US5703959A - Method and device for analyzing particles - Google Patents
Method and device for analyzing particles Download PDFInfo
- Publication number
- US5703959A US5703959A US08/368,053 US36805395A US5703959A US 5703959 A US5703959 A US 5703959A US 36805395 A US36805395 A US 36805395A US 5703959 A US5703959 A US 5703959A
- Authority
- US
- United States
- Prior art keywords
- gravity
- measured data
- plurality
- categories
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
- G01N15/10—Investigating individual particles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/1031—Investigating individual particles by measuring electrical or magnetic effects thereof, e.g. onconductivity or capacity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/12—Coulter-counters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Electro-optical investigation, e.g. flow cytometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1037—Associating coulter-counter and optical flow cytometer [OFC]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1062—Investigating individual particles counting the particles by other than electro-optical means
Abstract
Description
This application is a continuation of application Ser. No. 08/076,870, filed Jun. 15, 1993, now abandoned.
This invention relates to a method and a device for analyzing plural kinds of particles intermixed with each other, by presuming the kind of each particle from measurements of specific characteristics thereof and counting the number of particles belonging to each kind and, especially, to a system for presuming the kind of each particle as detected based upon distribution data obtained by using a neural network and previously applying informations of the respective characteristics of a number of particles thereto to cause it to learn their states of distribution.
While the above-mentioned particle analyzing device is useful, for example, as a blood-corpuscle analyzer for classifying and counting blood-corpuscles in blood, such device is disclosed, for example, in the Japanese opened patent gazette No. H3(91)-131756. In this prior art device, predetermined characteristic values (hereinunder generalized as "characteristic parameters") of blood-corpuscles belonging to plural kinds (hereinunder generalized as "categories") are applied to an input layer of a neural network of error back-propagation type to cause it to learn supervisedly their states of distribution and, thereafter, the characteristic parameters of each particle as detected are supplied to the input layer to cause it to presume the group (hereinunder referred to as "cluster") or the category to which the particle is to belong, that is, to effect a clustering operation, based upon the resultant data of learning.
However, this device has such a disadvantage in that it may erroneously classify a particle of an unlearned category into a learned category when the characteristic parameters of such particle of unlearned category are applied and, moreover, it needs a long time for learning when the distribution of characteristic parameters are complicated, since it uses a neural network of error back-propagation type.
Accordingly, an object of this invention is to provide a method and a device for analyzing particles which can effect an accurate clustering operation within a short time regardless of abnormal or complicated distribution of the characteristic parameters.
In order to achieve the above-mentioned object, the method and device of this invention are arranged to apply a time-sequence of measured data consisting of plural characteristic parameters to a neural network at the same time as converting them into distribution data in a characteristic parameter space, and presume cluster informations such as center of gravity of the cluster of each category from the distribution data for clustering the detected particle based upon the presumed cluster informations.
More particularly, a mixture of a number of particles belonging to plural categories is supplied to a particle detecting device such as flow cytometer to successively measure predetermined characteristic parameters of each particle and the measured values are converted into distribution data of a predetermined characteristic parameter space. At the same time, the measured values are sequentially supplied to a neural network having an input layer which includes at least neurons respectively corresponding to the above-mentioned characteristic parameters and an output layer which includes at least neurons respectively corresponding to expected categories to execute unsupervised learning vector quantization for presuming cluster informations including center-of-gravity vector informations of the clusters respectively corresponding to the above-mentioned categories and, then, the above-mentioned distribution data are clustered in accordance with the presumed cluster informations.
The presumed cluster informations may include informations of the number and/or variance of the particles in addition to the above-mentioned center-of-gravity vector informations.
These and other features and functions of this invention will be described in more detail below about a preferred embodiment thereof with reference to the accompanying drawings.
In the drawings:
FIG. 1 is a block diagram showing the configuration of an embodiment of the particle analyzing device according to this invention;
FIGS. 2a and 2b are explanatory diagrams of a blood-corpuscle detecting method in a blood-corpuscle detecting device in the embodiment of FIG. 1;
FIG. 3 is a block diagram showing internal configuration of an analyzing device in the embodiment of FIG. 1;
FIG. 4 is a diagram showing an example of distribution data formed by data converting means in FIG. 3;
FIG. 5 is an explanatory diagram of an example of the configuration of a neural network in FIG. 3 and a function thereof;
FIG. 6 is a flow chart showing center-of-gravity calculating and particle counting operations in clustering means in FIG. 3;
FIG. 7 is an explanatory diagram of domain division in the operations of FIG. 6;
FIG. 8 is an explanatory diagram of measurement of the distance from a detected particle to the center of gravity of each particle cluster in the operations of FIG. 6;
FIGS. 9a and 9b are diagrams showing an example of distribution data of normal blood-corpuscles and a result of clustering thereof;
FIGS. 10a and 10b are diagrams showing an example of distribution data of abnormal blood-corpuscles and a result of clustering thereof; and
FIGS. 11a and 11b are diagrams showing another example of distribution data of abnormal blood-corpuscles and a results of clustering thereof.
Thoughout the drawings, same reference numerals are given to corresponding constitutional elements.
