Connect public, paid and private patent data with Google Patents Public Datasets

One step thromboresistant lubricious coating

Download PDF

Info

Publication number
US5645931A
US5645931A US08465140 US46514095A US5645931A US 5645931 A US5645931 A US 5645931A US 08465140 US08465140 US 08465140 US 46514095 A US46514095 A US 46514095A US 5645931 A US5645931 A US 5645931A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
coating
poly
polyox
ethylene
catheter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08465140
Inventor
You-Ling Fan
Lawrence Marlin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Chemicals and Plastics Technology LLC
Original Assignee
Union Carbide Chemicals and Plastics Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/049Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/06Use of macromolecular materials
    • A61L33/068Use of macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31554Next to second layer of polyamidoester
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31573Next to addition polymer of ethylenically unsaturated monomer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31573Next to addition polymer of ethylenically unsaturated monomer
    • Y10T428/31587Hydrocarbon polymer [polyethylene, polybutadiene, etc.]

Abstract

Articles having lubricious polymeric coatings are disclosed. The coatings are comprised of a substantially homogeneous composite of poly(ethylene oxide) and polyisocyanate applied in a single step operation as a mixture in an inert solvent. The coating is believed to form a polymeric complex through an in-situ hydrolysis of the polyisocyanate in the system without substantial crosslinking to form polyurethanes. The polymeric complexes have particular utility in providing medical devices such as catheters with a high degree of abrasion resistance and lubricity when in contact with bodily fluids.

Description

This application is a division of prior U.S. application Ser. No. 08/310,723 filing date Sep. 22, 1994, now U.S. Pat. No. 5,558,900.

FIELD OF THE INVENTION

This invention relates to coating articles with a poly(ethylene oxide) and polyisocyanate coating. The coating is biocompatible and hydrophilic and can be used with particular advantage in the medical device and health care field.

BACKGROUND OF THE INVENTION

Catheters and guidewires which are used for insertion through blood vessels, urethra, or body conduits require a low-friction surface for preventing injury or inflammation of mucous membranes and for facilitating the surgical procedures. Conventional catheters have been rendered slippery by either construction with low-friction materials such as Teflon® and polyethylene, or substrates coated with a layer of Teflon®, silicone fluid, glycerin, or olive oil. These catheters are useful but not completely satisfactory because of either an inadequate retention of lubricity, or a lack of hydrophilicity. A variety of approaches have been undertaken in recent years to develop surfaces through either direct surface modification or the use of hydrogel coatings derived from different water soluble polymers (Y. L. Fan, POLYMER NEWS, Mar. 1992, vol. 17, no. 3, pp 70-74). Poly(ethylene oxide) is one of the water-soluble polymers used for this purpose.

Poly(ethylene oxide) polymer is well known for its friction-reduction and blood-compatibility properties (R. L. Davidson, Handbook of Water-Soluble Gums and Resins, McGraw-Hill Book Co., New York, chapter; 19-1, 1980: M. Szycher, High Performance Biomaterials, Technomic Publishing Co., Lancaster, pp. 401-404, 1991).

Lambert in a series of U.S. Patents describes a two-step coating process to afford a lubricious coating by first applying an isocyanate coating and followed by a poly(ethylene oxide) coating (U.S. Pat. Nos. 4,585,666 and 4,459,317) and articles coated by his process (U.S. Pat. No. 4,487,808).

Elton describes a one-step coating process using a reactive coating mixture composed of an isocyanate, a polyol, and a poly(ethylene oxide) to cure the reactants and produce a urethane coating. A significant deficiency of the process is the limited time the mixed reactants can be stored after mixing due the high reactivity between an isocyanate and a polyol in the coating solution. A second deficiency of the process is the moderate lubricity of the urethane surface.

Rowland describes a coating with reduced friction produced from a structural plastic and a high molecular weight poly(ethylene oxide), U.S. Pat. No. 5,041,100. This process suffers from a lack of coating durability and uniformity. The poly(ethylene) oxide in the mixture may leach from the coating upon exposure to water resulting in a reduction in lubricity.

Notwithstanding the teachings of the above references, a need exists to provide a satisfactory one-step lubricious coating for medical devices.

SUMMARY OF THE INVENTION

The invention pertains to hydrophilic, coated articles produced by a one-step, thromboresistant, lubricious coating process where a mixture of a first polymer, poly(ethylene oxide), and a second polymer, polyisocyanate, in an inert solvent is used. By the process of this invention, an article, e.g., a medical device, is coated by first providing the above-mentioned solution. The article is then dried, e.g., baked in an oven, to finish the coating. The finished coating has a normal plastic feel when dry but becomes instantaneously lubricious upon exposure to body fluids.

The method for preparing the coated substrates comprises the steps of:

a) contacting a substrate with a solution of a polyisocyanate and a poly(ethylene oxide) said poly(ethylene oxide) having a molecular weight of from about 100,000 to about 8,000,000 grams per gram mole; and

b) drying the coated substrate.

The invention surprisingly provides a more abrasion resistant coating utilizing a polyisocyanate/(polyethylene oxide) solution in a single step than the two step coating methods previously disclosed in the art. The hydrophilic coatings of the present invention comprise a substantially homogeneous composite of the poly(ethylene oxide) and the polyisocyanate polymers.

DETAILED DESCRIPTION OF THE INVENTION

Poly(ethylene oxide) polymers suitable for the purpose of this invention are represented by the following formula:

RO--(CH.sub.2 --CH.sub.2 O--)nR'

where R, R' is hydrogen or an alkyl, or aralkyl group containing from 1 to about 8 carbon atoms and n varies from about 2,000 to 200,000 such that the poly(ethylene oxide) polymers have a molecular weight ranging from about 100,000 to 8,000,000 grams per gram mole. As used herein, the term "molecular weight" means number average molecular weight. Methods for determining number average molecular weight are known to those skilled in the art. Examples of useful poly(ethylene oxide) polymers include POLYOX® WSR N-10, N-80, N-750, N-3,000, 3,333, 205, 1105, N-12K, N-60K, 301, Coagulant, 303, and UCARFLOC® POLYMER 309. POLYOX® is a trademark for poly(ethylene oxide) produced by Union Carbide Corporation.

While poly(ethylene oxide) is an essential water-soluble polymer in the coating solution, other water-soluble polymers may be added, if so desired. Among these are poly(vinyl pyrrolidone), poly(ethylene glycol), methoxy poly(ethylene glycol), polyacryamide and poly(acrylic add). As used herein, the term "coating solution" is intended to mean solutions as well as dispersions and emulsions.

Preferably, however, the coating solutions of the present invention contain only minor amounts, i.e., less than about 5 weight percent, and more preferably are substantially free, i.e., less than about 1 weight percent, of polyols which can react with the polyisocynate to form polyurethanes, said percentages based on the total weight of the poly(ethylene oxide), polyisocyanate and said polyol.

Preferably, the resulting coatings of the present invention contain only minor amounts, i.e., less than about 5 weight percent, and more preferably are substantially free, i.e., less than about 1 weight percent, of polyurethanes, said percentages based on the total weight of the coating.

Other suitable additives in the coating solution include, but are not limited to, antimicrobial agents, antithrombogenic agents, and antibiotics. Details concerning the selection and amounts of such other ingredients are known to those skilled in the art.

Any multifunctional polyisocyanate may be used for the purpose of this invention with varying degrees of performance. Suitable useful polyisocyanates, include the monomeric polyisocyanates such as, toluene-2,3-diisocyanate, toluene-2,6-diisocyanate, m-phenylene diisocyanate, cyclohexylene-1,4-diisocyanate, 3,3-diphenyl-4-biphenylene diisocyanate, 4,4-biphenyl diisocyanate, 1,6-hexamethylene diisocyanate, 1,5-naphthalene diisocyanate, cumene-2,3-diisocyanate, 2,4-diisocyanatodiphenylether, 5,6-dimethyl-1,3-phenylenediisocyanate, 2,4-dimethyl-1,3 phenylenediisocyanate, 4,4-diisocyanatodiphenyether, 9,10-anthracene diisocyanate, 2,4-diisocyanatotoluene, 1,4-anthracene diisocyanate, 2,4,6-toluene triisocyanate, isophorone diisocyanate, and p,p', p"-triphenylmethane triisocyanate, and the like.

The preferred polyisocyanates are isocyanate end-capped torepolymers and adducts. Illustrative of isocyanate end-capped adducts are the reaction products of 2,4-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, polymethylene polyphenyl isocyanate, or 1,5-naphthylene diisocyanate, with 1,2-polypropylene glycol, polytetramethylene ether glycol, 1,4-butanediol, 1,4-butylene glycol, 1,3-butylene glycol, poly(1,4-oxybutylene) glycol, caprolactone, adipic acid esters, phthalic anhydride, ethylene glycol, diethylene glycol, and other polyols used by urethane chemists for preparing prepolymers. Preferably, the polyioscyanate has a molecular weight of from about 100 to 10,000 grams per gram mole.

The most preferred polyisocyanates are polyisocyanurates derived from the trimerization of either aromatic or aliphatic diisocyanates. Examples of polyisocyanurates include the trimer of 2,4-tolylene diisocyanate or 4,4'-diphenylmethane diisocyanate or hexamethylene diisocyante or their mixtures.

The isocyanate end-capped prepolymers and adducts trimers of aromatic or aliphatic diisocyanates are preferred due to the enhanced performance characteristics of the resulting coatings.

