the angle of inclination of the print head 14. However, if the angle of inclination is increased beyond a certain limit, it becomes impossible to print a continuous bar since the orifices cannot be spaced sufficiently close together to provide full coverage of the field. In addition, the chambers associated with those orifices become starved for ink when operated at a sufficiently high frequency. Moreover, it has not been possible to increase the number of chambers since cross-talk and limited real estate do not allow transducers to be coupled to the chambers.

As also shown in U.S. Pat. No. 4,714,934, the individual ink jets include feet which are coupled to the ink jet chambers. These feet 46 are secured to a foot plate by a resilient rubber-like material, such as silicone. As a consequence, ink within the ink jet chambers is exposed to a variety of materials including the foot, the silicone and the materials from which the remainder of the ink jet including the chamber and the orifices are made. This in turn produces compatibility problems which effectively limit the type of ink which may be employed in an ink jet apparatus.

SUMMARY OF THE INVENTION

In accordance with one important aspect of the invention, an ink jet apparatus is provided whereby the spacing between a plurality of impulse ink jets in an array is substantially reduced thereby increasing the ability to print high quality images with an in-line array of orifices while minimizing cross-talk.

In accordance with this object of the invention, an ink jet apparatus comprises an array of chambers, each of the chambers being terminated in at least one orifice such that the linear array of orifices is formed. Each of the chambers includes an actuation location laterally displaced from the linear orifice array. A plurality of elongated transducers is juxtaposed to the actuation locations respectively such that the transducers have an axis of elongation extending substantially parallel with the ejection axis of each orifice and laterally displaced with respect to the linear orifice array.

In accordance with one important aspect of the invention, the actuation locations of adjacent chambers in the array of ink jet devices are mutually laterally displaced.

In accordance with another important aspect of the invention, the axis of chambers are inclined at an acute angle with respect to the ejection axis of the chambers.

In accordance with another important aspect of the invention, the axes of the chambers are elbowed to include a first segment substantially parallel to the ejection axis and a second segment substantially perpendicular to the ejection axis.

In accordance with still another important aspect of the invention, the axes of elongation of adjacent transducers are parallel but laterally displaced with respect to the axis of ejection from each of the orifices.

In accordance with yet another important aspect of the invention, each of the chambers may include one or more orifices.

It is another object of this invention to provide an impulse ink jet apparatus which has a high degree of compatibility with various inks. In accordance with this object of the invention, the ink jet apparatus includes an ink jet chamber, a transducer coupled to the chamber and a diaphragm separating the transducer from the chamber. In the preferred embodiment of the invention, the chamber and the diaphragm comprise a relatively inert material such as, for example, stainless steel.

The transducer is bonded to the diaphragm by a suitable adhesive such as for example, a silicone adhesive. The transducer may also be encapsulated in a silicone material for acoustic damping.

Preferably, the chamber is formed by sandwiching a plurality of stainless steel plates together including the diaphragm. The plates may comprise an orifice plate, chamber plate, a restrictor plate providing a restricted opening for ink to enter the chamber, the diaphragm and a spacer plate separating the diaphragm from the restrictor plate such that movement of the diaphragm does not affect the size of the restricted opening to the ink jet chamber.

DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of the prior art ink jet printing apparatus previously discussed;

FIG. 2 is a plan view of an orifice plate of the prior art apparatus shown in FIG. 1;

FIG. 3 is a fragmentary view of the fragment 3 of the prior art apparatus shown in FIG. 2;

FIG. 4 is a plan view of the orifice plate of an ink jet apparatus embodying this invention;

FIG. 5 is an enlarged view of the fragment 5 shown in FIG. 4;

FIG. 6 is a sectional view of the ink jet apparatus of FIG. 4 taken along line 6--6 of FIG. 5;

FIG. 6A is a partial view similar to FIG. 6 but depicting a second embodiment of the invention (in this embodiment, the elongated portions of chambers 126 are implemented with right angles);

FIG. 7 is an enlarged fragmentary view of a fragment of FIG. 6;

FIG. 7A is a view similar to FIG. 7 but of the second embodiment depicted in FIG. 6A;

FIG. 8 is a plan view of an orifice plate representing another embodiment of the invention;