FIG. 1 shows an overall configuration of a blood-corpuscle classifying and counting device as a preferred embodiment of the particle analyzing device of this invention. As shown, the device includes a blood-corpuscle detector 2, a signal amplifier 4, an analog-to-digital (A/D) convertor 6, an analyzing device 8 and a display device 10. The blood-corpuscle detector 2 is a well-known device such as flow cytometer and, when a blood specimen including leukocytes only which are separated by preliminary treatment such as dilution and addition of hemolyzing agent, for example, is supplied thereto, it detects blood-corpuscles one by one and sequentially produces electric signals respectively indicative of predetermined characteristics of the respective blood-corpuscles. For instance, when the blood specimen is passed through a fine passageway which can pass the blood-corpuscles one by one and a d.c. current and a high frequency a.c. current are flowed across the passageway at the same time, the d.c. current results in a signal proportional to the size of the cytoplasm of each blood-corpuscle since the d.c. current is shut out by the cytoplasm 12 as shown in FIG. 2a. in contrast, the high frequency a.c. current penetrates the cytoplasm 12 of low density and low impedance and is shut out by only a nucleus or granule 14 of high density and high impedance as shown in FIG. 2b and, therefore, it results in a signal relating to the density and size of the nucleus or granule. Thus, measured values of two kinds of characteristic parameter are obtained from each blood-corpuscle.
These two kinds of output signal of the blood-corpuscle detector 2 are amplified by the amplifier 4 of well-known type and then converted into digital signals by the A/D convertor 6. In this embodiment, both digital signals are respectively quantized into 256 channels in total from channel No. 0 to No. 255. These two kinds of quantized signals obtained from the respective blood-corpuscles will be hereinunder referred to as data X(x1, x2) consisting of a characteristic parameter x1 indicative of the above-mentioned d.c. component and a characteristic parameter x2 indicative of the above-mentioned a.c. component. The data X is then supplied to the analyzing device 8 which is essential to the invention. The analyzing device 8 is composed of a personal computer, microcomputer or microprocessor and functionally includes data processing means 16, a neural network 18 and clustering means 20 as shown in FIG. 3.
The data-X are supplied successively to the data converting means 16 and neural network 18. The data X are converted by the data converting means 16 into distribution data F(x1, x2) in a two-dimensional space as shown in FIG. 4 having the characteristic parameters x1 and x2 as two variables thereof. Since the characteristic parameters x1 and x2 are quantized respectively into 256 channels as described above, this space of distribution consists of 256×256 basic elements in total, each of which stores the number of blood-corpuscles having their characteristic parameters x1 and x2 belonging to two corresponding channels. For example, FIG. 4 shows that the number of blood-corpuscles whose signal has a d.c. component x1 belonging to channel No. 1 and an a.c. component x2 belonging to channel No. 2 is six and, in other words, F(1, 2)=6. Since the leukocytes include various blood-corpuscles such as lymphocytes, monocytes, granulocytes and the like having different values of the characteristic parameters, the distribution data of FIG. 4 tend to form clusters of the respective kinds of blood-corpuscles. The neural network 18 serves to presume the center of gravity, variances and the number of corpuscles of each cluster based upon the input data X.
As shown in FIG. 5, the neural network 18 includes an input layer having two neurons 22 and 24 respectively corresponding to the above-mentioned two characteristic parameter inputs x1 and x2 and an output layer having five neurons 26, 28, 30, 32 and 34 respectively corresponding to expected five classification categories, namely, those of lymphocytes, monocytes, granulocytes, ghost corpuscles (unhemolized blood-platelets and erythrocytes) and other corpuscles (immature blood-corpuscles and likes). The neuron 22 in the input layer for the characteristic parameter x1 is connected to the neurons 26, 28, 30, 32 and 34 of the output layer with weights W11, W12, W13, W14 and W15, respectively, and the input layer neuron 24 for the characteristic parameter x2 is connected to the output layer neurons 26, 28, 30, 32 and 34 with weights W21, W22, W23, W24 and W25, respectively.
If arbitrary values are initially given to the weights W11, W12, W13, W14, W15, W21, W22, W23, W24 and W25 and part or all of the data X to the input layer neurons 22 and 24, the neural network 18 commences a learning operation based upon a method of unsupervised vector quantization. The method of vector quantization is described in detail, for example, in "Neural Networks for Signal Processing", published by Prentice-Hall International Editions.
While the neural network 18 learns a probability density function of the input data X, the above-mentioned weights W11 to W15 and W21 to W25 are updated gradually and finally obtained weight vectors V1 (weights W11 and W21), V2 (weights W12 and W22), V3 (weights W13 and W23), V4 (weights W14 and W24) and V5 (weights W15 and W25) indicate presumed positions of the centers of gravity of the clusters of lymphocytes, monocytes, granulocytes, ghost corpuscles and other corpuscles in the distribution data F(x1, x2), respectively. In the case of normal specimen, the weight vector V5 may be left unchanged from its initial value.
