US5700885A - Single screw method and apparatus - Google Patents
Single screw method and apparatus Download PDFInfo
- Publication number
- US5700885A US5700885A US08/549,077 US54907795A US5700885A US 5700885 A US5700885 A US 5700885A US 54907795 A US54907795 A US 54907795A US 5700885 A US5700885 A US 5700885A
- Authority
- US
- United States
- Prior art keywords
- polymeric material
- compacted
- plasticating
- section
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/53—Screws having a varying channel depth, e.g. varying the diameter of the longitudinal screw trunk
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/395—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/395—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
- B29C48/397—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using a single screw
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/52—Screws with an outer diameter varying along the longitudinal axis, e.g. for obtaining different thread clearance
- B29C48/525—Conical screws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
Definitions
- This invention relates to methods and apparatus useful for the plastication of polymeric material.
- this invention involves an extruder screw comprising (a) a plasticating section having a compression ratio in the range of about 1.2 to about 5, and (b) a plasticating section having a different compression ratio in the range of about 1.2 to about 5.
- this invention involves, in an extruder for plasticating a mixture of two or more polymeric materials of different bulk density, a screw comprising (a) a first section in which the materials are compacted to an extent that the mixture has a bulk density between the highest and lowest of the respective bulk densities of the materials comprising the mixture, and a portion of the materials are plasticated, and (b) a second section in which any materials not plasticated in the first section are plasticated.
- this invention involves a method of plasticating a mixture of two or more polymeric materials of different bulk density comprising the steps of (a) compacting a first polymeric material to the extent that its bulk density is approximately equal to that of a second polymeric material, and (b) further compacting the mixture of polymeric materials until all materials are plasticated.
- this invention involves an extruder screw for the plastication of two or more polymeric materials having different bulk density, comprising (a) a plasticating section having a compression ratio sufficient to plasticate a polymeric material having a bulk density of less than 0.6 g/cm 3 , and a plasticating section having a compression ratio sufficient to plasticate a polymeric material having a bulk density of 0.6 g/cm 3 or more.
- FIG. 1 shows a cross-sectional view of a plastication section of an extruder screw.
- a single screw extruder is a commonly used instrument for the plastication of polymeric material.
- Polymeric material is useful for the fabrication of a variety of molded or shaped articles.
- Plastication refers to the softening of polymeric material to such an extent that it flows freely and will assume any shape. In the case of polymeric material which is crystalline, plastication is synonymous with melting. In the case of polymeric material which is amorphous, plastication occurs at about the glass transition temperature ("T g ").
- Polymeric material may exist in a variety of different physical forms such as powder, beads, pellets, flakes, chips, fibers and strips.
- a polymeric material has a density, which is constant and is an inherent property of the material regardless of the shape of the physical form in which it exists.
- a polymeric material also has a bulk density, and this property is variable and is determined by the shape of the physical form in which it exists. Density may be defined as the mass of a continuous media of material per unit volume, whereas bulk density of a polymeric material may be defined as the mass of a non-continuous media of the material divided by the volume occupied by that mass.
- An extruder for use in processing polymeric material is typically composed of a screw, a cylinder having one or more raised ridges (a "flight") helically disposed thereabout, which screw rotates within an annular cylinder, or barrel.
- the surface of the screw above which the flight(s) are raised is the root of the screw.
- a hopper directs polymeric material through an opening in the barrel into contact with the screw and into the space between the flight(s) and the interior wall of the barrel of the extruder.
- the screw typically has an initial or feed section which begins the process of conveying the solid polymeric material forward within the barrel of the extruder, the direction of travel of the polymeric material as it is transported away from the hopper by the screw being considered the "downstream" direction.
- the feed section of the screw is typically followed, with or without other intervening sections, by a transition or melting section in which plastication of the polymeric material occurs.
- Plastication of the polymeric material occurs as a result of the combined effect of heat produced by heater bands mounted on the outside of the extruder barrel and the shearing forces to which the screw subjects the polymeric material causing friction between the internal wall of the extruder barrel and the polymeric material.
- the melting section of the screw is typically followed, again with or without other intervening sections, by a metering section which functions to pump the plasticated material, as extrudate, out through the downstream end of the extruder which is typically a die or some other form of restricted orifice.
- Polymeric materials having different bulk densities behave differently in the melting, or plastication, section of an extruder specifically because of the different bulk densities.
- the plastication mechanism involves compacting the material to obtain frictional contact of the material with the interior wall of the barrel. Materials of higher bulk density cannot be compacted as easily or readily as those of lower bulk density, and conditions which are appropriate for the compaction of one material are often not appropriate for another material or for a mixture containing that other material.
- the amount of difference in the bulk densities of two materials which may cause different compaction behavior is typically at least 20 percent (determined as (P 1 -P 2 )100/P 2 , where P 1 is greater than P 2 ) may be at least 50 percent, is often at least 100 percent, and may on occasion be at least 1000 percent.
- a first step toward designing plastication conditions appropriate for polymeric materials having different bulk densities is to classify those materials according to the effect of bulk density on compaction behavior.