FIG. 9 is a fragmentary sectional view of the apparatus of FIG. 8 taken along line 9--9;

FIG. 10 is a plan view of the orifice plate of another ink jet apparatus representing yet another embodiment of the invention;

FIG. 11 is an enlarged fragmentary sectional view of the ink jet apparatus of FIG. 10;

FIG. 11A a view similar to FIG. 11 but of yet another embodiment similar to that of FIGS. 6A and 7A;

FIG. 12 is a plan view of another ink jet apparatus orifice plate representing another embodiment of the invention;

FIG. 13 is a sectional view of the ink jet apparatus of FIG. 12 taken along line 13--13.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Referring to FIGS. 4-6, one preferred embodiment of the invention comprises an orifice plate 122 having groups of three orifices 124 forming a linear array. In all, a total of 64 groups of orifices 124 are shown. Each linear array of orifices 124 is inclined such that the orifices 124 are vertically disposed with respect to the scanning direction when incorporated in a print head similar to that shown in FIG. 1. The angle of inclination of the orifice plate and thus the linear array of orifices 124 is 47.105 degrees so as to provide an overall field height h of 1.36 inches. As should be appreciated, the spacing between the groups of orifices 124 is necessarily small.

As shown in FIGS. 5-7, the orifices 124 terminate ink jet chambers 126 in drop-on-demand or impulse devices of the general type disclosed in U.S. Pat. No. 4,646,106, incorporated herein by reference. Because the chambers 126 are necessarily closely spaced, it is not possible to confine the chambers to the area between adjacent groups of orifices 124. Rather, it is necessary to laterally extend the chambers 126 in opposite directions so as to provide actuation locations 128 which are laterally displaced from the linear array. As best shown in FIG. 5, the actuation locations 128 of adjacent chambers 126 are mutually laterally displaced. By virtue of this lateral displacement, there is sufficient room for elongated transducers 130, shown in FIG. 6, to eject droplets of ink on demand from the orifices 124 without cross-talk between chambers.

As best shown in FIGS. 6, 6A, 7 and 7A, the chambers 126 or 126' may include either elongated sections 134 which are disposed at an acute angle with respect to the axis of ejection of droplets from orifice 124 as well as the axis of elongation of the transducers 130 or a elongated sections 134' which project along the axis of elongation of the transducers, then bend 90° towards the centerline or axis of ejection of droplets from orifice 124 and then bend 90° again traversing along the axis of ejection of droplets from orifice 124.

The inclined or elbowed, elongated portions 134 (or 134') of the chambers 126 (or 126') create a fanning-in effect so as to permit alignment of the groups of orifices 124 in a linear array while providing separation of the elongated transducers 130. Note that only a single orifice is shown in FIGS. 7 and 7A since the sections represented by FIGS. 6, 6A, 7 and 7A is through a single orifice. However, it will be appreciated that there are up to three orifices associated with each of the chambers 126 or 126' shown in FIGS. 6, 6A, 7 and 7A. By utilizing this fanning-in effect, it is possible to achieve greater chamber density. For example, it is possible to achieve a chamber-to-chamber spacing of less than 0.0500 inches, preferably less than 0.0400 inches, and optimally less than 0.0300 inches without cross-talk. The fan-in effect also allows chamber-to-chamber spacing of less than ten times the diameter or cross-sectional dimension of the chamber and preferably less than seven times this diameter.

As also shown in FIGS. 6 and 6A, the ink jet apparatus includes a restrictor plate 138 having openings 140 which connect the actuation locations 128 with manifolds 142. The manifolds 142 service an aligned row of actuation locations 128 with ink while an other manifold 142 services another aligned row of actuation locations 128 with ink. Additional manifolds 142 external to the elbowed elongated portions 134' of the chambers in FIG. 6A create additional fluidic compliance and permit secondary servicing of center manifold 142' and downstream activation locations 128.

In accordance with another important aspect of the invention, the ink which is ejected from the orifices 124 is separated from the transducer and its mounting materials by a relatively inert diaphragm 144 (see FIG. 6). Preferably, the diaphragm comprises stainless steel. Diaphragm 144 moves with the transducers 130 so as to eliminate ink compatibility problems. In order to assure that deflection of the diaphragm 144 by the transducers 130 does not affect the size of the restrictor opening 140, a spacer plate 146 is inserted between the diaphragm 144 and the restrictor plate 138.