Upon completion of learning, the neural network 18 can presume the number of blood-corpuscles of each kind from relatively few input data since it has learned the probability density function of the input data. More specifically, counters respectively corresponding to the lymphocytes, monocytes, granulocytes, ghost corpuscles and other corpuscles are provided and their counts are assumed as m1, m2, m3, m4 and m5. When a certain datum X1 consists of d.c. and a.c. components x11 and x12, the values of (x11 -W11)2 +(x21 -W21)2, (x11 -W12)2 +(x21 -W22)2, (x11 -W13)2 +(x21 -W23)2, (x11 -W14)2 +(x21 -W24)2 and (x11 -W15)2 +(x21 -W25)2 are calculated respectively. In other words, the distances between signal and weight vectors dn =∥x1 -Wn ∥ are sought where n=1, . . . 5 and Wn =(W1n, W2n). The least one of these distances is selected. For example, when the distance d1 or (x11 -W11)2 +(x21 -W21)2 is the least, the count of the corresponding lymphocyte counter is incremented by one. Similar calculations are executed on the other data supplied sequentially thereafter and the least distances are selected to increment the corresponding counters one by one. Then, the finally obtained counts m1 to m5 of the respective counters give the ratio of the presumed numbers of blood-corpuscles belonging to the respective categories, if the respective clusters of the blood-corpuscles are same in distribution. In the case of normal specimen, m5 may be absent and, therefore, the corresponding cluster is not assumed to exist when m5 is less than a predetermined value.
When the numbers of blood-corpuscles are presumed, the data belonging to the respective categories are stored and the variances of the corpuscles in the respective clusters are calculated on the basis thereof. For example, when X1 (x11, x21), X3 (x13, x23) and X7 (x17, x27) are stored as the data belonging to the lymphocyte category, the presumed variance s1 of the lymphocytes is calculated by dividing the sum of total square deviations of x11, x13 and x17 from their mean value and total square deviations of x21, x23 and x27 from their mean value by the number of corpuscles. Presumed variances s2, s3, s4 and s5 of the other categories are similarly obtained. In this case also, s5 need not be calculated if the specimen is normal.
The blood classifying and counting operation might be completed with the above presumed numbers of corpuscles mn only if the corpuscles belonging to the respective categories have exhibited the same distribution, the presumed numbers mn and variances sn (n=1, . . . 5) as obtained above are of approximate values since their distributions are not always same in practice. Therefore, the clustering means 20 clusters the distribution data F(x1, x2) obtained from the data converting means 16 by using these approximate values and the presumed centers of gravity Vn (n=1, . . . 5) of the respective clusters, which were calculated previously. The operation of the clustering means 20 will be described below with reference to the flow chart of FIG. 6.
Initial division of the distribution data F(x1, x2) is carried out first, after a memory value K indicating the number of iterations is set to one (step S1). In this initial division, the distribution of the basic elements in the distribution data of FIG. 4 is divided into four fixed domains A1, A2, A3 and A4 in which the lymphocytes, monocytes, granulocytes and ghost corpuscles are probably distributed respectively, as shown in FIG. 7, regardless of the number of corpuscles stored in each element. In this case, no domain is established for the other corpuscles. Denoting the clusters of lymphocytes, monocytes, granulocytes, ghost corpuscles and other corpuscles with C1, C2, C3, C4 and C5, respectively, the membership values of the blood-corpuscles existing in the above fired domains A1, A2, A3 and A4 to the respective clusters C1, C2, C3 and C4 are assumed as all one (1). The blood-corpuscles belonging to the cluster C5 are undetermined. The domain A0 in FIG. 7 is a domain having undetermined memberships to all clusters C1 to C5.
The initial centers of gravity are determined next (step S2). In this case, assuming the other corpuscles to exist also and using the center-of-gravity vectors presumed by the neural network 18, the initial center-of-gravity positions of the respective clusters C1, C2, C3, C4 and C5 are determined at (xG11, xG21), (xG12, xG22), (xG13, xG23), (xG14, xG24) and (xG15, xG25), respectively.
Next, membership values of the corpuscles which are not included in any of the fixed domains A1, A2, A3 and A4, that is, the corpuscles distributing in the domain A0 of FIG. 7, to the clusters C1, C2, C3, C4 and C5 are calculated respectively (step S3). To this end, the distance L from each blood-corpuscle in the domain A0 to the center of gravity of each cluster is calculated first. This distance is not an Euclidean distance and it is defined as the minor radius of an ellipse 38 having its center positioned at the center of gravity (xG1n, xG2n) and its major axis inclined by an angle θn with respect to the X1 -axis of FIG. 7 and passing the corpuscle 36 in question, as shown in FIG. 8 where the suffix n is omitted for simplicity. The angle θn has a value which is previously selected experientially for each cluster Cn. The reason why the distance L is so defined is that the actual distributions of all clusters are substantially elliptic in shape. Thus, all corpuscles lying on the same ellipse should be same in distance from the center of gravity and would have the same membership to the cluster Cn as described below.
The distance L can be calculated as follows. If new co-ordinate axes X1 " and X2 " are established along the major and minor axes of the ellipse 38 and the minor and major radii of the ellipse are expressed with L and kL (k is a proportional constant) respectively the point 36 (x1 ", X2 ") on the ellipse is given by the following equation. ##EQU1## It is solved as follows as looking for the minor radius L. ##EQU2## As is understood from FIG. 8, the relation between the co-ordinate (x1 ", x2 ") and the original co-ordinate (x1, x2) of the point 36 is given by the following equations.
X.sub.1 =cosθ.sub.n (x.sub.1 -x.sub.G1n)+sinθ.sub.n (x.sub.2 -x.sub.G2n) (3)
X.sub.2 =-sinθ.sub.n (x.sub.1 -x.sub.G1n)+cosθ.sub.n (x.sub.2 -x.sub.G2n) (4)
By applying the equations 3 and 4 to the equation 2 and using the inclination angle θn of each cluster, the distance Ln(36) from the blood-corpuscle 36 to the center of gravity of each cluster Cn is calculated. Then, using the presumed number and variance mn and sn of the corpuscles in each cluster Cn which are obtained from the neural network 18 as described above the membership Un(36) of the corpuscle 36 to the cluster Cn is given by the following equation. ##EQU3## The above equations are based upon such an idea in that the membership is not only inversely proportional to the square distance to the center of gravity of each cluster, but also proportional to the number of corpuscles and the standard deviation of the cluster.
