US5491256A - Composition of matter for aliphatic-aromatic ureas, biurets, and allophanates as nitric oxide reducing agents in diesel emissions - Google Patents
Composition of matter for aliphatic-aromatic ureas, biurets, and allophanates as nitric oxide reducing agents in diesel emissions Download PDFInfo
- Publication number
- US5491256A US5491256A US08/222,509 US22250994A US5491256A US 5491256 A US5491256 A US 5491256A US 22250994 A US22250994 A US 22250994A US 5491256 A US5491256 A US 5491256A
- Authority
- US
- United States
- Prior art keywords
- allophanates
- biurets
- aliphatic
- matter
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 11
- 235000013877 carbamide Nutrition 0.000 title abstract description 19
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title description 44
- 239000003638 chemical reducing agent Substances 0.000 title description 5
- 229930195733 hydrocarbon Natural products 0.000 abstract description 11
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 10
- -1 aryl hydrocarbon Chemical class 0.000 abstract description 10
- 125000001931 aliphatic group Chemical group 0.000 abstract description 9
- 125000003342 alkenyl group Chemical group 0.000 abstract description 9
- 125000000304 alkynyl group Chemical group 0.000 abstract description 8
- 239000001257 hydrogen Substances 0.000 abstract description 8
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 abstract description 7
- 150000003672 ureas Chemical class 0.000 abstract description 7
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 abstract 1
- 101150035983 str1 gene Proteins 0.000 abstract 1
- OWIKHYCFFJSOEH-UHFFFAOYSA-N Isocyanic acid Chemical compound N=C=O OWIKHYCFFJSOEH-UHFFFAOYSA-N 0.000 description 18
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 14
- XLJMAIOERFSOGZ-UHFFFAOYSA-N anhydrous cyanic acid Natural products OC#N XLJMAIOERFSOGZ-UHFFFAOYSA-N 0.000 description 13
- 239000002283 diesel fuel Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 12
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 10
- 239000004202 carbamide Substances 0.000 description 10
- IGFHQQFPSIBGKE-UHFFFAOYSA-N 4-nonylphenol Chemical compound CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000002835 absorbance Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 238000001321 HNCO Methods 0.000 description 4
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- LZDSILRDTDCIQT-UHFFFAOYSA-N dinitrogen trioxide Chemical compound [O-][N+](=O)N=O LZDSILRDTDCIQT-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- VXMYUOSDIMLATO-UHFFFAOYSA-N 4-dodecoxyaniline Chemical compound CCCCCCCCCCCCOC1=CC=C(N)C=C1 VXMYUOSDIMLATO-UHFFFAOYSA-N 0.000 description 2
- JQLBBFVOAHUASD-UHFFFAOYSA-N 4-nonoxyaniline Chemical compound CCCCCCCCCOC1=CC=C(N)C=C1 JQLBBFVOAHUASD-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- RZXMPPFPUUCRFN-UHFFFAOYSA-N p-toluidine Chemical compound CC1=CC=C(N)C=C1 RZXMPPFPUUCRFN-UHFFFAOYSA-N 0.000 description 2
- 238000006303 photolysis reaction Methods 0.000 description 2
- 230000015843 photosynthesis, light reaction Effects 0.000 description 2
- 230000003381 solubilizing effect Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- WNVQBUHCOYRLPA-UHFFFAOYSA-N triuret Chemical compound NC(=O)NC(=O)NC(N)=O WNVQBUHCOYRLPA-UHFFFAOYSA-N 0.000 description 2
- DMSHKWHLXNDUST-UHFFFAOYSA-N (4-methylphenyl)urea Chemical compound CC1=CC=C(NC(N)=O)C=C1 DMSHKWHLXNDUST-UHFFFAOYSA-N 0.000 description 1
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 1
- IBPZERIWMICUCB-UHFFFAOYSA-N 1-carbamoyl-3-(4-dodecoxyphenyl)urea Chemical compound CCCCCCCCCCCCOC1=CC=C(NC(=O)NC(N)=O)C=C1 IBPZERIWMICUCB-UHFFFAOYSA-N 0.000 description 1