In accordance with an important aspect of the invention, the diaphragm 144 (FIG. 6) is secured to the transducers 130 by an elastomeric adhesive (e.g., silicone) which extends upwardly into openings 148 in a body 150 and forms a layer 152 along the top of the diaphragm 144. As a consequence, retraction of the transducer 130 pulls the diaphragm 144 upwardly at the actuation locations 128 so as to permit additional ink from the manifolds 142 to enter the chambers 126. When the transducers 130 are deenergized (i.e., electrically grounded), the diaphragm 144 will return to the quiescent, planar condition and droplets of ink 136 will be ejected from the orifices 124 as shown in FIGS. 7 and 7A. In addition to the silicone adhesive, the transducer is secured to the body 150 and a central mounting 156 by an LRTV silicone 154. A conductive epoxy 158 (e.g., a silver epoxy) joins the transducers 130 to the mounting 156 at the extremity remote from the diaphragm 144.

Referring now to FIGS. 8 and 9, another embodiment of the invention is shown wherein the angle of inclination α of an orifice plate 222 is reduced to 29.236 degrees so as to provide an overall field height of 0.92 inches. The orifices 224 are arranged in groups of two. Thus the density of chambers from end to end of the orifice plate, 64 chambers in all, remains the same although the number of orifices is reduced since there are only two orifices 224 per chamber. As in the case of the embodiment of FIGS. 4, 5, 6 and 7, the elongated portions of the chambers 226 are inclined so as to provide lateral displacement of the actuation locations of the chambers, which are not shown in FIGS. 8 and 9. However, it will be appreciated that the chambers look substantially as shown in FIGS. 6 and 7 such that the elongated portions of chambers 226 are inclined with respect to the axis of ejection for the droplets 236 as well as the axis of elongation for the elongated transducers.

Referring now to FIGS. 10, 11 and 11A, an orifice plate 322 is shown having a total of 64 channels terminating in orifices 324. The orifices and channels or chambers are arrayed in linear fashion at an angle a of 14.135 degrees with respect to the scanning axis so as to provide an overall field dimension h equal to 0.46 inches. As shown in FIG. 11, the chambers 326 are once again inclined with respect to the axis of ejection of droplets 336. As shown in FIG. 6, the elongated transducers are also inclined with respect to the chambers 326. It will therefore be appreciated that, with reference to FIGS. 10 and 11, there are a total of 64 channels shown with 64 orifices, i.e., one orifice per chamber. This also applies to embodiments of FIGS. 6A and 11A in that there are a total of 64 channels shown with 64 orifices, i.e., one orifice per chamber.

Reference will now be made to FIGS. 12 and 13 and the ink jet apparatus shown therein. FIG. 12 depicts an orifice plate 422 having groups of orifices 424, i.e., 3 orifices per channel or group. The chambers 426 extend laterally outwardly from the linear array of orifices 424 such that actuation locations 428 are laterally displaced from the linear array. As shown in FIG. 13, the chambers 428 are not inclined with respect to the axis of ejection of droplets 436 but are formed with a right angle configuration. A first portion 434 extends laterally outwardly from the orifice to the actuation location 428. A single manifold 150 is shown which through the use of a restrictor plate, not shown serves all chambers extending laterally outwardly from the linear array.

With the various embodiments described, it will be appreciated that the center-to-center spacing between the chambers may be substantially reduced, thereby providing increased resolution. Heretofore, prior art of the types shown in FIGS. 1-3 provide a center distance between chambers of approximately 0.0585 inches. Employing the principles of this invention, it is possible to reduce that center-to-center spacing of 64 chambers shown in FIG. 4 to 0.02952 inches.

In accordance with an important aspect of the invention, in particular the use of a stainless steel diaphragm, it is possible to provide for an ink jet device wherein substantially all materials exposed to the ink are relatively inert. In this regard, it is possible to provide a restrictor plate 138 and diaphragm 144 and a spacer plate 146 which are all stainless steel. It is also possible and preferred to provide a chamber plate in which the chambers 126 and the manifolds 142 are formed which comprises stainless steel or another relatively inert material. Other relatively inert materials include Kapton, PET or Teflon.