The memberships of each blood-corpuscle in the domain A0 to the respective clusters Cn are calculated as above and each blood-corpuscle is deemed to belong to the respective clusters Cn at rates or weights corresponding to its memberships Un. The positions of the centers of gravity of the respective clusters are corrected taking such weights of each blood-corpuscle with respect-thereto into consideration. In other words, the weighted centers of gravity are calculated (step S4). The co-ordinates xG1n ' and xG2n ' of the weighted center of gravity of the cluster Cn are given by the following equations. ##EQU4## where i and j are quantized channel numbers of the characteristic parameters X1 and X2 of the distribution data F(x1, x2) of FIG. 4 and both of them take such values as 0, 1, 2, . . . 255 in this embodiment. Unij is a membership of the basic element belonging to channel Nos. i and j and, Nij is the number of blood-corpuscles in this element.
After calculating the weighted center of gravity of each cluster as above, it is compared with the corresponding initial center of gravity to judge whether the difference D therebetween is equal to or less than a predetermined value D0 or not (step S5). The value of D0 may be zero, for example. If D is not greater than D0 in any cluster, the distances from each blood-corpuscle to respective clusters are not ascertained yet and it is deemed that no membership of this blood-corpuscle to that cluster is decided clearly. In this case, the initial center of gravity of each cluster is updated with the calculated weighted center of gravity and it is judged whether the stored number of iterations K is equal to a predetermined value K0 or not (step S6). If not, the value of K is incremented by one (step S7) and step S3 is resumed for repeating the same operation as updating the center of gravity. If K=K0 is achieved during such repetition, such words as "ANALYSIS IMPOSSIBLE" are displayed by the display device 10 to finish the processing (step S8). On the other hand, if D≦D0 is achieved in step S5, the memberships of each blood-corpuscle to all clusters have been ascertained and, therefore, the number of the blood-corpuscles in each cluster is calculated based thereupon (step S9). This calculation is executed by either one of two methods as the following.
In the first method, the cluster corresponding to the greatest membership of each blood-corpuscle in the domain A0 is designated as a cluster to which that blood-corpuscle belongs. For example, when a certain basic element contains ten blood-corpuscles and the memberships U1, U2, U3, U4 and U5 of these corpuscles to the clusters C1, C2, C3, C4 and C5 of lymphocytes, monocytes, granulocytes, ghost corpuscles and other corpuscles are 0.95, 0.03, 0.02, 0.00 and 0.00, respectively, all of these ten corpuscles are designated as belonging to the lymphocyte cluster C1. This method is suitable in such a case in that a blood-corpuscle in question exhibits an especially large membership to specific one of the clusters and the clusters are clearly separated. On the other hand, in the second method, the blood-corpuscles in each basic element are shared to the respective clusters at the rate of memberships. Fox example, when the basic element in question contains ten blood-corpuscles and the memberships U1, U2, U3, U4 and U5 of these corpuscles are 0.2, 0.5, 0.3, 0.0 and 0.0, respectively, the memberships other than U4 and U5 are close to each other and it appears that the clusters C1, C2 and C3 are partially overlapping. If all ten corpuscles are shared only to the monocyte cluster of the greatest membership in accordance with the first method in this case, a large counting error may be caused. Therefore, in accordance with proportional distribution based upon the memberships, two, five, three, zero and zero corpuscles are shared respectively to the clusters C1, C2, C3, C4 and C5. This method is effective when the distribution patterns of the respective clusters overlap partially as above. Thus, the clusters to which each blood-corpuscle belongs are decided and the number of corpuscles of each cluster is calculated.
Since in this embodiment, the final center of gravity of each cluster and the major and minor radii of the ellipse representing spread of its distribution are calculated as described above, it is possible to compare these values with their normal values to diagnose their deviation from the normal values, that is, a state of health.
Next, the description will be made about a result of actual execution of this embodiment using a commercially available thirty-two bit personal computer as the analyzing device 8. FIGS. 9a and 9b show scattergrams of a normal specimen and FIGS. 10a, 10b, 11a and 11b show scattergrams of two abnormal specimens. FIGS. 9a, 10a and 11a show their distribution data F(x1, x2) before clustering and FIGS. 9b, 10b and 11b show those after clustering. Both normal and abnormal specimens are correctly clustered in this embodiment.
TABLE 1 shows the centers of gravity presumed by the neural network 18 and the centers of gravity finally decided by the succeeding clustering operation, based upon the distribution data F(x1, x2) of specimen Nos. 1, 2 and 3 of FIGS. 9a, 10a and 11a. Both are substantially approximate to each other and utility of presumption using the neural network 18 is understood therefrom.
TABLE 2 shows the variances presumed by the neural network 18 and the variances finally decided by the clustering operation, based upon the same distribution data. Although some difference appears therebetween, the presumption has come nearly true.