For the purpose of this invention, the ratio of the poly(ethylene oxide) to the polyisocyanate in the mixture is important for the desired properties of the coating. Weight ratios of poly(ethylene oxide) to polyisocyanate from about 0.5/1 to about 125/1, preferably from about 2.5 to about 80/1, and most preferably from about 6/1 to about 20/1 are useful for the purpose of this invention. Since the equivalent weight of polyisocyanates varies, the corresponding weight ratios of poly(ethylene oxide) to active isocyanate will differ depending on the polyisocyanate employed. In general, weight ratios of poly(ethylene oxide) to active isocyanate is from about 3/1 to about 650/1, preferably from 10/1 to 400/1, most preferably from 30/1 to 125/1 are useful for the purpose of this invention. All weight ratios described herein refer to the composition of the initially prepared coating solutions. When the weight ratio of poly(ethylene oxide) to polyisocyanate is substantially below 0.5/1, the finished coating may not become lubricious when inserted into the body. When the weight ratio is substantially above 125/1, the finished coating may become insufficiently durable upon hydration.

Contrary to the disclosure of U.S. Pat. No. 5,077,352, no polyol is needed in accordance with this invention to provide a one step lubricious coating. Indeed, the process of the present invention does not involve a chemical reaction between a polyol and an isocyanate to form a urethane. Due to the high molecular weight poly(ethylene oxide) employed in this invention, any hydroxyl end groups on the poly(ethylene oxide) are expected to be insignificant in comparison to the polyisocyanate employed. While not bound by any mechanism, it is speculated that the unexpected excellent performance of the coating described in the present invention is due to the formation of a poly(ethylene oxide)/polyurea complex through in-situ hydrolysis of the polyisocyanate in the system. The hydrolysis may be induced by water present in the system or provided from an external source during drying or by the diffusion of atmospheric moisture to the coating to maintain equilibria moisture content.

The solids content of the coating solution may vary widely depending on the type of poly(ethylene oxide) and polyisocyanate used such that the viscosity of the coating solution is adaptable to conventional solution coating processes. Typically, the viscosity of the coating solution is formulated to be below 500 centipoises, preferably below 200 centipoises and most preferably, below 50 centipoises. The total solids content of the coating solution may be as low as 0.1 to as high as 20 weight percent. Typically, the coating solution will contain from about 0.1 to 10 weight percent of poly(ethylene) oxide and from about 0.1 to 10 weight percent polyisocyanate based on the total weight of the coating solution.

Many inert organic solvents and mixtures thereof may be used in the preparation of the coating compositions of the present invention. Useful solvents include chlorinated aliphatic hydrocarbons, chlorinated aromatic hydrocarbons, acetonitrile, benzene, toluene, dimethylformamide, tetrahydrofuran, methylethyl ketone, xylene, anisole, 1,4 dioxane, ethylacetate, and their mixtures. The preferred solvents are chlorinated aliphatic hydrocarbons such as 1,2-dichloroehtane and dichloromethane most preferably 1,2-dichloroethane.

The one-step thromboresistant, lubricious coating of this invention is applied by a solution coating process, such as dip coating, roller coating, spray coating, and the like. In a dip coating process, a medical device such as a catheter, is first dipped in a coating bath containing this solution. A dwelling time of as short as one second to as long as one hour may be used depending on the material of construction of the device, the thickness of the coating to be applied to the substrate and the performance of the catheter. The wet catheter is removed from the bath and dried to remove the solvent e.g., by heating in a convection oven. A heating temperature of between about 30 to about 150 degrees centigrade, and a heating time of from about one minute to several hours may be used depending on the material of construction of the catheter, the type of polyisocyanate used, and the performance requirement of the finished article.

Optionally, the coated article may be quenched in an aqueous liquid. Typically, the aqueous liquid will comprise as least one other component such as, for example, poly(alkylene glycols) or alkoxypoly(alkylene glycols) having a molecular weight of about 100 to 30,000 grams per gram mole, preferably from about 100 to 20,000 grams per gram mole and more preferably from about 500 to 10,000 grams per gram mole. Preferably, the alkylene portion of the polyglycol comprises from about 2 to 4 and more preferably from about 2 to 3 carbon atoms per repeat unit. Preferably, the alkoxy portion of the polyglycol comprises alkyl groups having from 1 to 6 carbon atoms per molecule. Preferably, the poly(alkylene glycols) and alkoxy poly(alkylene glycols) are water soluble. As used herein, the term "water soluble" means that at least 1 weight percent of the glycol is soluble in water. The polyglycols can be homopolymers, e.g., poly(ethylene glycol), or copolymers, e.g., a copolymer of ethylene glycol and propylene glycol. Preferred poly(alkylene glycols) and alkoxy(polyalkylene glycols) have the formula: ##STR1## wherein: (a) R1 and R2 can be the same or different and can be H or an alkyl group having 1 to about 6 carbon atoms;

(b) x is from 2 to about 500; and

(c) y is from 0 to about 100.

The poly(alkylene glycols) and alkoxy poly(alkylene glycols) may also contain functional groups such as, for example, hydroxyl, sulfur, nitrogen or oxygen. Poly(ethylene glycol) and methoxy poly(ethylene glycol) are particularly preferred. Other typical ingredients useful as an alternative to, or in addition to, the above mentioned glycols include, for example, phosphate salts of alkali metals or a mixture of one or more of the above.

The quenching step may be performed by any method used to coat the article. The quenching step may be incorporated to eliminate any residual isocyanate groups, to stabilize the coating and/or improve the coating's physical integrity against blocking or flaking or both. Blocking is defined as the bridging of adjacent coated surfaces in the presence of moisture or water which may result in damage done to the coated article during application such as the inflation of a folded balloon catheter typically employed in an angioplasty procedure or the contacting of a bundle of foley catheters during processing, packaging, shipping, etc.

Depending on the intended application of this coating, poly(alkylene glycol) or alkoxy poly(alkylene glycol) may be applied either as a sequential coating after the completion of the one-step thromboresistant, lubricious coating or preferably incorporated into the coating formulation directly when at least one end group on the poly(alkylene glycol is alkyl. If incorporated in the coating formulation, alkyl poly(alkylene glycols) are preferred to avoid crosslinking the polyisocyanate/poly(ethylene oxide) coating. The coated article may be subsequently thermoformed and sterilized without adversely affecting its thromboresistant and lubricious properties.

The one-step thromboresistant, lubricious coating of this invention is expected to be broadly useful for modifying surfaces of various articles, such as, for example, medical devices including, but not limited to, catheters, guidewires, medical balloons, contact lenses, implant devices, intrauterine devices, peristaltic pump chambers, endotracheal tubes, gastroenteric feed tubes and arteriovenous shunts. The materials of construction of such articles is not critical to the present invention and may include materials such as, for example, polyolefins, e.g., polyethylene or polypropylene, polyurethane, polyester, nylon, elastomer, rubber, latex, poly(vinyl chloride), silicone polymer, ethylene copylmer, propylene copolymer, natural occurring polymers, and their derivatives.

Quite surprisingly, it has been found that the hydrophilic coatings of the present invention can provide enhanced properties, such as abrasion resistance, as compared to a coating made from the same materials applied as a two step process. The coatings provided by the present invention comprise a substantially homogeneous composite of the poly(ethylene oxide) and polyisocyanate, i.e., a uniform blend. Without being bound to any particular theory, it is believed that polymers in the composite are intertwined to a degree which enhances the complexing between the molecules during hydration, without any substantial crosslinking to form polyurethanes.

The Examples which follow are presented for the purpose of illustrating the invention and are not intended to limit the claims which follow limiting the claims. All parts and percentages are by weight unless otherwise specified.

The following terms are defined to have the following meaning in the pending examples:

______________________________________Chemical               ChemicalPurpose    Supplier    Composition Purpose______________________________________POLYOX ®      Union Carbide                  Poly(ethylene)                              Coating      Corp.       oxide       ComponentWSR N-10   Danbury, Ct.                  MW 100K**WSR N-80               MW 200KWSR N-750              MW 300KWSR N-3000             MW 400KWSR 205                MW 600KWSR 12K                MW 1 MMWSR 60K                MW 2 MMISONATE    The Dow     Polyisocyanate                              Coating2181       Chemical    prepolymer, Component      Company,    23% Chemical      Midland, MIMONDUR ® TD      Miles Inc.* Toluene     Coating      Pittsburgh, PA                  diisocyanate,                              Component                  48% (NCO)MONDUR ® M      Miles Inc.  Diphenyl-                  methane                  4,4'-diisocyanate                  33% (NCO)DESMODUR ®      Miles Inc.  Poly-IL                     isocyanurate,                  51% in n-butyl-                  acetate                  8% (NCO)                  having a                  viscosity                  of 1200 to 2000                  centipoises at                  20° C.DESMODUR ®      Miles Inc.  Poly-HL                     isocyanates,                  60% in n-butyl                  acetate,                  10.5% (NCO)                  having a                  viscosity                  of 1200 to 3200                  centipoises at                  23° C.MONDUR ®      Miles Inc.  AromaticCB-60                  polyisocyanate,                  10.4% (NCO),                  60% in                  PMA***/                  xyleneMULTRON ®      Miles Inc.  Polyester   CoatingR-18                   polyol, OH  Component                  Number 60CARBOWAX ®      Union Carbide                  Methoxy end-                              AdditiveM-PEG 350  Corp.       capped poly                  (ethylene                  oxide),                  MW350CARBOWAX ®      Union Carbide                  MW5000M-PEG 5000 Corp.______________________________________ *Previously known as Mobay Chemical **MW = molecular weight **PMA = propylene glycol monomethyl ether acetate
DESCRIPTION OF COATING MAKEUP

The coating solution exemplified in these examples may be prepared by any conventional mixing technique. For the preparation of laboratory quantities, it was convenient to use an explosion-proof Waring blender. The solvent dichloroethane was placed in a blender cup equipped with a cooling water jacket. The blender was turned on at a medium speed and poly(ethylene oxide) and polyisocyanate was added. The mixture was blended for about 5 to 10 minutes until the polymer was completely dissolved. A clear solution was usually obtained.