It will be appreciated that various configurations of chambers, orifices and chamber shapes may be utilized. For example, the number of chambers may exceed 64. For example, an array of 128 or 256 chambers or more may be utilized. It is also possible to terminate chambers in more than three orifices. For example, chambers terminating in four, five or six orifices or more are possible. Finally, it is possible to utilize various chamber shapes in addition to the inclined, elbowed or L-shaped chambers disclosed herein. It will further be appreciated that alignment of the array of orifices in linear fashion allows the use of various angles of inclination of the head thereby permitting a wide variety of applications of the ink jet apparatus.

Although preferred embodiments of the invention have been shown and described, it will be appreciated that various modifications may be made which will fall within the true spirit and scope of the invention as set forth in the appended claims.

Claims (20)

We claim:
1. An impulse ink jet apparatus comprising:
a plurality of side-by-side chambers forming a linear array, each of said chambers being terminated in at least one orifice for ejecting droplets along an ejection axis, each of said chambers having an actuation location laterally displaced from said orifice; and
a plurality of elongated transducers juxtaposed to said actuation locations respectively, and laterally displaced from said orifices respectively, said transducers having an axis of elongation extending substantially parallel with said ejection axis.
2. The impulse ink jet apparatus of claim 1 wherein said actuation locations of adjacent chambers are mutually laterally displaced.
3. The impulse ink jet of claim 1 wherein the chambers have axes that are inclined at an acute angle with respect to said ejection axis.
4. The ink jet apparatus of claim 1 wherein the axes of the chambers are elbowed and include a first segment substantially parallel to the ejection axis and a second segment substantially perpendicular to the ejection axis.
5. The ink jet apparatus of claim 1 wherein the axis of elongation of adjacent transducers are offset with respect to the axis of ejection.
6. The ink jet apparatus of claim 1 wherein each of said chambers includes a plurality of orifices.
7. The ink jet apparatus of claim 6 wherein each of said chambers comprises three orifices.
8. The ink jet apparatus of claim 6 wherein each of said chambers comprises two orifices.
9. An impulse ink jet apparatus comprising:
an ink jet chamber terminating in at least one orifice for electing droplets of ink;
a transducer laterally displaced from said orifice for expanding and contracting a volume of ink in said chamber; and
a diaphragm coupling the transducer to the chamber and separating said transducer from the volume of ink within the chamber, said transducer being attached to said diaphragm such that the diaphragm is deformed so as to expand the chamber to an enlarged state when the transducer is energized and return the diaphragm to a planar state when the transducer is deenergized.
10. The ink jet apparatus of claim 9 wherein said transducer has an axis of elongation that intersects the diaphragm.
11. The ink jet apparatus of claim 10 further comprising adhesive means for attaching said transducer to said diaphragm.
12. The ink jet apparatus of claim 10 further comprising a chamber plate for forming said chamber, a restrictor plate providing a restricted opening for ink to enter the chamber, and a spacer plate separating the diaphragm from the restrictor plate such that movement of said diaphragm does not restrict ink from entering the chamber through the restricted opening.
13. The ink jet apparatus of claim 12 wherein said chamber plate, said restrictor plate, said diaphragm and said spacer plate comprise stainless steel.
14. The ink jet apparatus of claim 12 further comprising an elastomeric adhesive for attaching said transducer to said diaphragm.
15. An impulse ink jet apparatus comprising:
a plurality of side-by-side chambers forming a linear array, each of said chambers being terminated in at least one orifice for ejecting droplets along an ejection axis, each of said chambers having an actuation location laterally displaced from said orifice and a chamber-to-chamber spacing of less than 0.0500 inches between adjacent chambers; and
a plurality of elongated transducers juxtaposed to said actuation locations respectively, said transducers having an axis of elongation extending substantially parallel with said ejection axis.
16. The impulse ink jet apparatus of claim 15, wherein said chamber-to-chamber spacing is less than 0.0400 inches.
17. The impulse ink jet apparatus of claim 16, wherein said chamber-to-chamber spacing is less than 0.0300 inches.
18. The impulse ink jet apparatus of claim 15, wherein said adjacent chambers are mutually laterally displaced.
19. The impulse ink jet apparatus of claim 18, wherein said chambers have a portion extending from the actuation locations respectively arranged in a fanning-in effect.
20. The impulse ink jet apparatus of claim 19, wherein said chamber-to-chamber spacing is less than 0.0300 inches and at least one of said chamber portions being inclined or elbowed.
US08530946 1994-09-23 1995-09-20 Apparatus for printing with ink chambers utilizing a plurality of orifices Expired - Lifetime US5767873A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US31096794 true 1994-09-23 1994-09-23
US08530946 US5767873A (en) 1994-09-23 1995-09-20 Apparatus for printing with ink chambers utilizing a plurality of orifices