TABLE 3 shows the numbers of times of operation needed for calculation of the final center of gravity through the clustering operation of the data of the above specimen Nos. 1, 2 and 3, when the presumption by the neural network 18 is used and when it is not used. Although there is no difference between the two in the case of normal specimen No. 1, the neural network shows much less values in the case of abnormal specimen Nos. 2 and 3 and, especially, no good result is obtained without use of the neural network in the case of abnormal specimen No. 3.
TABLE 1__________________________________________________________________________(Center of gravity) Ghost C4 Lympho C1 Mono C2 Granulo C3 Others C5Specimen P F P F P F P F P F__________________________________________________________________________No.1(Normal) 22, 25 23, 25 55, 34 54, 31 96, 66 101, 70 165, 79 166, 80 -- --No.2(Abnormal) 19, 20 18, 20 56, 36 50, 32 122, 93 128, 95 198, 96 203, 101 -- --No.3(Abnormal) 20, 21 20, 21 50, 33 51, 31 92, 63 93, 64 157, 159 159, 79 183, 61 186, 70__________________________________________________________________________ (P: Presumed; F: Final)
TABLE 2__________________________________________________________________________(Variance) Ghost C4 Lympho C1 Mono C2 Granulo C3 Others C5Specimen P F P F P F P F P F__________________________________________________________________________No.1(Normal) 68 66 124 123 432 425 696 693 -- --No.2(Abnormal) 38 43 134 127 540 1029 1050 1137 -- --No.3(Abnormal) 61 72 183 152 361 3320 705 788 455 569__________________________________________________________________________ (P: Presumed; F: Final)
TABLE 3______________________________________(Number of operations)Specimen Presumed Not presumed______________________________________No. 1 (Normal) 2 times 2 timesNo. 2 (Abnormal) 2 times 4 timesNo. 3 (Abnormal) 2 times 4 times______________________________________
The above embodiment is presented for illustrative purpose only and is not intended as any limitation of the invention. It should be obvious to those skilled in the art that various modifications and variations can be made on this embodiment without departing from the spirit and scope of this invention as defined in the appended claims. For example, the particles to be subjected to the inventive analysis need not always be blood-corpuscles, but may be any other kind of particles such as powdered material. In some of such other particles, the above-mentioned distance to the center of gravity may be an Euclidean distance. Moreover, instead of the above-mentioned d.c. and a.c. impedances as the characteristic parameters of the particles, other characteristic signals such as scattered light and fluorescent intensities may be used. Using three or more characteristic parameters, a data distribution in a space of three or higher dimension may be handled. While the center of gravity, the number of particles and the variances of each cluster are used as the object of presumption by the neural network, the center of gravity may be used alone or together with the number of particles. Furthermore, the configuration of the neural network may be modified arbitrarily, which the number of categories is large, for example a suppressive coupling may be inserted between the neurons of the output layer so that, when a specific neuron is excited, the neighboring neurons are suppressed in response thereto.
Claims (10)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18626592A JP3165247B2 (en) | 1992-06-19 | 1992-06-19 | Particle analyzing method and apparatus |
JP4-186265 | 1992-06-19 | ||
US7687093A true | 1993-06-15 | 1993-06-15 | |
US08/368,053 US5703959A (en) | 1992-06-19 | 1995-01-03 | Method and device for analyzing particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/368,053 US5703959A (en) | 1992-06-19 | 1995-01-03 | Method and device for analyzing particles |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date | |
---|---|---|---|---|
US7687093A Continuation | 1993-06-15 | 1993-06-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5703959A true US5703959A (en) | 1997-12-30 |
Family
ID=16185263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/368,053 Expired - Lifetime US5703959A (en) | 1992-06-19 | 1995-01-03 | Method and device for analyzing particles |
Country Status (6)
Country | Link |
---|---|
US (1) | US5703959A (en) |
EP (1) | EP0575091B1 (en) |
JP (1) | JP3165247B2 (en) |
AU (1) | AU648466B2 (en) |
CA (1) | CA2098785A1 (en) |
DE (2) | DE69327615T2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5933519A (en) * | 1994-09-20 | 1999-08-03 | Neo Path, Inc. | Cytological slide scoring apparatus |
US6038340A (en) * | 1996-11-08 | 2000-03-14 | Seiko Epson Corporation | System and method for detecting the black and white points of a color image |
WO2002092161A1 (en) * | 2001-05-10 | 2002-11-21 | Biophan, Llc | Miniaturized particle analyzer |
WO2003011386A1 (en) * | 2001-07-30 | 2003-02-13 | Biomed Solutions, Llc | Flow cytometer |
US20030186461A1 (en) * | 2002-03-29 | 2003-10-02 | Cyrano Bioscienes, Inc. | Method and system for using a weighted response |