- YVMLKRWWXXAABT-UHFFFAOYSA-N 1-carbamoyl-3-(4-nonoxyphenyl)urea Chemical compound CCCCCCCCCOC1=CC=C(NC(=O)NC(N)=O)C=C1 YVMLKRWWXXAABT-UHFFFAOYSA-N 0.000 description 1
- OWDVEXPXXWTHKW-UHFFFAOYSA-N 1-carbamoyl-3-(hexylcarbamoyl)urea Chemical compound CCCCCCNC(=O)NC(=O)NC(N)=O OWDVEXPXXWTHKW-UHFFFAOYSA-N 0.000 description 1
- CZADYBJHPXFKRT-UHFFFAOYSA-N 1-carbamoyl-3-[(4-dodecoxyphenyl)carbamoyl]urea Chemical compound CCCCCCCCCCCCOC1=CC=C(NC(=O)NC(=O)NC(N)=O)C=C1 CZADYBJHPXFKRT-UHFFFAOYSA-N 0.000 description 1
- DBTAIHABKGMDSW-UHFFFAOYSA-N 1-carbamoyl-3-[(4-nonoxyphenyl)carbamoyl]urea Chemical compound CCCCCCCCCOC1=CC=C(NC(=O)NC(=O)NC(N)=O)C=C1 DBTAIHABKGMDSW-UHFFFAOYSA-N 0.000 description 1
- XZYBZQCLFVETCH-UHFFFAOYSA-N 1-carbamoyl-3-hexylurea Chemical compound CCCCCCNC(=O)NC(N)=O XZYBZQCLFVETCH-UHFFFAOYSA-N 0.000 description 1
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- 206010006458 Bronchitis chronic Diseases 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 101150108015 STR6 gene Proteins 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 208000007451 chronic bronchitis Diseases 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 239000006280 diesel fuel additive Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- JUVJQIPDVWOVNP-UHFFFAOYSA-N hexylurea Chemical compound CCCCCCNC(N)=O JUVJQIPDVWOVNP-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002085 irritant Substances 0.000 description 1
- 231100000021 irritant Toxicity 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007721 medicinal effect Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000003319 supportive effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 238000009424 underpinning Methods 0.000 description 1
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical compound NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C275/00—Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
- C07C275/46—Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups containing any of the groups, X being a hetero atom, Y being any atom, e.g. acylureas
- C07C275/58—Y being a hetero atom
- C07C275/60—Y being an oxygen atom, e.g. allophanic acids
Definitions
- This composition of matter relates to a chemical method of decreasing nitric oxide, NOx, levels.
- the chemical method utilizes chemical materials and methods that are well known in the art.
- the chemicals utilized by this composition of matter patent are reducing agents. When these reducing agents come in contact with NOx, the latter is reduced to non-toxic or environmentally friendly substances.
- Nitrogen oxides are the oxidation products of elemental nitrogen, organic, or inorganic nitrogen and oxygen at elevated temperatures. Nitrogen oxides include nitric oxide, NO; nitrogen dioxide, NO 2 ; nitrogen trioxide, NO 3 ; dinitrogen trioxide, N 2 O 3 ; tetranitrogen pentaoxide, N 2 O 5 ; tetranitrogen hexaoxide, N 4 O 6 ; nitrous oxide, N 20 ; and the like. Elevated temperatures required to prepare these oxidation products are routinely obtained in internal combustion engines utilizing gasoline, diesel, or aviation fuel.
- NOx is directly responsible for acid rain and photochemical smog.
- chronic exposure to NOx has been directly linked with restricted pulmonary compliance in non-smoking healthy males; acute respiratory disease among children living in "high exposure” towns in Czechoslovakia; and a key irritant cited for the high incidence of chronic bronchitis among Japanese postal workers servicing urban centers as outlined in Medical and Biologic Effects of Environmental Pollutants by the National Academy of Sciences, 1977.