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08530946 US5767873A (en) 1994-09-23 1995-09-20 Apparatus for printing with ink chambers utilizing a plurality of orifices
US08556768 US5801732A (en) 1994-09-23 1995-11-02 Piezo impulse ink jet pulse delay to reduce mechanical and fluidic cross-talk
US09020756 US5966148A (en) 1994-09-23 1998-02-09 Apparatus for printing with ink jet chambers utilizing a plurality of orifices
US09287497 US6179408B1 (en) 1994-09-23 1999-04-06 Apparatus for printing with ink jet chambers utilizing a plurality of orifices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US31096794 Continuation-In-Part 1994-09-23 1994-09-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US08556768 Continuation-In-Part US5801732A (en) 1994-09-23 1995-11-02 Piezo impulse ink jet pulse delay to reduce mechanical and fluidic cross-talk
US09020756 Continuation US5966148A (en) 1994-09-23 1998-02-09 Apparatus for printing with ink jet chambers utilizing a plurality of orifices

Publications (1)

Publication Number Publication Date
US5767873A true US5767873A (en) 1998-06-16

Family

ID=23204814

Family Applications (3)

Application Number Title Priority Date Filing Date
US08530946 Expired - Lifetime US5767873A (en) 1994-09-23 1995-09-20 Apparatus for printing with ink chambers utilizing a plurality of orifices
US09020756 Expired - Lifetime US5966148A (en) 1994-09-23 1998-02-09 Apparatus for printing with ink jet chambers utilizing a plurality of orifices
US09287497 Expired - Lifetime US6179408B1 (en) 1994-09-23 1999-04-06 Apparatus for printing with ink jet chambers utilizing a plurality of orifices

Family Applications After (2)

Application Number Title Priority Date Filing Date
US09020756 Expired - Lifetime US5966148A (en) 1994-09-23 1998-02-09 Apparatus for printing with ink jet chambers utilizing a plurality of orifices
US09287497 Expired - Lifetime US6179408B1 (en) 1994-09-23 1999-04-06 Apparatus for printing with ink jet chambers utilizing a plurality of orifices

Country Status (5)

Country Link
US (3) US5767873A (en)
JP (3) JPH10506068A (en)
DE (2) DE69533198D1 (en)
EP (1) EP0788433B1 (en)
WO (1) WO1996009170A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5966148A (en) * 1994-09-23 1999-10-12 Dataproducts Corporation Apparatus for printing with ink jet chambers utilizing a plurality of orifices
US6257699B1 (en) 1999-10-13 2001-07-10 Xerox Corporation Modular carriage assembly for use with high-speed, high-performance, printing device
US6302536B1 (en) 1997-07-31 2001-10-16 Trident International, Inc. Fast drying ink jet ink compositions for capping ink jet printer nozzles
US6391943B2 (en) 1998-09-04 2002-05-21 Trident International, Inc. High resolution pigment ink for impulse ink jet printing
US6439709B1 (en) * 1998-09-04 2002-08-27 Trident International, Inc. Method for reducing cavitation in impulse ink jet printing device
US20030004225A1 (en) * 1998-09-04 2003-01-02 Sarma Deverakonda S. High resolution pigment ink for impulse ink jet printing
US6688738B2 (en) 1998-09-04 2004-02-10 Illinois Tool Works Inc Method for reducing cavitation in impulse ink jet printing devices
US20040095438A1 (en) * 2002-11-08 2004-05-20 Brother Kogyo Kabushiki Kaisha Ink jet recording head
EP1832431A1 (en) * 1999-12-22 2007-09-12 Canon Kabushiki Kaisha Liquid ejecting recording head and liquid ejecting recording apparatus
US20090079792A1 (en) * 2007-09-25 2009-03-26 Kabushiki Kaisha Toshiba Droplet jetting head
US20100156998A1 (en) * 2008-12-19 2010-06-24 Nobuo Matsumoto Method and apparatus for printing
US20100302313A1 (en) * 2009-05-26 2010-12-02 Hewlett-Packard Development Company Lp Fluid dispensing device
CN1827375B (en) 2005-03-04 2011-12-28 理光打印系统有限公司 The ink jet recording head