US6631211B1 (en) * | 1999-07-08 | 2003-10-07 | Perkinelmer Las, Inc. | Interactive system for analyzing scatter plots |
US6633669B1 (en) * | 1999-10-21 | 2003-10-14 | 3M Innovative Properties Company | Autogrid analysis |
US6662117B2 (en) * | 2000-07-24 | 2003-12-09 | Sysmex Corporation | Particle analyzer and particle classifying method |
US6678040B1 (en) * | 1999-07-02 | 2004-01-13 | Terumo Kabushiki Kaisha | Apparatus for measuring number of cells |
US20040126008A1 (en) * | 2000-04-24 | 2004-07-01 | Eric Chapoulaud | Analyte recognition for urinalysis diagnostic system |
US20050008228A1 (en) * | 2003-05-23 | 2005-01-13 | Eric Chapoulaud | Fluid sample analysis using class weights |
US6943358B1 (en) * | 2001-03-21 | 2005-09-13 | The United States Of America As Represented By The Secretary Of The Navy | Method for developing a calibration algorithm for quantifying the hydrocarbon content of aqueous media |
WO2006119482A2 (en) * | 2005-05-04 | 2006-11-09 | West Virginia University Research Corporation | Method for data clustering and classification by a graph theory model -- network partition into high density subgraphs |
US20070003135A1 (en) * | 2004-02-27 | 2007-01-04 | Mattausch Hans J | Reference data optimization learning method and pattern recognition system |
US20120155739A1 (en) * | 2009-07-20 | 2012-06-21 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Localization of a valid area of a blood smear |
US10123952B2 (en) | 2015-12-30 | 2018-11-13 | Colgate-Palmolive Company | Personal care compositions |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69429145D1 (en) * | 1993-08-19 | 2002-01-03 | Hitachi Ltd | Classification and examination device of particles in a liquid |
EP0660104A3 (en) * | 1993-12-27 | 1995-08-09 | Hitachi Ltd | Urinary sediment examining apparatus. |
JP3050046B2 (en) * | 1994-07-18 | 2000-06-05 | 株式会社日立製作所 | Particles automatic classification system |
FR2733596B1 (en) * | 1995-04-28 | 1997-07-18 | Hycel Groupe Lisabio | Method and particle identification device |
FR2754346B1 (en) * | 1996-10-07 | 1999-02-05 | Hycel Groupe Lisabio | Method for identification of groups of particles and identification device corresponding |
US6979570B2 (en) | 2001-07-26 | 2005-12-27 | Sysmex Corporation | Particle analyzer and particle analyzing method |
GB2421307A (en) * | 2004-11-19 | 2006-06-21 | Hull And East Yorkshire Hospit | Identifying an adenocarcinoma in a cell sample |
US7693683B2 (en) * | 2004-11-25 | 2010-04-06 | Sharp Kabushiki Kaisha | Information classifying device, information classifying method, information classifying program, information classifying system |
JP5168658B2 (en) * | 2008-11-21 | 2013-03-21 | 国立大学法人高知大学 | Blood cell analyzer, blood cell analyzing method, and computer program |
BR112013032938A2 (en) * | 2011-09-16 | 2017-01-24 | Ave Science & Technology Co Ltd | device and method for performing morphological analysis to erythrocytes |
CN106021852B (en) * | 2016-05-06 | 2018-11-06 | 鼎泰生物科技(海南)有限公司 | Abnormal value calculating method and apparatus based on the blood glucose data density clustering algorithm |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4097845A (en) * | 1976-11-01 | 1978-06-27 | Rush-Presbyterian-St. Luke's Medical Center | Method of and an apparatus for automatic classification of red blood cells |
US4661913A (en) * | 1984-09-11 | 1987-04-28 | Becton, Dickinson And Company | Apparatus and method for the detection and classification of articles using flow cytometry techniques |
US4791355A (en) * | 1986-10-21 | 1988-12-13 | Coulter Electronics Inc. | Particle analyzer for measuring the resistance and reactance of a particle |
US4965725A (en) * | 1988-04-08 | 1990-10-23 | Nueromedical Systems, Inc. | Neural network based automated cytological specimen classification system and method |
JPH03131756A (en) * | 1989-10-18 | 1991-06-05 | Hitachi Ltd | Automatic classifying device for blood cell |
EP0544385A2 (en) * | 1991-11-27 | 1993-06-02 | Toa Medical Electronics Company, Limited | Method of counting particles |
US5255346A (en) * | 1989-12-28 | 1993-10-19 | U S West Advanced Technologies, Inc. | Method and apparatus for design of a vector quantizer |
US5627040A (en) * | 1991-08-28 | 1997-05-06 | Becton Dickinson And Company | Flow cytometric method for autoclustering cells |
-
1992
- 1992-06-19 JP JP18626592A patent/JP3165247B2/en not_active Expired - Fee Related
-
1993
- 1993-05-26 AU AU39809/93A patent/AU648466B2/en not_active Ceased
- 1993-06-09 DE DE1993627615 patent/DE69327615T2/en not_active Expired - Lifetime
- 1993-06-09 EP EP19930304472 patent/EP0575091B1/en not_active Expired - Lifetime
- 1993-06-09 DE DE1993627615 patent/DE69327615D1/en not_active Expired - Lifetime
- 1993-06-18 CA CA 2098785 patent/CA2098785A1/en not_active Abandoned
-
1995
- 1995-01-03 US US08/368,053 patent/US5703959A/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4097845A (en) * | 1976-11-01 | 1978-06-27 | Rush-Presbyterian-St. Luke's Medical Center | Method of and an apparatus for automatic classification of red blood cells |
US4661913A (en) * | 1984-09-11 | 1987-04-28 | Becton, Dickinson And Company | Apparatus and method for the detection and classification of articles using flow cytometry techniques |