- thermodenox system utilizes a combination of ammonia and oxygen to react with nitric oxide. All of these methods must deal with the problem of the odor of ammonia and its disposal. All require oxygen and other oxidizing agents. These methods also suffer from the drawback of requiring controlled environments which make them difficult to use in mobile vehicles or smaller stationary devices.
- an object of the present invention is to provide chemical preparation of isocyanic acid from a material that is a diesel fuel-soluble precursor for non-stationary power generators.
- the present invention provides a composition of matter comprising substituted ureas, biurets, or alophanates structurally represented, respectively, by: ##STR4## where R is hydrogen or a (C 1 -C 50 ) linear or branched aliphatic, alkenyl, alkynyl or aryl hydrocarbon; ##STR5## where R is hydrogen or a (C 1 -C 50 ) linear or branched aliphatic, alkenyl, alkynyl or aryl hydrocarbon; or ##STR6## where R is hydrogen or a (C 1 -C 50 ) linear or branched aliphatic, alkenyl, alkynyl or aryl hydrocarbon, respectively, which are soluble in diesel fuel and, upon thermal decomposition, generate isocyanic acid.
- the present invention provides a composition of matter comprising substituted ureas (I), biurets (II) or allophanates (III) structurally represented as follows: ##STR7## where R is hydrogen or a (C 1 -C 50 ) linear or branched aliphatic, alkenyl, alkynyl or aryl hydrocarbon. Moreover, it may contain one or more heteroatoms especially, but not restricted to, elements comprising Groups Va, VIa, and VIIa, or mixtures of these heteroatoms.
- the allophanate R may be para-nonylphenyl, a (C 12 H 25 ) aliphatic hydrocarbon or a (C 8 -H 17 ) aliphatic hydrocarbon;
- the biuret R may be a (C 6 C 13 ) aliphatic hydrocarbon, a (C 12 -H 25 ) aliphatic hydrocarbon or para-nonylphenyl; and the urea R may be n-hexyl or para-methyl phenyl.
- composition of matter invention provides a method of solubilizing ureas, biurets, and allophanates in diesel fuel that upon their thermal decomposition generate isocyanic acid (IV), as shown below, an effective nitric oxide reducing agent.
- composition of matter application is targeted as a diesel fuel additive.
- the method entails solubilizing ureas, biurets, and allophanates in diesel fuel so that upon thermal decomposition during the combustion event, the nitric oxide reducing agent, isocyanic acid, is generated.
- nitric oxide reducing agent isocyanic acid
- the chemical underpinning of this invention is generating isocyanic acid, HNCO, to reduce nitrogen oxide (NOx) emissions to environmentally friendly materials as depicted below in Equation (Eq.) 1.
- Isocyanic acid is generated quantatively by thermally decomposing cyanuric acid as shown below in Equation (Eq.) 2; however cyanuric acid technology ##STR8## has very limited applicability to non-stationary NOx power plants because of its insolubility in diesel fuel.
- derivatizing cyanuric acid to enhance its diesel fuel solubility proportionately diminishes its latent isocyanic acid capacity as shown below in Equations (Eqs.) 3, 4, and 5.
- the thrust of the present invention is both the use of ureas (I), biurets (II), and allophanates (III) as thermal sources of isocyanic acid as shown below in Equations (Eqs.) 6, 7, and 8, respectively, and their aliphatic-aromatic derivativation to ensure high diesel fuel solubility.
- R is represented by the following: ##STR11## where R 1 ,R 2 , R 3 , R 4 , and R 5 are each hydrogen or a (C 1 -C 50 ) linear or branched, aliphatic, alkenyl, alkynyl or aryl hydrocarbon; and Y and Z may be a (C 1 -C 5 ) linear aliphatic, alkenyl or alkynyl hydrocarbon or a group consisting of Group Va, Group VIa, and Group VIIa materials of the periodic table.
- a 500 ml 3-neck round bottom flask containing a magnetic stirrer, thermometer, and a gas egress tube is charged with 1 part p-nonylphenol and three parts urea.
- the flask is immersed in oil at 145° C. or any other elevated temperature to ensure that urea is thoroughly melted and efficient stirring occurs for two hours.