- materials having a bulk density of less than 0.6 g/cm 3 may be more easily and readily compacted than those materials having a bulk density of 0.6 g/cm 3 or more, especially those in the range of about 0.7 g/cm 3 to about 0.8 g/cm 3 .
- Knowing the respective bulk densities of different polymeric materials to be plasticated together makes it possible to provide separate plastication conditions in the extruder, each suitable for a different material. This is done by constructing an extruder screw with two or more different plastication sections.
- the plastication section of an extruder screw typically has a frusto conical shape with the circumference of the cone increasing in the downstream direction. As polymeric material passes through a plastication section of an extruder, the space between the root of the screw and the interior wall of the barrel (the "channel depth") decreases, and the polymeric material is compressed.
- the compression ratio of a plastication section of a screw is determined by a ratio of the channel depth at the top of the frustum to the channel depth at the base of the cone (base of the frustum). This is shown in FIG. 1 as the ratio of H 0 /H 1 .
- the compression rate of a plastication section of a screw is determined by a relationship derived from the right triangle formed by a line intersecting the circumference of the top of the frustum and parallel to the longitudinal axis of the screw, the intersection of such line with the base of the cone (base of the frustum) and the root of the screw. This relationship is the compression ratio divided by the quantity L/D where L is the distance from the top to the base of the cone frustum and D is the diameter of the annulus of the barrel.
- a sufficient compression ratio for each such section may be in the range of about 1.2 to about 5.
- the compression ratio for a section in which a material having a bulk density of 0.6 g/cm 3 or more is to be plasticated may preferably be in the range of about 1.2 to about 3.3
- the compression ratio for a section in which a material having a bulk density of less than 0.6 g/cm 3 is to be plasticated may preferably be in the range of about 3.3 to about 5.
- a sufficient compression rate for each such plastication section may be in the range of about 0.01 to about 15, preferably about 0.05 to about 13.7.
- the compression rate is selected such that, for a given temperature and pressure within the extruder, a greater length is allowed for the plastication section of the screw for those materials which are relatively more difficult to plasticate because of, for example, a higher bulk density and/or a higher melting or softening temperature.
- the plastication sections may be constructed in the screw in any order such that one section is followed downstream by another, the downstream section having a higher or lower compression ratio and/or a higher or lower compression rate than the upstream section.
- One or more such plastication sections may, but need not be, immediately adjacent.
- a first polymeric material may be compacted to the extent that its bulk density is approximately equal to that of a second polymeric material, and/or the materials may be compacted to an extent that the mixture has a bulk density between the highest and lowest of the respective bulk densities of the materials comprising the mixture. While this occurs, a portion of each material is carried downstream in the first section by the screw as a bed of unplasticated solids. However, the volume of such solids bed is progressively decreased in the first section by compression against the interior wall of the barrel as it is carried toward the base of the frusto conical shaped plastication section.
- any polymeric material which can be melted or heat softened may be plasticated in a mixture with another such polymeric material by the methods and apparatus of this invention.
- the following are exemplary of polymers and copolymers, or alloys or blends of two or more thereof, which are suitable for such plastication, but this listing is not intended to be exhaustive or to limit the scope of this invention:
- polyacetal including that which is formed by the bond opening and polymerization of the carbonyl group of an aldehyde to give a --(--CH 2 --O--)-- repeating unit, as well as the reaction products of polyols and aldehydes;
- poly(arylene sulfide) including that which is prepared by the reaction of p-dichlorobenzene with Na 2 S in a polar organic solvent to give a --(--pAr--S--)-- repeating unit;
- azo polymers including those which are prepared by the polymerization of an azobutyronitrile with a diamine or diol to give a --(--R--N ⁇ N--R--)-- repeating unit or those prepared by polymerization of monomers containing an azo side group in addition to a polymerizable functionality to give a-- --R(N ⁇ N--R')--!-- repeating unit;
- polybenzimidazole including that which is prepared by condensation of aromatic tetraamino compounds with dicarboxylic acids
- polycarbonate including copolymers thereof
- polyester including copolymers thereof
- polyimidazole including that which is prepared by polymerization of vinylimidazole monomer
- polyimide including that which is prepared by condensation of bifunctional carboxylic acid anhydrides with a diamine to give a-- --C(O)--N--R--C(O)--!-- repeating unit;
- polyolefin including copolymers thereof
- poly(phenylene ether) including that which is prepared by the oxidative coupling polymerization of a phenol to give a --(--pAr--O--)-- repeating unit;
- polyphosphazine including that which is prepared by the polymerization of the cyclic trimer produced by the reaction of phosphorous pentachloride and ammonium chloride to give a -- --N ⁇ P(R 2 )--!-- repeating unit;
- polyquinoxaline including that which is prepared by the solution polymerization of aromatic bis( o diamine) and bis(glyoxal hydrate);
- polystyrene including copolymers thereof
- vinyl polymers including poly(vinyl acetate), poly(vinyl alcohol), poly(vinyl amide), poly(vinyl chloride), and poly(vinyl ether), including copolymers of each;
- organic radical e.g. C 6 -C 10
- This invention is also applicable to copolymers formed from two or more monomers or co-monomers, such copolymers including but not being limited to:
- styrene/maleic anhydride copolymer as well as to blends and alloys of two or more polymers and/or copolymers. Examples of such blends being:
- polyphenylene ether blended with (i) polyamide and a vinyl aromatic/conjugated diene di- or tri-block copolymer; (ii) polyester; or (iii) polystyrene to which can be grafted a vinyl aromatic/conjugated diene di- or tri-block copolymer.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
An extruder screw having a plurality of plasticating sections sufficient for plasticating polymeric materials of different bulk density.
Description
This is a continuation of application Ser. No. 08/184,510, filed Jan. 19, 1994 now abandoned.
This invention relates to methods and apparatus useful for the plastication of polymeric material.
Methods and apparatus for the plastication of two or more polymeric materials having different bulk density have been discovered.
In one aspect this invention involves an extruder screw comprising (a) a plasticating section having a compression ratio in the range of about 1.2 to about 5, and (b) a plasticating section having a different compression ratio in the range of about 1.2 to about 5.
In another aspect this invention involves, in an extruder for plasticating a mixture of two or more polymeric materials of different bulk density, a screw comprising (a) a first section in which the materials are compacted to an extent that the mixture has a bulk density between the highest and lowest of the respective bulk densities of the materials comprising the mixture, and a portion of the materials are plasticated, and (b) a second section in which any materials not plasticated in the first section are plasticated.
In a further aspect this invention involves a method of plasticating a mixture of two or more polymeric materials of different bulk density comprising the steps of (a) compacting a first polymeric material to the extent that its bulk density is approximately equal to that of a second polymeric material, and (b) further compacting the mixture of polymeric materials until all materials are plasticated.
In yet another aspect this invention involves an extruder screw for the plastication of two or more polymeric materials having different bulk density, comprising (a) a plasticating section having a compression ratio sufficient to plasticate a polymeric material having a bulk density of less than 0.6 g/cm3, and a plasticating section having a compression ratio sufficient to plasticate a polymeric material having a bulk density of 0.6 g/cm3 or more.
FIG. 1 shows a cross-sectional view of a plastication section of an extruder screw.
A single screw extruder is a commonly used instrument for the plastication of polymeric material. Polymeric material is useful for the fabrication of a variety of molded or shaped articles. Plastication refers to the softening of polymeric material to such an extent that it flows freely and will assume any shape. In the case of polymeric material which is crystalline, plastication is synonymous with melting. In the case of polymeric material which is amorphous, plastication occurs at about the glass transition temperature ("Tg ").
Polymeric material may exist in a variety of different physical forms such as powder, beads, pellets, flakes, chips, fibers and strips. A polymeric material has a density, which is constant and is an inherent property of the material regardless of the shape of the physical form in which it exists. However, a polymeric material also has a bulk density, and this property is variable and is determined by the shape of the physical form in which it exists. Density may be defined as the mass of a continuous media of material per unit volume, whereas bulk density of a polymeric material may be defined as the mass of a non-continuous media of the material divided by the volume occupied by that mass.
An extruder for use in processing polymeric material is typically composed of a screw, a cylinder having one or more raised ridges (a "flight") helically disposed thereabout, which screw rotates within an annular cylinder, or barrel. The surface of the screw above which the flight(s) are raised is the root of the screw. A hopper directs polymeric material through an opening in the barrel into contact with the screw and into the space between the flight(s) and the interior wall of the barrel of the extruder.
The screw typically has an initial or feed section which begins the process of conveying the solid polymeric material forward within the barrel of the extruder, the direction of travel of the polymeric material as it is transported away from the hopper by the screw being considered the "downstream" direction. The feed section of the screw is typically followed, with or without other intervening sections, by a transition or melting section in which plastication of the polymeric material occurs. Plastication of the polymeric material occurs as a result of the combined effect of heat produced by heater bands mounted on the outside of the extruder barrel and the shearing forces to which the screw subjects the polymeric material causing friction between the internal wall of the extruder barrel and the polymeric material. The melting section of the screw is typically followed, again with or without other intervening sections, by a metering section which functions to pump the plasticated material, as extrudate, out through the downstream end of the extruder which is typically a die or some other form of restricted orifice.
Polymeric materials having different bulk densities behave differently in the melting, or plastication, section of an extruder specifically because of the different bulk densities. When polymeric material is plasticated in an extruder, the plastication mechanism involves compacting the material to obtain frictional contact of the material with the interior wall of the barrel. Materials of higher bulk density cannot be compacted as easily or readily as those of lower bulk density, and conditions which are appropriate for the compaction of one material are often not appropriate for another material or for a mixture containing that other material. The amount of difference in the bulk densities of two materials which may cause different compaction behavior is typically at least 20 percent (determined as (P1 -P2)100/P2, where P1 is greater than P2) may be at least 50 percent, is often at least 100 percent, and may on occasion be at least 1000 percent. A first step toward designing plastication conditions appropriate for polymeric materials having different bulk densities is to classify those materials according to the effect of bulk density on compaction behavior. It has been found that materials having a bulk density of less than 0.6 g/cm3, and more particularly in the range of about 0.1 g/cm3 to about 0.5 g/cm3, may be more easily and readily compacted than those materials having a bulk density of 0.6 g/cm3 or more, especially those in the range of about 0.7 g/cm3 to about 0.8 g/cm3.