US4791355A (en) * | 1986-10-21 | 1988-12-13 | Coulter Electronics Inc. | Particle analyzer for measuring the resistance and reactance of a particle |
US4965725A (en) * | 1988-04-08 | 1990-10-23 | Nueromedical Systems, Inc. | Neural network based automated cytological specimen classification system and method |
US4965725B1 (en) * | 1988-04-08 | 1996-05-07 | Neuromedical Systems Inc | Neural network based automated cytological specimen classification system and method |
JPH03131756A (en) * | 1989-10-18 | 1991-06-05 | Hitachi Ltd | Automatic classifying device for blood cell |
US5255346A (en) * | 1989-12-28 | 1993-10-19 | U S West Advanced Technologies, Inc. | Method and apparatus for design of a vector quantizer |
US5627040A (en) * | 1991-08-28 | 1997-05-06 | Becton Dickinson And Company | Flow cytometric method for autoclustering cells |
EP0544385A2 (en) * | 1991-11-27 | 1993-06-02 | Toa Medical Electronics Company, Limited | Method of counting particles |
US5555196A (en) * | 1991-11-27 | 1996-09-10 | Toa Medical Electronics Co., Ltd. | Method of counting particles using degree of membership in clustering data points into subgroups |
US5555198A (en) * | 1991-11-27 | 1996-09-10 | Toa Medical Electronics Co., Ltd. | Apparatus for counting particles |
Non-Patent Citations (16)
Title |
---|
Gulcur et al. "Identification of Different Types of Leucocytes in Dried Blood Smears Using Neural Networks," Proc. 1992 Int. Biomedical Eng. Days, Aug. 1992, pp. 203-206. |
Gulcur et al. Identification of Different Types of Leucocytes in Dried Blood Smears Using Neural Networks, Proc. 1992 Int. Biomedical Eng. Days, Aug. 1992, pp. 203 206. * |
J. Bezdek et al., "Fuzzy Kohonen Clustering Networks", IEEE International Conference on Fuzzy Systems, Mar. 8-12, 1992, San Diego, CA, USA, pp. 1035-1043. |
J. Bezdek et al., Fuzzy Kohonen Clustering Networks , IEEE International Conference on Fuzzy Systems, Mar. 8 12, 1992, San Diego, CA, USA, pp. 1035 1043. * |
J. Weber et al., "Guided Data Reduction for Flow Cytometry", Images of the Twenty-First Century, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Seattle, WA, USA, vol. 11:1989; pp. 1783-1784. |
J. Weber et al., Guided Data Reduction for Flow Cytometry , Images of the Twenty First Century, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Seattle, WA, USA, vol. 11:1989; pp. 1783 1784. * |
Johnson et al. "Multidimensional Self Organisation." 1990 IEEE Int. Workshop on Cellular Neural Networks and Their Appl., Dec. 1990, pp. 254-263. |
Johnson et al. Multidimensional Self Organisation. 1990 IEEE Int. Workshop on Cellular Neural Networks and Their Appl., Dec. 1990, pp. 254 263. * |
Kelley et al. "An Adaptive Algorithm For Modifying Hyperellipsoidal Decision Surfaces", 7-11 Jun., 1992 pp. IV-196 to IV-201, IJCNN International Joint Conference on Neural Networks. |
Kelley et al. An Adaptive Algorithm For Modifying Hyperellipsoidal Decision Surfaces , 7 11 Jun., 1992 pp. IV 196 to IV 201, IJCNN International Joint Conference on Neural Networks. * |
L. Fu et al, "A Hybrid System Approach to Multivariate Analysis of Flow Cytometry Data", Proceedings of the Fifth Annual IEEE Symposium on Computer-Based Medical Systems, ISBN 0-8186-2742-5, Jun. 1992, pp. 315-324. |
L. Fu et al, A Hybrid System Approach to Multivariate Analysis of Flow Cytometry Data , Proceedings of the Fifth Annual IEEE Symposium on Computer Based Medical Systems, ISBN 0 8186 2742 5, Jun. 1992, pp. 315 324. * |
S G Kong et al., Differential Competitive Learning For Phoneme Recognition , Neural Networks For Signal Processing, pp. 1 32. * |
S. Newton et al., "Adaptive Fuzzy Leader Clustering of Complex Data Sets in Pattern Recognition", IEEE Transactions on Neural Networks, vol. 3, No. 5, Sep. 1992, pp. 794-800. |
S. Newton et al., Adaptive Fuzzy Leader Clustering of Complex Data Sets in Pattern Recognition , IEEE Transactions on Neural Networks, vol. 3, No. 5, Sep. 1992, pp. 794 800. * |
S-G Kong et al., "Differential Competitive Learning For Phoneme Recognition", Neural Networks For Signal Processing, pp. 1-32. |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5933519A (en) * | 1994-09-20 | 1999-08-03 | Neo Path, Inc. | Cytological slide scoring apparatus |
US6038340A (en) * | 1996-11-08 | 2000-03-14 | Seiko Epson Corporation | System and method for detecting the black and white points of a color image |
US6678040B1 (en) * | 1999-07-02 | 2004-01-13 | Terumo Kabushiki Kaisha | Apparatus for measuring number of cells |
US6631211B1 (en) * | 1999-07-08 | 2003-10-07 | Perkinelmer Las, Inc. | Interactive system for analyzing scatter plots |
US6714675B1 (en) * | 1999-10-21 | 2004-03-30 | 3M Innovative Properties Company | Autogrid analysis |
US6633669B1 (en) * | 1999-10-21 | 2003-10-14 | 3M Innovative Properties Company | Autogrid analysis |
US20040126008A1 (en) * | 2000-04-24 | 2004-07-01 | Eric Chapoulaud | Analyte recognition for urinalysis diagnostic system |
US7236623B2 (en) * | 2000-04-24 | 2007-06-26 | International Remote Imaging Systems, Inc. | Analyte recognition for urinalysis diagnostic system |
US6662117B2 (en) * | 2000-07-24 | 2003-12-09 | Sysmex Corporation | Particle analyzer and particle classifying method |
US6943358B1 (en) * | 2001-03-21 | 2005-09-13 | The United States Of America As Represented By The Secretary Of The Navy | Method for developing a calibration algorithm for quantifying the hydrocarbon content of aqueous media |
US6793642B2 (en) | 2001-05-07 | 2004-09-21 | Biomed Solutions, Llc | Flow cytometer |
WO2002092161A1 (en) * | 2001-05-10 | 2002-11-21 | Biophan, Llc | Miniaturized particle analyzer |
WO2003011386A1 (en) * | 2001-07-30 | 2003-02-13 | Biomed Solutions, Llc | Flow cytometer |
US7129095B2 (en) * | 2002-03-29 | 2006-10-31 | Smiths Detection Inc. | Method and system for using a weighted response |
US20030186461A1 (en) * | 2002-03-29 | 2003-10-02 | Cyrano Bioscienes, Inc. | Method and system for using a weighted response |
US20050008228A1 (en) * | 2003-05-23 | 2005-01-13 | Eric Chapoulaud | Fluid sample analysis using class weights |
US7324694B2 (en) * | 2003-05-23 | 2008-01-29 | International Remote Imaging Systems, Inc. | Fluid sample analysis using class weights |
US7881525B2 (en) * | 2004-02-27 | 2011-02-01 | Hiroshima University | Reference data optimization learning method and pattern recognition system |
US20070003135A1 (en) * | 2004-02-27 | 2007-01-04 | Mattausch Hans J | Reference data optimization learning method and pattern recognition system |
WO2006119482A2 (en) * | 2005-05-04 | 2006-11-09 | West Virginia University Research Corporation | Method for data clustering and classification by a graph theory model -- network partition into high density subgraphs |
WO2006119482A3 (en) * | 2005-05-04 | 2009-04-16 | Univ West Virginia | Method for data clustering and classification by a graph theory model -- network partition into high density subgraphs |
US7523117B2 (en) * | 2005-05-04 | 2009-04-21 | West Virginia University Research Corporation | Method for data clustering and classification by a graph theory model—network partition into high density subgraphs |
US20060274062A1 (en) * | 2005-05-04 | 2006-12-07 | Cun-Quan Zhang | Method for data clustering and classification by a graph theory model - network partition into high density subgraphs |
US20120155739A1 (en) * | 2009-07-20 | 2012-06-21 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Localization of a valid area of a blood smear |
US8538122B2 (en) * | 2009-07-20 | 2013-09-17 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Localization of a valid area of a blood smear |
US10123952B2 (en) | 2015-12-30 | 2018-11-13 | Colgate-Palmolive Company | Personal care compositions |
Also Published As
Publication number | Publication date |
---|---|
JPH063252A (en) | 1994-01-11 |
DE69327615T2 (en) | 2000-08-03 |
AU3980993A (en) | 1993-12-23 |
DE69327615D1 (en) | 2000-02-24 |
CA2098785A1 (en) | 1993-12-20 |
AU648466B2 (en) | 1994-04-21 |
JP3165247B2 (en) | 2001-05-14 |
EP0575091A2 (en) | 1993-12-22 |
EP0575091A3 (en) | 1994-08-24 |
EP0575091B1 (en) | 2000-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rezaee et al. | A new cluster validity index for the fuzzy c-mean | |
Kennel et al. | Method to distinguish possible chaos from colored noise and to determine embedding parameters | |
US5155801A (en) | Clustered neural networks | |
US4453266A (en) | Method and apparatus for measuring mean cell volume of red blood cells | |
Mangasarian et al. | Cancer diagnosis via linear programming | |
Tam | Neural network models and the prediction of bank bankruptcy | |
Chiu | Extracting fuzzy rules from data for function approximation and pattern classification | |
Windham | Cluster validity for fuzzy clustering algorithms | |
Nakano | Application of neural networks to the color grading of apples | |
US7103215B2 (en) | Automated detection of pornographic images | |
Coggins et al. | A spatial filtering approach to texture analysis | |
Spector | What to do with significant multivariate effects in multivariate analyses of variance. | |
Yeung et al. | Parzen-window network intrusion detectors | |
Rudasi et al. | Text-independent talker identification with neural networks | |
Takeda et al. | High speed paper currency recognition by neural networks | |
US5263120A (en) | Adaptive fast fuzzy clustering system | |
Levin et al. | Accelerated learning in layered neural networks | |
US6556951B1 (en) | System and method for intelligent quality control of a process | |
US5455892A (en) | Method for training a neural network for classifying an unknown signal with respect to known signals | |
Hwarng et al. | X control chart pattern identification through efficient off-line neural network training | |
US4658429A (en) | System and method for preparing a recognition dictionary | |
US5128684A (en) | Method and apparatus for correlating sensor detections in space and time | |
US6184978B1 (en) | Method and apparatus for verifying uniform flow of a fluid sample through a flow cell and distribution on a slide | |
Forbes | Classification-algorithm evaluation: Five performance measures based onconfusion matrices | |
Ongun et al. | Feature extraction and classification of blood cells for an automated differential blood count system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |