US5567352A - Phosphor and method of making same - Google Patents

Phosphor and method of making same Download PDF

Info

Publication number
US5567352A
US5567352A US08/425,535 US42553595A US5567352A US 5567352 A US5567352 A US 5567352A US 42553595 A US42553595 A US 42553595A US 5567352 A US5567352 A US 5567352A
Authority
US
United States
Prior art keywords
nah
phosphor
phosphors
inorganic
sup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/425,535
Inventor
Ru-Yi Qi
Ronald E. Karam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram Sylvania Inc
Original Assignee
Osram Sylvania Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Sylvania Inc filed Critical Osram Sylvania Inc
Priority to US08/425,535 priority Critical patent/US5567352A/en
Assigned to OSRAM SYLVANIA INC. reassignment OSRAM SYLVANIA INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KARAM, RONALD E., QI, RU-YI
Application granted granted Critical
Publication of US5567352A publication Critical patent/US5567352A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0805Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • C09K11/592Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/611Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/646Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/671Chalcogenides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source

Definitions

  • This invention relates to phosphors and methods of making them.
  • it relates to inorganic intercalation phosphors made by doping inorganic intercalation compounds with selected activator ions which, when excited by ultraviolet light, cathode rays or other exciting radiation, are capable of luminescent emission.
  • phosphors are critical components in a number of lamp types, electroluminescent devices, and cathode ray tubes for televisions and computer monitors.
  • the performance of these devices can be directly linked to the performance of the phosphors which they incorporate.
  • UV ultraviolet radiation
  • photoluminescent phosphors find use in a number of different lamp types including fluorescent, high pressure mercury and neon sign lamps.
  • fluorescent lighting applications it is particularly important that phosphors be stimulable by the primary ultraviolet emissions from low pressure mercury discharges which occur at 185 and 254 nm.
  • cathode ray tube applications it is necessary that phosphors luminesce when excited by cathode ray radiation (CR), which consists of high energy electrons.
  • CR cathode ray radiation
  • Phosphors which are excited by cathode rays are defined as being cathodoluminescent.
  • cathodoluminescent phosphors emit light over the entire range of the visible spectrum, phosphors that emit red, green and blue light are particularly important for use in the manufacture of luminescent screens for televisions and computer monitors.
  • an inorganic lamellar intercalation compound NaH(ZnPO 4 ) 2
  • a red-emitting phosphor having the general formula, NaH(Zn 1-x Mn x PO 4 ) 2 , where x is between about 0.02 to about 0.12.
  • an inorganic intercalation phosphor having the general formula NaH(Zn 1-x Mn x PO 4 ) 2 , where x is between about 0.02 to about 0.12, is made by the steps of: forming an aqueous mixture by combining appropriate quantities of NaH 2 PO 4 ⁇ H 2 O, MnCl 2 ⁇ 4H 2 O, and aqueous solutions of NaOH and Zn(NO 3 ) 2 , with water, and heating the aqueous mixture in an enclosed vessel at about 70° C. for about 4-5 days.
  • the FIGURE is a schematic diagram representing the approximate atomic structure of fluorophlogopite, an inorganic intercalation compound.
  • Intercalation compounds generally have an atomic structure characterized by the presence of ionically bonded atoms in substructures interspersed with vacant spaces which are sufficiently large to accommodate foreign atoms or molecules within them.
  • Intercalation compounds are generally of three types: lamellar, or layered, compounds; channel-type compounds; and cage-type compounds.
  • the atomic substructures comprise layers, or lamellae, of ionically bonded inorganic atoms.
  • the lamellae themselves are bonded together by relatively weak forces, known as Van der Waals forces.
  • the relatively weak Van der Waals forces between the lamellae permit the entry of foreign atoms or molecules into the spaces (hereinafter referred to as "Van der Waals spaces") between the lamellae.
  • the Van der Waals spaces in lamellar intercalation compounds are large enough to accommodate foreign atoms or molecules which may be introduced by various methods, such as, for example, ion exchange, diffusion, acid-base reactions and electrochemical reactions.
  • the atomic substructures comprise zones of ionically bonded inorganic atoms which are interspersed with networks of vacant channels which are sufficiently large to accommodate foreign atoms or molecules within them.
  • the atomic substructures of ionically bonded atoms are interspersed with vacant holes, or cages, which are sufficiently large to accommodate foreign atoms or molecules within them.
  • the vacant channels or cages are interspersed throughout the atomic structure of the intercalation compound.
  • the lamellae of a crystal of a lamellar inorganic intercalation compound are generally parallel to the long axis of the crystal, whereas the channels of a channel-type inorganic intercalation compound crystal, and the cages or holes of a cage-type crystal, may be more randomly oriented.
  • Suitable inorganic intercalation compounds include vermiculites, micas, fluoromicas, xerogels (such as, for example, vanadium pentoxide made by sol-gel processing), iron oxychloride, zirconium phosphates, and zeolites.
  • Vermiculite is a lamellar intercalation compound which has the idealized general formula (Ca,Mg) x/2 (Mg,Fe,Al) 3 [(Al,Si) 4 O 10 ](OH) 2 , where the first listed calcium and magnesium ions are exchangeable cations which reside in the interlamellar Van der Waals spaces, and x is any integer.
  • Mica is another type of lamellar intercalation compound having the general idealized formula M x (Si 4 O 10 )(OH) 2 , where M is an exchangeable cation, typically aluminum or magnesium, and x is any integer.
  • Fluoromicas which are similar in structure to vermiculites, have the general idealized formula (Ca,Mg) x/2 (Mg,Fe,Al) 3 [(Al,Si) 4 O 10 ]F 2 .
  • An example of a fluoromica is fluorophlogopite, which has the general formula KMg 3 (Si 3 Al)O 10 F 2 .
  • FIGURE is a schematic representation of the lamellar atomic structure of fluorophlogopite.
  • Fluorophlogopite 10 is comprised of atoms of oxygen 18, aluminum 20, silicon 22, magnesium 24 and fluorine 26 which are ionically bonded together into atomic substructures 12. Between the atomic substructures 12 are Van der Waals spaces 14 in which reside potassium atoms 16.
  • Zirconium phosphates have the general formula Zr(MPO 4 ) 2 ⁇ xH 2 O, where M is a monovalent exchangeable cation and x is any integer.
  • Zeolites are crystalline aluminosilicate intercalation compounds having an atomic structure which is interspersed with networks of channels and/or cages filled with exchangeable cations and water. Zeolites have the general formula M x D y (Al x+2y Si n- (x+2y) O 2n ) ⁇ mH 2 O, where M is a monovalent or divalent exchangeable cation and x and y are any integers.
  • the channels and/or cages within the zeolite structure are sufficiently large to accommodate foreign atoms or molecules within them, including organic polymers, which may be introduced by the previously described methods.
  • the inorganic intercalation compounds are doped with selected activator ions which are capable of luminescent emission under cathodoluminescent, fluorescent, x-ray or electroluminescent excitation.
  • activator ions capable of luminescent emission under cathodoluminescent, fluorescent, x-ray or electroluminescent excitation.
  • the following table lists several activator ions suitable for doping, along with the probable emission color from each. The precise emission colors obtained will depend on the site occupied by the particular activator ion in the lattice of the inorganic intercalation compound.
  • the activator ions may be doped into the atomic lattice of the inorganic intercalation compound by several methods, including high-temperature solid-state synthesis (generally in excess of 1000° C.), hydrothermal synthesis, wet-chemical procedures and low-temperature procedures.
  • the activator ions generally occupy lattice sites within the atomic structure of the inorganic intercalation compound. For example, when an inorganic intercalation compound, such as fluorophlogopite, is doped with manganese ions, the manganese ions replace a small fraction of the magnesium ions in the fluorophlogopite atomic structure.
  • Fluxing agents such as, for example, sodium chloride or barium chloride, may be used during the doping process, although they are not generally required.
  • the doped inorganic intercalation compound may be excited with, for example, cathode ray or ultraviolet radiation, to determine its luminescence intensity and its emission color.
  • Luminescence intensity of the doped inorganic intercalation compound may be optimized by varying the amounts of the desired dopant ions.
  • NaH(ZnPO 4 ) 2 Another lamellar intercalation compound is NaH(ZnPO 4 ) 2 .
  • This compound consists of a two-dimensional network of ZnO 4 and PO 4 tetrahedra, linked through oxygen vertices, to form a structure whose interlayers are occupied by charge-balancing cations.
  • the small interlayer sodium cations allow for hydrogen bonding between the layers, resulting in puckered sheets.
  • Luminescent forms of NaH(ZnPO 4 ) 2 can be made by doping with various activator ions.
  • a red emitting phosphor has been achieved by doping NaH(ZnPO 4 ) 2 with small amounts of manganese to yield a phosphor having the general formula NaH(Zn 1-x Mn x PO 4 ) 2 , where x ranges between 0.02 ⁇ x ⁇ 0.12. Specific examples of the phosphor are given below.
  • the NaH(Zn 1-x Mn x PO 4 ) 2 phosphors were prepared using a hydrothermal method which involves mixing appropriate quantities of aqueous solutions of NaOH and Zn(NO 3 ) 2 , with MnCl 2 ⁇ 4H 2 O, NaH 2 PO 4 ⁇ H 2 O and de-ionized H 2 O and heating the mixture to about 70° C. in an enclosed vessel for several days until the reaction is complete.
  • Typical UV excitation was performed with the 254 nm line from a mercury discharge.
  • Cathode ray excitation was typically performed using a focused high energy electron beam at 10 kV, 10 uA or 15 kV, 8 uA. Brightness measurements are given in foot-Lamberts (fL).
  • Manganese activated NaH(Zn 1-x Mn x PO 4 ) 2 phosphor samples were prepared by combining appropriate amounts of 4M NaOH and 2M Zn(NO 3 ) 2 with NaH 2 PO 4 ⁇ H 2 O, MnCl 2 ⁇ 4H 2 O and 30 ml of de-ionized (DI) H 2 O and mixing with a magnetic stirrer for about one hour.
  • the amounts of the reactants are given in the following table.
  • the reactant mixtures were charged into a Teflon bomb and heated at about 70° C. for 4-5 days.
  • X-ray diffraction and SEM analyses confirmed a single-phase product, characteristic for NaH(ZnPO 4 ) 2 . Red-emitting NaH(Zn 1-x Mn x PO 4 ) 2 phosphors having manganese doping levels from 0.02 ⁇ x ⁇ 0.12 are described below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

Inorganic intercalation phosphors were made by doping an inorganic intercalation compound having an atomic structure interspersed with vacant spaces with selected activator ions capable of luminescent emission when excited by ultraviolet light and/or cathode rays.

Description

The United States Government has rights in this invention pursuant to U.S. Government Contract No. DAAL01-92-C-0241.
CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation-in-part of application Ser. No. 08/189,012, filed Jan. 28, 1994, now abandoned, which is a continuation-in-part of application Ser. No. 07/999,637, filed Dec. 31, 1992, now abandoned, the disclosures of which are hereby incorporated by reference. This application is related to copending applications Ser. Nos. 08/425,849, 08/425,848, and 08/425,536, all filed Apr. 20, 1995.
TECHNICAL FIELD
This invention relates to phosphors and methods of making them. In particular, it relates to inorganic intercalation phosphors made by doping inorganic intercalation compounds with selected activator ions which, when excited by ultraviolet light, cathode rays or other exciting radiation, are capable of luminescent emission.
BACKGROUND ART
In present day society, there exist numerous applications for phosphors. For example, phosphors are critical components in a number of lamp types, electroluminescent devices, and cathode ray tubes for televisions and computer monitors. Generally, the performance of these devices can be directly linked to the performance of the phosphors which they incorporate. Thus, in order to promote the evolution of these technologies, it is essential that new phosphors routinely be developed which could be used in those applications.
For lighting applications, it is desirable that phosphors luminesce when stimulated by ultraviolet radiation (UV), which is generally defined as the portion of the electromagnetic spectrum between about 4-400 nm. Such UV excitable phosphors are defined as being photoluminescent. Photoluminescent phosphors find use in a number of different lamp types including fluorescent, high pressure mercury and neon sign lamps. For fluorescent lighting applications, it is particularly important that phosphors be stimulable by the primary ultraviolet emissions from low pressure mercury discharges which occur at 185 and 254 nm.
For cathode ray tube applications, it is necessary that phosphors luminesce when excited by cathode ray radiation (CR), which consists of high energy electrons. Phosphors which are excited by cathode rays are defined as being cathodoluminescent. Although it is desirable that cathodoluminescent phosphors emit light over the entire range of the visible spectrum, phosphors that emit red, green and blue light are particularly important for use in the manufacture of luminescent screens for televisions and computer monitors.
Finally, most phosphors which are cathodoluminescent and/or photoluminescent are also electroluminescent and would likely be usable in electroluminescent devices. Thus, it would be an advantage in the art to provide novel phosphors which are capable of luminescent emission when excited by either ultraviolet radiation or cathode rays or both.
SUMMARY OF THE INVENTION
It is an object of this invention to provide an inorganic intercalation phosphor capable of luminescent emission when excited by ultraviolet and/or cathode rays.
It is a further object of this invention to provide a method for producing an inorganic intercalation phosphor.
In accordance with one object of the invention, an inorganic lamellar intercalation compound, NaH(ZnPO4)2, is activated with manganese to provide a red-emitting phosphor having the general formula, NaH(Zn1-x Mnx PO4)2, where x is between about 0.02 to about 0.12.
In accordance with another object of the invention, an inorganic intercalation phosphor having the general formula NaH(Zn1-x Mnx PO4)2, where x is between about 0.02 to about 0.12, is made by the steps of: forming an aqueous mixture by combining appropriate quantities of NaH2 PO4 ·H2 O, MnCl2 ·4H2 O, and aqueous solutions of NaOH and Zn(NO3)2, with water, and heating the aqueous mixture in an enclosed vessel at about 70° C. for about 4-5 days.
BRIEF DESCRIPTION OF THE DRAWINGS
The FIGURE is a schematic diagram representing the approximate atomic structure of fluorophlogopite, an inorganic intercalation compound.
BEST MODE FOR CARRYING OUT THE INVENTION
For a better understanding of the present invention, together with other and further objects, advantages and capabilities thereof, reference is made to the following specification and appended claims.
Numerous inorganic intercalation compounds are known. They generally have an atomic structure characterized by the presence of ionically bonded atoms in substructures interspersed with vacant spaces which are sufficiently large to accommodate foreign atoms or molecules within them. Intercalation compounds are generally of three types: lamellar, or layered, compounds; channel-type compounds; and cage-type compounds.
In lamellar intercalation compounds the atomic substructures comprise layers, or lamellae, of ionically bonded inorganic atoms. The lamellae themselves are bonded together by relatively weak forces, known as Van der Waals forces. The relatively weak Van der Waals forces between the lamellae permit the entry of foreign atoms or molecules into the spaces (hereinafter referred to as "Van der Waals spaces") between the lamellae. The Van der Waals spaces in lamellar intercalation compounds are large enough to accommodate foreign atoms or molecules which may be introduced by various methods, such as, for example, ion exchange, diffusion, acid-base reactions and electrochemical reactions.
In channel-type intercalation compounds the atomic substructures comprise zones of ionically bonded inorganic atoms which are interspersed with networks of vacant channels which are sufficiently large to accommodate foreign atoms or molecules within them. In cage-type intercalation compounds the atomic substructures of ionically bonded atoms are interspersed with vacant holes, or cages, which are sufficiently large to accommodate foreign atoms or molecules within them. The vacant channels or cages are interspersed throughout the atomic structure of the intercalation compound.
The lamellae of a crystal of a lamellar inorganic intercalation compound are generally parallel to the long axis of the crystal, whereas the channels of a channel-type inorganic intercalation compound crystal, and the cages or holes of a cage-type crystal, may be more randomly oriented.
Suitable inorganic intercalation compounds include vermiculites, micas, fluoromicas, xerogels (such as, for example, vanadium pentoxide made by sol-gel processing), iron oxychloride, zirconium phosphates, and zeolites.
Vermiculite is a lamellar intercalation compound which has the idealized general formula (Ca,Mg)x/2 (Mg,Fe,Al)3 [(Al,Si)4 O10 ](OH)2, where the first listed calcium and magnesium ions are exchangeable cations which reside in the interlamellar Van der Waals spaces, and x is any integer. Mica is another type of lamellar intercalation compound having the general idealized formula Mx (Si4 O10)(OH)2, where M is an exchangeable cation, typically aluminum or magnesium, and x is any integer. Fluoromicas, which are similar in structure to vermiculites, have the general idealized formula (Ca,Mg)x/2 (Mg,Fe,Al)3 [(Al,Si)4 O10 ]F2. An example of a fluoromica is fluorophlogopite, which has the general formula KMg3 (Si3 Al)O10 F2.
The FIGURE is a schematic representation of the lamellar atomic structure of fluorophlogopite. Fluorophlogopite 10 is comprised of atoms of oxygen 18, aluminum 20, silicon 22, magnesium 24 and fluorine 26 which are ionically bonded together into atomic substructures 12. Between the atomic substructures 12 are Van der Waals spaces 14 in which reside potassium atoms 16.
Zirconium phosphates have the general formula Zr(MPO4)2 ·xH2 O, where M is a monovalent exchangeable cation and x is any integer.
Zeolites are crystalline aluminosilicate intercalation compounds having an atomic structure which is interspersed with networks of channels and/or cages filled with exchangeable cations and water. Zeolites have the general formula Mx Dy (Alx+2y Sin-(x+2y) O2n)·mH2 O, where M is a monovalent or divalent exchangeable cation and x and y are any integers. The channels and/or cages within the zeolite structure are sufficiently large to accommodate foreign atoms or molecules within them, including organic polymers, which may be introduced by the previously described methods.
The inorganic intercalation compounds are doped with selected activator ions which are capable of luminescent emission under cathodoluminescent, fluorescent, x-ray or electroluminescent excitation. The following table lists several activator ions suitable for doping, along with the probable emission color from each. The precise emission colors obtained will depend on the site occupied by the particular activator ion in the lattice of the inorganic intercalation compound.
              TABLE 1                                                     
______________________________________                                    
ACTIVATOR ION DOPANTS AND                                                 
THEIR EMISSION COLORS                                                     
RED            GREEN        BLUE                                          
______________________________________                                    
Mn.sup.+2      Mn.sup.+2    Sb.sup.+3                                     
Mn.sup.+4      Eu.sup.+2    Ti.sup.+4                                     
Fe.sup.+3      Tb.sup.+3    Sn.sup.+2                                     
Eu.sup.+3                   Tm.sup.+3                                     
Sm.sup.+3                   Eu.sup.+2                                     
Cr.sup.+3                   Ce.sup.+3                                     
______________________________________                                    
The activator ions may be doped into the atomic lattice of the inorganic intercalation compound by several methods, including high-temperature solid-state synthesis (generally in excess of 1000° C.), hydrothermal synthesis, wet-chemical procedures and low-temperature procedures. The activator ions generally occupy lattice sites within the atomic structure of the inorganic intercalation compound. For example, when an inorganic intercalation compound, such as fluorophlogopite, is doped with manganese ions, the manganese ions replace a small fraction of the magnesium ions in the fluorophlogopite atomic structure.
Fluxing agents, such as, for example, sodium chloride or barium chloride, may be used during the doping process, although they are not generally required.
The doped inorganic intercalation compound may be excited with, for example, cathode ray or ultraviolet radiation, to determine its luminescence intensity and its emission color. Luminescence intensity of the doped inorganic intercalation compound may be optimized by varying the amounts of the desired dopant ions.
Another lamellar intercalation compound is NaH(ZnPO4)2. This compound consists of a two-dimensional network of ZnO4 and PO4 tetrahedra, linked through oxygen vertices, to form a structure whose interlayers are occupied by charge-balancing cations. The small interlayer sodium cations allow for hydrogen bonding between the layers, resulting in puckered sheets. Luminescent forms of NaH(ZnPO4)2 can be made by doping with various activator ions. In particular, a red emitting phosphor has been achieved by doping NaH(ZnPO4)2 with small amounts of manganese to yield a phosphor having the general formula NaH(Zn1-x Mnx PO4)2, where x ranges between 0.02≦x≦0.12. Specific examples of the phosphor are given below.
The NaH(Zn1-x Mnx PO4)2 phosphors were prepared using a hydrothermal method which involves mixing appropriate quantities of aqueous solutions of NaOH and Zn(NO3)2, with MnCl2 ·4H2 O, NaH2 PO4 ·H2 O and de-ionized H2 O and heating the mixture to about 70° C. in an enclosed vessel for several days until the reaction is complete.
The following non-limiting examples are presented. Typical UV excitation was performed with the 254 nm line from a mercury discharge. Cathode ray excitation was typically performed using a focused high energy electron beam at 10 kV, 10 uA or 15 kV, 8 uA. Brightness measurements are given in foot-Lamberts (fL).
Manganese activated NaH(Zn1-x Mnx PO4)2 phosphor samples were prepared by combining appropriate amounts of 4M NaOH and 2M Zn(NO3)2 with NaH2 PO4 ·H2 O, MnCl2 ·4H2 O and 30 ml of de-ionized (DI) H2 O and mixing with a magnetic stirrer for about one hour. The amounts of the reactants are given in the following table. The reactant mixtures were charged into a Teflon bomb and heated at about 70° C. for 4-5 days. X-ray diffraction and SEM analyses confirmed a single-phase product, characteristic for NaH(ZnPO4)2. Red-emitting NaH(Zn1-x Mnx PO4)2 phosphors having manganese doping levels from 0.02≦x≦0.12 are described below.
__________________________________________________________________________
          Example 1                                                       
                Example 2                                                 
                      Example 3                                           
                            Example 4                                     
                                  Example 5                               
__________________________________________________________________________
NaH.sub.2 PO.sub.4.H.sub.2 O (g)                                          
          24.84 24.84 24.84 24.84 24.84                                   
4M NaOH (g)                                                               
          10.28 12.54 10.30 10.28 10.33                                   
2M Zn(NO.sub.3).sub.2 (g)                                                 
          22.81 22.35 21.88 21.49 20.49                                   
MnCl.sub.2.4H.sub.2 O (g)                                                 
          0.1430                                                          
                0.3368                                                    
                      0.4278                                              
                            0.6729                                        
                                  0.8546                                  
DI H.sub.2 O (ml)                                                         
          30.0  30.0  30.0  30.0  30.0                                    
x in NaH(Zn.sub.1-x                                                       
          0.02  0.047 0.06  0.094 0.12                                    
Mn.sub.x PO.sub.4).sub.2                                                  
CR Brightness                                                             
          1.35  1.16  2.15  1.60  1.84                                    
(foot-lamberts)                                                           
__________________________________________________________________________
All samples exhibited a red emission under ultraviolet (UV) and cathode ray (CR) excitation. The CR emission peak was centered at about 650 nm. The optimum brightness, 2.15 fL was achieved at about x=0.06. At the highest dopant level, a manganese containing minor phase with a brown body color was observed.
While there have been shown what are at present considered to be the preferred embodiments of the invention, it will be apparent to those skilled in the art that various changes and modifications can be made herein without departing from the scope of the invention as defined by the appended claims.

Claims (4)

We claim:
1. A phosphor having the general formula NaH(Zn1-x Mnx PO4)2 where x is between about 0.02 to about 0.12.
2. The phosphor of claim 1 wherein x is about 0.06.
3. A method for making a phosphor having the general formula NaH(Zn1-x Mnx PO4)2, where x is between about 0.02 to about 0.12, comprising the steps of forming an aqueous mixture by combining appropriate quantities of NaH2 PO4 ·H2 O, MnCl2 ·4H2 O, and aqueous solutions of NaOH and Zn(NO3)2, with water, and heating the aqueous mixture in an enclosed vessel at about 70° C. for about 4-5 days.
4. The method of claim 3 wherein the aqueous solutions of NaOH and Zn(NO3)2 have concentrations of 4M and 2M, respectively.
US08/425,535 1992-12-31 1995-04-20 Phosphor and method of making same Expired - Fee Related US5567352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/425,535 US5567352A (en) 1992-12-31 1995-04-20 Phosphor and method of making same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US99963792A 1992-12-31 1992-12-31
US18901294A 1994-01-28 1994-01-28
US08/425,535 US5567352A (en) 1992-12-31 1995-04-20 Phosphor and method of making same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US18901294A Continuation-In-Part 1992-12-31 1994-01-28

Publications (1)

Publication Number Publication Date
US5567352A true US5567352A (en) 1996-10-22

Family

ID=46249651

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/425,535 Expired - Fee Related US5567352A (en) 1992-12-31 1995-04-20 Phosphor and method of making same

Country Status (1)

Country Link
US (1) US5567352A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6207077B1 (en) 2000-02-18 2001-03-27 Orion 21 A.D. Pty Ltd Luminescent gel coats and moldable resins
US6818153B2 (en) 1998-10-13 2004-11-16 Peter Burnell-Jones Photocurable thermosetting luminescent resins
US6905634B2 (en) 1998-10-13 2005-06-14 Peter Burnell-Jones Heat curable thermosetting luminescent resins

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2307863A1 (en) * 1975-04-15 1976-11-12 Philips Nv LUMINESCENT SCREEN
US5185180A (en) * 1989-07-31 1993-02-09 Gte Products Corporation Method of improving the maintenance of a fluorescent lamp containing europium-activated barium magnesium silicate phosphor
US5306441A (en) * 1992-12-31 1994-04-26 Gte Products Corporation Method of preparing fluoroplogopite phosphor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2307863A1 (en) * 1975-04-15 1976-11-12 Philips Nv LUMINESCENT SCREEN
US5185180A (en) * 1989-07-31 1993-02-09 Gte Products Corporation Method of improving the maintenance of a fluorescent lamp containing europium-activated barium magnesium silicate phosphor
US5306441A (en) * 1992-12-31 1994-04-26 Gte Products Corporation Method of preparing fluoroplogopite phosphor

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
K. Kuroda, M. Ogawa, T. Yanagisawa, & C. Kato, Layered Inorganic Organic Nanocomposites: Application to Photofunctional Materials and Conversion to Inorganic Micropourous Materials, Nanophase and Nanocomposite Materials Symposium, Dec. 1 3 1992, Boston, MA, pp. 335 347. *
K. Kuroda, M. Ogawa, T. Yanagisawa, & C. Kato, Layered Inorganic-Organic Nanocomposites: Application to Photofunctional Materials and Conversion to Inorganic Micropourous Materials, Nanophase and Nanocomposite Materials Symposium, Dec. 1-3 1992, Boston, MA, pp. 335-347.
Nenoff et al., The Low Temperature Synthesis and Characterization of Two Layered Materials Containing 3 Ring Groupings: NaH(ZnPO 4 ) 2 and CsH(ZnPO 4 ) 2 , J. Solid State Chem., 107, pp. 285 295 (1993). no month. *
Nenoff et al., The Low Temperature Synthesis and Characterization of Two Layered Materials Containing 3-Ring Groupings: NaH(ZnPO4)2 and CsH(ZnPO4)2, J. Solid State Chem., 107, pp. 285-295 (1993). no month.
Smith, "Luminescence of Three Forms of Zinc Orthophosphate:Mn", Jour. Electrochem. Soc., Sep. 1951, pp. 363-368, vol. 98, No. 9.
Smith, Luminescence of Three Forms of Zinc Orthophosphate:Mn , Jour. Electrochem. Soc., Sep. 1951, pp. 363 368, vol. 98, No. 9. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818153B2 (en) 1998-10-13 2004-11-16 Peter Burnell-Jones Photocurable thermosetting luminescent resins
US6905634B2 (en) 1998-10-13 2005-06-14 Peter Burnell-Jones Heat curable thermosetting luminescent resins
US6207077B1 (en) 2000-02-18 2001-03-27 Orion 21 A.D. Pty Ltd Luminescent gel coats and moldable resins

Similar Documents

Publication Publication Date Title
US5489398A (en) Phosphor and method of making same
Shinde et al. Phosphate phosphors for solid-state lighting
US4216408A (en) Luminescent material and discharge lamp and cathode ray tube containing the same
EP0094132B1 (en) Luminescent screen
GB1587598A (en) Fluorescent lamp containing a green emitting rare earth silicate phosphor
CN102604638A (en) Eu<3+>-activated phosphate red phosphor powder as well as preparation method and application thereof
Phogat et al. Crystal structure and photoluminescent analysis of bright orange-red emanating Sm 3+-doped Ca 9 Bi (VO 4) 7 nanophosphor for WLEDs
US4524300A (en) Luminescent screen and lamp containing the same
US5531928A (en) Phosphor and method of making same
US4590405A (en) Bivalent europium-activated barium aluminate phosphor and low mercury vapor discharge lamp provided with a phosphor
US5531926A (en) Phosphor and method of making same
US5567352A (en) Phosphor and method of making same
US6597104B2 (en) Lanthanum phosphate phosphor for vacuum ultraviolet radiation, and rare gas discharge lamp
US5609792A (en) Phosphor and method of making same
US5616285A (en) Phosphor and method of making same
US5597511A (en) Phosphor and method of making same
CN114634816B (en) Double perovskite fluorescent material and preparation method and application thereof
KR20010062527A (en) Phosphor for vacuum ultraviolet excited light emitting device
EP0052398A1 (en) Luminescent screen and low-pressure mercury vapour discharge lamp comprising such a screen
EP0057026B1 (en) Luminescent screen
US5567351A (en) Phosphor and method of making same
EP0292145B1 (en) Improvements in or relating to infra-red phosphors
CN102102016B (en) Aluminate luminescent material and preparation method thereof
US5656199A (en) Terbium or europium activated highly charged fluoropholopite phosphor
US5658495A (en) Mn-dope Na-Li-taenolite

Legal Events

Date Code Title Description
AS Assignment

Owner name: OSRAM SYLVANIA INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:QI, RU-YI;KARAM, RONALD E.;REEL/FRAME:007469/0539

Effective date: 19950418

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20081022