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1011130C2 (en) * 1999-01-26 2000-07-27 Oce Tech Bv A device for dispensing ink.
US6582062B1 (en) * 1999-10-18 2003-06-24 Hewlett-Packard Development Company, L.P. Large thermal ink jet nozzle array printhead
US6328417B1 (en) 2000-05-23 2001-12-11 Silverbrook Research Pty Ltd Ink jet printhead nozzle array
JP4380961B2 (en) * 2000-05-24 2009-12-09 シルバーブルック リサーチ ピーティワイ リミテッド Inkjet printhead
CN100480047C (en) 2000-05-24 2009-04-22 西尔弗布鲁克研究有限公司 Ink-jetting printing head with nozzle assembly array
EP1355787B1 (en) * 2000-12-21 2007-08-01 Silverbrook Research Pty. Limited Nozzle flood isolation for ink jet printhead
NL1021012C2 (en) * 2002-07-05 2004-01-06 Oce Tech Bv A method of controlling an inkjet printer, inkjet printhead suitable for applying this method and an ink jet printer provided with this printhead.
US6779861B2 (en) 2002-12-16 2004-08-24 Xerox Corporation Enhanced dot resolution for inkjet printing
US7874654B2 (en) * 2007-06-14 2011-01-25 Hewlett-Packard Development Company, L.P. Fluid manifold for fluid ejection device
JP5075894B2 (en) * 2009-09-17 2012-11-21 株式会社東芝 Method of manufacturing a liquid droplet ejecting head and applicator

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032929A (en) * 1975-10-28 1977-06-28 Xerox Corporation High density linear array ink jet assembly
US4194210A (en) * 1976-03-29 1980-03-18 International Business Machines Corporation Multi-nozzle ink jet print head apparatus
JPS5693567A (en) * 1979-12-10 1981-07-29 Siemens Ag Printing head for ink jet type recorder
JPS56135078A (en) * 1980-02-22 1981-10-22 Siemens Ag Ink type recorder
US4357614A (en) * 1980-10-07 1982-11-02 Fuji Xerox Co., Ltd. Ink particle jetting device for multi-nozzle ink jet printer
JPS57188372A (en) * 1981-01-30 1982-11-19 Exxon Research Engineering Co Ink jet device
US4459601A (en) * 1981-01-30 1984-07-10 Exxon Research And Engineering Co. Ink jet method and apparatus
US4516140A (en) * 1983-12-27 1985-05-07 At&T Teletype Corporation Print head actuator for an ink jet printer
JPS6092865A (en) * 1983-10-27 1985-05-24 Ricoh Co Ltd Ink jet recorder
US4646106A (en) * 1982-01-04 1987-02-24 Exxon Printing Systems, Inc. Method of operating an ink jet
US4680595A (en) * 1985-11-06 1987-07-14 Pitney Bowes Inc. Impulse ink jet print head and method of making same
US4714934A (en) * 1985-11-26 1987-12-22 Exxon Research & Engineering Company Apparatus for printing with ink jet chambers utilizing a plurality of orifices
US4788557A (en) * 1987-03-09 1988-11-29 Dataproducts Corporation Ink jet method and apparatus for reducing cross talk
US4901093A (en) * 1985-11-26 1990-02-13 Dataproducts Corporation Method and apparatus for printing with ink jet chambers utilizing a plurality of orifices
US5142296A (en) * 1990-11-09 1992-08-25 Dataproducts Corporation Ink jet nozzle crosstalk suppression
US5581283A (en) * 1994-09-27 1996-12-03 Dataproducts Corporation Ink jet apparatus having a plurality of chambers with multiple orifices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439780A (en) * 1982-01-04 1984-03-27 Exxon Research And Engineering Co. Ink jet apparatus with improved transducer support
JP3041952B2 (en) * 1990-02-23 2000-05-15 セイコーエプソン株式会社 An ink jet recording head, a piezoelectric vibrator, and a process for their preparation
JPH10506068A (en) * 1994-09-23 1998-06-16 データプロダクツ コーポレイション Inkjet chambered printing apparatus using a plurality of orifices

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032929A (en) * 1975-10-28 1977-06-28 Xerox Corporation High density linear array ink jet assembly
US4194210A (en) * 1976-03-29 1980-03-18 International Business Machines Corporation Multi-nozzle ink jet print head apparatus
JPS5693567A (en) * 1979-12-10 1981-07-29 Siemens Ag Printing head for ink jet type recorder
US4396924A (en) * 1979-12-10 1983-08-02 Siemens Aktiengesellschaft Recording head for ink mosaic printers
US4379304A (en) * 1980-02-22 1983-04-05 Siemens Aktiengesellschaft Screen for a mosaic ink recorder
JPS56135078A (en) * 1980-02-22 1981-10-22 Siemens Ag Ink type recorder
US4357614A (en) * 1980-10-07 1982-11-02 Fuji Xerox Co., Ltd. Ink particle jetting device for multi-nozzle ink jet printer
JPS57188372A (en) * 1981-01-30 1982-11-19 Exxon Research Engineering Co Ink jet device
US4459601A (en) * 1981-01-30 1984-07-10 Exxon Research And Engineering Co. Ink jet method and apparatus
US4646106A (en) * 1982-01-04 1987-02-24 Exxon Printing Systems, Inc. Method of operating an ink jet
JPS6092865A (en) * 1983-10-27 1985-05-24 Ricoh Co Ltd Ink jet recorder
US4516140A (en) * 1983-12-27 1985-05-07 At&T Teletype Corporation Print head actuator for an ink jet printer
US4680595A (en) * 1985-11-06 1987-07-14 Pitney Bowes Inc. Impulse ink jet print head and method of making same
US4714934A (en) * 1985-11-26 1987-12-22 Exxon Research & Engineering Company Apparatus for printing with ink jet chambers utilizing a plurality of orifices
US4901093A (en) * 1985-11-26 1990-02-13 Dataproducts Corporation Method and apparatus for printing with ink jet chambers utilizing a plurality of orifices
US4788557A (en) * 1987-03-09 1988-11-29 Dataproducts Corporation Ink jet method and apparatus for reducing cross talk
US5142296A (en) * 1990-11-09 1992-08-25 Dataproducts Corporation Ink jet nozzle crosstalk suppression
US5581283A (en) * 1994-09-27 1996-12-03 Dataproducts Corporation Ink jet apparatus having a plurality of chambers with multiple orifices

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6179408B1 (en) 1994-09-23 2001-01-30 Data Products Corporation Apparatus for printing with ink jet chambers utilizing a plurality of orifices
US5966148A (en) * 1994-09-23 1999-10-12 Dataproducts Corporation Apparatus for printing with ink jet chambers utilizing a plurality of orifices
US6302536B1 (en) 1997-07-31 2001-10-16 Trident International, Inc. Fast drying ink jet ink compositions for capping ink jet printer nozzles
US20030004225A1 (en) * 1998-09-04 2003-01-02 Sarma Deverakonda S. High resolution pigment ink for impulse ink jet printing
US6391943B2 (en) 1998-09-04 2002-05-21 Trident International, Inc. High resolution pigment ink for impulse ink jet printing
US6439709B1 (en) * 1998-09-04 2002-08-27 Trident International, Inc. Method for reducing cavitation in impulse ink jet printing device
US6688738B2 (en) 1998-09-04 2004-02-10 Illinois Tool Works Inc Method for reducing cavitation in impulse ink jet printing devices
US7030173B2 (en) 1998-09-04 2006-04-18 Illinois Tool Works, Inc. High resolution pigment ink for impulse ink jet printing
US6257699B1 (en) 1999-10-13 2001-07-10 Xerox Corporation Modular carriage assembly for use with high-speed, high-performance, printing device
EP1832431A1 (en) * 1999-12-22 2007-09-12 Canon Kabushiki Kaisha Liquid ejecting recording head and liquid ejecting recording apparatus
US20040095438A1 (en) * 2002-11-08 2004-05-20 Brother Kogyo Kabushiki Kaisha Ink jet recording head
US6994427B2 (en) * 2002-11-08 2006-02-07 Brother Kogyo Kabushiki Kaisha Ink jet recording head
CN1827375B (en) 2005-03-04 2011-12-28 理光打印系统有限公司 The ink jet recording head
US20090079792A1 (en) * 2007-09-25 2009-03-26 Kabushiki Kaisha Toshiba Droplet jetting head
US8038261B2 (en) * 2007-09-25 2011-10-18 Kabushiki Kaisha Toshiba Droplet jetting head
CN101396683B (en) 2007-09-25 2013-01-23 株式会社东芝 Droplet jetting head
US20100156998A1 (en) * 2008-12-19 2010-06-24 Nobuo Matsumoto Method and apparatus for printing
US20100302313A1 (en) * 2009-05-26 2010-12-02 Hewlett-Packard Development Company Lp Fluid dispensing device
US8057011B2 (en) * 2009-05-26 2011-11-15 Hewlett-Packard Development Company, L.P. Fluid dispensing device

Also Published As

Publication number Publication date Type
JP2008120103A (en) 2008-05-29 application
DE69533198D1 (en) 2004-07-29 grant
EP0788433A1 (en) 1997-08-13 application
EP0788433B1 (en) 2004-06-23 grant
JPH10506068A (en) 1998-06-16 application
US6179408B1 (en) 2001-01-30 grant
JP2006321231A (en) 2006-11-30 application
DE69533198T2 (en) 2005-08-04 grant
US5966148A (en) 1999-10-12 grant
EP0788433A4 (en) 1998-01-14 application
WO1996009170A1 (en) 1996-03-28 application

Similar Documents

Publication Publication Date Title
US4695854A (en) External manifold for ink jet array
US4703333A (en) Impulse ink jet print head with inclined and stacked arrays
US6502929B1 (en) Laminated ink jet recording head having a plurality of actuator units
US5907338A (en) High-performance ink jet print head
EP0914950A2 (en) An ink jet printhead assembled from partial width array printheads
US4415909A (en) Multiple nozzle ink jet print head
US4194210A (en) Multi-nozzle ink jet print head apparatus
US4364067A (en) Highly integrated ink jet head
US5757400A (en) High resolution matrix ink jet arrangement
US4536097A (en) Piezoelectrically operated print head with channel matrix and method of manufacture
US5790155A (en) Ink jet type recording head having head units with angled walls and angled pressure generating chambers
US5059989A (en) Thermal edge jet drop-on-demand ink jet print head
US6367911B1 (en) Ink printer head composed of individual ink printer modules, with an adapter plate for achieving high printing density
US5610642A (en) Flex circuit with multiple trace configurations and method of manufacture
US5257043A (en) Thermal ink jet nozzle arrays
US6457807B1 (en) Continuous ink jet printhead having two-dimensional nozzle array and method of redundant printing
US5677718A (en) Drop-on-demand ink jet print head having improved purging performance
US4593295A (en) Ink jet image recording device with pitch-shifted recording elements
US5463412A (en) Liquid jet recording head with multiple liquid chambers
US5365645A (en) Methods of fabricating a page wide piezoelectric ink jet printhead assembly
US4641153A (en) Notched piezo-electric transducer for an ink jet device
US5157420A (en) Ink jet recording head having reduced manufacturing steps
US4367480A (en) Head device for ink jet printer
US6042223A (en) Ink jet type recording head
US4219822A (en) Skewed ink jet printer with overlapping print lines

Legal Events

Date Code Title Description
AS Assignment

Owner name: DATA PRODUCTS CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROGERS, ROBERT L.;MIKALSEN, ARTHUR;CARTIN, JEFFREY G.;REEL/FRAME:007836/0256

Effective date: 19951106

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12