Knowing the respective bulk densities of different polymeric materials to be plasticated together makes it possible to provide separate plastication conditions in the extruder, each suitable for a different material. This is done by constructing an extruder screw with two or more different plastication sections. The plastication section of an extruder screw typically has a frusto conical shape with the circumference of the cone increasing in the downstream direction. As polymeric material passes through a plastication section of an extruder, the space between the root of the screw and the interior wall of the barrel (the "channel depth") decreases, and the polymeric material is compressed. The compression ratio of a plastication section of a screw is determined by a ratio of the channel depth at the top of the frustum to the channel depth at the base of the cone (base of the frustum). This is shown in FIG. 1 as the ratio of H0 /H1. The compression rate of a plastication section of a screw is determined by a relationship derived from the right triangle formed by a line intersecting the circumference of the top of the frustum and parallel to the longitudinal axis of the screw, the intersection of such line with the base of the cone (base of the frustum) and the root of the screw. This relationship is the compression ratio divided by the quantity L/D where L is the distance from the top to the base of the cone frustum and D is the diameter of the annulus of the barrel. These elements are also shown in FIG. 1.
It has been found that when two or more plastication sections are constructed in a screw for plastication of a mixture of materials having different bulk densities, a sufficient compression ratio for each such section may be in the range of about 1.2 to about 5. The compression ratio for a section in which a material having a bulk density of 0.6 g/cm3 or more is to be plasticated may preferably be in the range of about 1.2 to about 3.3, and the compression ratio for a section in which a material having a bulk density of less than 0.6 g/cm3 is to be plasticated may preferably be in the range of about 3.3 to about 5. A sufficient compression rate for each such plastication section may be in the range of about 0.01 to about 15, preferably about 0.05 to about 13.7. The compression rate is selected such that, for a given temperature and pressure within the extruder, a greater length is allowed for the plastication section of the screw for those materials which are relatively more difficult to plasticate because of, for example, a higher bulk density and/or a higher melting or softening temperature. The plastication sections may be constructed in the screw in any order such that one section is followed downstream by another, the downstream section having a higher or lower compression ratio and/or a higher or lower compression rate than the upstream section. One or more such plastication sections may, but need not be, immediately adjacent.
When a mixture of polymeric materials having different bulk densities is plasticated by means of a screw having two or more separate plastication sections, a first polymeric material may be compacted to the extent that its bulk density is approximately equal to that of a second polymeric material, and/or the materials may be compacted to an extent that the mixture has a bulk density between the highest and lowest of the respective bulk densities of the materials comprising the mixture. While this occurs, a portion of each material is carried downstream in the first section by the screw as a bed of unplasticated solids. However, the volume of such solids bed is progressively decreased in the first section by compression against the interior wall of the barrel as it is carried toward the base of the frusto conical shaped plastication section. Progressively decreasing the volume of the solids bed has the result of keeping it in contact with the interior wall of the barrel as a progressively larger portion of the one of the materials becomes plasticated. In a second section, all of the remaining unplasticated material is plasticated. A good indication that all material has been plasticated is that the extruder screw maintains an essentially constant output of extruded material and that the amperage of the motor which powers the extruder remains essentially constant.
Virtually any polymeric material which can be melted or heat softened may be plasticated in a mixture with another such polymeric material by the methods and apparatus of this invention. The following are exemplary of polymers and copolymers, or alloys or blends of two or more thereof, which are suitable for such plastication, but this listing is not intended to be exhaustive or to limit the scope of this invention:
polyacetal, including that which is formed by the bond opening and polymerization of the carbonyl group of an aldehyde to give a --(--CH2 --O--)-- repeating unit, as well as the reaction products of polyols and aldehydes;
polyacrylamide;
polyacrylate;
polyacrylonitrile;
polyamide;
polyarylate
poly(arylene sulfide), including that which is prepared by the reaction of p-dichlorobenzene with Na2 S in a polar organic solvent to give a --(--pAr--S--)-- repeating unit;
azo polymers, including those which are prepared by the polymerization of an azobutyronitrile with a diamine or diol to give a --(--R--N═N--R--)-- repeating unit or those prepared by polymerization of monomers containing an azo side group in addition to a polymerizable functionality to give a-- --R(N═N--R')--!-- repeating unit;
polybenzimidazole, including that which is prepared by condensation of aromatic tetraamino compounds with dicarboxylic acids;
polycarbonate, including copolymers thereof;
polyester, including copolymers thereof;
poly(ethylene oxide);
polyimidazole, including that which is prepared by polymerization of vinylimidazole monomer;
polyimide, including that which is prepared by condensation of bifunctional carboxylic acid anhydrides with a diamine to give a-- --C(O)--N--R--C(O)--!-- repeating unit;
poly(methyl methacrylate)
polyolefin, including copolymers thereof;
poly(phenylene ether), including that which is prepared by the oxidative coupling polymerization of a phenol to give a --(--pAr--O--)-- repeating unit;
polyphosphazine, including that which is prepared by the polymerization of the cyclic trimer produced by the reaction of phosphorous pentachloride and ammonium chloride to give a -- --N═P(R2)--!-- repeating unit;
poly(propylene oxide);
polyquinoxaline, including that which is prepared by the solution polymerization of aromatic bis(o diamine) and bis(glyoxal hydrate);
polysilane;
polysiloxane;
polystyrene, including copolymers thereof;
polysulfone;
polyurea;
polyurethane; and
vinyl polymers, including poly(vinyl acetate), poly(vinyl alcohol), poly(vinyl amide), poly(vinyl chloride), and poly(vinyl ether), including copolymers of each;
where, in any of the above formulae, R and R' are
organic (e.g. C1 -C20) radicals and Ar is an aromatic
organic (e.g. C6 -C10) radical.
This invention is also applicable to copolymers formed from two or more monomers or co-monomers, such copolymers including but not being limited to:
acrylonitrile/butadiene/styrene copolymer,
acrylonitrile/EPDM/styrene copolymer where EPDM is ethylene/propylene/diene rubber,
acrylonitrile/styrene/alkyl acrylate copolymer,
poly(ester/carbonate) copolymer,
ethylene/carbon monoxide copolymer,
ethylene/vinyl acetate copolymer,
methyl methacrylate/butadiene/styrene/acrylonitrile copolymer,
phenyl maleimide/acrylonitrile/butadiene/styrene copolymer,
styrene/acrylonitrile copolymer, and
styrene/maleic anhydride copolymer; as well as to blends and alloys of two or more polymers and/or copolymers. Examples of such blends being:
acrylonitrile/butadiene/styrene copolymer blended with polycarbonate, polyamide, polyester, or polyurethane;
polyacetal blended with polyurethane;
polycarbonate blended with polyamide, polyester, or styrene/acrylonitrile copolymer; and
polyphenylene ether blended with (i) polyamide and a vinyl aromatic/conjugated diene di- or tri-block copolymer; (ii) polyester; or (iii) polystyrene to which can be grafted a vinyl aromatic/conjugated diene di- or tri-block copolymer.
Claims (25)
1. A method of plasticating a mixture of two or more polymeric materials of different bulk density in an extruder with a screw having one flight and two adjacent plasticating sections, comprising the steps of:
(a) compacting a first polymeric material contained in the mixture in a first plasticating section to the extent that its bulk density is approximately equal to that of a second polymeric material contained in the mixture,
(b) compacting the mixture of polymeric materials in a second downstream plasticating section adjacent to the first plasticating section and which has a different compression ratio until all materials are plasticated, and
(c) providing a constant output of plasticated material.
2. The method of claim 1 wherein, before plastication, the bulk density of at least one polymeric material is less than 0.6 g/cm3, and the bulk density of at least one other polymeric material is 0.6 g/cm3 or more, provided that the larger of the two bulk densities is at least twenty percent larger than the smaller of the two bulk densities.
3. The method of claim 2 wherein the bulk density of at least one polymeric material is in the range of about 0.1 to about 0.5 g/cm3, and the bulk density of at least one other polymeric material is in the range of about 0.7 to about 0.8 g/cm3.
4. The method of claim 1 wherein one or more of the polymeric materials is selected from the group consisting of polyamide; polycarbonate; polyester; poly(methyl methacrylate); polyolefin; poly(phenylene ether); polystyrene; polyurethane; olefin copolymers; styrene copolymers; and a blend of (i) poly(phenylene ether), (ii) polystyrene, and (iii) a vinyl aromatic/conjugated diene di- or tri-block copolymer.
5. The method of claim 2 wherein the larger of the two bulk densities is at least one hundred percent larger than the smaller of the two bulk densities.
6. The method of claim 1 wherein the first polymeric material is compacted by a plasticating section of an extruder screw.
7. The method of claim 1 wherein the first polymeric material is compacted by an extruder screw comprised of a plasticating section having a compression ratio in the range of about 1.2 to about 5.
8. The method of claim 7 wherein said plasticating section has a compression rate in the range of about 0.01 to about 15.
9. The method of claim 1 wherein the first polymeric material is compacted by an extruder screw comprised of a plasticating section having a compression ratio in the range of about 3.3 to about 5.
10. The method of claim 1 wherein the first polymeric material is compacted by an extruder screw comprised of a plasticating section having a compression rate in the range of about 0.01 to about 15.
11. The method of claim 1 wherein the mixture of polymeric materials is compacted by a plasticating section of an extruder screw.
12. The method of claim 1 wherein the mixture of polymeric materials is compacted by an extruder screw comprised of a plasticating section having a compression ratio in the range of about 1.2 to about 5.
13. The method of claim 12 wherein said plasticating section has a compression rate in the range of about 0.01 to about 15.
14. The method of claim 1 wherein the mixture of polymeric materials is compacted by an extruder screw comprised of a plasticating section having a compression ratio in the range of about 1.2 to about 3.3.
15. The method of claim 1 wherein the mixture of polymeric materials is compacted by an extruder screw comprised of a plasticating section having a compression rate in the range of about 0.01 to about 15.
16. The method of claim 1 wherein the first polymeric material is compacted by a plasticating section of an extruder screw having a compression ratio in the range of about 1.2 to about 5, and the mixture of polymeric materials is compacted by a plasticating section of the same extruder screw having a different compression ratio in the range of about 1.2 to about 5.
17. The method of claim 16 wherein the plasticating section in which the first polymeric material is compacted is adjacent to the plasticating section in which the mixture of polymeric materials is compacted.
18. The method of claim 16 wherein the plasticating section in which the first polymeric material is compacted is not adjacent to the plasticating section in which the mixture of polymeric materials is compacted.
19. The method of claim 1 wherein one or more of the polymeric materials is selected from the group consisting of polycarbonate; polyester; polyolefin; poly(phenylene ether); polystyrene; acrylonitrile/butadiene/styrene copolymer; olefin copolymers; and styrene/acrylonitrile copolymer.
20. The method of claim 1 wherein the polymeric materials comprise polycarbonate and acrylonitrile/butadiene/styrene copolymer.
21. The method of claim 1 wherein the polymeric materials comprise polycarbonate and polyester.
22. The method of claim 1 wherein the polymeric materials comprise polycarbonate and poly(phenylene ether).
23. The method of claim 1 wherein the first polymeric material is polycarbonate.
24. The method of claim 1 wherein the second polymeric material is polycarbonate.
25. The method of claim 23 wherein the second polymeric material is polycarbonate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/549,077 US5700885A (en) | 1994-01-19 | 1995-10-27 | Single screw method and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18451094A | 1994-01-19 | 1994-01-19 | |
US08/549,077 US5700885A (en) | 1994-01-19 | 1995-10-27 | Single screw method and apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18451094A Continuation | 1994-01-19 | 1994-01-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5700885A true US5700885A (en) | 1997-12-23 |
Family
ID=22677175
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/437,071 Expired - Fee Related US5655835A (en) | 1994-01-19 | 1995-05-09 | Single screw extruder method and apparatus |
US08/549,077 Expired - Fee Related US5700885A (en) | 1994-01-19 | 1995-10-27 | Single screw method and apparatus |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/437,071 Expired - Fee Related US5655835A (en) | 1994-01-19 | 1995-05-09 | Single screw extruder method and apparatus |
Country Status (7)
Country | Link |
---|---|
US (2) | US5655835A (en) |
EP (1) | EP0740603B1 (en) |
JP (1) | JPH09511457A (en) |
KR (1) | KR100355500B1 (en) |
DE (1) | DE69505789T2 (en) |
TW (1) | TW370931U (en) |
WO (1) | WO1995019878A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6309574B1 (en) * | 1994-04-04 | 2001-10-30 | Uponor Innovation Ab | Extrusion of high molecular weight polymers |
US20110091596A1 (en) * | 2008-04-08 | 2011-04-21 | Moriyama Company Ltd. | Two-shaft extruder |
US10053597B2 (en) | 2013-01-18 | 2018-08-21 | Basf Se | Acrylic dispersion-based coating compositions |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5976432A (en) * | 1996-09-09 | 1999-11-02 | Plymouth Products, Inc. | Method and apparatus for the continuous extrusion of block elements |
US5823668A (en) * | 1997-05-29 | 1998-10-20 | Spirex Corporation | Extruder and extrusion screw therefor |
US6921191B2 (en) * | 2002-08-23 | 2005-07-26 | Concor Tool And Machinery | Injection/extruder screw |
US8440124B2 (en) * | 2009-07-01 | 2013-05-14 | The Procter & Gamble Company | Single screw extruder for dryer bar manufacture |
US8338359B2 (en) * | 2009-07-01 | 2012-12-25 | The Procter & Gamble Company | Dryer bar having void volumes |
CN104602892B (en) | 2012-06-28 | 2019-05-17 | 陶氏环球技术有限责任公司 | The system for manufacturing multilayer microcapillary film, method and apparatus |
US11920099B2 (en) * | 2021-11-23 | 2024-03-05 | Saudi Arabian Oil Company | Extruder systems and processes for production of petroleum coke |