EXAMPLE 1

This example illustrates a typical coating composition and process used in this invention. A polyethylene catheter was Freon® wiped, to clean the catheter, and air dried for five minutes. The catheter was then dipped into a coating bath containing 1% POLYOX WSR N-750, 0.18% of DESMODUR IL, and 98.82% of dichloroethane for one minute. This coating solution possessed a polyox/isocyanate (active polyisocyanate compound) and POLYO/(NCO) (active isocyanate groups) ratios of about 11/1 and 69/1, respectively. The catheter was removed from the coating bath and placed in a forced-air oven at 90 degree centigrade for 10 minutes. The coated catheter had a normal plastic feel when dry but became instantly lubricious upon exposure to water or body fluids.

EXAMPLE 2

The degree of lubricity and the abrasion resistance of the coating was measured by the method described in this example. The frictional force generated in pulling a coated catheter through a circular opening punched in a silicone membrane in the presence of water was measured. The inside diameter of the opening was slightly less than the outside diameter of the catheter to produce a tight grip during pulling. The lower the frictional force required to pull the catheter through the opening the greater the lubricity. Measurement of the force was made using a device capable of pulling the catheter through the silicone grommet at a speed of 4.5 inches per minute. An uncoated catheter had a frictional force of 5.0 grams, and the coated catheter of Example 1 provided a frictional force of only 0.4 grams. The same catheter was subsequently abraded against the silicone grommet 10 times and the measurement was repeated. The frictional force of the abraded catheter remained at a low value of 0.4 grams, demonstrating a satisfactory degree of abrasion resistance.

EXAMPLE 3

A polyethylene angioplasty balloon was coated according to the procedure described in Example 1 with the exception that the balloon was inflated to a pressure of about 30 psig during the entire coating operation. The uncoated and coated balloons had frictional force values of 55.4 and 8.4 grams, respectively. After 10 abrasions, the coated balloon retained a low frictional force of 9.4 grams.

EXAMPLE 4

A coating formulation was prepared by mixing in a Waring blender 4.37% of POLYOX WSR N-10, 0.625% of ISONATE 2181, and 95.005% of dichloroethane. The coating solution possessed a POLYOX/isocyanate and POLYOX/(NCO) weight ratios of 7/1 and 30/1, respectively. Polyethylene catheters were coated according to the same procedure described in Example 1. The coated catheter had a frictional force of 4.0 and 3.0 grams before and after 100 abrasions, respectively. The corresponding frictional force values for the uncoated catheter were 16 and 19 grams, respectively.

EXAMPLE 5

Example 4 was repeated with the exception that ISONATE 2181 was replaced with 1.25% of DESMODUR IL. This coating solution possessed a POLYOX/isocyanate and POLYOX/(NCO) weight ratios of about 7/1 and 44/1, respectively. The coated catheter had a frictional force of 5.5 and 5.2 grams before and after 100 abrasions. The corresponding frictional force values for the uncoated catheter were 16 and 19 grams, respectively.

EXAMPLES 6-9

These examples illustrate the usefulness of different molecular weight poly(ethylene oxides) in this invention. All coating solutions had the same POLYOX/isocyanate and POLYOX/(NCO) weight ratios as shown in Example 6. Polyethylene catheters were used in these examples:

______________________________________                 Coating  Fba    FaaExample  Formulation    Makeup   (grams)                                 (grams)______________________________________6      POLYOX N-10    2        5.0    5.0  DESMODUR IL    0.36  dichloroethane 97.64  POLYOX/iso-  cyanate 11/1,  POLYOX/(NCO)  69/17      POLYOX N-80    2        4.0    3.5  DESMODUR IL    0.36  dichloroethane 97.64  POLYOX/isocyanate8      POLYOX N-750   1        3.0    3.0  DESMODUR IL    0.18  dichloroethane 98.829      POLYOX N-12K   0.5      5.0    5.0  DESMODUR IL    0.09  dichloroethane 99.41Control  Uncoated                15     15______________________________________

Where Fba and Faa stand for frictional force values measured before and after 10 abrasions.

EXAMPLES 10-14

These examples illustrate the performance of this coating applied on polyethylene (a hydrophobic substrate) catheters at various poly(ethylene oxide) (POLYOX WSR N-750)/poly-isocyanate (DESMODUR IL) ratios and solid contents. The coating was applied following the procedure described in Example 1.

______________________________________Exam- POLYOX/                  POLYOX/ POLYOX/ple   Formulation  Fba    Faa  Isocyante                                  (NCO)______________________________________10    POLYOX N-750 9.0    10    9/1    57/1 20% DESMODUR IL 0.44% dichloroethane 97.56%11    POLYOX N-750 6.0    6.0  13/1    81/1 2.0% DESMODUR IL 0.31% dichloroethane 97.69%12    POLYOX N-740 7.0    7.0  11/1    69/1 3.0% DESMODUR IL 0.54% dichloroethane 96.46%13    IOLYOX N-750 14     15    9/1    57/1 4.0% DESMODUR IL 0.89% dichloroethane 95.11%14    POLYOX N-750 8.5    8.0  13/1    81/1 4.0%Con-  Uncoated     20     20trol______________________________________
EXAMPLES 15-18

These examples illustrate the performance of different monomeric and polymeric polyisocyanates in conjunction with POLYOX WSR N-10 for coating a Tecoflex® (a hydropilic substrate) polyurethane catheter, and the use of a quenching step to eliminate any residual polyisocyanate in the finished coating. In all Examples, 2% POLYOX WSR N-10 and 0.0288% by weight active isocyanate was used. The polyurethane catheter was first wiped with Freon®, and air dried for 5 minutes. The clean catheter was dipped in the coating solution for 30 seconds, air dried for 2 minutes, and oven baked at 80 degrees centigrade for 1 hour. The coated catheter was subsequently dipped in an 0.1N sodium phosphate solution for 1 second, air dried for 2 minutes, and oven baked at 80 degrees centigrade for 2 hours in the presence of water vapor.

______________________________________  POLYOX/  Formulation   Weight            Polyox/Example  Isocyanate    %       Fba  Faa  Isocyanate______________________________________15     MONDUR M      0.089%  9.2  15.3 22/116     MONDUR TD     0.060%  7.8  14.3 22/117     DESMODUR IL   0.36%   5.3   5.0 11/118     DESMODUR HL   0.274%  2.9   2.6 12/1Control  Uncoated catheter     15.4 15.4______________________________________

MONDUR M and MONDUR TD are the Miles tradenames for diphenylmethane 4,4'-diisocyanate and toluene diisocyanate, respectively. DESMODUR HL is the Miles trade name for a mixture of adducts derived from toluene diisocyanate and 1,6-hexamethylene diisocyanate. These polyisocyanate adducts are polyisocyanurates. Examples 15-19 demonstrate that polyisocyanurate trimer adducts perform better than the monomeric polyisocyanates in the invention.

EXAMPLES 19-21

These additional examples illustrate the utility of different polyisocyanates for providing a lubricious coating on polyethylene catheter. In all cases, 2% POLYOX WSR N-10, 0.0288% by weight of active isocyanate, and dichloroethane were used. A coating process identical to that described in Example 1 was employed:

______________________________________                        POLYOX/Example  Formulation   Wt. %   Isocyanate                                Fba  Faa______________________________________19     DESMODUR IL   0.36    11/1    3.8  3.920     MONDUR M      0.087   23/1    2.8  5.521     DESMODUR HL   0.274   12/1    2.0  1.9Control  Uncoated catheter             23.4 23.4______________________________________

Once again the polyisocyanate trimer adducts outperformed the other polyisocyanates.

EXAMPLES 22-23

Tecoflex® polyurethane catheters were used in these examples and were coated according to the procedures described in Example 15. The sliding angle in degrees of the coated catheters were measured according to procedure described in U.S. Pat. No. 4,876,126. Smaller sliding angles demonstrate lower frictional coefficient and greater lubricity.

The formulations and performance of the resultant coated catheters are listed below:

______________________________________Example Formulation*    Angle-b**  Angle-a***______________________________________22      DESMODUR IL 0.36%                   3          3   POLYOW/   isocyanate = 11/123      ISONATE 2181 0.13%                   3.5        3.5   POLYOX/   isocyanate = 15/1Control Uncoated catheter                   12         12______________________________________ *Each coating solution contains 2% by weight of POLYOX WSR N10 in dichloroethane solution. **Sliding angle measured before any abrasion ***Sliding angle measured after 10 abrasion through a silicone grommet
EXAMPLES 24-25

These examples illustrate the resistance of the coatings prepared in Examples 22-23 to high-energy radiation. Radiation is often used for the sterilization of medical devices. The sliding angle of the coated samples were remeasured after being irradiated with 2.5 millirads of radiation from an electron beam.

______________________________________Example   Formulation    Angle-b  Angle-a______________________________________24        Same as Example 22                    4        425        Same as Example 23                    3        2.5Control   Uncoated catheter                    12       12______________________________________
EXAMPLES 26-27

These examples illustrate the performance of the lubricious coating of this invention was not affected by the use of different lengths of air-drying time before baking in the oven. Tecoflex® catheters were coated using the coating solution described in Example 6. The coating process described in Example 15 was employed except the dip coated catheters were air dried for different intervals before placing into the baking oven:

______________________________________    Air Drying Time.Example  (min.)           Fba    Faa______________________________________26       30               2.1    1.527       10               1.8    1.628        0               1.8    1.7Control  Uncoated catheter                     14.3   17.0______________________________________
EXAMPLES 29-30

These examples illustrate the use of solvent mixtures in the coating formulations. Tecoflex® catheters were coated following the process described in Example 17. The coating solution possessed a POLYOX/isocyanate and POLYOX/(NCO) weight ratios of about 11/1 and 69/1, respectively.