- the reaction mixture is then cooled and p-nonylphenyl-allophanate solvent extracted using n-heptane.
- Infrared absorbance at 3270 cm--1 (N--H stretching) and at 1705 cm-1 (C ⁇ O stretching) in addition to the conspicuous absence of any absorbance at 3450 cm-1 (O--H stretching) confirm the chemical transformation.
- Example 2 the general procedure as outlined in Example 1 was again utilized with these modifications.
- the initial reactor was charged with three parts urea and one part amine.
- the reaction was heated for two hours whereupon a fourth part of urea is quickly added and the mixture heated for an addition hour.
- the triuret was solvent extracted using n-heptane. Infrared absorbance at 3300 cm-1 and 3284 cm-1 (interior and terminal N--H stretching, respectively), 1670 cm-1 (C ⁇ O) in addition to the conspicuous absence of any absorbance at 3400 to 3350 cm-1 (amine N--H stretching) was evidence of a chemical transformation.
- the materials synthesized according to the present invention were structurally and physically evaluated.
- the structural property of interest was the was the detection of allophanates, biurets, or triurets and was determined using photospectrometric methods. It was fingerprinted by examining infrared absorbance between 3300 cm-1 and 3200 cm-1 (N--H stretch) and 1710 cm-1 to 1640 cm-1 (C ⁇ O stretch). Results of diesel fuel solubility and thermal stability of the neat experimental samples are summarized below in Table I.
- Example 2 In this Example the procedure in Example 1 was utilized but using one part n-hexylamine and 1.5 part urea to obtain the product of the present Example.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
A composition of matter comprising ureas, biurets or allophanates structurally represented, respectively, by ##STR1## where R is hydrogen or a (C1 -C50) linear or branched aliphatic, alkenyl, alkynyl or aryl hydrocarbon; ##STR2## where R is hydrogen or a (C1 -C50) linear or branched aliphatic, alkenyl, alkynyl or aryl hydrocarbon; or ##STR3## where R is hydrogen or a (C1 -C50) linear or branched aliphatic, alkenyl, alkynyl or aryl hydrocarbon.
Description
This is a continuation of application Ser. No. 07/976,634, filed on Nov. 16, 1992, now abandoned.
This composition of matter relates to a chemical method of decreasing nitric oxide, NOx, levels. The chemical method utilizes chemical materials and methods that are well known in the art. The chemicals utilized by this composition of matter patent are reducing agents. When these reducing agents come in contact with NOx, the latter is reduced to non-toxic or environmentally friendly substances.
Nitrogen oxides are the oxidation products of elemental nitrogen, organic, or inorganic nitrogen and oxygen at elevated temperatures. Nitrogen oxides include nitric oxide, NO; nitrogen dioxide, NO2 ; nitrogen trioxide, NO3 ; dinitrogen trioxide, N2 O3 ; tetranitrogen pentaoxide, N2 O5 ; tetranitrogen hexaoxide, N4 O6 ; nitrous oxide, N20 ; and the like. Elevated temperatures required to prepare these oxidation products are routinely obtained in internal combustion engines utilizing gasoline, diesel, or aviation fuel.
There are cogent ecological and environmental reasons to reduce or ideally eliminate NOx as an internal combustion oxidation product. Once produced, NOx is directly responsible for acid rain and photochemical smog. Moreover, chronic exposure to NOx has been directly linked with restricted pulmonary compliance in non-smoking healthy males; acute respiratory disease among children living in "high exposure" towns in Czechoslovakia; and a key irritant cited for the high incidence of chronic bronchitis among Japanese postal workers servicing urban centers as outlined in Medical and Biologic Effects of Environmental Pollutants by the National Academy of Sciences, 1977.
Numerous chemical and physical methods have been suggested to reduce or eliminate NOx. Certain proposed techniques involve a great deal of capital outlay and require major consumption of additives, scrubbers, etc. For example, U.S. Pat. No. 3,894,141 proposes a reaction with liquid hydrocarbons; U.S. Pat. No. 4,405,587 proposes high temperature burning with a hydrocarbon; U.S. Pat. No. 4,448,899 proposes reacting with an iron chelate; U.S. Pat. No. 3,262,751 reacts NOx with a conjugated diolefin. Other methods utilize reactions with nitriles (U.S. Pat. No. 4,080,425), organic N-compounds amines or amides (U.S. Pat. No. Des. 3,324,668) or pyridine (J57190638). Application of these reactions imposes organic pollutant disposal problems along with the attendant problems of toxicity and malodorous environments. In addition, they require the presence of oxygen and are relatively expensive. Other systems are based on urea reactions. For example U.S. Pat. No. 4,119,702 uses a combination of urea and an oxidizing agent which decomposes it e.g., ozone, nitric acid, inter alia; U.S. Pat. No. 4,325,924 utilizes urea in a high temperature reducing atmosphere; and U.S. Pat. No. 3,900,554 (the thermodenox system) utilizes a combination of ammonia and oxygen to react with nitric oxide. All of these methods must deal with the problem of the odor of ammonia and its disposal. All require oxygen and other oxidizing agents. These methods also suffer from the drawback of requiring controlled environments which make them difficult to use in mobile vehicles or smaller stationary devices.
Back et al, Can J.Chem. 46,531 (1968), discusses the effect of NOx on the photolysis of isocyanic acid, HNCO, the decomposition product of cyanuric acid. Increased nitrogen levels in the presence of nitric oxide were observed utilizing a medium pressure mercury lamp for HNCO photolysis. Despite several remaining uncertainties, it was clear that nitric oxide levels were reduced when contact with isocyanic acid or its dissociation products was effected. A readily available source of isocyanic acid is via the thermal decomposition or unzipping of the corresponding trimer, cyanuric acid, (HNCO)3.
Others disclosures especially as noted by Epperly et al in U.S. Pat. Nos. 4,770,863 and 5,017,347 and Bowers in 4,927,612 report the use of allophanates as another source of isocyanic acid. It may be inferred that these methods also have limited applicability in non-stationary power generators because of their very limited solubility in non-polar solvents, most notably, diesel fuel.
Thus, an object of the present invention is to provide chemical preparation of isocyanic acid from a material that is a diesel fuel-soluble precursor for non-stationary power generators.
The present invention provides a composition of matter comprising substituted ureas, biurets, or alophanates structurally represented, respectively, by: ##STR4## where R is hydrogen or a (C1 -C50) linear or branched aliphatic, alkenyl, alkynyl or aryl hydrocarbon; ##STR5## where R is hydrogen or a (C1 -C50) linear or branched aliphatic, alkenyl, alkynyl or aryl hydrocarbon; or ##STR6## where R is hydrogen or a (C1 -C50) linear or branched aliphatic, alkenyl, alkynyl or aryl hydrocarbon, respectively, which are soluble in diesel fuel and, upon thermal decomposition, generate isocyanic acid.
The present invention provides a composition of matter comprising substituted ureas (I), biurets (II) or allophanates (III) structurally represented as follows: ##STR7## where R is hydrogen or a (C1 -C50) linear or branched aliphatic, alkenyl, alkynyl or aryl hydrocarbon. Moreover, it may contain one or more heteroatoms especially, but not restricted to, elements comprising Groups Va, VIa, and VIIa, or mixtures of these heteroatoms.
In the above structures, the allophanate R may be para-nonylphenyl, a (C12 H25) aliphatic hydrocarbon or a (C8 -H17) aliphatic hydrocarbon; the biuret R may be a (C6 C13) aliphatic hydrocarbon, a (C12 -H25) aliphatic hydrocarbon or para-nonylphenyl; and the urea R may be n-hexyl or para-methyl phenyl.
In addition, the present composition of matter invention provides a method of solubilizing ureas, biurets, and allophanates in diesel fuel that upon their thermal decomposition generate isocyanic acid (IV), as shown below, an effective nitric oxide reducing agent.
H--N═C═O
This composition of matter application is targeted as a diesel fuel additive. The method entails solubilizing ureas, biurets, and allophanates in diesel fuel so that upon thermal decomposition during the combustion event, the nitric oxide reducing agent, isocyanic acid, is generated. Empirically we have discovered that optimum diesel fuel solubility is achieved using aliphatic-aromatic ureas, biurets, or allophanates
The chemical underpinning of this invention is generating isocyanic acid, HNCO, to reduce nitrogen oxide (NOx) emissions to environmentally friendly materials as depicted below in Equation (Eq.) 1. Isocyanic acid is generated quantatively by thermally decomposing cyanuric acid as shown below in Equation (Eq.) 2; however cyanuric acid technology ##STR8## has very limited applicability to non-stationary NOx power plants because of its insolubility in diesel fuel. Moreover, derivatizing cyanuric acid to enhance its diesel fuel solubility proportionately diminishes its latent isocyanic acid capacity as shown below in Equations (Eqs.) 3, 4, and 5. ##STR9## Thus, the thrust of the present invention is both the use of ureas (I), biurets (II), and allophanates (III) as thermal sources of isocyanic acid as shown below in Equations (Eqs.) 6, 7, and 8, respectively, and their aliphatic-aromatic derivativation to ensure high diesel fuel solubility. ##STR10##
Heretofore, the essential aliphatic-aromatic structural requirements to ensure high diesel fuel solubility of corresponding ureas, biurets, and allophanates has been generically represented by R. Structurally, R is represented by the following: ##STR11## where R1,R2, R3, R4, and R5 are each hydrogen or a (C1 -C50) linear or branched, aliphatic, alkenyl, alkynyl or aryl hydrocarbon; and Y and Z may be a (C1 -C5) linear aliphatic, alkenyl or alkynyl hydrocarbon or a group consisting of Group Va, Group VIa, and Group VIIa materials of the periodic table.
In order to further illustrate the present invention and its advantages, the following Examples are provided. It is understood, however, that these Examples do not limit the scope nor application of this invention as defined in the appended claims.
A 500 ml 3-neck round bottom flask containing a magnetic stirrer, thermometer, and a gas egress tube is charged with 1 part p-nonylphenol and three parts urea. The flask is immersed in oil at 145° C. or any other elevated temperature to ensure that urea is thoroughly melted and efficient stirring occurs for two hours. The reaction mixture is then cooled and p-nonylphenyl-allophanate solvent extracted using n-heptane. Infrared absorbance at 3270 cm--1 (N--H stretching) and at 1705 cm-1 (C═O stretching) in addition to the conspicuous absence of any absorbance at 3450 cm-1 (O--H stretching) confirm the chemical transformation.
In this Example, docecyl alcohol was substituted for the p-nonylphenol in the aforementioned Example 1 to obtain the product of the present Example.
In this example octyl alcohol was substituted for the p-nonylphenol in the aforementioned Example 1 to obtain the product of the present Example.
In this Example, n-hexylamine was substituted for the p-nonylphenol in the aforementioned Example 1 to obtain the product of this Example. In this Example, infrared absorbance at 3265 cm-1 (N--H stretching) and 1680 cm-1 (C═O stretching) in addition to the conspicuous absence of any absorbance at 3350 cm-1 (N--H stretching) was supportive of a chemical transformation.
In this Example, p-dodecoxyaniline was substituted for the p-nonylphenol in the aforementioned Example 1 to obtain the product of the present Example.
In this Example, p-nonoxyaniline was substituted for the p-nonylphenol in the aforementioned Example 1 to obtain the product of the present Example.
In this Example, the general procedure as outlined in Example 1 was again utilized with these modifications. The initial reactor was charged with three parts urea and one part amine. The reaction was heated for two hours whereupon a fourth part of urea is quickly added and the mixture heated for an addition hour. The triuret was solvent extracted using n-heptane. Infrared absorbance at 3300 cm-1 and 3284 cm-1 (interior and terminal N--H stretching, respectively), 1670 cm-1 (C═O) in addition to the conspicuous absence of any absorbance at 3400 to 3350 cm-1 (amine N--H stretching) was evidence of a chemical transformation.
In this Example, p-Dodecoxyaniline was substituted for the p-nonylphenol in the aforementioned Example 1 to obtain the product of the present Example.
In this Example, p-Nonoxyaniline was substituted for the p-nonylphenol in the aforementioned Example 1 to obtain the product of the present Example.
The materials synthesized according to the present invention were structurally and physically evaluated. The structural property of interest was the was the detection of allophanates, biurets, or triurets and was determined using photospectrometric methods. It was fingerprinted by examining infrared absorbance between 3300 cm-1 and 3200 cm-1 (N--H stretch) and 1710 cm-1 to 1640 cm-1 (C═O stretch). Results of diesel fuel solubility and thermal stability of the neat experimental samples are summarized below in Table I.
In this Example the procedure in Example 1 was utilized but using one part n-hexylamine and 1.5 part urea to obtain the product of the present Example.
In this Example p-methylaniline was substituted for n-hexylamine in the aforementioned Example 10 to obtain the product of the present Example.
TABLE I
______________________________________
Summary of diesel fuel solubility and thermal properties
of substituted allophanates, biurets, and triurets.
Diesel Fuel 50 wt % 90 wt. %
Solubility at
Decomposition
Decomposition
Turbidity Point*
Temperature Temperature
Material
(wt %) (deg C.) (deg C.)
______________________________________
Unmodified
0.1 175 195
urea
Unmodified
0.1 210 245
biuret
Unmodified
0.1 310 355
triuret
Example 1
<30% 450 510
Example 2
<30% 420 485
Example 3
<25% 420 490
Example 4
<30% 430 510
Example 5
<30% 420 505
Example 6
<30% 430 480
Example 7
˜15% 440 610
Example 8
˜15% 440 675
Example 9
˜15% 440 615
Example 10
˜25% 340 510
Example 11
˜12% 385 575
______________________________________
*TGA's were conducted with a heating rate of 200 deg under air.
From the results of Table I above, it is clear that enhanced diesel fuel solubility and thermal stability of this additive result when this unique experimental approach is utilized.
Claims (1)
1. A composition of matter comprising a substituted allophonate structurally represented by the formula: ##STR12## where R is para-nonylphenyl.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/222,509 US5491256A (en) | 1992-11-16 | 1994-04-04 | Composition of matter for aliphatic-aromatic ureas, biurets, and allophanates as nitric oxide reducing agents in diesel emissions |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US97663492A | 1992-11-16 | 1992-11-16 | |
| US08/222,509 US5491256A (en) | 1992-11-16 | 1994-04-04 | Composition of matter for aliphatic-aromatic ureas, biurets, and allophanates as nitric oxide reducing agents in diesel emissions |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US97663492A Continuation | 1992-11-16 | 1992-11-16 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US5491256A true US5491256A (en) | 1996-02-13 |
Family
ID=25524313
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US08/222,509 Expired - Fee Related US5491256A (en) | 1992-11-16 | 1994-04-04 | Composition of matter for aliphatic-aromatic ureas, biurets, and allophanates as nitric oxide reducing agents in diesel emissions |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US5491256A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040001410A1 (en) * | 2002-06-28 | 2004-01-01 | Kabushiki Kaisha Toshiba | Optical disk apparatus and waiting method thereof |
| US7199088B2 (en) | 2002-07-01 | 2007-04-03 | Shell Oil Company | Lubricating oil for a diesel powered engine and method of operating a diesel powered engine |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4336402A (en) * | 1980-07-30 | 1982-06-22 | Atlantic Richfield Company | Process for the preparation of N-alkyl-monosubstituted carbamic acid esters |
| US4692550A (en) * | 1982-04-27 | 1987-09-08 | Bayer Aktiengesellschaft | Continuous process for thermal splitting of carbamic acid esters |
-
1994
- 1994-04-04 US US08/222,509 patent/US5491256A/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4336402A (en) * | 1980-07-30 | 1982-06-22 | Atlantic Richfield Company | Process for the preparation of N-alkyl-monosubstituted carbamic acid esters |
| US4692550A (en) * | 1982-04-27 | 1987-09-08 | Bayer Aktiengesellschaft | Continuous process for thermal splitting of carbamic acid esters |
Non-Patent Citations (7)
| Title |
|---|
| Beilstein 1785462; RN 85997 51 9, 1937. * |
| Beilstein 1785462; RN=85997-51-9, 1937. |
| Casold 53:7046h; RN 109310 58 9, 1959. * |
| Casold 53:7046h; RN=109310-58-9, 1959. |
| Chemical Abstracts 108:123833e 1987. * |
| Chemical Abstracts 55:15383 i,g,h; 1961. * |
| Chemical Abstracts 84:75514D 1975. * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040001410A1 (en) * | 2002-06-28 | 2004-01-01 | Kabushiki Kaisha Toshiba | Optical disk apparatus and waiting method thereof |
| US7199088B2 (en) | 2002-07-01 | 2007-04-03 | Shell Oil Company | Lubricating oil for a diesel powered engine and method of operating a diesel powered engine |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE69117163T2 (en) | NITROX REDUCTION BY MEANS OF A UREA HYDROLYSATE | |
| US4731231A (en) | NO reduction using sublimation of cyanuric acid | |
| US4861567A (en) | Methods of reducing NOx and SOx emissions from combustion systems | |
| US5543123A (en) | Low pressure formation of a urea hydrolysate for nitrogen oxides reduction | |
| CA1311908C (en) | Process for the reduction of nitrogen oxides in an effluent | |
| EP0287224A2 (en) | Methods of removing NOx and SOx emissions from combustion systems using nitrogenous compounds | |
| US4803059A (en) | Process for the reduction of nitrogen oxides in an effluent using a hydroxy amino hydrocarbon | |
| DE69110670T2 (en) | METHOD FOR REDUCING NITROGEN OXIDES WITHOUT PRODUCING DISTROXIC MONOXIDE. | |
| US4863705A (en) | Process for the reduction of nitrogen oxides in an effluent | |
| DE2411672A1 (en) | METHOD FOR REDUCING NO IN COMBUSTION GASES | |
| US4886650A (en) | No reduction using sublimation of cyanuric acid | |
| US5482520A (en) | Derivatized T-butyl calixarene encapsulated cyanuric acid | |
| EP0286268A2 (en) | Method for preventing formation of ammonium bisulfate, sulfuric acid, and related products in combustion effluents | |
| AU7891091A (en) | Process and apparatus for minimizing pollutant concentrations in combustion gases | |
| US4800068A (en) | System for NO reduction using sublimation of cyanuric acid | |
| US5491256A (en) | Composition of matter for aliphatic-aromatic ureas, biurets, and allophanates as nitric oxide reducing agents in diesel emissions | |
| US5292351A (en) | Composition of matter for aloyl and aroyl ureas as nitric oxide reducing agents in diesel emissions | |
| US5226925A (en) | Composition of matter for allophanate encapsulation in an aromatic-aliphatic | |
| EP0334903A4 (en) | Method of reducing the oxides of nitrogen in fossil fuels combustion and combustion products effluents. | |
| US5087431A (en) | Catalytic decomposition of cyanuric acid and use of product to reduce nitrogen oxide emissions | |
| EP0564233A1 (en) | Composition of matter for high temperature phenolphthalein-, phenolphthalide-, fluorene-, xanthane-, and anthrone-S-triazines that are soluble in diesel fuel | |
| US5199959A (en) | Composition of matter for full and partial calix[8]arene encapsulation of S-triazines for thermal stability enhancement and dissolution in diesel fuel | |
| US5234670A (en) | Reduction of nitrogen oxide in effluent gases using NCO radicals | |
| US4943421A (en) | Method of reducing the oxides of nitrogen in fossil fuels combustion and combustion effluents using amine compounds | |
| EP0722421A1 (en) | Low pressure formation of a urea hydrolysate for nitrogen oxides reduction |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20000213 |
|
| STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |