Connect public, paid and private patent data with Google Patents Public Datasets

Chromium catalyst compositions

Download PDF

Info

Publication number
US5486584A
US5486584A US07958668 US95866892A US5486584A US 5486584 A US5486584 A US 5486584A US 07958668 US07958668 US 07958668 US 95866892 A US95866892 A US 95866892A US 5486584 A US5486584 A US 5486584A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
chromium
catalyst
support
pore
systems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07958668
Inventor
Rickey D. Badley
Elizabeth A. Benham
Max P. McDaniel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ConocoPhillips Co
Original Assignee
ConocoPhillips Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Abstract

Chromium catalyst compositions are provided. Theses chromium catalyst compositions can be used to polymerized olefins. The resulting polymerization product can have improved properties.

Description

BACKGROUND OF THE INVENTION

This invention is related to the field of chromium catalyst compositions.

It is known in the art that as the density of a polyolefin composition increases, the chemical resistance, tensile strength, and stiffness increase, but the permeability, toughness, and environmental stress crack resistance decrease. This can present a problem for example, when both a high density and a high environmental stress crack resistance are desired.

This invention provides a solution to this problem of competing performance factors.

SUMMARY OF THE INVENTION

It is an object of this invention to provide chromium catalyst compositions.

It is another object of this invention to provide chromium catalyst compositions useful in polymerizing olefins.

It is another object of this invention to provide chromium catalyst compositions useful in polymerizing ethylene.

It is another object of this invention to provide chromium catalyst compositions useful in copolymerizing ethylene and at least one other olefin.

It is another object of this invention to provide chromium catalyst compositions useful in copolymerizing ethylene and 1-hexene.

In accordance with this invention chromium catalyst compositions are provided. These chromium catalyst compositions comprise at least two chromium catalyst systems. These chromium catalyst systems comprise chromium and a support, wherein the support comprises silica, and wherein the supports of at least two of the systems have an average pore radius difference sufficient to preferentially introduce a non-ethylene comonomer into the higher molecular weight portion of a resulting copolymer.

In accordance with another embodiment of this invention chromium catalyst compositions are provided (hereafter referred to as "embodiment X") . These chromium catalyst compositions comprise at least two chromium catalyst systems. These chromium catalyst systems comprise chromium and a support, wherein the support consists essentially of silica and titania, and wherein at least two of the supports have an average pore radius difference of about 25 angstroms.

In accordance with another embodiment of this invention chromium catalyst compositions are provided (hereafter referred to as "embodiment Y"). These chromium catalyst compositions comprise at least two chromium catalyst systems wherein:

(a) one of these chromium catalyst systems comprises chromium and a support,

wherein the support consists essentially of silica and titania, and wherein the support has sn average pore radius less than about 85 angstroms, and wherein the support has a pore volume less than about 1.2 cubic centimeters per gram, and

wherein this chromium catalyst system is subjected to at least one of the following treatments (1) reduced and reoxidized, (2) titanated, and (3) activated at a high temperature;

(b) one of these chromium catalyst systems comprises chromium and a support,

wherein the support consists essentially of silica, and wherein the support has an average pore radius greater than about 85 angstroms, and wherein the support has a pore volume greater than about 1.5 cubic centimeters per gram, and

wherein this chromium catalyst system is subjected to at least one of the following treatments (1) activated at a low temperature, and (2) contacted with a fluorine compound.

In accordance with another embodiment of this invention chromium catalyst compositions are provided (hereafter referred to as "embodiment Z"). These chromium catalyst compositions comprises at east two chromium catalyst systems wherein:

(a) one of these chromium catalyst systems comprises chromium and a support,

wherein the support consists essentially of silica and titania, and wherein the support has an average pore radius greater than about 85 angstroms, and wherein the support has a pore volume greater than about 2 cubic centimeters per gram, and

wherein this chromium catalyst system is subjected to at least one of the following treatments (1) reduced and reoxidized, (2) titanated, and (3) activated at a high temperature;

(b) one of these chromium catalyst systems comprises chromium and a support,

wherein the support consists essentially of silica, and wherein the support has an average pore radius less than about 85 angstroms, and wherein the support has a pore volume less than about 1.7 cubic centimeters per gram, and

wherein this chromium catalyst system is reduced.

In accordance with another embodiment of this invention each of the above embodiments can be contacted with one or more different olefins, under polymerization conditions, to produce a polymer or copolymer.

This invention as disclosed in this application can be suitably practiced in the absence of any steps, components, compounds, or ingredients not disclosed herein.

DETAILED DESCRIPTION OF THE INVENTION

In general, the chromium catalyst compositions used in this invention comprise at least two chromium catalyst systems. These chromium catalyst systems comprise a chromium component and a support component comprising silica. The term "support component" is not meant to be construed as an inert component of the chromium catalyst system.

The supports used in the chromium catalyst systems of this invention can:

(1) comprise silicas

(2) consist essentially of silica and titania; or

(3) consist essentially of silica.

These supports are known in the art and are disclosed in U.S. Pat. Nos. 2,825,721; 3,225,023; 3,226,205; 3,622,521; 3,625,864; 3,780,011; 3,887,494; 3,900,457; 3,947,433; 4,053,436; 4,081,407; 4,151,122; 4,177,162; 4,294,724; 4,296,001; 4,392,990; 4,402,864; 4,405,501; 4,434,243; 4,454,557; 4,735;931; 4,981,831; 5,037,911; the entire disclosures of which are hereby incorporated by reference. However, it should also be noted that these types of supports are available commercially from such sources as the Davison Chemical Division of the W. R. Grace Corporation.

The amount of silica present in the support is generally greater than about 80 weight percent where the weight percent is based on the weight of the support. However, it is preferred that the amount of silica in the support is from about 90 to about 100 weight percent. The remaining portion, if any, can be selected from alumina, titania, boria, magnesia, thoria, zirconia, and mixtures of two or more thereof.

When the support consists essentially of silica and titania, the amount of silica in the support is generally greater than about 80 weight percent where the weight percent is based on the weight of the support. However, it is also preferred that the amount of titania used in the support be greater than about 0.1 weight percent. It is more preferred that the amount of titania used is from about 1 weight percent to about 20 weight percent and it is most preferred that the amount be from about 1 weight percent to about 10 weight percent.

In "embodiment X" of this invention, the chromium catalyst compositions comprise at least two chromium catalyst systems. These chromium catalyst systems comprise chromium and supports that consists essentially of silica and titania. These supports should have an average pore radius difference of about 25 angstroms. However, it is preferred that the average pore radius difference be from about 25 angstroms to about 400 angstroms and it is most preferred if the average pore radius difference is from 50 angstroms to 300 angstroms. The average pore radius of each support can be determined by nitrogen sorption by a person with ordinary skill in the art. For example, the following references can be used "Adsorption, Surface Area and Porosity" by S. J. Gregg and K. S. W. Sing, Academic Press, London (1982); and "Introduction to Powder Surface Area" by S. Lowell, J. Wiley & Sons, New York, N.Y. (1979); the entire disclosures of which are hereby incorporated by reference.

In "embodiment Y" of this invention the chromium catalyst compositions comprise at least two chromium catalyst systems. One of these chromium catalyst systems comprises chromium and a support wherein the support consists essentially of silica and titania. Another of these chromium catalyst systems comprises chromium and a support wherein the support consists essentially of silica.

The supports used in "embodiment Y" are further described as follows:

(1) the supports that consist essentially of silica and titania should have an average pore radius less than about 85 angstroms;

however, it is preferred that they have an average pore radius from about 25 to about 85 angstroms and it is most preferred that they have an average pore radius from 30 to 80 angstroms;

furthermore, the supports that consist essentially of silica and titania should have a pore volume less than about 1.2 cubic centimeters per gram; however, it is preferred that they have a pore volume frown about 0.6 to about 1.2 cubic centimeters per gram and it is most preferred that they have a pore volume from 0.8 to 1.15 cubic centimeters per gram;

hereafter, these types of supports will be referred to as "type A supports";

(2) the supports that consist essentially of silica should have an average pore radius greater than about 85 angstroms; however, it is preferred that they have an average pore radius from about 85 to about 1000 angstroms and it is most preferred that they have an average pore radius from 90 to 500 angstroms;

furthermore, the supports that consist essentially of silica should have a pore volume greater than about 1.5 cubic centimeters per gram; however, it is preferred that they have a pore volume from about 1.5 to about 4 cubic centimeters per gram and it is most preferred that they have a pore volume from 1.5 to 3 cubic centimeters per gram;

hereafter, these types of supports will be referred to as "type B supports."

In "embodiment Z" of this invention the chromium catalyst compositions comprise at least two chromium catalyst systems. One of these chromium catalyst systems compresses chromium and a support wherein the support consists essentially of silica and titania. Another of these chromium catalyst systems comprises chromium and a support wherein the support consists essentially of silica.

The supports used in "embodiment Z" are further described as follows:

(1) the supports that consist essentially of silica and titania should have an average pore radius greater than about 85 angstroms; however, it is preferred that they have an average pore radius from about 85 to about 1000 angstroms and it is most preferred that they have an average pore radius from 90 to 500 angstroms;

furthermore, the supports that consist essentially of silica and titania should have a pore volume greater than about 2 cubic centimeters per gram; however, it is preferred that they have a pore volume from about 2 to about 4 cubic centimeters per gram and it is most preferred that they have a pore volume from 2 to 3 cubic centimeters per gram;

hereafter, these types of supports will be referred to as "type C supports";

(2) the supports that consist essentially of silica should have an average pore radius less than about 85 angstroms; however, it is preferred that they have an average pore radius from about 25 to about 85 angstroms and it is most preferred that they have an average pore radius from 30 to 80 angstroms;

furthermore, the supports that consist essentially of silica should have a pore volume less than about 1.7 cubic centimeters per gram; however, it is preferred that they have a pore volume from about 0.6 to about 1.7 cubic centimeters per gram and it is most preferred that they have a pore volume from 0.8 to 1.3 cubic centimeters per gram;

hereafter, these types of supports will be referred to as "type D supports."

The chromium component of the chromium catalyst systems that are part of the chromium catalyst compositions of this invention can be any suitable chromium compound that facilitates the polymerization of olefins. Suitable examples of chromium compounds included, but are not limited to, chromium nitrate, chromium acetate, chromium trioxide, and mixtures of two or more said chromium compounds. The amount of chromium compound that is combined with the support is from about 0.1 weight percent to about 5 weight percent. It is preferred that the amount be from about 0.2 weight percent to about 5 weight percent and it is most preferred that the amount be from 0.5 to 2 weight percent where the weight percent is based on the weight of the chromium compound and the support.

The chromium compound can be combined with the support in any manner know in the art. Examples of combining the chromium compound with the support can be found in the above cited and incorporated patents. Preferred methods of combining the chromium compound with the support are disclosed in U.S. Pat. Nos. 3,976,632; 4,248,735; 4,297,460; and 4,397,766; the entire disclosures of which are hereby incorporated by reference. These patents disclose impregnating the support with anhydrous chromium compounds.

In "embodiment Y" of this invention, chromium catalyst systems that comprise chromium and "type A supports" are (1) reduced and reoxidized, (2) titanated, and/or (3) activated at a high temperature. Additionally, in "embodiment Y" of this invention, chromium catalyst systems that comprise chromium and "type B supports" are (1) activated at a low temperature, and/or (2) contacted with a fluorine compound. At least a portion of the chromium used in this embodiment of the invention is preferably in the hexavalent state.

In "embodiment Z" of this invention, chromium catalyst systems that comprise chromium and "type C supports" are (1) reduced and reoxidized, (2) titanated, and/or (3) activated at a high temperature. Additionally, in "embodiment Z" of this invention, chromium catalyst systems that comprise chromium and "type D supports" are reduced. At least a portion of the chromium used with the "type C supports" is preferably in the hexavalent state. On the other hand, at least a portion of the chromium used with the "type D supports" is preferably in the divalent state.

The chromium catalyst systems used in this invention can be reduced and reoxidized in accordance with any manner known in the art that will reduce at least a portion of the chromium to a lower valence state and then reoxidized at least a portion of the chromium to a higher valence state. Suitable examples of this type of procedure can be found in U.S. Pat. Nos. 4,151,122 and 4,177,162 the entire disclosures of which are hereby incorporated by reference.

The chromium catalyst systems used in this invention can be titanated in accordance with any manner known in the art that will combine a titanium compound with the chromium catalyst system. Suitable examples of this type of procedure can be found in U.S. Pat. Nos. 3,622,521; 3,625,864; 3,780,011; 4,368,303; 4,402,864; 4,424,320; and 4,429,724; 4,434,243; the entire disclosures of which are hereby incorporated by reference.

The chromium catalyst systems used in this invention can be reduced in accordance with any manner known in the art that will reduce at least a portion of the chromium to a lower valence state. Suitable examples of this type of procedure can be found in U.S. Pat. No. 4,735,931 the entire disclosure of which is hereby incorporated by reference. It is preferred that the reducing composition be carbon monoxide.

The chromium catalyst systems used in this invention can be contacted with a fluorine compound in accordance with any manner known in the art that will incorporated fluorine onto or into the chromium catalyst system. Suitable examples of this type of procedure can be found in U.S. Pat. Nos. 2,825,721; 4,806,513; and 5,037,911; the entire disclosures of which are hereby incorporated by reference.

The chromium catalyst systems used in this invention can be activated in accordance with any manner known in the art that will contact an oxygen containing ambient with a chromium catalyst system. Suitable examples of this type of procedure can be found in U.S. Pat. Nos. 3,887,494; 3,900,457; 4,053,436; 4,081,407; 4,296,001; 4,392,990; 4,405,501; 4,981,831; the entire disclosures of which are hereby incorporated by reference.

In general, activation at high temperature is conducted at a temperature greater than about 700 degrees Celsius and activation at low temperature is conducted at a temperature less than about 700 degrees Celsius. However, it is preferred that activation at a high temperature be conducted at a temperature between about 750 degrees Celsius and about 900 degrees Celsius; and most preferably it is conducted at a temperature between 800 degrees Celsius and 900 degrees Celsius. It is also preferred that activation at a low temperature be conducted at a temperature between about 450 degrees Celsius and about 700 degrees Celsius; and most preferably it is conducted at a temperature between 500 degrees Celsius and 650 degrees Celsius.

Once the chromium catalyst systems are made they may be combined together in any manner known in the art. For example, they can be dry blended together in a mixer or added to a feed stream that leads to a reactor. It is important to note that by varying the amounts of each chromium catalyst system included in the chromium catalyst composition, it is possible to vary the amount of comonomer incorporated into the resulting copolymer composition. Furthermore, by varying the amount of each chromium catalyst system included in the chromium catalyst composition, the density of the resulting polymer can be modified more independently of the melt index than was previously known for these types of chromium catalyst systems. Additionally, by varying the amount of each chromium catalyst system included in the chromium catalyst composition, or by varying the average pore radius difference between the supports in the chromium catalyst compositions, it is possible to preferentially introduce a non-ethylene comonomer into the higher molecular weight portion of a resulting copolymer. In general, the higher molecular weight portion can be determined using data collected by gel permeation chromatography using equipment readily available from commercial sources. The higher molecular weight portion is that portion greater than the weight average molecular weight. Preferentially introducing a non-ethylene comonomer into the higher molecular weight portion of a resulting copolymer means that a major portion of the comonomer is located in the higher molecular weight portion. This can be determined by calculating the number of short chain alkyl branches in the polymer. For example, in an ethylene an 1-hexene copolymer the number of butyl branches will give an indication of the amount of 1-hexene comonomer incorporated into the polymer.

The chromium catalyst compositions used in this invention can be contacted with one or more olefins under polymerization conditions to produce homopolymer or copolymer compositions. Suitable olefins include, but are not limited to, ethylene, propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene and mixtures of two or more of said olefins. Particularly preferred is ethylene. Additionally, a particularly preferred combination of olefins to use is ethylene and 1-hexene. These two olefins are particularly preferred at this time because these olefins copolymerized especially well with the chromium catalyst compositions disclosed in this invention.

Various polymerization schemes are known in the art. For example, U.S. Pat. Nos. 2,825,721; 3,152,872; 3,172,737; 3,203,766; 3,225,023; 3,226,205; 3,242,150; 3,248,179; and 4,121,029; (the entire disclosures of which are hereby incorporated by reference) disclose several polymerization schemes. A particularly preferred polymerization method is a slurry or particle form polymerization method. This method is disclosed for example, in U.S. Pat. No. 3,248,179. Two preferred slurry polymerization techniques are those employing a loop reactor and those employing a plurality of stirred reactors either in series, parallel or combinations thereof.

EXAMPLE

This example is provide to further assist a person skilled in the art with understanding this invention. The particular reactants, catalysts and conditions are intended to be generally illustrative of this invention and are not meant to be construed as unduly limiting the reasonable scope of this invention.

The polymerizations were conducted in a 87 liter, 15.2 centimeter diameter, pipe loop reactor. The polymer was recovered in a flash chamber. A Vulcan dryer was used to dry the polymer.

Ethylene that had been dried over alumina was used as the polymerization monomer. Isobutane that had been degassed by fractionation and dried over alumina was use as the polymerization diluent. Triethylboron was also used as a cocatalyst.

A "Quantachrome Autosorb-6 Nitrogen Pore Size Distribution Instrument" was used to determined the average pore radius and pore volumes of the supports. This instrument was acquired from the Quantachrome Corporation, Syosset, N.Y. The average pore radius was calculated using the following formula: ##EQU1##

In run number one the following chromium catalyst compositions were used:

(1) a commercially available chromium catalyst system purchased from the W. R. Grace Corporation. This chromium catalyst system was the Magnapore Catalyst. It had an average pore radius of about 94 angstroms and a pore volume of about 2.1 cubic centimeters per gram. It also had a chromium content of about 1 weight percent based on the weight of the chromium catalyst system. This chromium catalyst system was reduced at a temperature of about 845 degrees Celsius and then reoxidized at a temperature of about 650 degrees Celsius;

(2) a commercially available chromium catalyst system purchased from the W. R. Grace Corporation. This chromium catalyst system was the 969ID catalyst. It had an average pore radius of about 78 angstroms and a pore volume of about 1.1 cubic centimeters per gram. It also had a chromium content of about 1 weight percent based on the weight of the chromium catalyst system. This chromium catalyst system was activated at a temperature of about 540 degrees Celsius and then reduced at a temperature of about 370 degrees Celsius with carbon monoxide. This catalyst system produce mono-1-hexene during the polymerization of ethylene.

These two catalyst systems were then blended together and use to polymerize ethylene. Additional information concerning this polymerization and the results obtain are presented in table E1.

              TABLE E1______________________________________1   Reactor Residence Time                     1.23    hours2   Reactor Temperature   107°                             C.3   Triethylboron Amount in Parts per                     2.7    Million by Weight Based on the    Isobutane Diluent4   Melt Indexes of the Copolymer                     0.35    g/10 mins.    According to ASTM-D-12385   Density of Copolymer According                     0.9555  g/cc    to ASTM-D-15056   Environmental Stress Crack                     220     hours    Resistance of the Copolymer    According to ASTM-D-1693______________________________________

In run number two the following chromium catalyst compositions were used:

(1) a commercially available chromium catalyst system purchased from the W. R. Grace Corporation. This chromium catalyst system was the Magnapore Catalyst. It had an average pore radius of about 94 angstroms and a pore volume of about 2.1 cubic centimeters per gram. It also had a chromium content of about 1 weight percent based on the weight of the chromium catalyst system. This chromium catalyst system was reduced at a temperature of about 870 degrees Celsius and then reoxidized at a temperature of about 590 degrees Celsius;

(2) a commercially available chromium catalyst system purchased from the W. R. Grace Corporation. This chromium catalyst system was the 969ID catalyst. It had an average pore radius of about 78 angstroms and a pore volume of about 1.1 cubic centimeters per gram. It also had a chromium content of about 1 weight percent based on the weight of the chromium catalyst system. This chromium catalyst system was activated at a temperature of about 650 degrees Celsius and then reduced at a temperature of about 370 degrees Celsius with carbon monoxide. This catalyst system produce mono-1-hexene during the polymerization of ethylene.

These two catalyst systems were then blended together and use to copolymerize ethylene and mono-1-hexene. Additional information concerning this polymerization and the results obtained is presented in table E2.

              TABLE E2______________________________________1   Reactor Residence Time                     1.22    hours2   Reactor Temperature   96°                             C.3   Triethylboron Amount in Parts per                     2.57    Million by Weight Based on the    Isobutane Diluent4   Melt Indexes of the Copolymer                     0.09    g/10 mins.    According to ASTM-D-12385   Density of Copolymer According                     0.9551  g/cc    to ASTM-D-15056   Environmental Stress Crack                     262     hours    Resistance of the Copolymer    According to ASTM-D-1693______________________________________

For comparison purposes a commercially available chromium catalyst was obtain from the Davison Corporation (tradename of 969MS). This catalyst had an average pore radius of about 94 angstroms and a pore volume of about 1.5 cubic grams per centimeter, Under polymerization conditions similar to the above it produced a copolymer having the following characteristics:

______________________________________Melt index of   0.3 grams/10 minutes.Density of      0.957 grams/cubic centimeterESCR of         100 hours______________________________________

It can be seen from the above that a copolymer having both a high density and a high environmental stress crack resistance can be obtained by using this invention. This is especially apparent when comparing the copolymer produced from the 969MS catalyst to the copolymers produced according to this invention.

Claims (12)

That which is claimed is:
1. A process comprising
producing a copolymer by copolymerizing ethylene and at least one non-ethylene comonomer, wherein said copolymer has a high molecular weight portion that has a molecular weight greater than the weight average molecular weight of said copolymer
with a chromium catalyst composition that comprises at least two chromium catalyst systems, wherein each said chromium catalyst system comprises chromium and a support, and wherein each support comprises silica, and wherein at least two of said chromium catalyst systems have supports that have an average pore radius difference sufficient to preferentially introduce said non-ethylene comonomer into said high molecular weight portion.
2. A process according to claim 1 wherein said non-ethylene comonomer is selected from the group consisting of propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, and mixtures of two or more thereof.
3. A process according to claim 1 wherein said non-ethylene comonomer is 1-hexene.
4. A process comprising
producing a copolymer by copolymerizing ethylene and at least one non-ethylene comonomer
with a chromium catalyst composition that comprises at least two chromium catalyst systems, wherein each said chromium catalyst system comprises chromium and a support, and wherein each support consists essentially of silica and titania, and wherein at least two of said chromium catalyst systems have supports that have an average pore radius difference of about 25 angstroms.
5. A process according to claim 4 wherein said non-ethylene comonomer is selected from the group consisting of propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, and mixtures of two or more thereof.
6. A process according to claim 4 wherein said non-ethylene comonomer is 1-hexene.
7. A process comprising
producing a copolymer by copolymerizing ethylene and at least one non-ethylene comonomer
with a chromium catalyst composition that comprises at least two chromium catalyst systems, wherein:
(a) at least one of said chromium catalyst systems comprises chromium and a support, and wherein said support consists essentially of silica and titania, and wherein said support has an average pore radius less than about 85 angstroms, and wherein said support has a pore volume less than about 1.2 cubic centimeters per gram, and wherein this chromium catalyst system is subjected to at least one of the following treatments (1) reduced and reoxidized (2) titanated and (3) activated at a high temperature; and
(b) at least one of said chromium catalyst systems comprises chromium and a support, and wherein said support consists essentially of silica, and wherein the support has an average pore radius greater than about 85 angstroms, and wherein said support has a pore volume greater than about 1.5 cubic centimeters per gram, and wherein this chromium catalyst system is subjected to at least one of the following treatments (1) activated at a low temperature, and (2) contacted with a fluorine compound.
8. A process according to claim 7 wherein said non-ethylene comonomer is selected from the group consisting of propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, and mixtures of two or more thereof.
9. A process according to claim 4 wherein said non-ethylene comonomer is 1-hexene.
10. A process comprising
producing a copolymer by copolymerizing ethylene and at least one non-ethylene comonomer
with a chromium catalyst composition that comprises at least two chromium catalyst systems, wherein:
(a) at least one of said chromium catalyst systems comprises chromium and a support, and wherein said support consists essentially of silica and titania, and wherein said support has an average pore radius less than about 85 angstroms, and wherein said support has a pore volume less than about 1.2 cubic centimeters per gram, and wherein this chromium catalyst system is subjected to at least one of the following treatments (1) reduced and reoxidized (2) titanated and (3) activated at a high temperature; and
(b) at least one of said chromium catalyst systems comprises chromium and a support, and wherein said support consists essentially of silica, and wherein the support has an average pore radius greater than about 85 angstroms, and wherein said support has a pore volume greater than about 1.5 cubic centimeters per gram, and wherein this chromium catalyst system is activated and then reduced.
11. A process according to claim 10 wherein said non-ethylene comonomer is selected from the group consisting of propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, and mixtures of two or more thereof.
12. A process according to claim 10 wherein said non-ethylene comonomer is 1-hexene.
US07958668 1992-10-08 1992-10-08 Chromium catalyst compositions Expired - Lifetime US5486584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07958668 US5486584A (en) 1992-10-08 1992-10-08 Chromium catalyst compositions

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US07958668 US5486584A (en) 1992-10-08 1992-10-08 Chromium catalyst compositions
CA 2100144 CA2100144C (en) 1992-10-08 1993-07-08 Chromium catalyst compositions
CN 93118646 CN1036924C (en) 1992-10-08 1993-10-05 Chromium catalyst composition and application in copolymerization process
DE1993612005 DE69312005D1 (en) 1992-10-08 1993-10-07 Chromium catalyst compositions
ES93116245T ES2104017T3 (en) 1992-10-08 1993-10-07 chromium catalyst compositions.
DE1993612005 DE69312005T2 (en) 1992-10-08 1993-10-07 Chromium catalyst compositions
RU93046712A RU2104288C1 (en) 1992-10-08 1993-10-07 Olefin polymerization catalyst and method of polymerization of ethylene
DK93116245T DK0591968T3 (en) 1992-10-08 1993-10-07 chromium catalyst
EP19930116245 EP0591968B1 (en) 1992-10-08 1993-10-07 Chromium catalyst compositions
JP25314293A JP3198206B2 (en) 1992-10-08 1993-10-08 Chromium catalyst composition
US08486872 US5595953A (en) 1992-10-08 1995-06-07 Chromium catalyst compositions
CN 96111935 CN1150954A (en) 1992-10-08 1996-08-26 Chromium catalyst compositions and its use in the copolymerization method
CN 96111936 CN1100068C (en) 1992-10-08 1996-08-26 Chromium catalyst composition and its application in copolymerizing process

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08486872 Division US5595953A (en) 1992-10-08 1995-06-07 Chromium catalyst compositions

Publications (1)

Publication Number Publication Date
US5486584A true US5486584A (en) 1996-01-23

Family

ID=25501177

Family Applications (2)

Application Number Title Priority Date Filing Date
US07958668 Expired - Lifetime US5486584A (en) 1992-10-08 1992-10-08 Chromium catalyst compositions
US08486872 Expired - Fee Related US5595953A (en) 1992-10-08 1995-06-07 Chromium catalyst compositions

Family Applications After (1)

Application Number Title Priority Date Filing Date
US08486872 Expired - Fee Related US5595953A (en) 1992-10-08 1995-06-07 Chromium catalyst compositions

Country Status (9)

Country Link
US (2) US5486584A (en)
JP (1) JP3198206B2 (en)
CN (3) CN1036924C (en)
CA (1) CA2100144C (en)
DE (2) DE69312005T2 (en)
DK (1) DK0591968T3 (en)
EP (1) EP0591968B1 (en)
ES (1) ES2104017T3 (en)
RU (1) RU2104288C1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015866A (en) * 1996-12-20 2000-01-18 Fina Research, S.A. Production of polyethylene having a bimodal molecular weight distribution
US6569960B2 (en) 1999-07-27 2003-05-27 Phillips Petroleum Company Process to produce polymers
US20040126520A1 (en) * 2000-03-30 2004-07-01 Catherine Samarcq Glossy plastic container
US20060051538A1 (en) * 2001-10-02 2006-03-09 Eric Maziers High escr glossy plastic containers
US8399580B2 (en) 2010-08-11 2013-03-19 Chevron Philips Chemical Company Lp Additives to chromium catalyst mix tank

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714424A (en) * 1995-01-09 1998-02-03 W. R. Grace & Co.-Conn. Multi-component polyolefin catalysts
DE69810364T2 (en) * 1997-03-07 2003-07-03 Phillips Petroleum Co A process for olefin polymerization
EP1041089A1 (en) 1999-03-29 2000-10-04 Fina Research S.A. Production of polyethylene
US6632896B1 (en) 1999-11-29 2003-10-14 Borealis Technology Oy Ethylene polymerization
US6696388B2 (en) * 2000-01-24 2004-02-24 E. I. Du Pont De Nemours And Company Gel catalysts and process for preparing thereof
US7019089B2 (en) 2000-07-05 2006-03-28 Basell Polyolefine Gmbh Suspended chrome catalyst containing titanium and the use thereof for producing ethylene homopolymers and copolymers
JP4048043B2 (en) * 2001-11-02 2008-02-13 ズードケミー触媒株式会社 Cracking catalyst and cracking process of carbonyl sulfide and hydrogen cyanide
WO2004096434A1 (en) * 2003-03-31 2004-11-11 Exxonmobil Chemical Patents Inc. Catalyst activation method and activated catalyst
US6982304B2 (en) 2003-12-22 2006-01-03 Union Carbide Chemicals & Plastics Technology Corporation Blow molding resins with improved ESCR
CN100497400C (en) 2005-05-08 2009-06-10 上海纳川化工有限公司 Process for preparing titanium modified supported chromium catalyst and its use
EP2448978B1 (en) 2009-06-29 2016-05-18 Chevron Phillips Chemical Company LP Dual metallocene catalyst systems for decreasing melt index and increasing polymer production rates
US8207280B2 (en) * 2009-06-29 2012-06-26 Chevron Phillips Chemical Company Lp Use of hydrogen scavenging catalysts to control polymer molecular weight and hydrogen levels in a polymerization reactor
EP2499174B1 (en) * 2009-11-10 2018-01-10 Ineos Sales (UK) Limited Process for the polymerisation of olefins
JP2012144724A (en) * 2010-12-24 2012-08-02 Japan Polyethylene Corp Polyethylene having improved branching degree distribution, method for producing the same, and hollow plastic molding comprising the same
JP5821746B2 (en) 2011-03-30 2015-11-24 日本ポリエチレン株式会社 Method for producing ethylene polymer and ethylene-based polymer obtained therefrom

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3135809A (en) * 1960-07-21 1964-06-02 Southern Res Inst Isomerization process
US3225023A (en) * 1962-11-30 1965-12-21 Phillips Petroleum Co Process for controlling melt index
US3624063A (en) * 1969-07-10 1971-11-30 Phillips Petroleum Co Ethylene polymerization using catalyst of controlled particle size
US3798202A (en) * 1971-10-12 1974-03-19 Phillips Petroleum Co Polyolefin production
US3978002A (en) * 1972-12-04 1976-08-31 National Petro Chemicals Corporation Catalyst useful for olefin polymerization process
US4025707A (en) * 1974-03-28 1977-05-24 Phillips Petroleum Company Mixed hydrocarbyloxide treated catalyst activated at different temperatures
US4169926A (en) * 1978-01-16 1979-10-02 Phillips Petroleum Company Inorganic hydrogels and uses thereof
US4325839A (en) * 1979-12-21 1982-04-20 Phillips Petroleum Company Impregnated second valence chromium compound in supported catalyst
US4384086A (en) * 1980-02-06 1983-05-17 Phillips Petroleum Company Large pore volume olefin polymerization catalysts
USRE31443E (en) * 1977-12-05 1983-11-15 Phillips Petroleum Company Treatment of silica
US4560733A (en) * 1984-10-01 1985-12-24 Phillips Petroleum Company Polymerization and catalyst
US4735931A (en) * 1986-06-16 1988-04-05 Phillips Petroleum Company In situ comonomer generation in olefin polymerization
US4806513A (en) * 1984-05-29 1989-02-21 Phillips Petroleum Company Silicon and fluorine-treated alumina containing a chromium catalyst and method of producing same
EP0307907A2 (en) * 1987-09-18 1989-03-22 Phillips Petroleum Company Process for olefin polymerization
US4981831A (en) * 1988-07-25 1991-01-01 Phillips Petroleum Company Twice-aged porous inorganic oxides, catalysts, and polymerization processes
US4981927A (en) * 1987-05-20 1991-01-01 National Distillers And Chemical Corporation Chromium catalyst compositions and polymerization utilizing same
US4988657A (en) * 1989-10-06 1991-01-29 Phillips Petroleum Company Process for olefin polymerization
US5034364A (en) * 1989-11-09 1991-07-23 Mobil Oil Corporation Multiple chromium compound-containing catalyst composition and olefin polymerization therewith
US5079317A (en) * 1988-10-13 1992-01-07 Nippon Oil Co., Ltd. Process for producing polyethylenes
US5198400A (en) * 1987-05-20 1993-03-30 Quantum Chemical Corporation Mixed chromium catalysts and polymerizations utilizing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248735A (en) * 1979-06-01 1981-02-03 Phillips Petroleum Company Treatment of silica
CA1307619C (en) * 1987-05-20 1992-09-15 Louis J. Rekers Chromium catalyst compositions and polymerization utilizing same

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3135809A (en) * 1960-07-21 1964-06-02 Southern Res Inst Isomerization process
US3225023A (en) * 1962-11-30 1965-12-21 Phillips Petroleum Co Process for controlling melt index
US3624063A (en) * 1969-07-10 1971-11-30 Phillips Petroleum Co Ethylene polymerization using catalyst of controlled particle size
US3798202A (en) * 1971-10-12 1974-03-19 Phillips Petroleum Co Polyolefin production
US3978002A (en) * 1972-12-04 1976-08-31 National Petro Chemicals Corporation Catalyst useful for olefin polymerization process
US4025707A (en) * 1974-03-28 1977-05-24 Phillips Petroleum Company Mixed hydrocarbyloxide treated catalyst activated at different temperatures
USRE31443E (en) * 1977-12-05 1983-11-15 Phillips Petroleum Company Treatment of silica
US4169926A (en) * 1978-01-16 1979-10-02 Phillips Petroleum Company Inorganic hydrogels and uses thereof
US4325839A (en) * 1979-12-21 1982-04-20 Phillips Petroleum Company Impregnated second valence chromium compound in supported catalyst
US4384086A (en) * 1980-02-06 1983-05-17 Phillips Petroleum Company Large pore volume olefin polymerization catalysts
US4806513A (en) * 1984-05-29 1989-02-21 Phillips Petroleum Company Silicon and fluorine-treated alumina containing a chromium catalyst and method of producing same
US4560733A (en) * 1984-10-01 1985-12-24 Phillips Petroleum Company Polymerization and catalyst
US4735931A (en) * 1986-06-16 1988-04-05 Phillips Petroleum Company In situ comonomer generation in olefin polymerization
US5198400A (en) * 1987-05-20 1993-03-30 Quantum Chemical Corporation Mixed chromium catalysts and polymerizations utilizing same
US4981927A (en) * 1987-05-20 1991-01-01 National Distillers And Chemical Corporation Chromium catalyst compositions and polymerization utilizing same
EP0307907A2 (en) * 1987-09-18 1989-03-22 Phillips Petroleum Company Process for olefin polymerization
US4981831A (en) * 1988-07-25 1991-01-01 Phillips Petroleum Company Twice-aged porous inorganic oxides, catalysts, and polymerization processes
US5079317A (en) * 1988-10-13 1992-01-07 Nippon Oil Co., Ltd. Process for producing polyethylenes
US4988657A (en) * 1989-10-06 1991-01-29 Phillips Petroleum Company Process for olefin polymerization
US5034364A (en) * 1989-11-09 1991-07-23 Mobil Oil Corporation Multiple chromium compound-containing catalyst composition and olefin polymerization therewith

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Billmeyer, Jr. "Textbook of Polymer Science", 3rd Edition, 1984, p. 17.
Billmeyer, Jr. Textbook of Polymer Science , 3rd Edition, 1984, p. 17. *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015866A (en) * 1996-12-20 2000-01-18 Fina Research, S.A. Production of polyethylene having a bimodal molecular weight distribution
US6294500B1 (en) 1996-12-20 2001-09-25 Fina Research, S.A. Production of polyethylene having a bimodal molecular weight distribution
US6569960B2 (en) 1999-07-27 2003-05-27 Phillips Petroleum Company Process to produce polymers
US20030134065A1 (en) * 1999-07-27 2003-07-17 Bergmeister Joseph J. Process to produce polymers
US6855781B2 (en) 1999-07-27 2005-02-15 Joseph J. Bergmeister Process to produce polymers
US20040126520A1 (en) * 2000-03-30 2004-07-01 Catherine Samarcq Glossy plastic container
US20060051538A1 (en) * 2001-10-02 2006-03-09 Eric Maziers High escr glossy plastic containers
US7514130B2 (en) 2001-10-02 2009-04-07 Fina Technology, Inc. High ESCR glossy plastic containers
US8399580B2 (en) 2010-08-11 2013-03-19 Chevron Philips Chemical Company Lp Additives to chromium catalyst mix tank
US8759459B2 (en) 2010-08-11 2014-06-24 Chevron Phillips Chemical Company Lp Additives to chromium catalyst mix tank

Also Published As

Publication number Publication date Type
CN1085566A (en) 1994-04-20 application
CN1150954A (en) 1997-06-04 application
EP0591968A3 (en) 1994-11-30 application
CA2100144A1 (en) 1994-04-09 application
CN1036924C (en) 1998-01-07 grant
RU2104288C1 (en) 1998-02-10 grant
CA2100144C (en) 1998-12-29 grant
DK0591968T3 (en) 1998-01-26 grant
CN1167121A (en) 1997-12-10 application
EP0591968B1 (en) 1997-07-09 grant
DK591968T3 (en) grant
DE69312005T2 (en) 1997-10-30 grant
DE69312005D1 (en) 1997-08-14 grant
ES2104017T3 (en) 1997-10-01 grant
CN1100068C (en) 2003-01-29 grant
US5595953A (en) 1997-01-21 grant
JPH06199920A (en) 1994-07-19 application
EP0591968A2 (en) 1994-04-13 application
JP3198206B2 (en) 2001-08-13 grant

Similar Documents

Publication Publication Date Title
US5639834A (en) Process for producing polyethylene having a broad molecular weight distribution
US5223465A (en) Olefin polymerization catalyst
US6989344B2 (en) Supported chromium oxide catalyst for the production of broad molecular weight polyethylene
US4355143A (en) Process for the polymerization of ethylene and the resulting products
US5084540A (en) Ethylene/butene-1 copolymers
US4378304A (en) Catalyst and methods
US4364839A (en) Catalyst comprising chromium on silica/phosphate support
US4424139A (en) Catalyst comprising a phosphate and with a bis-(cyclopentadienyl)chromium(II) compound
US5362824A (en) Olefin polymerization catalysts
US4820785A (en) In situ comonomer generation in olefin polymerization
US6583241B1 (en) Process for making MVTR resin
US4312967A (en) Polymerization catalyst and process
US5401820A (en) Olefin polymers prepared by polymerization with treated alumina supported chromium
US5274056A (en) Linear, very low density polyethylene polymerization process and products thereof
US4077904A (en) Olefin polymerization process and catalyst therefor
US6407185B1 (en) Process for the preparation of a composition containing ethylene polymers, composition containing ethylene polymers and use thereof
US5393719A (en) Catalysts for olefin polymerization
US6013595A (en) Catalytic solid for the (co)polymerization of ethylene, process for its preparation, and catalytic system for the (co)polymerization of ethylene
US4307214A (en) SC2 activation of supported chromium oxide catalysts
US5686542A (en) Process for the preparation of branched low-pressure polyethylene, new low-pressure polyethylenes, and preformed bifunctional catalysts
US6344522B1 (en) Process for the preparation of a composition containing ethylene polymers, composition containing ethylene polymers and use thereof
US5422325A (en) Supported polymerization catalysts, their production and use
US5055535A (en) Procedure for gas-phase polymerication of ethylene allowing the fabrication of linear polyethylene with a narrow molecular-weight distribution
US4423196A (en) Copolymers of propylene and allyl alcohol
US4263171A (en) Polymerization catalyst

Legal Events

Date Code Title Description
AS Assignment

Owner name: PHILLIPS PETROLEUM COMPANY A CORP. OF DE, OKLAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:BADLEY, RICKEY D.;BENHAM, ELIZABETH A.;MCDANIEL, MAX P.;REEL/FRAME:006333/0599

Effective date: 19921007

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12