______________________________________Example   Formulation       Fba    Faa______________________________________29        POLYOX WSR N-10 2%                       3.7    3.5     DESMODUR IL 0.36%     Toluene 9.7%     Dichloroethane 97.94%30        POLYOXWSRN-750 2% 1.7    1.4     DESMODUR IL 0.36%     Toluene 9.7%     Dichloroethane 97.94%Control   Uncoated catheter 14.3   17______________________________________
EXAMPLES 31-34

These examples demonstrate that the coating solution retains its performance upon aging. The coating formulation and coating process used in these Examples were identical to those described in Example 17. The level of detectable NCO was also measured.

______________________________________     Age of Coating     Solution    Wt. %Example   (days)      (NCO)     Fba  Faa______________________________________31        1           0.029     1.8  1.732        3           0.01      2.4  2.433        9           <0.01     2.1  2.134        30          0         2.9  2.735        180         0         4.2  4.5Control                         16.4 16.4______________________________________

The good performance of coating made from the aged coating solution, containing no detectable isocyanate was most unexpected. These results are, however, consistent to our proposed mechanism that good lubricity and abrasion resistance of the coating may result from the formation of a poly(ethylene oxide) and polyurea complex through an in-situ hydrolysis of the polyisocyanate in the system. Thus, as long as there is sufficient polyisocyanate initially present in the coating solution according to the correct poly(ethylene oxide)/isocyanate weight ratio defined in this invention, the coating solution was useful regardless of its age.

EXAMPLES 36-38

These examples illustrate the performance of coating formulations containing a methoxy poly(ethylene glycol) additive. The resultant coatings had improved antiblocking properties without adversely affecting the lubricious nature of the coating. The polyethylene catheter was wiped with Freon® and air dried for 5 minutes. The clean catheter was dipped in the coating solution bath indicated below for one minute and followed by heating in a forced air oven at 90 degree centigrade for a period of 10 minutes.

______________________________________Exam-                Weight            POLYOX/ple   Formulation    %       Fba  Faa  Isocyanate______________________________________36    POLYOX WSR-12K 0.5     1.6  2.5  11/1 CARBOWAX MPEG  0.25 5000 DESMODUR IL    0.09 DICHLORO-      99.16 ETHANE37    POLYOX WSR 60K 0.5     1.3  1.2  11/1 CARBOWAX MPEG  0.25% 5000 DESMODUR IL    0.09% Dichloroethane 99.16%38    POLYOX WSR     0.5%    1.4  1.2  11/1 FLOC 309 CARBOWAX MPEG  0.25% 50000 DESMODUR IL    0.09% Dichloroethane 99.16%Con-  Uncoated catheter      29.4 29.5trol______________________________________
EXAMPLES 39-45

These examples illustrate the benefit of incorporating CARBOWAX® MPEG-5000 in the coating formulation for resistance against blocking of coated polyethylene catheters when being pressed together in the presence of water or high humidity. Performance against blocking was rated from 1 to 10, 10 being the best and 1 being the worst. Each of the following formulations contained: 0.5% POLYOX WSR® N-3000; 0.09% DESMODUR® IL, the specified amount of CARBOWAX® additive with the balance of the solution being dichloroethane. All catheters were coated following the procedures described in Example 1.

______________________________________    CARBOWAX    MPEG          BlockingExample  5000 WT. %    Resistance                            Fba    Faa______________________________________39       0.1           5         1.8    1.640       0.2           5         1.7    1.241        0.25         8         1.6    1.142       0.3           7         1.8    1.643       0.4           5         1.3    1.144       0.5           5         0.9    0.845       None          1______________________________________
EXAMPLES 46-48

These examples illustrate the method of quenching a coated polyethylene catheter in an aqueous bath containing a methoxy poly(ethylene oxide) for improved blocking resistance. The catheter was coated according to the procedure described in Example 36. The coated catheter was subsequently dipped into an aqueous solution containing 4% by weight in one of the methoxy poly(ethylene glycol) additives for 1 second, followed by drying at 90 degrees centigrade in a forced air oven for a period of 10 minutes.

______________________________________Exam-                  Quenching   Blockingple   Formulation Resistance                  Bath        Resistance______________________________________46    POLYOX WSR 2050.5%                  CARBOWAX    8 DESMODUR IL 0.09%                  MPEG 5000 Dichloroethane 99.41%47    Same             CARBOWAX    10                  MPEG 35048    Same             Not treated 2______________________________________
EXAMPLE 49

A pair of polyethylene angioplasty balloons were coated according to the formulation and procedure described in Example 47. The finished balloons were clear, smooth, and gave a normal plastic feel when dry. Upon exposure to water, they became instantly lubricious. When the two balloons were pressed together in the presence of water, they were easily separated without any sign of coating damage. The ability to separate coated articles without damaging the coating is important during the handling, packaging, and sterilization of the articles.

EXAMPLES 50-53

These examples illustrate the better performance characteristics of coatings of this invention in comparison to the teaching of U.S. Pat. No. 5,077,352 (Elton) in Example 3, column 7. Comparisons were made on either Tecoflex® or polyethylene catheters. Examples 50 and 52 were carried out following the procedures described in Examples 3 of Elton. The coating procedure described in Example 17 of this application was used for Example 51, and the procedure described in Example 1 of this application was used for Example 53. While a polyol, such as Mobay MULTRON R-18, was used in the earlier U.S. patent, none is needed for this invention. Dichloroethane was used in all coating solutions in these examples:

______________________________________Example  Formulation        Material Fba  Faa______________________________________50     POLYOX WSR N-750   Tecoflex 19   12.3  Mobay MONDUR CB-60  POLYOX/polyisocyanate =  3.5  POLYOX/(NCO)= 20.2  MOBAY MULTRON R-18  Dichloroethane51     POLYOX WSR N1O 02% Tecoflex 2.9  2.6  DESMODUR HL 0.27%  POLYOX/polyisocyanate 12.3  POLYOX/(NCO) = 70.5  DichloroethaneControl  Uncoated catheter  Tecoflex 17.5 17.552     POLYOX WSR N-750   Poly-    14   4.2  Mobay MONDUR CB-60 ethylene  POLYOX/polyisocyanate =  3.5  POLYOX/(NCO) = 20.2  Mobay MULTRON R-18  Dichloroethane53     POLYOX WSR N-10 2% Poly-    2.0  1.9  DESMODUR HL 0.27%  ethylene  POLYOX/polyisocyanate 12.3  POLYOX/(NCO) = 70.5  DichloroethaneControl  Uncoated catheter  Poly-    27.5 27.5                     ethylene______________________________________

In comparison to the performance of the prior art coatings, coatings of the present invention demonstrate better surface lubricity. In addition, the coatings of the present invention also provide reduced coating swelling which results in better abrasion resistance. The Elton coatings (Examples 50 and 52) provided a swelled coating which became more lubricious upon abrasion because the poorly adhered coating was abraded away. Even after the loosely adhered coating was removed, Elton's coatings were inferior to those of the present invention.

EXAMPLES 54-60

These examples illustrate the performance of the lubricious coating of this invention applied on polyethylene catheter at different poly(ethylene oxide)/polyisocyanate ratios and at different solids contents. The poly(ethylene oxides) and polyisocyanates used in this series of experiments were POLYOX WSR N-10 and ISONATE 2181, respectively. The solvent used was a 1:1 by weight mixture of toluene and dichloroethane. The following coating procedure was employed: (1) the catheter was wiped with a Freon® fluid and air dried; (2) the cleaned catheter was dipped in a coating solution bath for 171 minutes and baked in a forced air oven at 75 degrees centigrade for 1 hour. The coated catheter was then quenched in an 0.1N sodium phosphate solution for 1 second and baked at 75 degrees centigrade for 2 hours in the presence of water vapor:

______________________________________            POLYOX/  POLYOX/   Isocyanate POLYOX/Example  Isocyanate            Total Wt. %                       (NCO)   Fba   Faa______________________________________54     11/1      2          48      4.5   555     11/1      5          48      3     356     9/1       5          39      2.5   357     7/1       5          30      2.5   2.558     5.5/1     3.5        24      3     459     1/1       2          4.3     8     860     1/1       5          4.3     4.5   5Control  Uncoated                     12    14  catheter______________________________________
EXAMPLES 61-66

These examples illustrate that the dipping time can be varied as desired without adversely affecting the performance of the resultant coating. Polyethylene catheters were coated following the procedures described in example 54 except for the dipping time. A coating solution containing POLYOX WSR N-10, Isonate 2181, toluene, and dichloroethane at 5% total solids but different POLYOX/isocyanate ratios were used:

______________________________________  POLYOX/   POLYOX/   DippingExample  isocyanate            (NCO)     Time   Fba  Faa  Faa*______________________________________61     11/1      48        1   min  2.5  2.5  362     11/1      48        1   sec  2    2    2.563     9/1       39        1   min  2.5  3    2.564     9/1       39        1   sec  3    3    365     7/1       30        1   min  2.5  2.5  2.566     7/1       30        1   sec  2.5  2.5  3.5Control  Uncoated                     13   18   18______________________________________ Faa* = Frictional force in grams measured after 100 abrasions through the silicone grommet.

Faa*=Frictional force in grams measured after 100 abrasions through the silicone grommet.

EXAMPLES 67-70:

These examples compare the performance characteristics of the lubricious coatings prepared according to the present invention, as illustrated by Examples 67 and 69, to those of coatings prepared according to Lambert (U.S. Pat. No. 4,487,808; U.S. Pat. No. 4,459,317), as illustrated by Examples 68 and 70. The procedure of Example 1 in U.S. Pat. No. 4,459,317 was followed in Examples 68 and 70 for coating both Tecoflex® and polyethylene catheters. The procedures described in Examples 6 and 1 in this specification are followed for coating Tecoflex® and polyethylene catheters, respectively:

______________________________________  Catheter Coating             CoatingExample  Type     Method    Fba  Faa  Characteristics______________________________________67     Tecoflex Example 6 5    1.8  Uniform coating68     Tecoflex Lambert   7    4    Swollen coating           Coating             gels; non-uniform                               coatingControl  Tecoflex Uncoated  17   1769     Poly-    Example 1 2    1  ethylene70     Poly-    Lambert   4    2    Swollen coating  ethylene Coating             gels; non                               uniform coatingControl  Poly-    Uncoated  22.5 22.5  ethylene______________________________________

In comparison to the two-step coating process described by Lambert, the one-step coating process of this invention is not only simpler and less time consuming, but also provides coating of better uniformity and consistency. Moreover, the Faa was lower for the coatings of the present invention and compared to the two step coating of Lambert for both Tecoflex and Polyethylene catheters. This demonstrates a surprising enhancement in the abrasion resistance of the articles of the present invention which comprise a substantially homogeneous composite coating of poly(ethylene)oxide and polyisocyanate. The latter are important characteristics for precision coatings intended for medical applications, such as for coating angioplasty balloons.

EXAMPLES 71-73

These examples illustrate the utility of this invention for providing a lubricious interluminal surface for a guiding catheter extruded from a polyester-nylon blend (Nylon 11, Nylon 12, and polytetraethylene glycol). This is a particularly difficult application inasmuch as it is necessary to uniformly coat the interior of a device, while maintaining good lubricity and adhesion. The coating solution described in Example 6 was applied according to the following procedure: (1) the coating solution was drawn into the catheter, which is being held vertically above the solution bath, using a suction device such as a syringe and held for 5 minutes; (2) the catheter is subsequently turned upside down to drain the coating solution; and (3) the catheter was dried by blowing preheated hot air at about 75 degrees centigrade through the opening of one end of the catheter while the whole catheter is wound was a coil shape and placed in an oven at 75 degrees centigrade. The coated catheter was then removed from the oven and examined for coating characteristics:

______________________________________    Drying Time,           DyeExample  (hr)          Lubricity                           Coverage*______________________________________71       1             Yes      Yes72       1.5           Yes      Yes73       2             Yes      YesControl  Uncoated      No       No______________________________________ *The dyestaining test uses a Congo Red dye solution. All of the guiding catheters coated in accordance with the methods of the invention are wetted instantly while the uncoated catheter was not uniformly covered by a coating.
Examples 74-79

These examples illustrate the range of poly(ethylene oxide)/polyisocyanate ratios that are useful for the purpose of this invention. Coatings prepared at the low end of poly(ethylene oxide)/polyisocyanate ratio may suffer a reduction in lubricity, while those prepared at the high end of the ratio may become uneven and show excessive coating swelling with a resulting lack of coating adhesion. Polyethylene catheters were used in these experiments, and were coated following the same procedures described in example 54. All coating solutions used in the following examples contained 2% by weight total solids.

______________________________________  POLYOX/   POLYOX/             CoatingExample  Isocynate (NCO)     Fba  Faa  Characteristics______________________________________74     0.1/1     0.44/1    10.8 Er-  Marginal                           ratic                                Lubricity75     0.25/1    1.1/11    12.3 Er-  Marginal                           ratic                                Lubricity76     0.5/1     2.2/1     9.5  4.5  Fair lubricity77     1/1       4.4/1     8    8    Fair lubricity78     2.5/1     11/1      5.5  4    Good lubricity79     11/1      48/1      4.5  5    Good lubricity80     80/1      352/1     4.5  3.2  Good lubricity81     100/1     435/1     5.5  5    Uneven coating82     125/1     550/1     5.3  3.2  Swollen coating83     150/1     652/1     7.5  14   Uneven coat-                                ing; excessive                                swellingControl  Uncoated            18   18  catheter______________________________________

The results of the above examples demonstrate that it is important to maintain the correct ratios of poly(ethylene oxide) to polyisocyanate defined in this invention to provide a lubricious, and durable coating when the device becomes wet. At a ratio of less than about 0.5/1, the coating exhibits only marginal lubricity. On the other hand, at a ratio of greater than about 125/1 the coating becomes gelatinous when wet and will lose abrasion resistance in the presence of water or body fluids. In the extreme case when no polyisocyanate is used in the initial coating solution, the coating may become discontinuous and non-uniform as a result of inadequate overage on the substrate.

Claims (5)

We claim:
1. An article having a surface at least partially covered with a hydrophilic, polymeric coating which provides a biocompatible surface, said hydrophilic, polymeric coating comprising a substantially homogeneous composite of a first polymer and a second polymer,
a) said first polymer comprising a poly(ethylene oxide) having a molecular weight of from about 100,000 to 8,000,000 grams per gram mole;
b) said second polymer comprising a polyisocyanate having a molecular weight of from about 100 to 100,000 grams per gram mole; and
wherein: (i) the weight ratio of said first polymer to said second polymer is from about 0.5/1.0 to 1.25/1; (ii) the coating comprises less than about 1 weight percent of polyols which can react with the polyisocyanate to form polyurethanes; and (iii) less than about 1 weight percent of polyurethanes.
2. The article of claim 1 wherein the polymeric coating further comprises an antimicrobial agent.
3. The article of claim 1 wherein the weight ratio of said first polymer to said second polymer is from about 6/1 to 20/1.
4. The article of claim 1 wherein the polymeric coating has a thickness of from about 0.1 to 100 microns.
5. An article having a surface at least partially covered with a hydrophilic, polymeric coating which provides a biocompatible surface, said article having the surface at least partially covered by the method comprising:
a) contacting a substrate with a solution of a polyisocyanate and a poly(ethylene oxide) in an inert solvent, said solution comprising less than about 1 weight percent of polyols which can react with the polyisocyanate to form polyurethanes, said percentage based on the total weight of the poly(ethylene oxide), polyisocyanate and said polyol, and
b) drying the at least partially coated substrate;
wherein the weight ratio of the poly(ethylene) oxide to polyisocyanate ranges from about 0.5/1.0 to about 125/1.
US08465140 1994-09-22 1995-06-05 One step thromboresistant lubricious coating Expired - Lifetime US5645931A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08310723 US5558900A (en) 1994-09-22 1994-09-22 One-step thromboresistant, lubricious coating
US08465140 US5645931A (en) 1994-09-22 1995-06-05 One step thromboresistant lubricious coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08465140 US5645931A (en) 1994-09-22 1995-06-05 One step thromboresistant lubricious coating

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08310723 Division US5558900A (en) 1994-09-22 1994-09-22 One-step thromboresistant, lubricious coating

Publications (1)

Publication Number Publication Date
US5645931A true US5645931A (en) 1997-07-08

Family

ID=23203834

Family Applications (2)

Application Number Title Priority Date Filing Date
US08310723 Expired - Lifetime US5558900A (en) 1994-09-22 1994-09-22 One-step thromboresistant, lubricious coating
US08465140 Expired - Lifetime US5645931A (en) 1994-09-22 1995-06-05 One step thromboresistant lubricious coating

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08310723 Expired - Lifetime US5558900A (en) 1994-09-22 1994-09-22 One-step thromboresistant, lubricious coating

Country Status (1)

Country Link
US (2) US5558900A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010475A (en) * 1996-09-19 2000-01-04 Hospal Industrie Apparatus for the treatment of blood by extracorporeal circulation and process of manufacture
EP0992252A2 (en) * 1998-09-29 2000-04-12 Medtronic Ave, Inc. Lubricious, drug-accommodating coating
US6100361A (en) * 1999-04-30 2000-08-08 Spalding Sports Worldwide, Inc. Golf ball top coating containing an aromatic/aliphatic polyisocyanate copolymer
WO2000067816A1 (en) * 1999-05-07 2000-11-16 Scimed Life Systems, Inc. Lubricious coating for medical devices comprising an antiblock agent
US6165158A (en) * 1998-10-14 2000-12-26 Advanced Cardiovascular Systems, Inc. Lubricious catheter shaft
US6248127B1 (en) 1998-08-21 2001-06-19 Medtronic Ave, Inc. Thromboresistant coated medical device
WO2002043786A2 (en) * 2000-11-30 2002-06-06 Medtronic Ave Inc. Uses for medical devices having a lubricious, nitric oxide-releasing coating for the therapy of vascular disorders
US20020120333A1 (en) * 2001-01-31 2002-08-29 Keogh James R. Method for coating medical device surfaces
US20030083739A1 (en) * 2001-09-24 2003-05-01 Robert Cafferata Rational drug therapy device and methods
US20030162905A1 (en) * 2002-02-27 2003-08-28 Benz Michael Eric AnB block copolymers containing poly (vinyl pyrrolidone) units, medical devices, and methods
US20040043068A1 (en) * 1998-09-29 2004-03-04 Eugene Tedeschi Uses for medical devices having a lubricious, nitric oxide-releasing coating
WO2004028579A2 (en) * 2002-09-27 2004-04-08 Labcoat Ltd. Contact coating of prostheses
US20040236415A1 (en) * 2003-01-02 2004-11-25 Richard Thomas Medical devices having drug releasing polymer reservoirs
US20040243224A1 (en) * 2003-04-03 2004-12-02 Medtronic Vascular, Inc. Methods and compositions for inhibiting narrowing in mammalian vascular pathways
US20050137683A1 (en) * 2003-12-19 2005-06-23 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050149174A1 (en) * 2003-12-18 2005-07-07 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050152940A1 (en) * 2003-12-23 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050152942A1 (en) * 2003-12-23 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050152943A1 (en) * 2003-12-23 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050154455A1 (en) * 2003-12-18 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050154451A1 (en) * 2003-12-18 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050154452A1 (en) * 2003-12-23 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050159809A1 (en) * 2004-01-21 2005-07-21 Medtronic Vascular, Inc. Implantable medical devices for treating or preventing restenosis
US20050170071A1 (en) * 2004-01-29 2005-08-04 Scimed Life Systems, Inc. Lubricious composition
US20050197691A1 (en) * 2004-02-18 2005-09-08 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050216049A1 (en) * 2004-03-29 2005-09-29 Jones Donald K Vascular occlusive device with elastomeric bioresorbable coating
US20050228490A1 (en) * 2004-04-09 2005-10-13 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050261727A1 (en) * 2004-04-08 2005-11-24 Davis Richard C Iii Method of making active embolic coil
US20050261762A1 (en) * 2004-05-21 2005-11-24 Medtronic Vascular, Inc. Medical devices to prevent or inhibit restenosis
US20060062822A1 (en) * 2004-09-21 2006-03-23 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20060088571A1 (en) * 2004-10-21 2006-04-27 Medtronic Vascular, Inc. Biocompatible and hemocompatible polymer compositions
US20060182907A1 (en) * 2005-02-11 2006-08-17 Boston Scientific Scimed, Inc. Novel microfibrillar reinforced polymer-polymer composites for use in medical devices
US20060276894A1 (en) * 2005-06-02 2006-12-07 Surmodics, Inc. Hydrophilic polymeric coatings for medical articles
US20070027530A1 (en) * 2005-07-26 2007-02-01 Medtronic Vascular, Inc. Intraluminal device, catheter assembly, and method of use thereof
US20070067020A1 (en) * 2005-09-22 2007-03-22 Medtronic Vasular, Inc. Intraluminal stent, delivery system, and a method of treating a vascular condition
US20070231361A1 (en) * 2006-03-28 2007-10-04 Medtronic Vascular, Inc. Use of Fatty Acids to Inhibit the Growth of Aneurysms
US20080086216A1 (en) * 2006-10-06 2008-04-10 Wilson Jeffrey A Apparatus and Method for Limiting Surgical Adhesions
US20090171302A1 (en) * 2007-12-27 2009-07-02 Boston Scientific Scimed, Inc. Enhanced durability of hydrophilic coatings
JP2009273555A (en) * 2008-05-13 2009-11-26 Olympus Corp Medical appliance and manufacturing method of medical appliance
US20110144579A1 (en) * 2009-12-15 2011-06-16 Elton Richard K Hydrophilic coating
US20110177987A1 (en) * 2007-08-27 2011-07-21 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Method for reducing friction

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464650A (en) * 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US6017577A (en) * 1995-02-01 2000-01-25 Schneider (Usa) Inc. Slippery, tenaciously adhering hydrophilic polyurethane hydrogel coatings, coated polymer substrate materials, and coated medical devices
JP2000507997A (en) 1996-02-09 2000-06-27 サーフェス ソルーションズ ラボラトリーズ インコーポレイテッド Articles made hydrophilic coating composition of aqueous and therefrom
US6306144B1 (en) * 1996-11-01 2001-10-23 Scimed Life Systems, Inc. Selective coating of a balloon catheter with lubricious material for stent deployment
US6195805B1 (en) 1998-02-27 2001-03-06 Allegiance Corporation Powder free neoprene surgical gloves
US20020055710A1 (en) * 1998-04-30 2002-05-09 Ronald J. Tuch Medical device for delivering a therapeutic agent and method of preparation
US7820734B2 (en) * 1998-10-07 2010-10-26 Tyco Healthcare Group Lp Antimicrobial lubricious coating
US7141246B2 (en) * 1998-10-07 2006-11-28 Sherwood Services Ag Lubricious coating
US6596401B1 (en) 1998-11-10 2003-07-22 C. R. Bard Inc. Silane copolymer compositions containing active agents
US6329488B1 (en) * 1998-11-10 2001-12-11 C. R. Bard, Inc. Silane copolymer coatings
US7504125B1 (en) * 2001-04-27 2009-03-17 Advanced Cardiovascular Systems, Inc. System and method for coating implantable devices
US6861193B1 (en) 2000-05-17 2005-03-01 Hewlett-Packard Indigo B.V. Fluorescent liquid toner and method of printing using same
US8741378B1 (en) * 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
US6695920B1 (en) 2001-06-27 2004-02-24 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US6589591B1 (en) * 2001-07-10 2003-07-08 Baylor College Of Medicine Method for treating medical devices using glycerol and an antimicrobial agent
US6783525B2 (en) * 2001-12-12 2004-08-31 Megadyne Medical Products, Inc. Application and utilization of a water-soluble polymer on a surface
US6685704B2 (en) 2002-02-26 2004-02-03 Megadyne Medical Products, Inc. Utilization of an active catalyst in a surface coating of an electrosurgical instrument
US6951559B1 (en) 2002-06-21 2005-10-04 Megadyne Medical Products, Inc. Utilization of a hybrid material in a surface coating of an electrosurgical instrument
US7074276B1 (en) 2002-12-12 2006-07-11 Advanced Cardiovascular Systems, Inc. Clamp mandrel fixture and a method of using the same to minimize coating defects
US7323209B1 (en) 2003-05-15 2008-01-29 Advanced Cardiovascular Systems, Inc. Apparatus and method for coating stents
US20080255305A1 (en) * 2004-05-17 2008-10-16 Mcmaster University Biological Molecule-Reactive Hydrophilic Silicone Surface
DK2156852T3 (en) * 2004-07-07 2011-08-08 Coloplast As A catheter comprising Estane 58212
US7823533B2 (en) 2005-06-30 2010-11-02 Advanced Cardiovascular Systems, Inc. Stent fixture and method for reducing coating defects
US7735449B1 (en) 2005-07-28 2010-06-15 Advanced Cardiovascular Systems, Inc. Stent fixture having rounded support structures and method for use thereof
US20070129690A1 (en) 2005-12-02 2007-06-07 Joel Rosenblatt Catheter with polymeric coating
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US9080061B2 (en) 2006-05-03 2015-07-14 Surface Solutions Laboratories Coating resins and coating with multiple crosslink functionalities
US7985441B1 (en) 2006-05-04 2011-07-26 Yiwen Tang Purification of polymers for coating applications
US8069814B2 (en) 2006-05-04 2011-12-06 Advanced Cardiovascular Systems, Inc. Stent support devices
US20100215708A1 (en) * 2006-06-29 2010-08-26 Andreas Zumbuehl Coating of devices with effector compounds
US8211489B2 (en) * 2007-12-19 2012-07-03 Abbott Cardiovascular Systems, Inc. Methods for applying an application material to an implantable device
US8361538B2 (en) 2007-12-19 2013-01-29 Abbott Laboratories Methods for applying an application material to an implantable device
US20100082097A1 (en) * 2008-10-01 2010-04-01 Joel Rosenblatt Article Containing Segregated Biguanide and Lewis Acid
US9821139B2 (en) 2009-08-13 2017-11-21 C. R. Bard, Inc. Catheter having internal hydrating fluid storage and/or catheter package using the same and method of making and/or using the same
EP2515988B1 (en) 2009-12-23 2016-07-20 C.R. Bard Inc. Catheter assembly/package utilizing a hydrating/hydrogel sleeve and method of making and using the same
WO2011109393A1 (en) 2010-03-04 2011-09-09 C.R. Bard, Inc. Catheter assembly/package utilizing a hydrating/hydrogel sleeve and a foil outer layer and method of making and using the same
US8998882B2 (en) 2013-03-13 2015-04-07 C. R. Bard, Inc. Enhanced pre-wetted intermittent catheter with lubricious coating

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3642943A (en) * 1970-07-08 1972-02-15 Lord Corp Acrylic urethane composition of acrylic polymer with pendant isocyanate groups and isocyanate containing urethane prepolymer
US3663288A (en) * 1969-09-04 1972-05-16 American Cyanamid Co Physiologically acceptible elastomeric article
US4055682A (en) * 1971-11-19 1977-10-25 High Voltage Engineering Corporation Catheter and the method of making
US4232608A (en) * 1978-12-04 1980-11-11 Aerojet-General Corporation Dimer isocyanate liner compositions
US4265927A (en) * 1977-07-18 1981-05-05 Aminkemi Ab Method of heparinizing a charged surface of a medical article intended for blood contact
US4327009A (en) * 1980-09-29 1982-04-27 The Dow Chemical Company Anti-block additives for olefin polymers
US4373009A (en) * 1981-05-18 1983-02-08 International Silicone Corporation Method of forming a hydrophilic coating on a substrate
US4442145A (en) * 1981-06-30 1984-04-10 Bayer Aktiengesellschaft Process for coating substrates with polyisocyanates and polyhydroxy polyacrylates
US4459317A (en) * 1982-04-22 1984-07-10 Astra Meditec Aktiebolag Process for the preparation of a hydrophilic coating
US4479795A (en) * 1979-06-29 1984-10-30 The Procter & Gamble Company Antimicrobial polymer compositions
US4487808A (en) * 1982-04-22 1984-12-11 Astra Meditec Aktiebolag Medical article having a hydrophilic coating
US4526579A (en) * 1983-06-17 1985-07-02 Pfizer Inc. Method for graft copolymerization to natural rubber articles
US4585666A (en) * 1982-04-22 1986-04-29 Astra Meditec Preparation of hydrophilic coating
US4592920A (en) * 1983-05-20 1986-06-03 Baxter Travenol Laboratories, Inc. Method for the production of an antimicrobial catheter
US4600404A (en) * 1984-06-08 1986-07-15 Kimberly-Clark Corporation Heat sealable water dispersible adhesive
US4642242A (en) * 1985-04-01 1987-02-10 Becton, Dickinson And Company Permanently bonded antithrombogenic polyurethane surface
US4729914A (en) * 1985-12-30 1988-03-08 Tyndale Plains-Hunter Ltd. Hydrophilic coating and substrate coated therewith
US4773904A (en) * 1985-09-18 1988-09-27 Kao Corporation Absorbent article
US4876126A (en) * 1984-06-04 1989-10-24 Terumo Kabushiki Kaisha Medical instrument and method for making
US4906237A (en) * 1985-09-13 1990-03-06 Astra Meditec Ab Method of forming an improved hydrophilic coating on a polymer surface
US4980231A (en) * 1988-02-19 1990-12-25 Snyder Laboratories, Inc. Process for coating polymer surfaces and coated products produced using such process
US4987181A (en) * 1985-07-08 1991-01-22 Battelle Memorial Institute Substrate with an antithromogenic active surface
US5037677A (en) * 1984-08-23 1991-08-06 Gregory Halpern Method of interlaminar grafting of coatings
US5041100A (en) * 1989-04-28 1991-08-20 Cordis Corporation Catheter and hydrophilic, friction-reducing coating thereon
US5077352A (en) * 1990-04-23 1991-12-31 C. R. Bard, Inc. Flexible lubricious organic coatings
US5084315A (en) * 1990-02-01 1992-01-28 Becton, Dickinson And Company Lubricious coatings, medical articles containing same and method for their preparation
US5091205A (en) * 1989-01-17 1992-02-25 Union Carbide Chemicals & Plastics Technology Corporation Hydrophilic lubricious coatings
US5135516A (en) * 1989-12-15 1992-08-04 Boston Scientific Corporation Lubricious antithrombogenic catheters, guidewires and coatings
US5295978A (en) * 1990-12-28 1994-03-22 Union Carbide Chemicals & Plastics Technology Corporation Biocompatible hydrophilic complexes and process for preparation and use

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2456469C2 (en) * 1974-11-29 1983-01-13 Bayer Ag, 5090 Leverkusen, De
DE2914427A1 (en) * 1979-04-10 1980-10-23 Bayer Ag thermoplastics coating for
US4773901A (en) * 1981-12-31 1988-09-27 C. R. Bard, Inc. Catheter with selectively rigidified portion
US5268397A (en) * 1982-03-01 1993-12-07 Rohm And Haas Company Crosslinkable associative polymers prepared from polyisocyanates and hydroxyl-functional compounds
US4513112A (en) * 1984-03-07 1985-04-23 Lord Corporation High build, ambient cure coating compositions
US4589873A (en) * 1984-05-29 1986-05-20 Becton, Dickinson And Company Method of applying a hydrophilic coating to a polymeric substrate and articles prepared thereby
US5160790A (en) * 1990-11-01 1992-11-03 C. R. Bard, Inc. Lubricious hydrogel coatings
US5235018A (en) * 1991-07-22 1993-08-10 Miles Inc. Polyisocyanates containing allophanate and isocyanurate groups, a process for their production and their use in two-component coating compositions
US5157074A (en) * 1991-07-23 1992-10-20 Miles Inc. Aqueous compositions containing an at least partially blocked polyisocyanates and a trimerization catalyst and coatings and binders prepared therefrom
DE4130743A1 (en) * 1991-09-16 1993-03-18 Bayer Ag Microcapsules of isocyanates with polyethylene oxide groups

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663288A (en) * 1969-09-04 1972-05-16 American Cyanamid Co Physiologically acceptible elastomeric article
US3642943A (en) * 1970-07-08 1972-02-15 Lord Corp Acrylic urethane composition of acrylic polymer with pendant isocyanate groups and isocyanate containing urethane prepolymer
US4055682A (en) * 1971-11-19 1977-10-25 High Voltage Engineering Corporation Catheter and the method of making
US4265927A (en) * 1977-07-18 1981-05-05 Aminkemi Ab Method of heparinizing a charged surface of a medical article intended for blood contact
US4232608A (en) * 1978-12-04 1980-11-11 Aerojet-General Corporation Dimer isocyanate liner compositions
US4479795A (en) * 1979-06-29 1984-10-30 The Procter & Gamble Company Antimicrobial polymer compositions
US4327009A (en) * 1980-09-29 1982-04-27 The Dow Chemical Company Anti-block additives for olefin polymers
US4373009A (en) * 1981-05-18 1983-02-08 International Silicone Corporation Method of forming a hydrophilic coating on a substrate
US4442145A (en) * 1981-06-30 1984-04-10 Bayer Aktiengesellschaft Process for coating substrates with polyisocyanates and polyhydroxy polyacrylates
US4459317A (en) * 1982-04-22 1984-07-10 Astra Meditec Aktiebolag Process for the preparation of a hydrophilic coating
US4487808A (en) * 1982-04-22 1984-12-11 Astra Meditec Aktiebolag Medical article having a hydrophilic coating
US4585666A (en) * 1982-04-22 1986-04-29 Astra Meditec Preparation of hydrophilic coating
US4592920A (en) * 1983-05-20 1986-06-03 Baxter Travenol Laboratories, Inc. Method for the production of an antimicrobial catheter
US4526579A (en) * 1983-06-17 1985-07-02 Pfizer Inc. Method for graft copolymerization to natural rubber articles
US4876126A (en) * 1984-06-04 1989-10-24 Terumo Kabushiki Kaisha Medical instrument and method for making
US4600404A (en) * 1984-06-08 1986-07-15 Kimberly-Clark Corporation Heat sealable water dispersible adhesive
US5037677A (en) * 1984-08-23 1991-08-06 Gregory Halpern Method of interlaminar grafting of coatings
US4642242A (en) * 1985-04-01 1987-02-10 Becton, Dickinson And Company Permanently bonded antithrombogenic polyurethane surface
US4987181A (en) * 1985-07-08 1991-01-22 Battelle Memorial Institute Substrate with an antithromogenic active surface
US4906237A (en) * 1985-09-13 1990-03-06 Astra Meditec Ab Method of forming an improved hydrophilic coating on a polymer surface
US4773904A (en) * 1985-09-18 1988-09-27 Kao Corporation Absorbent article
US4729914A (en) * 1985-12-30 1988-03-08 Tyndale Plains-Hunter Ltd. Hydrophilic coating and substrate coated therewith
US4980231A (en) * 1988-02-19 1990-12-25 Snyder Laboratories, Inc. Process for coating polymer surfaces and coated products produced using such process
US5091205A (en) * 1989-01-17 1992-02-25 Union Carbide Chemicals & Plastics Technology Corporation Hydrophilic lubricious coatings
US5041100A (en) * 1989-04-28 1991-08-20 Cordis Corporation Catheter and hydrophilic, friction-reducing coating thereon
US5135516A (en) * 1989-12-15 1992-08-04 Boston Scientific Corporation Lubricious antithrombogenic catheters, guidewires and coatings
US5084315A (en) * 1990-02-01 1992-01-28 Becton, Dickinson And Company Lubricious coatings, medical articles containing same and method for their preparation
US5077352A (en) * 1990-04-23 1991-12-31 C. R. Bard, Inc. Flexible lubricious organic coatings
US5295978A (en) * 1990-12-28 1994-03-22 Union Carbide Chemicals & Plastics Technology Corporation Biocompatible hydrophilic complexes and process for preparation and use

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454998B1 (en) 1996-09-19 2002-09-24 Hospal Industrie Blood circulation apparatus coupling device which improves biocompatibility of inner surfaces with treated blood
US6010475A (en) * 1996-09-19 2000-01-04 Hospal Industrie Apparatus for the treatment of blood by extracorporeal circulation and process of manufacture
US6248127B1 (en) 1998-08-21 2001-06-19 Medtronic Ave, Inc. Thromboresistant coated medical device
USRE39438E1 (en) * 1998-08-21 2006-12-19 Medtronic Vascular, Inc. Thromboresistant coated medical device
US6361819B1 (en) 1998-08-21 2002-03-26 Medtronic Ave, Inc. Thromboresistant coating method
US6830583B2 (en) 1998-08-21 2004-12-14 Medtronic Ave, Inc. Thromboresistant coating composition
US6218016B1 (en) 1998-09-29 2001-04-17 Medtronic Ave, Inc. Lubricious, drug-accommodating coating
EP0992252A3 (en) * 1998-09-29 2001-08-22 Medtronic Ave, Inc. Lubricious, drug-accommodating coating
EP1462127A1 (en) * 1998-09-29 2004-09-29 Medtronic Vascular, Inc. Lubricious, drug-accommodating coating
EP0992252A2 (en) * 1998-09-29 2000-04-12 Medtronic Ave, Inc. Lubricious, drug-accommodating coating
US20040043068A1 (en) * 1998-09-29 2004-03-04 Eugene Tedeschi Uses for medical devices having a lubricious, nitric oxide-releasing coating
US6645518B2 (en) 1998-09-29 2003-11-11 Eugene Tedeschi Uses for medical devices having a lubricious, nitric oxide-releasing coating
US6299980B1 (en) 1998-09-29 2001-10-09 Medtronic Ave, Inc. One step lubricious coating
US6165158A (en) * 1998-10-14 2000-12-26 Advanced Cardiovascular Systems, Inc. Lubricious catheter shaft
US6589464B1 (en) 1998-10-14 2003-07-08 Advanced Cardiovascular Systems, Inc. Lubricious catheter shaft
US6100361A (en) * 1999-04-30 2000-08-08 Spalding Sports Worldwide, Inc. Golf ball top coating containing an aromatic/aliphatic polyisocyanate copolymer
US6312347B1 (en) 1999-04-30 2001-11-06 Spalding Sports Worldwide, Inc. Golf ball and method of coating a golf ball with top coat containing an aromatic/aliphatic polyisocyanate copolymer
US6673053B2 (en) 1999-05-07 2004-01-06 Scimed Life Systems, Inc. Hydrophilic lubricity coating for medical devices comprising an antiblock agent
WO2000067816A1 (en) * 1999-05-07 2000-11-16 Scimed Life Systems, Inc. Lubricious coating for medical devices comprising an antiblock agent
WO2002043786A3 (en) * 2000-11-30 2003-01-30 Medtronic Ave Inc Uses for medical devices having a lubricious, nitric oxide-releasing coating for the therapy of vascular disorders
WO2002043786A2 (en) * 2000-11-30 2002-06-06 Medtronic Ave Inc. Uses for medical devices having a lubricious, nitric oxide-releasing coating for the therapy of vascular disorders
US20020120333A1 (en) * 2001-01-31 2002-08-29 Keogh James R. Method for coating medical device surfaces
US20030083739A1 (en) * 2001-09-24 2003-05-01 Robert Cafferata Rational drug therapy device and methods
US7064168B2 (en) 2002-02-27 2006-06-20 Medtronic, Inc. AnB block copolymers containing poly (vinyl pyrrolidone) units, medical devices, and methods
US6756449B2 (en) 2002-02-27 2004-06-29 Medtronic, Inc. AnB block copolymers containing poly (vinyl pyrrolidone) units, medical devices, and methods
US20040214955A1 (en) * 2002-02-27 2004-10-28 Medtronic, Inc. AnB block copolymers containing poly (vinyl pyrrolidone) units, medical devices, and methods
US20030162905A1 (en) * 2002-02-27 2003-08-28 Benz Michael Eric AnB block copolymers containing poly (vinyl pyrrolidone) units, medical devices, and methods
WO2004028579A2 (en) * 2002-09-27 2004-04-08 Labcoat Ltd. Contact coating of prostheses
US9272307B2 (en) 2002-09-27 2016-03-01 Boston Scientific Scimed, Inc. Contact coating of prostheses
US20080206442A1 (en) * 2002-09-27 2008-08-28 Labcoat, Ltd. Contact coating of prostheses
WO2004028579A3 (en) * 2002-09-27 2004-07-01 Labcoat Ltd Contact coating of prostheses
US20040236415A1 (en) * 2003-01-02 2004-11-25 Richard Thomas Medical devices having drug releasing polymer reservoirs
US20040243224A1 (en) * 2003-04-03 2004-12-02 Medtronic Vascular, Inc. Methods and compositions for inhibiting narrowing in mammalian vascular pathways
US20050149174A1 (en) * 2003-12-18 2005-07-07 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050154451A1 (en) * 2003-12-18 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050154455A1 (en) * 2003-12-18 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050137683A1 (en) * 2003-12-19 2005-06-23 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050152940A1 (en) * 2003-12-23 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050154452A1 (en) * 2003-12-23 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050152942A1 (en) * 2003-12-23 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050152943A1 (en) * 2003-12-23 2005-07-14 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050159809A1 (en) * 2004-01-21 2005-07-21 Medtronic Vascular, Inc. Implantable medical devices for treating or preventing restenosis
US7534495B2 (en) 2004-01-29 2009-05-19 Boston Scientific Scimed, Inc. Lubricious composition
US20050170071A1 (en) * 2004-01-29 2005-08-04 Scimed Life Systems, Inc. Lubricious composition
US20050197691A1 (en) * 2004-02-18 2005-09-08 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050216049A1 (en) * 2004-03-29 2005-09-29 Jones Donald K Vascular occlusive device with elastomeric bioresorbable coating
US20050261727A1 (en) * 2004-04-08 2005-11-24 Davis Richard C Iii Method of making active embolic coil
US7416757B2 (en) 2004-04-08 2008-08-26 Cordis Neurovascular, Inc. Method of making active embolic coil
US20050228490A1 (en) * 2004-04-09 2005-10-13 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20050261762A1 (en) * 2004-05-21 2005-11-24 Medtronic Vascular, Inc. Medical devices to prevent or inhibit restenosis
US20060062822A1 (en) * 2004-09-21 2006-03-23 Medtronic Vascular, Inc. Medical devices to treat or inhibit restenosis
US20060088571A1 (en) * 2004-10-21 2006-04-27 Medtronic Vascular, Inc. Biocompatible and hemocompatible polymer compositions
US20060182907A1 (en) * 2005-02-11 2006-08-17 Boston Scientific Scimed, Inc. Novel microfibrillar reinforced polymer-polymer composites for use in medical devices
US7691476B2 (en) 2005-06-02 2010-04-06 Surmodics, Inc. Hydrophilic polymeric coatings for medical articles
US8163327B2 (en) 2005-06-02 2012-04-24 Surmodics, Inc. Hydrophilic polymeric coatings for medical articles
US20060276894A1 (en) * 2005-06-02 2006-12-07 Surmodics, Inc. Hydrophilic polymeric coatings for medical articles
US20100189877A1 (en) * 2005-06-02 2010-07-29 Surmodics, Inc. Hydrophilic polymeric coatings for medical articles
US20070027530A1 (en) * 2005-07-26 2007-02-01 Medtronic Vascular, Inc. Intraluminal device, catheter assembly, and method of use thereof
US20070067020A1 (en) * 2005-09-22 2007-03-22 Medtronic Vasular, Inc. Intraluminal stent, delivery system, and a method of treating a vascular condition
US20070231361A1 (en) * 2006-03-28 2007-10-04 Medtronic Vascular, Inc. Use of Fatty Acids to Inhibit the Growth of Aneurysms
US9289279B2 (en) * 2006-10-06 2016-03-22 Promethean Surgical Devices, Llc Apparatus and method for limiting surgical adhesions
US20080086216A1 (en) * 2006-10-06 2008-04-10 Wilson Jeffrey A Apparatus and Method for Limiting Surgical Adhesions
US20110177987A1 (en) * 2007-08-27 2011-07-21 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Method for reducing friction
US8378011B2 (en) 2007-12-27 2013-02-19 Boston Scientific Scimed, Inc. Enhanced durability of hydrophilic coatings
US20090171302A1 (en) * 2007-12-27 2009-07-02 Boston Scientific Scimed, Inc. Enhanced durability of hydrophilic coatings
JP2009273555A (en) * 2008-05-13 2009-11-26 Olympus Corp Medical appliance and manufacturing method of medical appliance
US8287890B2 (en) 2009-12-15 2012-10-16 C.R. Bard, Inc. Hydrophilic coating
US20110144579A1 (en) * 2009-12-15 2011-06-16 Elton Richard K Hydrophilic coating

Also Published As

Publication number Publication date Type
US5558900A (en) 1996-09-24 grant

Similar Documents

Publication Publication Date Title
US4447590A (en) Extrudable polyurethane for prosthetic devices prepared from a diisocyanate, a polytetramethylene ether polyol and 1,4 butane diol
US4705709A (en) Lubricant composition, method of coating and a coated intubation device
US5376117A (en) Breast prostheses
Park et al. PDMS-based polyurethanes with MPEG grafts: synthesis, characterization and platelet adhesion study
US5762944A (en) Antithrombotic resin, antithrombotic tube, antithrombotic film and antithrombotic coat
US6610035B2 (en) Hydrophilic lubricity coating for medical devices comprising a hybrid top coat
US3562352A (en) Polysiloxane-polyurethane block copolymers
US6949598B2 (en) Polymer compositions containing colloids of silver salts
US5429839A (en) Method for grafting preformed hydrophillic polymers onto hydrophobic polymer substrates
US4487808A (en) Medical article having a hydrophilic coating
US5053048A (en) Thromboresistant coating
US4459317A (en) Process for the preparation of a hydrophilic coating
US4156066A (en) Polyurethane polymers characterized by lactone groups and hydroxyl groups in the polymer backbone
US5509899A (en) Medical device with lubricious coating
US4631329A (en) Moisture resistant polyurethanes derived from non-aromatic diisocyanates
US4684490A (en) Process for preparation of polyurethane condoms
US5545708A (en) Thermoplastic polyurethane method of making same and forming a medical article therefrom
US5728751A (en) Bonding bio-active materials to substrate surfaces
US4463156A (en) Polyurethane elastomer and an improved hypoallergenic polyurethane flexible glove prepared therefrom
US6218016B1 (en) Lubricious, drug-accommodating coating
US5589563A (en) Surface-modifying endgroups for biomedical polymers
US4676975A (en) Thermoplastic polyurethane anticoagulant alloy coating
US6127507A (en) Fluoroligomer surface modifiers for polymers and articles made therefrom
US5962620A (en) Hydrophicic and hydrophobic polyether polyurethanes and uses therefor
US6177522B1 (en) Biostable polycarbonate urethane products

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12