US5642579A - Steam iron having a fabric temperature sensor for controlling steam production - Google Patents

Steam iron having a fabric temperature sensor for controlling steam production Download PDF

Info

Publication number
US5642579A
US5642579A US08/590,255 US59025596A US5642579A US 5642579 A US5642579 A US 5642579A US 59025596 A US59025596 A US 59025596A US 5642579 A US5642579 A US 5642579A
Authority
US
United States
Prior art keywords
steam
fabric
soleplate
temperature sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/590,255
Inventor
Adriaan Netten
Hong W. C. Tse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Philips Corp
Original Assignee
US Philips Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP95200147 priority Critical
Priority to EP95200147 priority
Application filed by US Philips Corp filed Critical US Philips Corp
Assigned to U.S. PHILIPS CORPORATION reassignment U.S. PHILIPS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TSE, HONG W.C., NETTEN, ADRIAAN
Application granted granted Critical
Publication of US5642579A publication Critical patent/US5642579A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F75/00Hand irons
    • D06F75/08Hand irons internally heated by electricity
    • D06F75/24Arrangements of the heating means within the iron; Arrangements for distributing, conducting or storing the heat
    • D06F75/246Arrangements of the heating means within the iron; Arrangements for distributing, conducting or storing the heat using infra-red lamps
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F75/00Hand irons
    • D06F75/08Hand irons internally heated by electricity
    • D06F75/10Hand irons internally heated by electricity with means for supplying steam to the article being ironed
    • D06F75/14Hand irons internally heated by electricity with means for supplying steam to the article being ironed the steam being produced from water in a reservoir carried by the iron
    • D06F75/18Hand irons internally heated by electricity with means for supplying steam to the article being ironed the steam being produced from water in a reservoir carried by the iron the water being fed slowly, e.g. drop by drop, from the reservoir to a steam generator
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F75/00Hand irons
    • D06F75/08Hand irons internally heated by electricity
    • D06F75/26Temperature control or indicating arrangements

Abstract

Steam iron having an electrically heated soleplate (2), a steam generator (6) comprising a water tank (8), a water pump (10) and a steam chamber (12) for supplying steam via steam vents (20) in the soleplate (2). The steam production is made dependent on the temperature of the fabric a fabric temperature sensor (24) embedded in the soleplate (2). A cool fabric triggers the production of steam. The production is stopped as soon as the fabric temperature reaches the condensing temperature of steam. Since no more steam is absorbed in the fabric when the condensing temperature is reached, any more steam production is waste of water and power. In this way any further steam production is prevented and waste of water and power is avoided. After steaming has stopped the fabric temperature sensor (24) can be advantageously used to control the drying power of the soleplate (2) to avoid scorching of the fabric and to avoid waste of power.

Description

BACKGROUND OF THE INVENTION

The invention relates to a steam iron comprising a soleplate provided with steam vents for passing steam to a fabric to be ironed and a steam generator for supplying an adjustable amount of steam to the steam vents.

Such a steam iron is known from U.S. Pat. No. 5,042,179. In ironing of clothing three different processes can be distinguished: conditioning of the fibres, relaxation of the fibres and fixation of the fibres. During the conditioning the fibres are prepared for the relaxation. The conditioning is done by increasing the temperature of the fibres in order to make the fibres weak enhancing the recovery, during the relaxation, from the plastic deformation of the fibres caused by wearing of the clothing. The use of steam is an effective way to increase the temperature. Moreover, the weakness of some fibres increases with the water content as well, especially for cotton, linen, viscose and wool. After the conditioning the relaxation or real ironing takes place. During the relaxation the weak fibres are being pressed between the soleplate and the ironing board. This should last sufficiently long to allow the fibres to recover from the plastic deformation. The moisture content of the fabric should not decrease too fast during relaxation in the case of cotton, linen and wool as this would adversely affect the relaxation process. After relaxation the opposite from the conditioning takes place. This means that the weakness of the fibres is decreased to prevent the occurrence of wrinkles again. The fixation comprises the drying of the fibres, followed by cooling down.

During the conditioning the temperature of the fabric increases to about 100° C. partly by condensation of steam and partly due to heating by the soleplate. During the relaxation the temperature should be kept at about 100° C. to maintain both a high temperature and a high moisture content of the fabric providing for a fast recovery of the fibres. After the relaxation the fabric is being dried, indicated by a temperature increase in the fabric above 100 ° C., and followed by cooling down to assure a proper fixation. This cooling down takes place partly on the ironing board and partly after removal of the cloth from the board to clear the board for the next cloth.

In conventional steam irons the steam rate is set and the iron is moved forwards and backwards over the fabric. In the forward stroke the amount of steam is insufficient in most cases to heat the fabric up to 100° C., whereas after passing the steam vents the fabric is heated further by the sole plate to a higher temperature close to 100° C. In the backward stroke the production of steam still continues, but the fabric has already reached 100° C. and will not adsorb water any more. Although it does not affect the fabric, steam is wasted that could have been used to warm up and to moisten more intensively the fabric in order to obtain a weaker fabric at a higher temperature during the forward stroke. A lot of unused steam is blown through the fabric into the ironing board and to the surrounding air without the desired condensation onto and in the fabric. A lot of heat and water is wasted and should be avoided.