US11959022B2 (en) | 2021-11-23 | 2024-04-16 | Saudi Arabian Oil Company | Extruder systems and processes for production of petroleum coke and mesophase pitch |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3431599A (en) * | 1964-12-04 | 1969-03-11 | Ball Brothers Res Corp | Extrusion method and apparatus |
US3599292A (en) * | 1967-07-17 | 1971-08-17 | Montedison Spa | Equipment for the injection molding of thermoplastic materials having a high content of volatile substances |
US3712776A (en) * | 1969-10-30 | 1973-01-23 | Dart Ind Inc | Apparatus for the continuous production of glass fiber reinforced thermoplastic |
US3897937A (en) * | 1973-08-30 | 1975-08-05 | A Paul Limbach | Extruder screw |
US4015832A (en) * | 1972-08-23 | 1977-04-05 | Koehring Company | Extruder screws |
US4047705A (en) * | 1974-09-28 | 1977-09-13 | Krauss-Maffei Aktiengesellschaft | Extruder with dual tapered screws |
US4092015A (en) * | 1975-09-24 | 1978-05-30 | Paul Troester Maschinenfabrik | Extruder screw |
US4129386A (en) * | 1976-06-01 | 1978-12-12 | Akzona Incorporated | Extrusion apparatus |
US4234259A (en) * | 1978-08-24 | 1980-11-18 | Werner & Pfleiderer | Mixing apparatus for kneading of plastic substances |
US4277182A (en) * | 1978-05-31 | 1981-07-07 | Hpm Corporation | Extruder with short cycle multichannel wave screw |
US4341474A (en) * | 1980-08-27 | 1982-07-27 | Wheeler Jr Norton C | Extruder screw |
US4357291A (en) * | 1980-08-28 | 1982-11-02 | Union Carbide Corporation | Double metering extruder screw and method of extrusion |
US4426018A (en) * | 1981-06-17 | 1984-01-17 | Ward Dean L | Method and apparatus for recycling scrap |
US4501498A (en) * | 1983-12-05 | 1985-02-26 | Luwa Corporation | Method and apparatus for extruding thermoplastic material |
US4798472A (en) * | 1988-01-14 | 1989-01-17 | Harry Chan | Extruder screw with balanced flights of different functional sections |
US4908169A (en) * | 1986-11-12 | 1990-03-13 | Galic George J | Method for plasticating using reciprocating-screw having a melt channel and solids channels |
US4964730A (en) * | 1986-08-19 | 1990-10-23 | Alzner Bernard G | Plasticating extruder screw |
US4994223A (en) * | 1989-06-16 | 1991-02-19 | Bomatic, Inc. | Extruder screw and method for the extrusion of thermally sensitive thermoplastic materials |
US5156790A (en) * | 1991-07-25 | 1992-10-20 | Union Carbide Chemicals & Plastics Technology Corporation | Method for extruding ethylene polymers |
US5261743A (en) * | 1993-04-27 | 1993-11-16 | Hydreclaim Corporation | Apparatus and methods for feeding a substantially uniform quantity of a mixture of materials having variable individual densities |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59194824A (en) * | 1983-04-19 | 1984-11-05 | Ube Ind Ltd | Resin molding machine |
-
1995
- 1995-01-10 DE DE69505789T patent/DE69505789T2/en not_active Expired - Fee Related
- 1995-01-10 WO PCT/US1995/000282 patent/WO1995019878A1/en active IP Right Grant
- 1995-01-10 KR KR1019960703879A patent/KR100355500B1/en not_active IP Right Cessation
- 1995-01-10 EP EP95908456A patent/EP0740603B1/en not_active Expired - Lifetime
- 1995-01-10 JP JP7519580A patent/JPH09511457A/en not_active Ceased
- 1995-01-18 TW TW085219696U patent/TW370931U/en unknown
- 1995-05-09 US US08/437,071 patent/US5655835A/en not_active Expired - Fee Related
- 1995-10-27 US US08/549,077 patent/US5700885A/en not_active Expired - Fee Related
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3431599A (en) * | 1964-12-04 | 1969-03-11 | Ball Brothers Res Corp | Extrusion method and apparatus |
US3599292A (en) * | 1967-07-17 | 1971-08-17 | Montedison Spa | Equipment for the injection molding of thermoplastic materials having a high content of volatile substances |
US3712776A (en) * | 1969-10-30 | 1973-01-23 | Dart Ind Inc | Apparatus for the continuous production of glass fiber reinforced thermoplastic |
US4015832A (en) * | 1972-08-23 | 1977-04-05 | Koehring Company | Extruder screws |
US3897937A (en) * | 1973-08-30 | 1975-08-05 | A Paul Limbach | Extruder screw |
US4047705A (en) * | 1974-09-28 | 1977-09-13 | Krauss-Maffei Aktiengesellschaft | Extruder with dual tapered screws |
US4092015A (en) * | 1975-09-24 | 1978-05-30 | Paul Troester Maschinenfabrik | Extruder screw |
US4129386A (en) * | 1976-06-01 | 1978-12-12 | Akzona Incorporated | Extrusion apparatus |
US4277182A (en) * | 1978-05-31 | 1981-07-07 | Hpm Corporation | Extruder with short cycle multichannel wave screw |
US4234259A (en) * | 1978-08-24 | 1980-11-18 | Werner & Pfleiderer | Mixing apparatus for kneading of plastic substances |
US4341474A (en) * | 1980-08-27 | 1982-07-27 | Wheeler Jr Norton C | Extruder screw |
US4357291A (en) * | 1980-08-28 | 1982-11-02 | Union Carbide Corporation | Double metering extruder screw and method of extrusion |
US4426018A (en) * | 1981-06-17 | 1984-01-17 | Ward Dean L | Method and apparatus for recycling scrap |
US4501498A (en) * | 1983-12-05 | 1985-02-26 | Luwa Corporation | Method and apparatus for extruding thermoplastic material |
US4964730A (en) * | 1986-08-19 | 1990-10-23 | Alzner Bernard G | Plasticating extruder screw |
US4908169A (en) * | 1986-11-12 | 1990-03-13 | Galic George J | Method for plasticating using reciprocating-screw having a melt channel and solids channels |
US4798472A (en) * | 1988-01-14 | 1989-01-17 | Harry Chan | Extruder screw with balanced flights of different functional sections |
US4994223A (en) * | 1989-06-16 | 1991-02-19 | Bomatic, Inc. | Extruder screw and method for the extrusion of thermally sensitive thermoplastic materials |
US5156790A (en) * | 1991-07-25 | 1992-10-20 | Union Carbide Chemicals & Plastics Technology Corporation | Method for extruding ethylene polymers |
US5261743A (en) * | 1993-04-27 | 1993-11-16 | Hydreclaim Corporation | Apparatus and methods for feeding a substantially uniform quantity of a mixture of materials having variable individual densities |
Non-Patent Citations (7)
Title |
---|
"Industrial Mechanics" Taiwan Industrial periodical (no month/yr). |
"Plastic Injection Molding Reader" (1991) by Yujiro Sakurauchi, pp. 262-265 (no month). |
"The Structure of Extruders" by Wen-Ching Bookstore, Co., pp. 584-585, 589 (no month/yr.). |
Industrial Mechanics Taiwan Industrial periodical (no month/yr). * |
Japanese Abstract JP A 59 194 824, 5 Nov. 1984. * |
Plastic Injection Molding Reader (1991) by Yujiro Sakurauchi, pp. 262 265 (no month). * |
The Structure of Extruders by Wen Ching Bookstore, Co., pp. 584 585, 589 (no month/yr.). * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6309574B1 (en) * | 1994-04-04 | 2001-10-30 | Uponor Innovation Ab | Extrusion of high molecular weight polymers |
US6689472B2 (en) | 1996-04-04 | 2004-02-10 | Uponor Innovation Ab | Apparatus for extrusion of polymers and plastic products formed with the apparatus |
US20110091596A1 (en) * | 2008-04-08 | 2011-04-21 | Moriyama Company Ltd. | Two-shaft extruder |
US8905623B2 (en) * | 2008-04-08 | 2014-12-09 | Moriyama Company Ltd. | Two-shaft extruder with screw blade contact preventing mechanism |
US10053597B2 (en) | 2013-01-18 | 2018-08-21 | Basf Se | Acrylic dispersion-based coating compositions |
Also Published As
Publication number | Publication date |
---|---|
US5655835A (en) | 1997-08-12 |
KR100355500B1 (en) | 2003-02-05 |
WO1995019878A1 (en) | 1995-07-27 |
DE69505789T2 (en) | 1999-05-20 |
TW370931U (en) | 1999-09-21 |
EP0740603A1 (en) | 1996-11-06 |
JPH09511457A (en) | 1997-11-18 |
EP0740603B1 (en) | 1998-11-04 |
DE69505789D1 (en) | 1998-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5700885A (en) | Single screw method and apparatus | |
US6062719A (en) | High efficiency extruder | |
KR100371887B1 (en) | Manufacturing method of thermoplastic material | |
CA1319485C (en) | Shear processing thermoplastics in the presence of ultrasonic vibration | |
CA1096573A (en) | Extruder screw | |
US4329313A (en) | Apparatus and method for extruding ethylene polymers | |
JP3126389B2 (en) | Method for producing thermoplastic resin | |
US3591674A (en) | Process for the preparation of polymeric materials | |
KR100372213B1 (en) | Manufacturing method of thermoplastic material | |
EP1711322B1 (en) | Apparatus for plasticating thermoplastics | |
US7494264B2 (en) | Method of injection molding or extruding a polymer composition using a low compression screw | |
US4015832A (en) | Extruder screws | |
CN109789625A (en) | Degassing when the material of preferably plastics squeezes out | |
JPH0911231A (en) | Preparation of thermoplastic synthetic resin | |
KR20050085028A (en) | Highly filled composite containing resin and filler | |
US6022133A (en) | Multiple-screw extruder | |
JP2021137979A (en) | Kneading device | |
AU740820B2 (en) | Plasticizing screw | |
US3470584A (en) | Extruder for shaping powdery thermoplastic resins | |
JPH0676448B2 (en) | Method for producing modified methacrylic resin molding material | |
US6017145A (en) | Extruder screw | |
KR930701281A (en) | Direct forming process | |
CN1629217A (en) | Method for producing polymer-straw composite material pipe | |
SE511292C2 (en) | Method and apparatus for producing fuel body | |
JPH0582285B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20051223 |