In the above mentioned known steam iron waste of steam is reduced by controlling the amount of steam produced by the steam generator as a function of time. The steam production is controlled by regulating the output power of the heating element of the steam chamber from a high initial level to a low or zero level during an ironing cycle. It is further known from said known steam iron to adapt the steam production to the amount of heat required to heat the fabric by measuring the power need of the heating element of the soleplate. Such measuring however is inaccurate and slow.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a steam iron having an accurate and effective steam generation for moistening and heating up the fabric to be ironed. According to the invention the steam iron as specified in the opening paragraph is characterized in that the steam iron further comprises a fabric temperature sensor for detecting the temperature of the fabric to be ironed and control means responsive to a signal from the fabric temperature sensor for controlling the amount of steam passing to the steam vents.

In the steam iron according to the invention the temperature of the fabric determines the amount of steam that is passed through the steam vents. Both heating up and moistening of the cool fabric to be ironed is accomplished by means of steam, although some heating by the soleplate is unavoidable. The temperature of the fabric is sensed by the fabric temperature sensor and when a temperature of about 100° C. is reached the steaming is stopped. In this way no steam is produced when the fabric has reached a temperature (the condensing temperature of steam) at which no water is adsorbed any more. As the steam production is dependent on the temperature of the fabric to be ironed, a dial or knob for setting the steam rate is no longer necessary. A cool cloth automatically triggers the production of steam and the steam production is shut off automatically when the temperature of the cloth reaches the desired temperature. By obtaining a fabric temperature of 100° C. with steam only, the weakest fibres in the shortest time are provided. This results in a very good ironing result in a short time. In practice the actual temperature may be somewhat lower than the nominal condensing temperature of 100° C., for instance 95° C.

Preferably the fabric temperature sensor is embedded in the soleplate and has a temperature sensitive surface which touches the fabric during ironing and preferably the fabric temperature sensor is positioned in the front portion of the soleplate nearby the steam vents. Assuming that the capacity of the steam generator is sufficient, it is possible to heat up and to moisten the fabric in the forward stroke of the steam iron. At the end of the forward stroke the steaming stops and the fabric is ready for being dried in the next backward stroke. The fabric temperature sensor is placed near the steam vents for measuring the temperature of the fabric due to steaming. However other positions may work as well.

The steam generation can be done in several ways known per se. A possible way is the use of a separate steam chamber coupled to the steam iron with a hose. In that case the control means for controlling the amount of steam passing to the steam vents may comprise a steam valve which is opened and closed in response to the signal from the fabric temperature sensor. A preferred embodiment is characterized in that the steam generator comprises a water tank for containing water to be converted into steam, a steam chamber for converting the water into steam and a water pump for pumping water from the water tank to the steam chamber, the water pump being operable in response of a pump activation signal derived from the signal from the fabric temperature sensor. This embodiment is suitable for use in stand-alone steam irons with built-in water tank and steam chamber.

After conditioning and relaxation the fabric has to be dried and cooled down for a proper fixation of the fibres. This drying can be done in conventional way by the heat of the soleplate, which heat is set by means of a dial. In that case the heat of the sole plate is also effective during the previous automatic steaming action and the cloth is not only heated up by condensing steam, but also by heat from the soleplate. For a good result the fabric end temperature does not have to be far above 100° C. All heating power necessary to raise the fabric temperature slightly above that temperature is waste of power and increases the risk of scorching and should be avoided.

In order to avoid power waste and scorching an embodiment of the steam iron according to the invention is additionally characterized in that the steam iron further comprises a heating element for heating the soleplate and second control means responsive to the signal from the fabric temperature sensor for controlling the amount of heat produced by the soleplate. The fabric temperature sensor is also used for regulating the power of the heating element of the soleplate. By monitoring the fabric temperature during drying as much power as needed to dry the fabric is used and scorching is prevented. A temperature dial may be dispensed with as the power is shut off automatically when a predetermined temperature above 100° C. is sensed by the fabric temperature sensor. This predetermined temperature should be low enough to prevent scorching, but every temperature above 100° C. will do. In case of a conventional soleplate with the corresponding slow temperature response, this temperature may be in the range of 120° C. to 150° C. to assure drying without scorching when the iron is moved backwards and forwards.

A virtually instantaneous control of heat transfer from the iron to the fabric is obtained in an embodiment which is characterized in that the soleplate is a low heat capacity type soleplate. For this purpose the steam iron may have a thin soleplate heated by halogen lamps or thick film heating elements. The power control feature in combination with the steam control feature provides a steam iron with the possibility to heat up and moisten the fabric in the first forward stroke by steaming only and to dry the fabric in the same first forward stroke or in the first backward stroke and in any following forward and backward strokes, if needed, by heating only. In this way a very efficient and fast ironing performance is achievable. In order to measure the temperature of the fabric more accurately during drying, a second fabric temperature sensor mounted at the back portion of the soleplate may be provided. The highest temperature of both sensors can be used to control the amount of heat of the soleplate. A more sophisticated power control is obtained in an embodiment which is characterized in that the steam iron further comprises a motion direction sensor for discriminating motion in the forward and backward direction of the iron, the second control means being responsive to the signal from the first fabric temperature sensor during motion in the backward direction and being responsive to a signal from the second fabric temperature sensor during motion in the forward direction. The heat is controlled by the second sensor in the back portion of the soleplate during forward strokes and by the first sensor in the front portion of the soleplate during backward strokes.

The means for controlling the amount of steam and the means for controlling the amount of heat may respond conventionally or according to fuzzy logic rules to the temperature and the temperature gradient of the fabric sensed by the fabric temperature sensor or sensors.

BRIEF DESCRIPTION OF THE DRAWING

The above and other features and advantages of the invention will be apparent from the following description of exemplary embodiments of the invention with reference to the accompanying drawings, in which:

FIG. 1 shows schematically a cross section of a first embodiment of a steam iron according to the invention;

FIG. 2 shows a bottom view of the soleplate of a steam iron according to the invention;

FIG. 3 shows a fabric temperature sensor embedded in the soleplate of a steam iron according to the invention;

FIG. 4 shows a bottom view of an alternative version of the soleplate of a steam iron according to the invention;

FIG. 5A shows a first flow chart of a control program for a steam iron according to the invention;

FIG. 5B shows a second flow chart of a control program for a steam iron according to the invention;

FIG. 6 shows schematically a cross section of a second embodiment of a steam iron according to the invention; and

FIG. 7 shows schematically a cross section of a third embodiment of a steam iron according to the invention.

Like reference symbols are employed in the drawings and in the description of the preferred embodiments to represent the same or very similar item oritems.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

FIG. 1 shows a first embodiment of a steam iron according to the invention having fabric temperature dependent steam generation. The steam iron has aconventional soleplate 2 which is heated by an electrical heating element 4. The temperature of the soleplate 2 is kept at a desired temperature by means of a conventional thermostat (not shown) and a temperature dial (notshown) as known from the art of conventional steam irons. However, other known means to control the temperature of the soleplate 2 can also be employed, such as full electronic control with a triac, a temperature sensor for measuring the temperature of the soleplate and an adjustable reference for changing the desired temperature of the soleplate. Steam is generated by a steam generator 6 which comprises a water tank 8, a water pump 10 and a steam chamber 12. The water pump 10 pumps water from the water tank 8 to the steam chamber 12 via a hose 14 under command of a pumpsignal PS from a controller 16. The steam chamber 12 is heated with a heating element 18 controlled by a conventional thermostat (not shown), but an electronic control can be employed as well. The steam from the steam chamber 12 reaches steam vents 20 via a steam duct 22. A fabric temperature sensor 24 is embedded in the front portion of the soleplate 2 and is surrounded by the steam vents 20 as shown in FIG. 2. The fabric temperature sensor 24 slightly touches the fabric during ironing and sendsa fabric temperature signal FTS to the controller 16 which is indicative ofthe actual temperature of the fabric being ironed. FIG. 3 shows the embedded fabric temperature sensor 24 in more detail. The fabric temperature sensor 24 is thermally insulated from the soleplate 2 by meansof thermal insulation material 26 which also provides a rigid mechanical mounting of the fabric temperature sensor 24 in the soleplate 2. The fabric temperature sensor 24 should have a low thermal inertia for fast response and correct temperature measurements of the fabrics being ironed.The fabric temperature sensor 24 may be a resistor with a positive temperature coefficient (PTC) or a negative temperature coefficient (NTC) of suitable dimensions. A thermo-couple or a contact-less infra red sensormay be used as well.

All electrical parts, such as the heating element 4, the heating element 18, the water pump 10 and the controller 16 receive suitable AC or DC supply voltages in a conventional manner not shown. The steam generator 6 can alternatively be a detached steam generator connected to the iron witha hose. In that case the steam is passed to the steam duct 22 via a controllable steam valve under control of a signal having a similar function as the pump signal PS.

During ironing a cool cloth is placed on the ironing board. As soon as the soleplate 2 touches the cool cloth the relatively low temperature of the cloth is sensed by the fabric temperature sensor 24 and the corresponding fabric temperature signal FTS signals the controller to activate the waterpump 10 by sending the pump signal PS to the water pump 10. The water is converted to steam in the hot steam chamber 12 and hot steam reaches the cloth via the steam duct 22 and the steam vents 20. The steam condenses inthe cool cloth and heats up the cloth. The cloth is also partly heated up by the hot soleplate. The capacity of the steam generator determines the maximum available amount of steam. A high capacity is advantageous as thisresults in a cloth which is heated up nearly by condensing steam only. In that case the cloth contains much water which is beneficial to the weakening of the fibres of the cloth. The higher the amount of steam, the higher the fabric temperature will be up to 100° C. by condensing steam. The temperature of the cloth will not exceed 100° C. by using more steam. Any further steam production is wasting of power and water. This waste is avoided according to the invention by sensing the temperature of the cloth. When the fabric temperature signal FTS from the fabric temperature sensor 24 signals the condensing temperature of steam (about 100° C.), the controller 16 stops the production of steam bysending an appropriate pump signal PS to the water pump 10. From now on thecloth is dried by the hot soleplate 2. The fabric temperature sensor 24 avoids waste of steam and waste of power. A steam rate dial is superfluoussince steam production is automatically engaged by the sensing of a cool cloth and automatically stopped by the sensing of the steam condensing temperature in the cloth. The amount of steam can further be made dependent on the temperature gradient, that is the temperature increase per unit of time, of the cloth. In this way the differences in steam adsorption of different clothing can be taken into account and a better forecast of the moment to stop the steam production is possible.

Preferably the steam production is controlled according to fuzzy logic rules using the temperature of the cloth and the temperature gradient of the cloth as input parameters having ranges which are divided in subranges. The membership of the input parameters of a subrange determinesthe action to be executed. The action is described in a rule base. Such a rule might be: if fabric temperature is cold and fabric temperature gradient is small then steam production is high. Fuzzy logic control is a well known technique which needs no further explanation. Using fuzzy logicthe steam production is controlled as follows:

If temperature of fabric <100° C.: increase the steam production depending on the fabric temperature and the gradient of the fabric temperature;

If temperature of fabric ≈100° C.: step down steam production;

If temperature of fabric >100° C.: stop steam production because no further condensation of steam in the fabric is possible.

It is to be noted that in practice the value of the reference temperature can be somewhat lower, for instance 95° C., than the theoretical temperature value (100° C.) of condensing steam.

During drying of the fabric the temperature increases and the moisture in the fabric evaporates. When all moisture has been evaporated the temperature of the fabric rises quickly above 100° C. Any more heating up of the fabric is superfluous and is waste of power. In additionthe risk of scorching is increased. In order to avoid power waste and to reduce the risk of scorching the fabric temperature sensor 24 may be used advantageously to control the heating element 4 of the soleplate 2 by keeping track of the fabric temperature after steaming was stopped. The raise above 100° C. of the temperature of the fabric can be used tostop or to reduce the power of the heating element 4 of the soleplate 2. The fabric temperature at which the power to the heating element 4 is to be stopped should be high enough to assure a fully dried fabric and shouldbe not so high as to cause scorching. In principle any value above 100° C. will do, but with a conventional soleplate and its corresponding rather slow temperature decay, a power-off fabric temperature in the range from 120° C. to 150° C. is a good choice to assure that the fabric is dry and to be sure that the fabric is not scorched as long as the iron is moving over the fabric.

The fabric temperature sensor 24 is thus not only used to control the steamproduction, but also to control the heat production of the soleplate. A temperature dial may be dispensed with since the power of the soleplate isswitched off automatically when the temperature of the fabric reaches a predetermined value above 100° C. The fabric temperature sensor 24 is positioned in the front portion of the soleplate 2 and is surrounded bythe steam vents 20, so that the fabric temperature is measured accurately during steaming. When the steam production has ended, the temperature of the fabric is measured by the same fabric temperature sensor 24. For this purpose the front position of the fabric temperature sensor 24 is optimal if the iron is moved backwards over the fabric, because temperature sensing is done after heating by the heating zone of the soleplate 2. However, a second fabric temperature sensor positioned in the back portionof the soleplate, as shown in FIG. 4, can be used to measure the temperature of the fabric during the forward stroke. By taking the highestof the two temperatures a correct temperature is obtained in both forward and backward strokes.

The power control can be done conventionally or using fuzzy logic in response of the temperature of the fabric and the temperature gradient of the fabric and can be combined advantageously with the controlled steam production. The combined steam and power control may proceed for example according to the flow charts given in FIG. 5A for one fabric temperature sensor and in FIG. 5B for two fabric temperature sensors. The inscriptionsto FIGS. 5A and 5B are listed in Table I. Tf and Tf1 are the temperatures sensed by the only or first sensor 24 (FIGS. 2 and 4) and Tf2 is the temperature sensed by the second sensor 30 (FIG. 4 only).

______________________________________Block     Inscription FIG. 5A                   Inscription FIG. 5B______________________________________500       Start502        T.sub.f > 95° C.                    T.sub.f1 > 95° C.504       Steam production down506       Steam production up508       T.sub.f < 125° C.                   T.sub.f1 < 125° C.510                     T.sub.f2 < 125° C.512       Soleplate heating power down514       Soleplate heating power up______________________________________

The temperature Tf or Tf1 of the fabric is measured by sensor 24 (block 502). If the fabric temperature is lower than 95° C., the steam production is enabled (block 506). If the fabric temperature is higher than 95° C., then the steam production is disabled (block 504) and the fabric temperature Tf is compared with 125° C. using one sensor 24 (block 508) or two sensors 24 and 30 (block 508/510). The soleplate heating power is shut off (block 512) when the desired 125° C. is reached, otherwise the power of the soleplate is switched on (block 514). When two fabric temperature sensors are employed,the highest of the two temperatures Tf1 and Tf2 determines the fabric temperature as shown in FIG. 5B. A motion direction sensor may be incorporated to discriminate between backward and forward movement of the soleplate.

FIG. 6 shows a steam iron with a low thermal inertia soleplate 2 heated by a thick film heater 28 for controlled heating of the soleplate 2. The ironis provided with a second fabric temperature sensor 30 in the back portion of the soleplate 2 as already shown in FIG. 4. The hot steam chamber 12 isthermally detached from the soleplate 2 to prevent as much as possible heating of the soleplate 2 by the steam chamber 12. An optional motion direction sensor 32 provides a motion direction signal MDS to the (fuzzy) controller 16, which receives a second fabric temperature signal FTS2 fromthe second fabric temperature sensor 30. The main advantage of the low inertia soleplate 2 is that a very fast change in heat transfer is possible from the soleplate 2 to the fabric which is being ironed. If the steam generation capacity of the steam generator 6 and the drying power ofthe soleplate 2 are both sufficient, then it is possible to moisten and to heat up a cool cloth fully by means of (fuzzy) controlled condensing steamin the first forward stroke and thereafter to fully dry the cloth by means of (fuzzy) controlled heating power of the soleplate in the first backwardstroke. Since the soleplate cools down very fast, the next cloth is mostly heated up by condensing steam and minimally by heat from the soleplate. This provides a very good ironing result, since the fibres in the cloth are weakened optimally by the condensing steam. In addition, the ironing procedure is fast and needs less water, steam and power.

FIG. 7 shows another embodiment of a steam iron according to the invention.This embodiment differs from the embodiment of FIG. 6 in that the drying heat is supplied by infra red radiation of halogen light. For this purposea halogen lamp 34 and a reflector 36 are mounted inside the steam iron and extend parallel to the plane of the soleplate 2. Underneath the reflector 36 the soleplate 2 is made transparent for the light emitted by the lamp 34.

The steam generator 12 should be capable of fast production of a large amount of steam. For this purpose the steam chamber 12 should have a high heat capacity to be able to evaporate large amount of water in a short time, a small air volume to reduce the response time, a large evaporating area to enhance steam production and the steam duct volume should be as small as possible. Suitable dimensions are about 7*10*4 cm3 (l*w*h), an evaporating area of 60 cm2 and a height of a few millimeters and the heating element 18 should have a capacity of about 800 W.

Disclosed are examples of steam irons having an electrically heated soleplate (2), a steam generator (6) comprising a water tank (8), a water pump (10) and a steam chamber (12) for supplying steam via steam vents (20) in the soleplate (2). The steam production is made dependent on the temperature of the fabric by means of a fabric temperature sensor (24) embedded in the soleplate (2). A cool fabric triggers the production of steam. The production is stopped as soon as the fabric temperature reachesthe condensing temperature of steam. Since no more steam is absorbed in thefabric when the condensing temperature is reached, any more steam production is waste of water and power. In this way any further steam production is prevented and waste of water and power is avoided. After steaming has stopped the fabric temperature sensor (24) can be advantageously used to control the drying power of the soleplate (2) to avoid scorching of the fabric and to avoid waste of power. The steam control and the power control may be conventional or fuzzy. The soleplate can be of a conventional or a low heat inertia type. Two or even more thantwo fabric temperature sensors embedded in the soleplate may be employed.

Other features may be incorporated in the steam iron to enhance the performance. The optional motion direction sensor 32 can also be used as movement sensor to detect whether the iron is being moved or not. If not moving, the steam production and the power of the soleplate can be shut off to prevent scorching. A sensor in the handgrip of the steam iron may be provided to detect whether the iron is in use or not.

Claims (16)

We claim:
1. A steam iron comprising a soleplate (2) provided with steam vents (20) for passing steam to a fabric to be ironed and a steam generator (6) comprising a water tank and a steam chamber (12) for supplying an adjustable amount of steam to the steam vents (20), wherein the steam iron further comprises a fabric temperature sensor (24) for detecting the temperature of the fabric to be ironed and control means (16) responsive to a signal (FTS) from the fabric temperature sensor (24) for controlling the amount of steam generated in the steam generator and passing to the steam vents (20).
2. A steam iron as claimed in claim 1, characterized in that the fabric temperature sensor (24) is embedded in the soleplate (2) and has a temperature sensitive surface which touches the fabric during ironing.
3. A steam iron as claimed in claim 2, characterized in that the fabric temperature sensor (24) is positioned in the front portion of the soleplate (2) nearby the steam vents (20).
4. A steam iron as claimed in claim 1, characterized in that the control means (16) are operable to pass steam to the steam vents (20) until the fabric temperature sensor (24) signals the reaching of a first predetermined temperature.
5. A steam iron as claimed in claim 1, characterized in that the first temperature is the condensing temperature of the steam.
6. A steam iron as claimed in claim 1, characterized in that the first control means (16) are responsive to the momentary value and the gradient of the signal (FTS) from the first fabric temperature sensor (24).
7. A steam iron as claimed in claim 6, characterized in that at least one of the first and second control means (16) is responsive according to fuzzy logic.
8. A steam iron as claimed in any of the preceding claims, characterized in that the steam iron further comprises a heating element (4) for heating the soleplate (2) and second control means (16) responsive to the signal (FTS) from the fabric temperature sensor (24) for controlling the amount of heat produced by the soleplate (2).
9. A steam iron as claimed in claim 8, characterized in that the second control means (16) are operable to control the heating of the soleplate (2) until the fabric sensor (24) signals the reaching of a second predetermined temperature above the first temperature.
10. A steam iron as claimed in claim 9, characterized in that the second temperature is lower than the scorching temperature of the fabric.
11. A steam iron as claimed in claim 8, characterized in that the soleplate (2) is a low heat capacity type soleplate.
12. A steam iron as claimed in claim 11, characterized in that the soleplate (2) is heated by means of light energy produced by a lamp (34) in the steam iron.
13. A steam iron as claimed in claim 8, characterized in that the steam iron comprises a second fabric temperature sensor (30) for sensing the fabric temperature at the back portion of the soleplate (2).
14. A steam iron as claimed in claim 8, characterized in that the second control means (16) are responsive to the momentary value and the gradient of at least one of the signal (FTS) from the first fabric temperature sensor (24) and the signal (FTS2) from the second fabric temperature sensor (30).
15. A steam iron comprising a soleplate provided with steam vents for passing steam to a fabric to be ironed and a steam generator for supplying an adjustable amount of steam to the steam vents,
wherein the steam iron further comprises a fabric temperature sensor for detecting the temperature of the fabric to be ironed and control means responsive to a signal from the fabric temperature sensor for controlling the amount of steam passing to the steam vents,
and wherein the steam generator comprises a water tank for containing water to be converted into steam, a steam chamber for converting the water into steam and a water pump for pumping water from the water tank to the steam chamber, the water pump being operable in response to a pump activation signal derived from the signal from the fabric temperature sensor.
16. A steam iron comprising a soleplate provided with steam vents for passing steam to a fabric to be ironed and a steam generator for supplying an adjustable amount of steam to the steam vents,
wherein the steam iron further comprises a first fabric temperature sensor for detecting the temperature of the fabric to be ironed, a second fabric temperature sensor for sensing the fabric temperature at the back portion of the soleplate, and control means responsive to a signal from the fabric temperature sensor for controlling the amount of steam passing to the steam vents,
and wherein the steam iron further comprises a motion direction sensor for discriminating motion in the forward and backward direction of the iron, the second control means being responsive to the signal from the first fabric temperature sensor during motion in the backward direction and being responsive to a signal from the second fabric temperature sensor during motion in the forward direction.
US08/590,255 1995-01-23 1996-01-23 Steam iron having a fabric temperature sensor for controlling steam production Expired - Fee Related US5642579A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP95200147 1995-01-23
EP95200147 1995-01-23

Publications (1)

Publication Number Publication Date
US5642579A true US5642579A (en) 1997-07-01

Family

ID=8219969

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/590,255 Expired - Fee Related US5642579A (en) 1995-01-23 1996-01-23 Steam iron having a fabric temperature sensor for controlling steam production

Country Status (7)

Country Link
US (1) US5642579A (en)
EP (1) EP0753091B1 (en)
JP (1) JPH09510904A (en)
CN (1) CN1070559C (en)
BR (1) BR9603892A (en)
DE (1) DE69608174T2 (en)
WO (1) WO1996023098A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5842295A (en) * 1997-06-30 1998-12-01 U. S. Philips Corporation Ironing machine having an iron and a stand
US6079133A (en) * 1997-10-29 2000-06-27 U.S. Philips Corporation Steam iron with anticipating power control
US6438876B2 (en) 2000-01-25 2002-08-27 Koninklijke Philips Electronics N.V. Steam iron
WO2004009898A2 (en) * 2002-07-24 2004-01-29 Koninklijke Philips Electronics N.V. Iron with fabric contact detector
WO2004018936A1 (en) * 2002-08-26 2004-03-04 Koninklijke Philips Electronics N.V. Electric steaming device
WO2006067754A1 (en) * 2004-12-22 2006-06-29 Koninklijke Philips Electronics N.V. Steam ironing device, ironing board and ironing system, with means for providing an electrically charged steam output
US20070102414A1 (en) * 2003-12-16 2007-05-10 Koninklijke Philips Electronics N.C. Steam ironing device
US20070175072A1 (en) * 2006-01-27 2007-08-02 Tunbow Electrical Limited Steam iron
US20070289174A1 (en) * 2004-11-11 2007-12-20 Koninklijke Philips Electronics N.V. Steam Iron Having Two Flat Resistive Elements For Heating The Soleplate
US20080189993A1 (en) * 2007-02-12 2008-08-14 Luis Cavada Fast Heat / Fast Cool Iron With Steam Boiler
US20080244938A1 (en) * 2005-02-11 2008-10-09 Serge Voitchovsky Ironing System
US7516565B1 (en) 2008-03-20 2009-04-14 Samson Tsen Steam channeling structure
DE202009002302U1 (en) 2008-03-27 2009-05-20 Tsen, Samson Steam adapter
US20090265964A1 (en) * 2005-04-07 2009-10-29 Koninklijke Philips Electronics N.V. Ironing appliance comprising identification means for identifying the fabric type of articles to be ironed
EP2175066A1 (en) * 2007-06-29 2010-04-14 Tuming You Method for ejecting steam in electric iron and steam iron using the same
US20100115788A1 (en) * 2005-11-10 2010-05-13 Lg Electronics Inc. Steam Generator and Laundry Dryer Having the Same and Controlling Method Thereof
US20100257761A1 (en) * 2009-04-08 2010-10-14 Lung Wai Choi Electric iron with a synchronizing temperature display
US20110296723A1 (en) * 2008-12-11 2011-12-08 Rowenta Werke Gmbh Ironing Appliance Comprising a Piezoelectric Pump
US8776409B2 (en) 2011-04-20 2014-07-15 Notable Creations, Inc. Apparatus for removing wrinkles from fabric
US8844177B2 (en) 2010-08-12 2014-09-30 Koninklijke Philips N.V. Iron featuring liquid phase garment moisturization via soleplate
US20160145794A1 (en) * 2014-11-26 2016-05-26 International Business Machines Corporation Automated selection of settings for an ironing device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10332656A1 (en) 2003-01-25 2004-07-29 Electrolux Home Products Corporation N.V. Process for treating textiles in a household clothes dryer
WO2005014917A1 (en) * 2003-08-12 2005-02-17 Laurastar S.A. Ironing system with sensor
JP2007510490A (en) * 2003-11-11 2007-04-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ A device to stretch clothes
GB2456303A (en) * 2008-01-08 2009-07-15 Tunbow Electrical Ltd Steam iron with steam control
IT1400336B1 (en) * 2010-05-27 2013-05-24 De Longhi Appliances Srl Iron and relative ironing process
CN102004007A (en) * 2010-10-15 2011-04-06 中国计量学院 Instrument and method for improving temperature regulation accuracy of electric iron temperature controller
RU2573815C9 (en) * 2010-12-23 2017-01-23 Конинклейке Филипс Электроникс Н.В. Steam device for ironing
EP2674529A1 (en) * 2012-06-12 2013-12-18 Koninklijke Philips N.V. Steam iron with a steam-permeable screen
ES2445163B1 (en) * 2012-08-30 2014-12-10 Bsh Electrodomésticos España, S.A. Iron, ironing system and steam ironing station and procedure for ironing fabrics
WO2014106793A1 (en) * 2013-01-02 2014-07-10 Koninklijke Philips N.V. A garment steaming device
CN105121731B (en) * 2013-04-02 2017-09-08 Lg 电子株式会社 Clothes treatment device
CN104328641B (en) * 2014-10-11 2017-01-25 广东新宝电器股份有限公司 Steam station electric iron
US20180051410A1 (en) * 2015-03-30 2018-02-22 Koninklijke Philips N.V. An ironing appliance with means for controlling the heating power

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835363A (en) * 1985-11-23 1989-05-30 Robert Krups Stiftung & Co. Kg. Electric steam iron heated by halogen lamp and having a ceramic sole plate
US5042179A (en) * 1989-03-28 1991-08-27 U.S. Philips Corp. Steam iron having plural heating elements and a control circuit regulating timed heating element power
JPH03267098A (en) * 1990-03-16 1991-11-27 Toshiba Corp Electric iron
JPH045998A (en) * 1990-04-24 1992-01-09 Matsushita Electric Ind Co Ltd Iron
US5391859A (en) * 1991-07-19 1995-02-21 U.S. Philips Corporation Iron comprising humidity responsive motion detector and electrostatic charge detector for controlling the heating element

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7900888U1 (en) * 1978-01-11 Dokoupil, Jiri, 6251 Gueckingen
EP0289633A1 (en) * 1987-05-06 1988-11-09 ROBERT KRUPS STIFTUNG &amp; CO. KG. Electrically heated iron, especially a steam iron
DE3942347A1 (en) * 1989-12-21 1991-07-18 Braun Ag steam iron
IT1240471B (en) * 1990-06-01 1993-12-17 Nida S.R.L. Iron steam ironing, perfected.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835363A (en) * 1985-11-23 1989-05-30 Robert Krups Stiftung & Co. Kg. Electric steam iron heated by halogen lamp and having a ceramic sole plate
US5042179A (en) * 1989-03-28 1991-08-27 U.S. Philips Corp. Steam iron having plural heating elements and a control circuit regulating timed heating element power
JPH03267098A (en) * 1990-03-16 1991-11-27 Toshiba Corp Electric iron
JPH045998A (en) * 1990-04-24 1992-01-09 Matsushita Electric Ind Co Ltd Iron
US5391859A (en) * 1991-07-19 1995-02-21 U.S. Philips Corporation Iron comprising humidity responsive motion detector and electrostatic charge detector for controlling the heating element

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5842295A (en) * 1997-06-30 1998-12-01 U. S. Philips Corporation Ironing machine having an iron and a stand
US6079133A (en) * 1997-10-29 2000-06-27 U.S. Philips Corporation Steam iron with anticipating power control
US6438876B2 (en) 2000-01-25 2002-08-27 Koninklijke Philips Electronics N.V. Steam iron
WO2004009898A2 (en) * 2002-07-24 2004-01-29 Koninklijke Philips Electronics N.V. Iron with fabric contact detector
WO2004009898A3 (en) * 2002-07-24 2004-04-22 Koninkl Philips Electronics Nv Iron with fabric contact detector
US7340853B2 (en) 2002-07-24 2008-03-11 Koninklijke Philips Electronics N.V. Iron with fabric contact detector
WO2004018936A1 (en) * 2002-08-26 2004-03-04 Koninklijke Philips Electronics N.V. Electric steaming device
US20070102414A1 (en) * 2003-12-16 2007-05-10 Koninklijke Philips Electronics N.C. Steam ironing device
US8464445B2 (en) * 2003-12-16 2013-06-18 Koninklijke Philips Electronics, N.V. Steam ironing device having heating means, pump, and control circuit to control ratio of fluid flow rate of pump to power of heating means
US20070289174A1 (en) * 2004-11-11 2007-12-20 Koninklijke Philips Electronics N.V. Steam Iron Having Two Flat Resistive Elements For Heating The Soleplate
CN101072911B (en) * 2004-11-11 2011-06-08 皇家飞利浦电子股份有限公司 Steam iron having two flat resistive heating elements for heating the soleplate
US7472504B2 (en) * 2004-11-11 2009-01-06 Koninklijke Philips Electronics N.V. Steam iron having two flat resistive elements for heating the soleplate
WO2006067754A1 (en) * 2004-12-22 2006-06-29 Koninklijke Philips Electronics N.V. Steam ironing device, ironing board and ironing system, with means for providing an electrically charged steam output
US20080244938A1 (en) * 2005-02-11 2008-10-09 Serge Voitchovsky Ironing System
US7562474B2 (en) * 2005-02-11 2009-07-21 Laurstar S.A. Ironing system
US7779565B2 (en) * 2005-04-07 2010-08-24 Koninklijke Philips Electronics N.V. Ironing appliance comprising identification means for identifying the fabric type of articles to be ironed
US20090265964A1 (en) * 2005-04-07 2009-10-29 Koninklijke Philips Electronics N.V. Ironing appliance comprising identification means for identifying the fabric type of articles to be ironed
US20100115788A1 (en) * 2005-11-10 2010-05-13 Lg Electronics Inc. Steam Generator and Laundry Dryer Having the Same and Controlling Method Thereof
US9663894B2 (en) * 2005-11-10 2017-05-30 Lg Electronics Inc. Steam generator and laundry dryer having the same and controlling method thereof
US7395619B2 (en) * 2006-01-27 2008-07-08 Tunbow Electrical Limited Steam iron
US20070175072A1 (en) * 2006-01-27 2007-08-02 Tunbow Electrical Limited Steam iron
US7926208B2 (en) * 2007-02-12 2011-04-19 Applica Consumer Products, Inc. Fast heat/fast cool iron with steam boiler
US20080189993A1 (en) * 2007-02-12 2008-08-14 Luis Cavada Fast Heat / Fast Cool Iron With Steam Boiler
EP2175066A1 (en) * 2007-06-29 2010-04-14 Tuming You Method for ejecting steam in electric iron and steam iron using the same
EP2175066A4 (en) * 2007-06-29 2013-12-04 Tuming You Method for ejecting steam in electric iron and steam iron using the same
US7516565B1 (en) 2008-03-20 2009-04-14 Samson Tsen Steam channeling structure
DE202009002302U1 (en) 2008-03-27 2009-05-20 Tsen, Samson Steam adapter
US20110296723A1 (en) * 2008-12-11 2011-12-08 Rowenta Werke Gmbh Ironing Appliance Comprising a Piezoelectric Pump
US8484869B2 (en) * 2008-12-11 2013-07-16 Rowenta Werke Gmbh Ironing appliance comprising a piezoelectric pump
US20100257761A1 (en) * 2009-04-08 2010-10-14 Lung Wai Choi Electric iron with a synchronizing temperature display
US8844177B2 (en) 2010-08-12 2014-09-30 Koninklijke Philips N.V. Iron featuring liquid phase garment moisturization via soleplate
US8776409B2 (en) 2011-04-20 2014-07-15 Notable Creations, Inc. Apparatus for removing wrinkles from fabric
US20160145794A1 (en) * 2014-11-26 2016-05-26 International Business Machines Corporation Automated selection of settings for an ironing device
US20160319477A1 (en) * 2014-11-26 2016-11-03 International Business Machines Corporation Automated selection of settings for an ironing device
US9879373B2 (en) * 2014-11-26 2018-01-30 International Business Machines Corporation Automated selection of settings for an ironing device
US9994993B2 (en) * 2014-11-26 2018-06-12 International Business Machines Corporation Automated selection of settings for an ironing device
US10689794B2 (en) 2014-11-26 2020-06-23 International Business Machines Corporation Automated selection of settings for an ironing device

Also Published As

Publication number Publication date
EP0753091A1 (en) 1997-01-15
CN1148420A (en) 1997-04-23
WO1996023098A1 (en) 1996-08-01
BR9603892A (en) 1997-10-07
DE69608174D1 (en) 2000-06-15
JPH09510904A (en) 1997-11-04
DE69608174T2 (en) 2000-12-14
CN1070559C (en) 2001-09-05
EP0753091B1 (en) 2000-05-10

Similar Documents

Publication Publication Date Title
EP1702098B1 (en) Steam ironing device
CN101663433B (en) Method for operating a condenser tumble-dryer comprising a thermal pump and a condenser tumble dryer that is suitable for said method
KR100964695B1 (en) Dryer
US8424141B2 (en) Cloth treating apparatus and controlling method thereof
EP2006437B1 (en) Laundry drier with heating in heat pump circuit
RU2399705C2 (en) Ironing device, comprising facility of identification for identification of fabric type of articles, which should be ironed
CA1130848A (en) Controlled temperature hair dryer
EP1336005B1 (en) Cordless iron with piezoelectric water sprayer
KR101276041B1 (en) apparatus for drying laundary and controlling method of the same
US2851789A (en) Control system for clothes dryers
US7082695B1 (en) Power-saving drying machine control
US5276978A (en) Temperature controlled conveyor dryer
DE112008000412B4 (en) Traction-free dryer
US7020982B2 (en) Method for controlling clothes dryer
WO2016150402A1 (en) Condensed water collecting and evaporating device for cloth drying machine, cloth drying machine and control method therefor
CN1978731B (en) Drum washing-drying machine and drying time determining method
US20100050464A1 (en) Clothes dryer apparatus and method for de-wrinkling clothes with reduced condensation
KR101507783B1 (en) steam home appliance and controlling method of the same
CN2530971Y (en) Low-temp. steam electric iron
US20040025382A1 (en) Iron with surge steam function
US4837952A (en) Steam iron having variable heat conductivity between the heating base and sole plate
DE4023000C2 (en) Tumble dryer with a heat pump circuit
US2878579A (en) Automatic clothes dryer control
EP2227585B1 (en) Washing/drying device comprising a moisture determining device and method for operating a washing/drying device
US4195415A (en) Air driers and control circuits therefor

Legal Events

Date Code Title Description
AS Assignment

Owner name: U.S. PHILIPS CORPORATION, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NETTEN, ADRIAAN;TSE, HONG W.C.;REEL/FRAME:007867/0769;SIGNING DATES FROM 19960228 TO 19960301

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20090701