US5470908A - Water-based acrylic coating compositions - Google Patents
Water-based acrylic coating compositions Download PDFInfo
- Publication number
 - US5470908A US5470908A US08/144,924 US14492493A US5470908A US 5470908 A US5470908 A US 5470908A US 14492493 A US14492493 A US 14492493A US 5470908 A US5470908 A US 5470908A
 - Authority
 - US
 - United States
 - Prior art keywords
 - percent
 - weight
 - component
 - composition
 - water
 - Prior art date
 - Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
 - Expired - Fee Related
 
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 72
 - 239000008199 coating composition Substances 0.000 title description 31
 - NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 title description 4
 - 229920000642 polymer Polymers 0.000 claims abstract description 78
 - 239000000203 mixture Substances 0.000 claims abstract description 75
 - 229920005646 polycarboxylate Polymers 0.000 claims abstract description 71
 - XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 25
 - 150000007942 carboxylates Chemical group 0.000 claims abstract description 23
 - 125000003709 fluoroalkyl group Chemical group 0.000 claims abstract description 23
 - 150000001408 amides Chemical class 0.000 claims abstract description 18
 - UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims abstract description 14
 - 239000003431 cross linking reagent Substances 0.000 claims abstract description 12
 - 239000004202 carbamide Substances 0.000 claims abstract description 9
 - JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims abstract description 9
 - OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 claims abstract description 7
 - JIRRNZWTWJGJCT-UHFFFAOYSA-N carbamothioylthiourea Chemical compound NC(=S)NC(N)=S JIRRNZWTWJGJCT-UHFFFAOYSA-N 0.000 claims abstract description 7
 - AEOCXXJPGCBFJA-UHFFFAOYSA-N ethionamide Chemical compound CCC1=CC(C(N)=S)=CC=N1 AEOCXXJPGCBFJA-UHFFFAOYSA-N 0.000 claims abstract description 7
 - LPIQIQPLUVLISR-UHFFFAOYSA-N 2-prop-1-en-2-yl-4,5-dihydro-1,3-oxazole Chemical compound CC(=C)C1=NCCO1 LPIQIQPLUVLISR-UHFFFAOYSA-N 0.000 claims description 38
 - VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 28
 - 229920000768 polyamine Polymers 0.000 claims description 10
 - 150000003839 salts Chemical group 0.000 claims description 9
 - 229920001577 copolymer Polymers 0.000 claims description 7
 - 125000003368 amide group Chemical group 0.000 claims description 6
 - 125000004432 carbon atom Chemical group C* 0.000 claims description 6
 - 239000007795 chemical reaction product Substances 0.000 claims description 6
 - 150000002500 ions Chemical class 0.000 claims description 6
 - 125000001931 aliphatic group Chemical group 0.000 claims description 4
 - OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 2
 - 125000006162 fluoroaliphatic group Chemical group 0.000 claims 1
 - 238000000576 coating method Methods 0.000 abstract description 59
 - 239000011248 coating agent Substances 0.000 abstract description 35
 - 229920006037 cross link polymer Polymers 0.000 abstract description 2
 - KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 51
 - LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 48
 - 229920001897 terpolymer Polymers 0.000 description 40
 - ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 39
 - OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 39
 - 239000000243 solution Substances 0.000 description 36
 - 239000007858 starting material Substances 0.000 description 33
 - 238000002360 preparation method Methods 0.000 description 30
 - -1 sulfonamido ethylacrylate Chemical compound 0.000 description 29
 - 238000009472 formulation Methods 0.000 description 27
 - HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
 - 238000000034 method Methods 0.000 description 19
 - DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 18
 - 239000000178 monomer Substances 0.000 description 18
 - VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 16
 - SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 16
 - DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 16
 - 238000007792 addition Methods 0.000 description 16
 - 239000000908 ammonium hydroxide Substances 0.000 description 16
 - 239000002253 acid Substances 0.000 description 15
 - OSIVISXRDMXJQR-UHFFFAOYSA-M potassium;2-[ethyl(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctylsulfonyl)amino]acetate Chemical compound [K+].[O-]C(=O)CN(CC)S(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F OSIVISXRDMXJQR-UHFFFAOYSA-M 0.000 description 15
 - 239000000047 product Substances 0.000 description 15
 - HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 14
 - 239000007787 solid Substances 0.000 description 14
 - 238000004448 titration Methods 0.000 description 14
 - 238000006243 chemical reaction Methods 0.000 description 13
 - QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
 - IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
 - OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical compound [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 description 12
 - ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 12
 - 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 11
 - 150000001732 carboxylic acid derivatives Chemical class 0.000 description 11
 - 238000006116 polymerization reaction Methods 0.000 description 11
 - 239000009261 D 400 Substances 0.000 description 10
 - CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 10
 - 150000003863 ammonium salts Chemical class 0.000 description 10
 - 238000001816 cooling Methods 0.000 description 10
 - 239000002904 solvent Substances 0.000 description 10
 - CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 9
 - 230000000052 comparative effect Effects 0.000 description 9
 - IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 8
 - WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 8
 - CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 8
 - 239000004094 surface-active agent Substances 0.000 description 8
 - 239000007788 liquid Substances 0.000 description 7
 - 239000011541 reaction mixture Substances 0.000 description 7
 - 230000002829 reductive effect Effects 0.000 description 7
 - FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 6
 - CYUZOYPRAQASLN-UHFFFAOYSA-N 3-prop-2-enoyloxypropanoic acid Chemical compound OC(=O)CCOC(=O)C=C CYUZOYPRAQASLN-UHFFFAOYSA-N 0.000 description 6
 - YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
 - XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
 - 150000001412 amines Chemical class 0.000 description 6
 - 239000003795 chemical substances by application Substances 0.000 description 6
 - 239000010408 film Substances 0.000 description 6
 - 239000003456 ion exchange resin Substances 0.000 description 6
 - 229920003303 ion-exchange polymer Polymers 0.000 description 6
 - 229910052757 nitrogen Inorganic materials 0.000 description 6
 - 229940014800 succinic anhydride Drugs 0.000 description 6
 - NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 5
 - 150000007513 acids Chemical class 0.000 description 5
 - 238000000502 dialysis Methods 0.000 description 5
 - 239000003999 initiator Substances 0.000 description 5
 - 239000003960 organic solvent Substances 0.000 description 5
 - 239000001361 adipic acid Substances 0.000 description 4
 - 235000011037 adipic acid Nutrition 0.000 description 4
 - 239000007864 aqueous solution Substances 0.000 description 4
 - 239000012043 crude product Substances 0.000 description 4
 - RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 4
 - 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
 - 239000000376 reactant Substances 0.000 description 4
 - 239000012508 resin bead Substances 0.000 description 4
 - OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 3
 - VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
 - KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
 - YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
 - 238000010640 amide synthesis reaction Methods 0.000 description 3
 - 239000006227 byproduct Substances 0.000 description 3
 - 125000002091 cationic group Chemical group 0.000 description 3
 - 150000001768 cations Chemical class 0.000 description 3
 - GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 3
 - 239000011521 glass Substances 0.000 description 3
 - 239000005457 ice water Substances 0.000 description 3
 - VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
 - 229910000069 nitrogen hydride Inorganic materials 0.000 description 3
 - 230000000704 physical effect Effects 0.000 description 3
 - 239000000126 substance Substances 0.000 description 3
 - 239000000758 substrate Substances 0.000 description 3
 - 238000012360 testing method Methods 0.000 description 3
 - 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
 - 125000004400 (C1-C12) alkyl group Chemical group 0.000 description 2
 - IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 2
 - OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
 - 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
 - 229910000831 Steel Inorganic materials 0.000 description 2
 - 239000000654 additive Substances 0.000 description 2
 - 125000000217 alkyl group Chemical group 0.000 description 2
 - 229910021529 ammonia Inorganic materials 0.000 description 2
 - 125000000129 anionic group Chemical group 0.000 description 2
 - 125000003118 aryl group Chemical group 0.000 description 2
 - GTZCVFVGUGFEME-HNQUOIGGSA-N cis-Aconitic acid Natural products OC(=O)C\C(C(O)=O)=C/C(O)=O GTZCVFVGUGFEME-HNQUOIGGSA-N 0.000 description 2
 - 125000004122 cyclic group Chemical group 0.000 description 2
 - 238000010790 dilution Methods 0.000 description 2
 - 239000012895 dilution Substances 0.000 description 2
 - 239000012153 distilled water Substances 0.000 description 2
 - 239000001257 hydrogen Substances 0.000 description 2
 - 229910052739 hydrogen Inorganic materials 0.000 description 2
 - 239000012535 impurity Substances 0.000 description 2
 - 239000012528 membrane Substances 0.000 description 2
 - 125000005395 methacrylic acid group Chemical group 0.000 description 2
 - PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 2
 - 239000000049 pigment Substances 0.000 description 2
 - 229920000570 polyether Polymers 0.000 description 2
 - 229920005862 polyol Polymers 0.000 description 2
 - 150000003077 polyols Chemical class 0.000 description 2
 - 229920001451 polypropylene glycol Polymers 0.000 description 2
 - 239000000843 powder Substances 0.000 description 2
 - 238000006268 reductive amination reaction Methods 0.000 description 2
 - 238000010992 reflux Methods 0.000 description 2
 - 238000006748 scratching Methods 0.000 description 2
 - 230000002393 scratching effect Effects 0.000 description 2
 - CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
 - 239000010959 steel Substances 0.000 description 2
 - CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
 - GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 2
 - 229920002554 vinyl polymer Polymers 0.000 description 2
 - 238000005406 washing Methods 0.000 description 2
 - PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
 - SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
 - JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
 - 125000003504 2-oxazolinyl group Chemical group O1C(=NCC1)* 0.000 description 1
 - NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
 - BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
 - 239000004215 Carbon black (E152) Substances 0.000 description 1
 - 239000004971 Cross linker Substances 0.000 description 1
 - JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
 - 239000004606 Fillers/Extenders Substances 0.000 description 1
 - UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
 - 229910004809 Na2 SO4 Inorganic materials 0.000 description 1
 - 239000004952 Polyamide Substances 0.000 description 1
 - 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
 - PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
 - GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
 - 238000005299 abrasion Methods 0.000 description 1
 - 230000002378 acidificating effect Effects 0.000 description 1
 - 238000012644 addition polymerization Methods 0.000 description 1
 - 230000001464 adherent effect Effects 0.000 description 1
 - 239000002390 adhesive tape Substances 0.000 description 1
 - 238000007605 air drying Methods 0.000 description 1
 - 150000003973 alkyl amines Chemical class 0.000 description 1
 - 125000003277 amino group Chemical group 0.000 description 1
 - 238000013459 approach Methods 0.000 description 1
 - 239000008346 aqueous phase Substances 0.000 description 1
 - 238000003556 assay Methods 0.000 description 1
 - 239000012298 atmosphere Substances 0.000 description 1
 - HONIICLYMWZJFZ-UHFFFAOYSA-O azetidin-1-ium Chemical compound C1C[NH2+]C1 HONIICLYMWZJFZ-UHFFFAOYSA-O 0.000 description 1
 - UENWRTRMUIOCKN-UHFFFAOYSA-N benzyl thiol Chemical compound SCC1=CC=CC=C1 UENWRTRMUIOCKN-UHFFFAOYSA-N 0.000 description 1
 - 230000015572 biosynthetic process Effects 0.000 description 1
 - 229910052799 carbon Inorganic materials 0.000 description 1
 - 150000001735 carboxylic acids Chemical class 0.000 description 1
 - 239000003054 catalyst Substances 0.000 description 1
 - 239000007810 chemical reaction solvent Substances 0.000 description 1
 - GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 1
 - 239000010960 cold rolled steel Substances 0.000 description 1
 - 150000001875 compounds Chemical class 0.000 description 1
 - 239000012141 concentrate Substances 0.000 description 1
 - 238000004132 cross linking Methods 0.000 description 1
 - GPKFMIVTEHMOBH-UHFFFAOYSA-N cumene;hydrate Chemical compound O.CC(C)C1=CC=CC=C1 GPKFMIVTEHMOBH-UHFFFAOYSA-N 0.000 description 1
 - 239000010432 diamond Substances 0.000 description 1
 - 239000000539 dimer Substances 0.000 description 1
 - REQPQFUJGGOFQL-UHFFFAOYSA-N dimethylcarbamothioyl n,n-dimethylcarbamodithioate Chemical compound CN(C)C(=S)SC(=S)N(C)C REQPQFUJGGOFQL-UHFFFAOYSA-N 0.000 description 1
 - 238000001035 drying Methods 0.000 description 1
 - 239000000975 dye Substances 0.000 description 1
 - 230000000694 effects Effects 0.000 description 1
 - 239000000839 emulsion Substances 0.000 description 1
 - DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
 - 238000001914 filtration Methods 0.000 description 1
 - 238000010438 heat treatment Methods 0.000 description 1
 - 229930195733 hydrocarbon Natural products 0.000 description 1
 - 150000002430 hydrocarbons Chemical class 0.000 description 1
 - 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
 - 239000004615 ingredient Substances 0.000 description 1
 - 239000003112 inhibitor Substances 0.000 description 1
 - 230000002452 interceptive effect Effects 0.000 description 1
 - 125000003010 ionic group Chemical group 0.000 description 1
 - 239000004816 latex Substances 0.000 description 1
 - 229920000126 latex Polymers 0.000 description 1
 - 231100000053 low toxicity Toxicity 0.000 description 1
 - 239000003550 marker Substances 0.000 description 1
 - 239000000463 material Substances 0.000 description 1
 - 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
 - LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
 - 239000012299 nitrogen atmosphere Substances 0.000 description 1
 - 239000012074 organic phase Substances 0.000 description 1
 - 150000004893 oxazines Chemical class 0.000 description 1
 - 150000002918 oxazolines Chemical class 0.000 description 1
 - 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
 - 238000005191 phase separation Methods 0.000 description 1
 - 150000003022 phthalic acids Chemical class 0.000 description 1
 - 229920003023 plastic Polymers 0.000 description 1
 - 239000004033 plastic Substances 0.000 description 1
 - 239000004014 plasticizer Substances 0.000 description 1
 - 229920002647 polyamide Polymers 0.000 description 1
 - 230000000379 polymerizing effect Effects 0.000 description 1
 - 239000013014 purified material Substances 0.000 description 1
 - 238000011160 research Methods 0.000 description 1
 - 239000013557 residual solvent Substances 0.000 description 1
 - 238000000518 rheometry Methods 0.000 description 1
 - 238000007761 roller coating Methods 0.000 description 1
 - XWGJFPHUCFXLBL-UHFFFAOYSA-M rongalite Chemical compound [Na+].OCS([O-])=O XWGJFPHUCFXLBL-UHFFFAOYSA-M 0.000 description 1
 - 235000002020 sage Nutrition 0.000 description 1
 - 229920006395 saturated elastomer Polymers 0.000 description 1
 - 229910000077 silane Inorganic materials 0.000 description 1
 - 229910000029 sodium carbonate Inorganic materials 0.000 description 1
 - 238000001228 spectrum Methods 0.000 description 1
 - 238000005507 spraying Methods 0.000 description 1
 - 101150035983 str1 gene Proteins 0.000 description 1
 - RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
 - 239000000725 suspension Substances 0.000 description 1
 - 150000003504 terephthalic acids Chemical class 0.000 description 1
 - 238000012956 testing procedure Methods 0.000 description 1
 - 150000005622 tetraalkylammonium hydroxides Chemical class 0.000 description 1
 - TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
 - 239000010409 thin film Substances 0.000 description 1
 - 239000013638 trimer Substances 0.000 description 1
 - 239000003039 volatile agent Substances 0.000 description 1
 - DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
 
Classifications
- 
        
- C—CHEMISTRY; METALLURGY
 - C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
 - C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
 - C09D179/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
 - C09D179/02—Polyamines
 
 - 
        
- C—CHEMISTRY; METALLURGY
 - C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
 - C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
 - C08J3/00—Processes of treating or compounding macromolecular substances
 - C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
 - C08J3/246—Intercrosslinking of at least two polymers
 
 - 
        
- C—CHEMISTRY; METALLURGY
 - C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
 - C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
 - C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
 - C09D133/04—Homopolymers or copolymers of esters
 - C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
 - C09D133/062—Copolymers with monomers not covered by C09D133/06
 - C09D133/064—Copolymers with monomers not covered by C09D133/06 containing anhydride, COOH or COOM groups, with M being metal or onium-cation
 
 - 
        
- C—CHEMISTRY; METALLURGY
 - C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
 - C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
 - C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
 - C08L79/02—Polyamines
 
 
Definitions
- This invention relates to polymeric coating compositions containing water-compatible polymers, including coating compositions wherein such polymers contain at least one fluoroalkyl group.
 - U.S. Pat. Nos. 4,592,933; 4,764,564; 4,467,836; and 4,554,325 teach the preparation of coatings using reactive polymeric surfactants and crosslinking agents.
 - U.S. Pat. Nos. 4,929,666 and 5,006,624 teach the preparation of coatings using water-compatible crosslinkable polymeric surfactants with crosslinking agents.
 - Such coating compositions are water-based, and have a sufficiently low surface tension to enable the composition to form a uniform, thin film when deposited on a surface to be coated, yet also have good adhesion to the surface itself. However, it would be desirable to further improve the adhesion, wear resistance, and toughness of such coatings for certain coating applications.
 - this invention is a composition comprising at least 10 percent by weight of water and, based on the weight of components (a), (b), and (c);
 - component (b) 1 to about 60 percent by weight of a polymeric polycarboxylate different from component (a), which has (1) at least two pendant or terminal carboxylate groups and (2) at least one internal amide, thioamide, urea, thiourea, biuret, dithiobiuret, or urethane group; and
 - this invention is a composition as in the first aspect of the invention, wherein component (a) contains at least one pendant fluoroalkyl moiety.
 - the composition of the invention provides a water-based coating which, when deposited on a surface to be coated and allowed to dry and form a crosslinked polymer, has a high degree of wear resistance, hardness, and toughness, as may be measured by the testing procedures set forth below. Further, these coatings may be characterized by a high degree of toughness and adhesion of the cured coating to a substrate.
 - the ionic groups present in the composition undergo reaction which substantially destroys the charge with subsequent formation of covalent crosslinks.
 - Suitable water-compatible polymers for use as component (a) of the composition of the invention include any such polymer having at least two pendant carboxyl groups converted to their salt form. Enough of the carboxyl groups should be converted to their salt form to make the polymer water-compatible, but it may not be necessary to convert all of the pendant carboxyl groups.
 - Such polymers are preferably prepared from unsaturated (e.g., vinyl) monomers by conventional addition polymerization methods, so long as at least one of the monomers contains pendant carboxyl groups.
 - These polymers, component (a) may be represented by the following formula:
 - A' and E are terminal groups formed from the polymerization reaction employed; and B, C, and D are internal covalently bonded groups which can be arranged in any sequence to form a block or random polymer.
 - the subscript m is zero; in the second aspect of the invention, the subscript m is a positive integer, so that the resulting polymer will contain a pendant fluoroalkyl group.
 - the polymer can have a number average molecular weight between 2,000 and 200,000, preferably between about 8,000 to 50,000. ##STR1##
 - R a is a saturated trivalent aliphatic radical containing from 2 to 4 carbon atoms.
 - the B group is derived from polymerization of an ethylenically unsaturated monomer containing a pendant fluoroalkyl group.
 - X is a covalently bonded connecting group.
 - R f is a pendant fluoroalkyl moiety containing from 2 to 12 carbon atoms.
 - R a is as previously defined.
 - Y is a covalently bonded connecting group attached to a reactive moiety, , which charge is an anionic moiety and may have a counter ion; q is 1 or 2.
 - the counter ion may be H + or NH 4 + , or a protonated amine. In the presence of a crosslinking agent the counter ion may be bound to such agent. Examples of connecting groups X and Y are shown in U.S. Pat. No. 4,929,666, the relevant portions of which are hereby incorporated by reference.
 - D is derived from a non-interfering, hydrocarbon-based polymerizable monomer.
 - monomers of the following formula may be used: ##STR3## wherein R 1 is an alkyl from 1 to 36 carbon atoms, more preferably an alkyl of from 1 to 12 carbon atoms; --CH 2 --CH ⁇ CH 2 , or ##STR4## wherein x is an integer of from 1 to about 20, y is an integer from 1 to about 18, and R 2 is hydrogen or methyl.
 - R 3 is independently in each occurrence H, or a C 1-12 alkyl group, and z is a number from 0 to 5.
 - polymers containing fluoroalkyl groups including methods for their preparation, are described in U.S. Pat. Nos. 5,006,624 and 4,929,666 (the relevant parts of which are hereby incorporated by reference).
 - such polymers may be prepared by polymerizing acrylic or methacrylic esters with an ethylenically unsaturated carboxylic acid, and then contacting the resulting polymer with a suitable base under conditions sufficient to convert at least one carboxyl group on the polymer to its salt form.
 - Suitable ethylenically unsaturated carboxylic acids which may be used to prepare the water-compatible polymer of component (a) include any carboxylic acid with at least one additional polymerizable --C ⁇ C-- group and at least one pendant carboxyl group.
 - examples of such acids include methacrylic acid, ⁇ -carboxyethyl acrylate ( ⁇ -CEA), acrylic acid, cis-aconitic acid, trans-aconitic acid, or itaconic acid.
 - the carboxylic acid is ⁇ -carboxyethyl acrylate.
 - suitable water-compatible polymers for use as component (a) include polymers as described above, which also have at least one pendant fluoroalkyl moiety.
 - the fluoroalkyl moiety is a C 6 -C 9 fluoroalkyl group containing at least three fully fluorinated carbon atoms, including a terminal --CF 3 group.
 - the group may be linear, branched, or if sufficiently large, cyclic.
 - the fluoroalkyl group may be connected to the vinyl group of the monomer through particular connecting groups selected to enhance the chemical and thermal stability of the fluoroalkyl group.
 - fluoroalkyl groups examples include R f --SO 2 --N(R)--(CH 2 ) n --, R f --(CH 2 ) n --, R f --(CH 2 ) n --S--(CH 2 ) n --, or R f --(CH 2 ) n --C(OH)(R)--(CH 2 )--, wherein R f is a fluoroalkyl group, R is H or a C 1-12 alkyl group, and n is a whole number from 1 to 10.
 - the vinyl polymerization reaction to prepare component (a) may be carried out by conventional polymerization methods. Following the polymerization reaction, the polymer is contacted with a base under conditions sufficient to convert a sufficient number of the carboxyl groups of the polymer to a carboxylate salt in order to make the polymer compatible with the reaction solvent.
 - suitable bases include ammonium hydroxide, triethylamine, triethanolamine, and tetraalkylammonium hydroxide.
 - Component (a) is preferably present in an amount, based on the weight of components (a), (b), and (c) of the composition, of at least about 10 percent, more preferably at least about 30 percent, most preferably at least about 60 percent; and is preferably no greater than about 90 percent, more preferably no greater than about 80 percent, and is most preferably no greater than about 70 percent.
 - water-compatible refers to a stable or metastable (temporarily stable) mixture of the coating composition with water, including a solution, micellular, or partially colloidal suspension, or a latex.
 - the composition of the invention may optionally contain an organic solvent, in an amount of up to 70 percent by weight of the total water/organic solvent combination. Preferably, however, the total water/organic solvent comprises less than 50 percent by weight organic solvent.
 - the organic solvent is water-compatible. Suitable water-compatible solvents include lower alkanols and alkylene glycols.
 - the composition of the invention may optionally contain plasticizers, extenders, and additives such as surfactants, rheology modifying agents, dyes, and pigments.
 - Component (b) of the composition of the invention is a water-compatible polymeric polycarboxylate different from the polymer used as component (a), and which is a polymer having (1) at least two pendant carboxylate groups and (2) at least one internal amide, thioamide, urea, thiourea, biuret, dithiobiuret, or urethane group in its backbone.
 - the polycarboxylate contains at least one internal amide group.
 - the polymeric polycarboxylate is water-compatible to at least 5 g per 100 g of water, more preferably to 10 g per 100 g of water.
 - Component (b) is preferably present in an amount, based on the weight of components (a), (b), and (c) of the composition, of at least about 1 percent, more preferably at least about 5 percent, most preferably at least about 10 percent; and is preferably no greater than about 50 percent, more preferably no greater than about 20 percent, and is most preferably no greater than about 10 percent.
 - the polymeric polycarboxylate (component (b)) is preferably employed in an amount sufficient to improve the average hardness, toughness, and/or wear resistance of the coating composition.
 - Polymeric polycarboxylates (component (b)) containing internal amide, thioamide, urea, thiourea, biuret, dithiobiuret, or urethane groups may be prepared as described in copending application by Robert F. Harris et al., entitled “Carboxylic Acid-Functional and Hydroxyalkylamide-Functional Polyethers Containing Urea, Thiourea, Biuret, Dithiobiuret, Amide Thioamide and/or Urethane Moieties in their Backbone", filed Oct. 28, 1993, U.S. patent application Ser. No. 08/144,752.
 - Such polycarboxylates are referred to in the copending application as carboxylic acid-functional polyethers which have been converted to their salt form.
 - Polyamines suitable for use in preparing the polymeric polycarboxylates include any polyamine or mixture of polyamines which will produce a water-compatible polymeric polycarboxylate when reacted with a polycarboxylic acid and converted to the corresponding salt.
 - Polyalkyleneoxy polyamines are preferred for this purpose, but other polyamines which are less water-soluble, such as aliphatic polyamines, may be used in conjunction with polyalkyleneoxy polyamines, so long as the resulting polycarboxylic acid containing at least one amide, thioamide, urea, thiourea, biuret, dithiobiuret, or urethane group is water-compatible.
 - Polyalkyleneoxy polyamines useful in preparing water-soluble polymeric polycarboxylic acids are well-known compositions which may be prepared by the reductive amination of polyalkyleneoxy polyols using hydrogen and ammonia in the presence of a catalyst. This reductive amination of polyols is described in U.S. Pat. Nos. 3,128,311; 3,152,998; 3,236,895; 3,347,926; 3,654,370; 4,014,933 and 4,153,581, the relevant portions of which are incorporated herein by reference.
 - the molecular weight of the polyalkyleneoxy polyamine starting material, when employed, is preferably in the range of from about 200 to about 4,000.
 - Polycarboxylic acids suitable for preparing the polymeric polycarboxylate include any aliphatic or aromatic polycarboxylic acid having at least two pendant carboxyl groups.
 - polycarboxylic acids include succinic, glutaric, adipic, sebacic, cyclohexane-1,4-dicarboxylic, phthalic, and terephthalic acids.
 - the carboxylic acid is a C 2-8 aliphatic dicarboxylic acid because the salts thereof are more easily solubilized in water.
 - dimers and trimers of such acids may also be used.
 - the polymeric polycarboxylate polymer used as component (b) of the composition of the invention preferably has at least 2 internal amide groups per molecule and a molecular weight in the range of from about 300 to about 5,000.
 - the molecular weight of the polymeric polycarboxylate polymer may be controlled by choice of starting materials with particular molecular weights and/or by choice of the stoichiometry of the reactants used to prepare the polymeric polycarboxylate (component (b)) polymer (since higher molecular weight polymeric polycarboxylates will be obtained as the reaction stoichiometry approaches 1:1).
 - the number of amide, urea, and urethane groups per molecule may also be controlled in a like manner.
 - the ratio of carboxyl groups to amine groups in the reaction mixture is in the range of from about 2:1 to about 1.1:1.
 - the polymeric polycarboxylic acid may be converted to a salt by contacting it with a suitable base, such as lower alkyl amines, alkanol amines, and ammonium hydroxide.
 - a suitable base such as lower alkyl amines, alkanol amines, and ammonium hydroxide.
 - the base is ammonium hydroxide.
 - the molecular weight of the polymeric polycarboxylates may be determined by titration of the end groups with a standard base, such as sodium hydroxide or potassium hydroxide.
 - a standard base such as sodium hydroxide or potassium hydroxide.
 - the existence of amide, urea, and/or urethane groups in the backbone of the polymeric polycarboxylic acid can be determined by carbon-13 NMR.
 - the polymeric polycarboxylates (component (b)) can be employed as part of an unpurified reaction product, or the final reaction mixture can be purified to remove unreacted starting materials.
 - Basic impurities such as unreacted amines may be removed by contacting the reaction product with acidic ion exchange resins.
 - Other impurities, particularly color bodies, may be removed from the reaction product by contacting it with an adsorbant solid, such as activated charcoal.
 - Solvents may also be used to purify the reaction product.
 - Suitable polyfunctional crosslinking agents for use as component (c) of the compositions of the invention include any compound or polymer having at least two reactive cationic or potentially cationic pendant ions.
 - the cation may be a polyfunctional cation such as benzylsulfonium, aryl cyclic sulfonium (such as described in U.S. Pat. No. 3,903,056) or azetidinium as the CO 3 ⁇ or HCO 3 -- salt.
 - Preferred potentially cationic crosslinking agents include polyfunctional oxazolines or oxazines.
 - Components (a) and (b) of the composition of the invention are usually employed in the form of an ammonium salt.
 - the crosslinking agent is poly-(2-isopropenyl-2-oxazoline) or a copolymer of 2-isopropenyl-2-oxazoline and methyl methacrylate.
 - the crosslinking agent is preferably present in an amount, based on the weight of components (a), (b), and (c) of the composition, of at least about 5 percent, more preferably at least about 10 percent, most preferably at least about 20 percent; and is preferably no greater than about 50 percent, more preferably no greater than about 45 percent, and is most preferably no greater than about 30 percent.
 - the overall ratio of carboxylate:oxazoline groups in the composition is at least about 0.2:1, more preferably at least about 0.7:1, and is preferably no greater than about 4:1, more preferably no greater than about 1.4:1, and is most preferably about 1:1.
 - Components (a), (b), and (c) may be combined with water in any suitable manner to form a water-based coating composition.
 - the coating thereafter may be applied to a substrate to be coated in any convenient manner, such as by roller coating or spraying, and allowed to cure.
 - the coating is preferably cured at a temperature in the range of from about 30° C. to about 150° C., more preferably in the range of from about 100° C. to about 120° C.
 - the coating may also be cured at ambient temperatures, although the rate of curing will be slower at such temperatures.
 - the coating composition may optionally contain other additives, such as pigments, anti-sag agents, leveling agents, and curing promoters.
 - the coating preferably contains a leveling agent such as FluororadTM FC-29, available from 3M. When employed, the leveling agent is preferably used in an amount in the range of from about 10 ppm to about 1000 ppm, based on the weight of the total formulation.
 - the wear resistance, hardness, and impact resistance of the coatings may be measured by ASTM 4060 ("Abrasion Resistance of Organic Coatings by the Taber Abraser”); ASTM 138 ("The Knoop Indenter as Applied to Testing Nonmetallic Materials Ranging from Plastics to Diamonds”) (ASTM Bulletin, January 1946); and ASTM 2795 ("Resistance of Organic Coatings to the Effect of Rapid Deformation (Impact)”), respectively.
 - a terpolymer having a monomer ratio of methacrylic acid (MAA): methyl methacrylate (MMA): and n-butyl methacrylate (BMA) of 20:60:20 is prepared.
 - Polymerization is carried out under a nitrogen atmosphere in a 250 mL 3-necked flask equipped with a mechanical stirrer, condenser, and two addition funnels.
 - the flask containing 90 g of t-butanol is heated to 80° C. and 20 g MAA, 60 g MMA, 20 g BMA and 10 g t-butanol is introduced by the first addition funnel at increments of 10 mL every five minutes.
 - VazoTM 64 (DuPont) in 10 g of methyl ethyl ketone is added at a constant rate such that both addition funnels are emptied at the same time.
 - the reaction is cooled, 25 mL of concentrated ammonium hydroxide in 800 mL water is added.
 - the solution is dialyzed using a SpectraporTM membrane tubing (Spectrum Medical Industries) with a 12,000 to 14,000 molecular weight cutoff. This yielded 573 g of a 6.06 weight percent solution of polymer.
 - a perfluorocarbon-containing polymeric surfactant is prepared having a pendant carboxylate functionality.
 - Polymerization is carried out in a 250 mL, 3-necked, round bottomed-flask equipped with an overhead stirrer, condenser, two pressure equalizing addition funnels and a nitrogen inlet.
 - the reaction flask is charged with 25 g of MEK, stirred, heated to 85° C., and purged with nitrogen.
 - To the funnel is added 40 g of a perfluorinated methacrylate compound (Zonyl TMTM, made by DuPont, after inhibitor removal) and 10 g of methacrylic acid (MAA) along with 5 g additional MEK.
 - Zonyl TMTM a perfluorinated methacrylate compound
 - MAA methacrylic acid
 - the mixture of monomers is added to the reaction flask at the rate of 3.5 mL per 15 minutes.
 - 1.2 Grams of initiator (Vazo-64TM, ⁇ , ⁇ -azobisisobutyronitrile, manufactured by DuPont) in 12 mL of MEK is added at the rate of 1 mL per 15 minutes to the reaction mixture.
 - the reaction mixture is held at 85° C. for three hours.
 - the reaction mixture is allowed to cool to ambient temperature and the solvent removed under vacuum leaving a white powder form of a polymer having pendant perfluoroalkyl groups and pendant carboxy functionalities.
 - the solid powder is dissolved into an aqueous ammonium hydroxide solution.
 - the residual ammonium hydroxide is removed under vacuum and the polymer dialyzed utilizing SpectraporTM dialysis tubing with a molecular weight cutoff of 8,000.
 - the condenser and Dean Stark trap are removed and the system is evacuated to 2 mm Hg and maintained at this reduced pressure and 160° C. for 5 hours while cumene is collected in a -78° C. trap.
 - the crude product is dissolved in methanol (200 mL) and stirred overnight with DowexTM 50W ion exchange resin (20 g) to adsorb any amino compounds. The methanol solution is then filtered to remove resin beads and stripped on a rotary evaporator to remove the methanol.
 - the product is obtained as a viscous, amber liquid: 0.490 meq/g by titration with 0.100N NaOH dissolved in methylene chloride and further purified by extracting with dilute (0.1N) HCl, washing with water, and drying over anhydrous sodium sulfate. After filtration, the product is recovered by stripping the methylene chloride under vacuum.
 - Carbon-13 NMR (CDCl 3 ) shows amide carbonyl moieties and carboxylic acid carbonyl moieties.
 - the product is dissolved in propylene glycol to give a 41.8 weight percent active solution.
 - the IPO monomer (2-isopropenyl-2-oxazoline) is freshly distilled (46° C. to 50° C. about 5 mm Hg) immediately prior to the polymerization step.
 - the inhibitor-free monomer (260 mL) is added to a mixture of methyl methacrylate (73.5 mL), isopropanol (87.5 mL), distilled water (400 mL) and tert-butanol (400 mL). A portion of this solution (250 mL) is added to the reaction vessel and the mixture is warmed to 50° C.
 - the solution of the initiators (FormoponTM a 98/2 mixture of sodium formaldehyde sulfoxylate and sodium carbonate, available from Henkel Corporation) (8.8 g in 30 mL of water) and a 70 percent aqueous solution of tert-butyl hydroperoxide (9.82 g in 30 mL of tert-butanol) are added to 125 mL addition funnels.
 - the initiators are slowly added at a rate of 5 mL/hr while the monomer solution is added at a rate of 400 mL/hr.
 - the heating is discontinued, the system is opened to the atmosphere and the polymerization is quenched by the addition of isopropanol (200 mL).
 - the percent solids of the solution is determined by removing a known amount of the solution from the reaction mixture, removal of volatile components under reduced pressure, and then reweighing the sample. From this value the percent conversion of the polymerization reaction could be calculated. Generally this value is between 70 and 80 percent.
 - the reaction mixture is subjected to reduced pressure to remove residual solvents and monomers (the original volume is maintained through the addition of water).
 - This solution is poured into SpectraporTM dialysis tubing (3500 MW cutoff).
 - the tubes are sealed, placed into one gallon jars and stirred with strong acid ion exchange resin.
 - the water in the jars is periodically changed until its conductivity remained nearly constant.
 - the dialysis tubing is air dried to partially concentrate the polymer solution.
 - the contents of the dialysis tubings are combined, filtered, analyzed for residual monomers, stabilized by the addition of concentrated ammonia (pH of about 8) and stored at 45° F. until needed.
 - Ammonium hydroxide (Fisher Chemical, 28 to 30 percent assay NH 3 weight percent) 0.50 g in 10 g of water is mixed with 10 g of (41.8 weight percent propylene glycol solution of the polymeric polycarboxylate described above as Starting Material C). This solution is mixed with 43.5 g (19.2 weight percent) of an aqueous solution of the ammonium salt of a polymer prepared from a 60:20:20 weight ratio of methyl methacrylate, butyl methacrylate and methacrylic acid described as Starting Material A. The latter solution is added to 31.52 g (9.85 weight percent) aqueous solution of an 80:20 weight ratio copolymer of 2-isopropenyl-2-oxazoline and methyl methacrylate (Starting Material D).
 - a 7 percent formulation is prepared by dilution with 142.2 g of solvent containing 76.6 percent, 9.9 percent, 13.5 percent (weight percent) water, 2-propanol and propylene glycol, respectively.
 - the ammonium salt of a polymer is prepared from methyl methacrylate, butyl methacrylate, methacrylic acid (Starting Material A) which are used in a 60:20:20 weight percent ratio.
 - 40 g of the solution containing the polymer (19.2 weight percent, in water) is mixed with 25.5 g of a 9.85 percent weight aqueous solution of an 80:20 weight percent ratio of 2-isopropenyl-2-oxazoline and methyl methacrylate (Starting Material D).
 - a coating formulation is prepared by dilution with 80.1 g of a solvent containing 76.6 percent, 9.9 percent, 13.5 percent (weight) water, 2-propanol and propylene glycol, respectively.
 - Both coating formulations are applied to glass microscope slides and mild steel and cured in an oven at 130° C. for 30 minutes.
 - the clear coatings are tested for adhesion by scratching a grid or cross-hatch pattern with a steel scribe.
 - the coating containing the polymeric polycarboxylate could not be removed by ScotchTM transparent tape, however, parts of the film that did not contain polymeric polycarboxylate (Starting Material C) came off when the adhesive tape was removed.
 - a coating formulation is prepared from a carboxylate functional fluoroalkyl polymer prepared from a 60:40 weight percent composition of ZonylTM (DuPont) and SipomerTM B-CEA (available from Alcolac) and a crosslinking copolymer consisting of an 80:20 weight percent ratio of 2-isopropenyl-2-oxazoline (IPO) and methyl methacrylate (MMA) (Starting Material D).
 - the two polymers are combined in the presence of NH 4 OH in a 4:7.2 ratio such that the equivalents of oxazoline functionality are essentially equal to the carboxylate equivalent present in the fluoroalkyl polymer.
 - the formulation is 8.76 percent active and the solvent consists of a 67:13:20 weight ratio of water, ethylene glycol and 2-propanol.
 - Both the modified and unmodified formulations are cast on microscope slides and a piece of ArmstrongTM floor tile. After curing for 30 minutes at 130° C. the coatings prepared from the modified formulations had the best adhesion via the previously described cross hatch test.
 - the terpolymer is prepared under nitrogen by using syringe pumps (Sage Model 352, Orian Research Inc.) to simultaneously-continuously add four solutions to an 82° C., stirred, initiator solution 1.13 g, VazoTM-67 (DuPont), 30 g methylethyl ketone (MEK), 20 g propylene glycol.
 - the polymer solution is mixed with 100 g water and 2.5 g ammonium hydroxide (28% NH 3 ).
 - the stirred solution is warmed to 50° C. and exposed to a stream of nitrogen to remove MEK and excess NH 4 OH.
 - the solution is centrifuged (Model CM Centrifuge from International Centrifuge) and concentrated under a stream of nitrogen to 16.3 weight percent solids.
 - aqueous terpolymeric surfactant solution described above (7.46 g, 16.3 weight percent solids, 0.00214 molar equiv. carboxylate) is combined with: (1) Polymeric Polycarboxylate (Starting Material C) (0.60 g, 20.0 weight percent solids in ethylene glycol, 0.00003 molar equiv. carboxylate), (2) poly-(IPO/MMA) (3.04 g, 9.85 weight percent aqueous 0.00127 molar equiv. oxazoline, and (3) 2.5 g ethylene glycol and 2.0 g 2-propanol.
 - Polymeric Polycarboxylate Startting Material C
 - Poly-(IPO/MMA) (3.04 g, 9.85 weight percent aqueous 0.00127 molar equiv. oxazoline
 - 2.5 g ethylene glycol and 2.0 g 2-propanol 2.5 g ethylene glycol and 2.0 g 2-propanol.
 - the above formulation containing the polymeric polycarboxylate and a similar formulation containing all the ingredients except the polymeric polycarboxylate and its molar equivalent of the IPO/MMA copolymer are both cast with a number 46 wire wound rod onto 1/32 inch mild steel panels.
 - the coatings are cured at 130° C. for one hour which produced films with a thickness of about 0.0006 inch.
 - the film adhesion is evaluated by scratching a grid or cross-hatch pattern with a steel scribe.
 - the coating containing the polymeric polycarboxylate could not be removed by 3M ScotchTM transparent tape 600.
 - the unmodified coating could be completely removed. Impact resistance is determined with a Gardner Impact tester.
 - the modified coating had a direct impact resistance (ASTM 2795) of 20 in./lb.
 - the unmodified coating had an impact resistance of only 4 in./lb.
 - markings applied with a black permanent marker (Stanford-SharpeTM) could easily be wiped off both coatings with
 - a polymeric polycarboxylate is prepared as follows:
 - the terpolymer is made in a 250-mL, 3-necked round-bottomed flask equipped with condenser, claisen adapter, thermometer, two addition funnels, nitrogen sparger and temperature controller.
 - the monomers and t-butanol (25 g) are placed in one of the addition funnels, the VAZOTM-64 is placed in a second funnel and t-butanol (50 g) is charged to the reactor.
 - the reactor is heated to 82° C., sparged with N 2 and maintained at 82° C. during monomer addition.
 - the initiator solution is added at 1 mL/5 min and the monomer feed is added at 8 mL/5 min.
 - the reactor is heated for 2.5 additional hours at 82° C., cooled to ambient temperature and cleared by the addition of a small amount of water.
 - Concentrated ammonium hydroxide (25 ml, 15N) and water (600 mL) are added and the volatiles are stripped on a rotary evaporator.
 - the clear solution is dialyzed (12,000 to 14,000 molecular weight cutoff) to give a polymer solution at 5.50 percent solids containing 51.4 g polymer.
 - the following formulation was prepared in a 10 mL bottle. Each component is added in the order given below.
 - the IPO Polymer is prepared as described above for Starting Material D.
 - a portion of the solution is cast on a panel of cold rolled steel (previously wiped with a 1 percent solution of a silane compound in methanol (Z-6020, available from Dow Corning Corp.)) and is drawn down using a #46 wire rod. After air drying at ambient temperature, the panel is placed in a cold oven and heated to 125° C. (about 15 minutes to heat up, then 45 minutes at 125° C.). The panel is removed and air cooled (about 0.4 mil coating). A second application is applied using a similar procedure to increase the coating thickness. Results are given in Table I.
 - This comparative example contains no polymeric polycarboxylate and uses additional ⁇ -CEA Terpolymer to balance the reactants' stoichiometry.
 - a coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
 - a polymeric polycarboxylate is prepared as follows:
 - the following formulation is prepared in a 10 mL bottle.
 - the IPO Polymer is prepared as in Starting Material D.
 - the ⁇ -CEA terpolymer is prepared as described in Example 4. Each component is added in the order given below.
 - a coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
 - a polymeric polycarboxylate is prepared as follows:
 - the following formulation is prepared in a 10 mL bottle.
 - the IPO Polymer is prepared as in Starting Material D.
 - the ⁇ -CEA terpolymer is prepared as described in Example 4. Each component is added in the order given below.
 - a coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
 - a polymeric polycarboxylate is prepared as follows:
 - a portion of the above product is neutralized with ammonium hydroxide to a pH of about 9 and additional water is added to give the corresponding ammonium salt at about 15 percent solids.
 - FC-129 is a fluorochemical surfactant available as FluororadTM FC-129 from 3M.
 - a coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
 - a polymeric polycarboxylate is prepared as follows:
 - Example 8 A portion of the product from Example 8 is neutralized with ammonium hydroxide to about pH 9 and additional water is added to give the corresponding ammonium salt at about 10 percent solids.
 - Carbon-13 NMR (DMSO-d 6 ) shows amide carbonyl moieties and carboxylate anion carbonyl moieties.
 - the following formulation is prepared in a 10 mL bottle.
 - the IPO Polymer is prepared as in Starting Material D.
 - the ⁇ -CEA terpolymer is prepared as described in Example 4. Each component is added in the order given below.
 - a coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
 - a polymeric polycarboxylate is prepared as follows:
 - a portion of the above product is neutralized with ammonium hydroxide to a pH of about 9 and additional water is added to give the corresponding ammonium salt at about 15 percent solids.
 - the following formulation is prepared in a 10 mL bottle.
 - the IPO Polymer is prepared as in Starting Material D.
 - the ⁇ -CEA terpolymer is prepared as described in Example 4. Each component is added in the order given below.
 - a coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
 - a methacrylate terpolymer is prepared as described above for Starting Material A.
 - the following formulation is prepared in a 10 mL bottle.
 - the polymeric polycarboxylate is prepared as in Example 7.
 - the IPO Polymer is prepared as described above for the preparation of Starting Material D. Each component is added in the order given below.
 - a coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
 - This comparative example contains no polymeric polycarboxylate and uses additional methacrylate terpolymer (Starting Material A) to balance the reactants stoichiometry.
 - a coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
 - the following formulation is prepared in a 10 mL bottle.
 - the polymeric polycarboxylate is prepared as in Example 8.
 - the methacrylate terpolymer is prepared using the procedure described above for the preparation of Starting Material A.
 - the IPO Polymer is prepared as described above for the preparation of Starting Material D. Each component is added in the order given below.
 - a coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
 - a methacrylate terpolymer (MMA 2) is prepared from the above components using the procedure described above for the preparation of Starting Material A.
 - An aqueous polymer solution is prepared containing 11.0 percent solids (87.3 g) polymer.
 - the following coating formulation is prepared in a 10 mL bottle.
 - the polymeric polycarboxylate is prepared as in Example 7.
 - the IPO Polymer is prepared using the procedure described above for the preparation of Starting Material D. Each component is added in the order given below.
 - a coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
 - This comparative example contains no polymeric polycarboxylate and uses additional MMA 2 to balance the reactants stoichiometry.
 - a coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
 - the following formulation is prepared in a 10 mL bottle.
 - the polymeric polycarboxylate is prepared as in Example 5.
 - the methacrylate terpolymer 2 (MMA 2) is prepared as in Example 12.
 - the IPO Polymer is prepared as described above for the preparation of Starting Material D. Each component is added in the order given below.
 - a coating is prepared using the identical procedure used in Example 4, except three cure schedules are used: (a) 1 hour at 125° C., (b) 1 hour at 100° C. and (c) 30 minutes at 85° C. Results are given in Table I.
 - the following formulation is prepared in a 10 mL bottle.
 - the polymeric polycarboxylate is prepared as in Example 6.
 - the IPO Polymer is prepared as described above for the preparation of Starting Material D.
 - the ⁇ -CEA terpolymer is prepared as described above for the preparation of Example 4. Each component is added in the order given below.
 - the formulation is cast on an untreated glass slide and cured for 1 hour at 125° C.
 - the resulting film is clear, colorless, smooth and homogeneous and is resistant to hexane, isopropanol and water.
 - the film is hard and resisted being scratched by a #6H pencil.
 - the Polymeric Polycarboxylate used in Example 14 is purified by dissolving in ammonium hydroxide solution and washing with ethyl acetate (a little toluene is added to facilitate phase separation).
 - the aqueous phase is acidified with hydrochloric acid solution (2 percent) and the polymeric polycarboxylate is allowed to separate out.
 - the water is removed and the polymeric polycarboxylate is dissolved in ethyl acetate.
 - the organic phase is washed with water (salt needed to break up emulsion), dried with anhydrous Na 2 SO 4 and concentrated in vacuum.
 - This purified material is used in the same formulation as used in Example 14.
 - the films on glass are cured as above. They are clear, colorless, smooth, homogeneous and have a somewhat better appearance than the coatings made in Example 14; pencil hardness is #6H.
 - Example 15 An additional quantity of the formulation used in Example 15 is prepared. A piece of Armstrong floor tile is cleaned with soapy water and rinsed with isopropanol. A thick coating (No. 40 wire rod) is applied and cured at 105° C. for 1 hour. A clear, tough, adherent, flexible coating is obtained.
 
Landscapes
- Chemical & Material Sciences (AREA)
 - Organic Chemistry (AREA)
 - Chemical Kinetics & Catalysis (AREA)
 - Life Sciences & Earth Sciences (AREA)
 - Engineering & Computer Science (AREA)
 - Materials Engineering (AREA)
 - Wood Science & Technology (AREA)
 - Health & Medical Sciences (AREA)
 - Medicinal Chemistry (AREA)
 - Polymers & Plastics (AREA)
 - Paints Or Removers (AREA)
 - Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
 
Abstract
Described herein is a composition comprising at least 10 percent by weight of water and, based on the weight of components (a), (b), and (c); (a) 0 to about 95 percent by weight of a water-compatible polymer having at least two pendant carboxylate groups; (b) 1 to about 60 percent by weight of a polymeric polycarboxylate polymer different from (a) having (1) at least two pendant carboxylate groups and (2) at least one internal amide, thioamide, urea, thiourea, biuret, dithiobiuret, or urethane group; and (c) 2 to about 70 percent by weight of a polyfunctional crosslinking agent having an ionic or potentially ionic moiety counter ion capable of reacting with the carboxylate groups of (a) and (b). Component (b) may also contain fluoroalkyl groups. The composition of the invention provides a water-based coating which, when deposited on a surface to be coated and allowed to dry and form a crosslinked polymer, has a high degree of wear resistance, hardness, and impact resistance.
  Description
This invention relates to polymeric coating compositions containing water-compatible polymers, including coating compositions wherein such polymers contain at least one fluoroalkyl group.
    Because of their resistance to sun and weather, coatings derived from methacrylate monomers are widely used for outdoor applications such as automobile finishes. Unfortunately, these coatings often do not have the desired physical properties. Additionally, many of the acrylate-type coatings require flammable and/or environmentally unfriendly application solvents. Because of its low toxicity and flammability, water is a desirable solvent for coating formulations. It is therefore highly desirable to provide a water-based coating system with improved physical properties such as toughness and adhesion to substrates.
    U.S. Pat. Nos. 4,592,933; 4,764,564; 4,467,836; and 4,554,325 teach the preparation of coatings using reactive polymeric surfactants and crosslinking agents. U.S. Pat. Nos. 4,929,666 and 5,006,624 teach the preparation of coatings using water-compatible crosslinkable polymeric surfactants with crosslinking agents. Such coating compositions are water-based, and have a sufficiently low surface tension to enable the composition to form a uniform, thin film when deposited on a surface to be coated, yet also have good adhesion to the surface itself. However, it would be desirable to further improve the adhesion, wear resistance, and toughness of such coatings for certain coating applications.
    In one aspect, this invention is a composition comprising at least 10 percent by weight of water and, based on the weight of components (a), (b), and (c);
    (a) 0 to about 95 percent by weight of a water-compatible polymer having at least two pendant carboxylate groups;
    (b) 1 to about 60 percent by weight of a polymeric polycarboxylate different from component (a), which has (1) at least two pendant or terminal carboxylate groups and (2) at least one internal amide, thioamide, urea, thiourea, biuret, dithiobiuret, or urethane group; and
    (c) 2 to about 70 percent by weight of a polyfunctional crosslinking agent having at least two ionic or potentially ionic moiety counter ions capable of reacting with the carboxylate groups of (a) and (b).
    In a second aspect, this invention is a composition as in the first aspect of the invention, wherein component (a) contains at least one pendant fluoroalkyl moiety.
    It has been discovered that the composition of the invention provides a water-based coating which, when deposited on a surface to be coated and allowed to dry and form a crosslinked polymer, has a high degree of wear resistance, hardness, and toughness, as may be measured by the testing procedures set forth below. Further, these coatings may be characterized by a high degree of toughness and adhesion of the cured coating to a substrate. Advantageously, the ionic groups present in the composition undergo reaction which substantially destroys the charge with subsequent formation of covalent crosslinks. These and other advantages of the invention are apparent from the following description of the invention.
    Suitable water-compatible polymers for use as component (a) of the composition of the invention include any such polymer having at least two pendant carboxyl groups converted to their salt form. Enough of the carboxyl groups should be converted to their salt form to make the polymer water-compatible, but it may not be necessary to convert all of the pendant carboxyl groups. Such polymers are preferably prepared from unsaturated (e.g., vinyl) monomers by conventional addition polymerization methods, so long as at least one of the monomers contains pendant carboxyl groups. These polymers, component (a), may be represented by the following formula:
    A'[(B).sub.m (C).sub.n (D).sub.o ].sub.p E
A' and E are terminal groups formed from the polymerization reaction employed; and B, C, and D are internal covalently bonded groups which can be arranged in any sequence to form a block or random polymer. In the first aspect of the invention, the subscript m is zero; in the second aspect of the invention, the subscript m is a positive integer, so that the resulting polymer will contain a pendant fluoroalkyl group. The subscript n is a positive integer; the subscript o is a non-negative integer; and the subscript p represents the average degree of polymerization. Typically, the polymer can have a number average molecular weight between 2,000 and 200,000, preferably between about 8,000 to 50,000. ##STR1##
    Ra is a saturated trivalent aliphatic radical containing from 2 to 4 carbon atoms. The B group is derived from polymerization of an ethylenically unsaturated monomer containing a pendant fluoroalkyl group. X is a covalently bonded connecting group. Rf is a pendant fluoroalkyl moiety containing from 2 to 12 carbon atoms.
    In Formula I, C is ##STR2##
    Ra is as previously defined. Y is a covalently bonded connecting group attached to a reactive moiety, , which charge is an anionic moiety and may have a counter ion; q is 1 or 2. For example, the counter ion may be H+  or NH4 +, or a protonated amine. In the presence of a crosslinking agent the counter ion may be bound to such agent. Examples of connecting groups X and Y are shown in U.S. Pat. No. 4,929,666, the relevant portions of which are hereby incorporated by reference.
    In Formula I, D is derived from a non-interfering, hydrocarbon-based polymerizable monomer. For example, monomers of the following formula may be used: ##STR3## wherein R1 is an alkyl from 1 to 36 carbon atoms, more preferably an alkyl of from 1 to 12 carbon atoms; --CH2 --CH═CH2, or ##STR4## wherein x is an integer of from 1 to about 20, y is an integer from 1 to about 18, and R2 is hydrogen or methyl.
    Another example of a suitable monomer corresponds to the formula: ##STR5## wherein R3 is independently in each occurrence H, or a C1-12 alkyl group, and z is a number from 0 to 5.
    Some examples of the polymers containing fluoroalkyl groups, including methods for their preparation, are described in U.S. Pat. Nos. 5,006,624 and 4,929,666 (the relevant parts of which are hereby incorporated by reference). As an example, such polymers may be prepared by polymerizing acrylic or methacrylic esters with an ethylenically unsaturated carboxylic acid, and then contacting the resulting polymer with a suitable base under conditions sufficient to convert at least one carboxyl group on the polymer to its salt form. Suitable acrylic or methacrylic esters include, for example, methyl methacrylate, n-butyl methacrylate, lauryl methacrylate, and 2-N-ethylperfluorooctane sulfonamido ethylacrylate. When m=0, useful non-fluoroalkyl polymers are prepared.
    Suitable ethylenically unsaturated carboxylic acids which may be used to prepare the water-compatible polymer of component (a) include any carboxylic acid with at least one additional polymerizable --C═C-- group and at least one pendant carboxyl group. Examples of such acids include methacrylic acid, β-carboxyethyl acrylate (β-CEA), acrylic acid, cis-aconitic acid, trans-aconitic acid, or itaconic acid. Preferably, the carboxylic acid is β-carboxyethyl acrylate.
    In the second aspect of the invention, suitable water-compatible polymers for use as component (a) include polymers as described above, which also have at least one pendant fluoroalkyl moiety. Preferably, the fluoroalkyl moiety is a C6 -C9 fluoroalkyl group containing at least three fully fluorinated carbon atoms, including a terminal --CF3 group. The group may be linear, branched, or if sufficiently large, cyclic. In addition, the fluoroalkyl group may be connected to the vinyl group of the monomer through particular connecting groups selected to enhance the chemical and thermal stability of the fluoroalkyl group. Examples of such fluoroalkyl groups include Rf --SO2 --N(R)--(CH2)n --, Rf --(CH2)n --, Rf --(CH2)n --S--(CH2)n --, or Rf --(CH2)n --C(OH)(R)--(CH2)--, wherein Rf is a fluoroalkyl group, R is H or a C1-12 alkyl group, and n is a whole number from 1 to 10.
    The vinyl polymerization reaction to prepare component (a) may be carried out by conventional polymerization methods. Following the polymerization reaction, the polymer is contacted with a base under conditions sufficient to convert a sufficient number of the carboxyl groups of the polymer to a carboxylate salt in order to make the polymer compatible with the reaction solvent. Examples of suitable bases include ammonium hydroxide, triethylamine, triethanolamine, and tetraalkylammonium hydroxide. A base which provides a fugative cation, such as NH4 OH, is preferred.
    Component (a) is preferably present in an amount, based on the weight of components (a), (b), and (c) of the composition, of at least about 10 percent, more preferably at least about 30 percent, most preferably at least about 60 percent; and is preferably no greater than about 90 percent, more preferably no greater than about 80 percent, and is most preferably no greater than about 70 percent.
    The term "water-compatible" as used herein refers to a stable or metastable (temporarily stable) mixture of the coating composition with water, including a solution, micellular, or partially colloidal suspension, or a latex. The composition of the invention may optionally contain an organic solvent, in an amount of up to 70 percent by weight of the total water/organic solvent combination. Preferably, however, the total water/organic solvent comprises less than 50 percent by weight organic solvent. Preferably, the organic solvent is water-compatible. Suitable water-compatible solvents include lower alkanols and alkylene glycols. In addition, the composition of the invention may optionally contain plasticizers, extenders, and additives such as surfactants, rheology modifying agents, dyes, and pigments.
    Component (b) of the composition of the invention is a water-compatible polymeric polycarboxylate different from the polymer used as component (a), and which is a polymer having (1) at least two pendant carboxylate groups and (2) at least one internal amide, thioamide, urea, thiourea, biuret, dithiobiuret, or urethane group in its backbone. Preferably, the polycarboxylate contains at least one internal amide group. Preferably, the polymeric polycarboxylate is water-compatible to at least 5 g per 100 g of water, more preferably to 10 g per 100 g of water. Component (b) is preferably present in an amount, based on the weight of components (a), (b), and (c) of the composition, of at least about 1 percent, more preferably at least about 5 percent, most preferably at least about 10 percent; and is preferably no greater than about 50 percent, more preferably no greater than about 20 percent, and is most preferably no greater than about 10 percent. When the composition of the invention is used as a coating composition, the polymeric polycarboxylate (component (b)) is preferably employed in an amount sufficient to improve the average hardness, toughness, and/or wear resistance of the coating composition.
    Polymeric polycarboxylates (component (b)) containing internal amide, thioamide, urea, thiourea, biuret, dithiobiuret, or urethane groups may be prepared as described in copending application by Robert F. Harris et al., entitled "Carboxylic Acid-Functional and Hydroxyalkylamide-Functional Polyethers Containing Urea, Thiourea, Biuret, Dithiobiuret, Amide Thioamide and/or Urethane Moieties in their Backbone", filed Oct. 28, 1993, U.S. patent application Ser. No. 08/144,752. Such polycarboxylates are referred to in the copending application as carboxylic acid-functional polyethers which have been converted to their salt form.
    Polyamines suitable for use in preparing the polymeric polycarboxylates (component (b)) include any polyamine or mixture of polyamines which will produce a water-compatible polymeric polycarboxylate when reacted with a polycarboxylic acid and converted to the corresponding salt. Polyalkyleneoxy polyamines are preferred for this purpose, but other polyamines which are less water-soluble, such as aliphatic polyamines, may be used in conjunction with polyalkyleneoxy polyamines, so long as the resulting polycarboxylic acid containing at least one amide, thioamide, urea, thiourea, biuret, dithiobiuret, or urethane group is water-compatible.
    Polyalkyleneoxy polyamines useful in preparing water-soluble polymeric polycarboxylic acids are well-known compositions which may be prepared by the reductive amination of polyalkyleneoxy polyols using hydrogen and ammonia in the presence of a catalyst. This reductive amination of polyols is described in U.S. Pat. Nos. 3,128,311; 3,152,998; 3,236,895; 3,347,926; 3,654,370; 4,014,933 and 4,153,581, the relevant portions of which are incorporated herein by reference. The molecular weight of the polyalkyleneoxy polyamine starting material, when employed, is preferably in the range of from about 200 to about 4,000.
    Polycarboxylic acids suitable for preparing the polymeric polycarboxylate include any aliphatic or aromatic polycarboxylic acid having at least two pendant carboxyl groups. Examples of such polycarboxylic acids include succinic, glutaric, adipic, sebacic, cyclohexane-1,4-dicarboxylic, phthalic, and terephthalic acids. Preferably, the carboxylic acid is a C2-8 aliphatic dicarboxylic acid because the salts thereof are more easily solubilized in water. In addition dimers and trimers of such acids may also be used.
    The polymeric polycarboxylate polymer used as component (b) of the composition of the invention preferably has at least 2 internal amide groups per molecule and a molecular weight in the range of from about 300 to about 5,000. The molecular weight of the polymeric polycarboxylate polymer may be controlled by choice of starting materials with particular molecular weights and/or by choice of the stoichiometry of the reactants used to prepare the polymeric polycarboxylate (component (b)) polymer (since higher molecular weight polymeric polycarboxylates will be obtained as the reaction stoichiometry approaches 1:1). The number of amide, urea, and urethane groups per molecule may also be controlled in a like manner. Preferably, the ratio of carboxyl groups to amine groups in the reaction mixture is in the range of from about 2:1 to about 1.1:1.
    The polymeric polycarboxylic acid may be converted to a salt by contacting it with a suitable base, such as lower alkyl amines, alkanol amines, and ammonium hydroxide. Preferably, the base is ammonium hydroxide.
    The molecular weight of the polymeric polycarboxylates (component (b)) may be determined by titration of the end groups with a standard base, such as sodium hydroxide or potassium hydroxide. The existence of amide, urea, and/or urethane groups in the backbone of the polymeric polycarboxylic acid can be determined by carbon-13 NMR.
    The polymeric polycarboxylates (component (b)) can be employed as part of an unpurified reaction product, or the final reaction mixture can be purified to remove unreacted starting materials. Basic impurities such as unreacted amines may be removed by contacting the reaction product with acidic ion exchange resins. Other impurities, particularly color bodies, may be removed from the reaction product by contacting it with an adsorbant solid, such as activated charcoal. Solvents may also be used to purify the reaction product.
    Suitable polyfunctional crosslinking agents for use as component (c) of the compositions of the invention include any compound or polymer having at least two reactive cationic or potentially cationic pendant ions. The cation may be a polyfunctional cation such as benzylsulfonium, aryl cyclic sulfonium (such as described in U.S. Pat. No. 3,903,056) or azetidinium as the CO3 ═ or HCO3 -- salt. Preferred potentially cationic crosslinking agents include polyfunctional oxazolines or oxazines. Components (a) and (b) of the composition of the invention are usually employed in the form of an ammonium salt. Thus, when the solvent is removed, NH3 is evolved and the resulting carboxy acid functionality reacts with the crosslinking agent to form covalent bonds. Most preferably, the crosslinking agent is poly-(2-isopropenyl-2-oxazoline) or a copolymer of 2-isopropenyl-2-oxazoline and methyl methacrylate.
    The crosslinking agent is preferably present in an amount, based on the weight of components (a), (b), and (c) of the composition, of at least about 5 percent, more preferably at least about 10 percent, most preferably at least about 20 percent; and is preferably no greater than about 50 percent, more preferably no greater than about 45 percent, and is most preferably no greater than about 30 percent. Preferably, the overall ratio of carboxylate:oxazoline groups in the composition is at least about 0.2:1, more preferably at least about 0.7:1, and is preferably no greater than about 4:1, more preferably no greater than about 1.4:1, and is most preferably about 1:1.
    Components (a), (b), and (c) may be combined with water in any suitable manner to form a water-based coating composition. The coating thereafter may be applied to a substrate to be coated in any convenient manner, such as by roller coating or spraying, and allowed to cure. The coating is preferably cured at a temperature in the range of from about 30° C. to about 150° C., more preferably in the range of from about 100° C. to about 120° C. The coating may also be cured at ambient temperatures, although the rate of curing will be slower at such temperatures.
    The coating composition may optionally contain other additives, such as pigments, anti-sag agents, leveling agents, and curing promoters. The coating preferably contains a leveling agent such as Fluororad™ FC-29, available from 3M. When employed, the leveling agent is preferably used in an amount in the range of from about 10 ppm to about 1000 ppm, based on the weight of the total formulation.
    The wear resistance, hardness, and impact resistance of the coatings may be measured by ASTM 4060 ("Abrasion Resistance of Organic Coatings by the Taber Abraser"); ASTM 138 ("The Knoop Indenter as Applied to Testing Nonmetallic Materials Ranging from Plastics to Diamonds") (ASTM Bulletin, January 1946); and ASTM 2795 ("Resistance of Organic Coatings to the Effect of Rapid Deformation (Impact)"), respectively.
    
    
    The following examples are given to illustrate the invention and should not be interpreted as limiting it in any way. Unless stated otherwise, all parts and percentages are given by weight.
    A terpolymer having a monomer ratio of methacrylic acid (MAA): methyl methacrylate (MMA): and n-butyl methacrylate (BMA) of 20:60:20 is prepared. Polymerization is carried out under a nitrogen atmosphere in a 250 mL 3-necked flask equipped with a mechanical stirrer, condenser, and two addition funnels. The flask containing 90 g of t-butanol is heated to 80° C. and 20 g MAA, 60 g MMA, 20 g BMA and 10 g t-butanol is introduced by the first addition funnel at increments of 10 mL every five minutes. Simultaneously, 1.6 g of Vazo™ 64 (DuPont) in 10 g of methyl ethyl ketone is added at a constant rate such that both addition funnels are emptied at the same time. Three hours after the last addition, the reaction is cooled, 25 mL of concentrated ammonium hydroxide in 800 mL water is added. After removing the t-butanol under reduced pressure, the solution is dialyzed using a Spectrapor™ membrane tubing (Spectrum Medical Industries) with a 12,000 to 14,000 molecular weight cutoff. This yielded 573 g of a 6.06 weight percent solution of polymer.
    Preparation of Anionic Polymeric Surfactants
    A perfluorocarbon-containing polymeric surfactant is prepared having a pendant carboxylate functionality. Polymerization is carried out in a 250 mL, 3-necked, round bottomed-flask equipped with an overhead stirrer, condenser, two pressure equalizing addition funnels and a nitrogen inlet. The reaction flask is charged with 25 g of MEK, stirred, heated to 85° C., and purged with nitrogen. To the funnel is added 40 g of a perfluorinated methacrylate compound (Zonyl TM™, made by DuPont, after inhibitor removal) and 10 g of methacrylic acid (MAA) along with 5 g additional MEK. The mixture of monomers is added to the reaction flask at the rate of 3.5 mL per 15 minutes. 1.2 Grams of initiator (Vazo-64™, α,α-azobisisobutyronitrile, manufactured by DuPont) in 12 mL of MEK is added at the rate of 1 mL per 15 minutes to the reaction mixture. After the additions are completed, the reaction mixture is held at 85° C. for three hours. The reaction mixture is allowed to cool to ambient temperature and the solvent removed under vacuum leaving a white powder form of a polymer having pendant perfluoroalkyl groups and pendant carboxy functionalities. The solid powder is dissolved into an aqueous ammonium hydroxide solution. The residual ammonium hydroxide is removed under vacuum and the polymer dialyzed utilizing Spectrapor™ dialysis tubing with a molecular weight cutoff of 8,000.
    Jeffamine™ D-400 (178.13 g, 0.3699 mol, an aminated poly(propylene glycol) manufactured by Texaco) and adipic acid (71.86 g; 0.4920 mol) are combined in a 500 mL, 3-necked flask equipped with a temperature controller, overhead stirrer, thermometer and a condenser connected to a Dean Stark moisture trap. The system is flushed with N2 and maintained under an N2 blanket. The contents of the reactor are then heated to 150° C. to form the corresponding amine salt. Cumene (200 mL) is then added and the system is heated at reflux while removing the cumene-water azeotropic mixture in the Dean Stark trap. After 18 hours at reflux, the condenser and Dean Stark trap are removed and the system is evacuated to 2 mm Hg and maintained at this reduced pressure and 160° C. for 5 hours while cumene is collected in a -78° C. trap. After cooling to ambient temperature under N2, the crude product is dissolved in methanol (200 mL) and stirred overnight with Dowex™ 50W ion exchange resin (20 g) to adsorb any amino compounds. The methanol solution is then filtered to remove resin beads and stripped on a rotary evaporator to remove the methanol. The product is obtained as a viscous, amber liquid: 0.490 meq/g by titration with 0.100N NaOH dissolved in methylene chloride and further purified by extracting with dilute (0.1N) HCl, washing with water, and drying over anhydrous sodium sulfate. After filtration, the product is recovered by stripping the methylene chloride under vacuum. Carbon-13 NMR (CDCl3) shows amide carbonyl moieties and carboxylic acid carbonyl moieties. The product is dissolved in propylene glycol to give a 41.8 weight percent active solution.
    IPO/MMA Copolymer (IPO Polymer)
    The IPO monomer (2-isopropenyl-2-oxazoline) is freshly distilled (46° C. to 50° C. about 5 mm Hg) immediately prior to the polymerization step. The inhibitor-free monomer (260 mL) is added to a mixture of methyl methacrylate (73.5 mL), isopropanol (87.5 mL), distilled water (400 mL) and tert-butanol (400 mL). A portion of this solution (250 mL) is added to the reaction vessel and the mixture is warmed to 50° C. while the solution of the initiators (Formopon™ a 98/2 mixture of sodium formaldehyde sulfoxylate and sodium carbonate, available from Henkel Corporation) (8.8 g in 30 mL of water) and a 70 percent aqueous solution of tert-butyl hydroperoxide (9.82 g in 30 mL of tert-butanol) are added to 125 mL addition funnels. The initiators are slowly added at a rate of 5 mL/hr while the monomer solution is added at a rate of 400 mL/hr.
    At the end of 10 hours the heating is discontinued, the system is opened to the atmosphere and the polymerization is quenched by the addition of isopropanol (200 mL). The percent solids of the solution is determined by removing a known amount of the solution from the reaction mixture, removal of volatile components under reduced pressure, and then reweighing the sample. From this value the percent conversion of the polymerization reaction could be calculated. Generally this value is between 70 and 80 percent.
    The reaction mixture is subjected to reduced pressure to remove residual solvents and monomers (the original volume is maintained through the addition of water). This solution is poured into Spectrapor™ dialysis tubing (3500 MW cutoff). The tubes are sealed, placed into one gallon jars and stirred with strong acid ion exchange resin. The water in the jars is periodically changed until its conductivity remained nearly constant. The dialysis tubing is air dried to partially concentrate the polymer solution. The contents of the dialysis tubings are combined, filtered, analyzed for residual monomers, stabilized by the addition of concentrated ammonia (pH of about 8) and stored at 45° F. until needed.
    Ammonium hydroxide (Fisher Chemical, 28 to 30 percent assay NH3 weight percent) 0.50 g in 10 g of water is mixed with 10 g of (41.8 weight percent propylene glycol solution of the polymeric polycarboxylate described above as Starting Material C). This solution is mixed with 43.5 g (19.2 weight percent) of an aqueous solution of the ammonium salt of a polymer prepared from a 60:20:20 weight ratio of methyl methacrylate, butyl methacrylate and methacrylic acid described as Starting Material A. The latter solution is added to 31.52 g (9.85 weight percent) aqueous solution of an 80:20 weight ratio copolymer of 2-isopropenyl-2-oxazoline and methyl methacrylate (Starting Material D).
    A 7 percent formulation is prepared by dilution with 142.2 g of solvent containing 76.6 percent, 9.9 percent, 13.5 percent (weight percent) water, 2-propanol and propylene glycol, respectively.
    The ammonium salt of a polymer is prepared from methyl methacrylate, butyl methacrylate, methacrylic acid (Starting Material A) which are used in a 60:20:20 weight percent ratio. 40 g of the solution containing the polymer (19.2 weight percent, in water) is mixed with 25.5 g of a 9.85 percent weight aqueous solution of an 80:20 weight percent ratio of 2-isopropenyl-2-oxazoline and methyl methacrylate (Starting Material D). A coating formulation is prepared by dilution with 80.1 g of a solvent containing 76.6 percent, 9.9 percent, 13.5 percent (weight) water, 2-propanol and propylene glycol, respectively.
    Both coating formulations are applied to glass microscope slides and mild steel and cured in an oven at 130° C. for 30 minutes. The clear coatings are tested for adhesion by scratching a grid or cross-hatch pattern with a steel scribe. The coating containing the polymeric polycarboxylate could not be removed by Scotch™ transparent tape, however, parts of the film that did not contain polymeric polycarboxylate (Starting Material C) came off when the adhesive tape was removed.
    A coating formulation is prepared from a carboxylate functional fluoroalkyl polymer prepared from a 60:40 weight percent composition of Zonyl™ (DuPont) and Sipomer™ B-CEA (available from Alcolac) and a crosslinking copolymer consisting of an 80:20 weight percent ratio of 2-isopropenyl-2-oxazoline (IPO) and methyl methacrylate (MMA) (Starting Material D). The two polymers are combined in the presence of NH4 OH in a 4:7.2 ratio such that the equivalents of oxazoline functionality are essentially equal to the carboxylate equivalent present in the fluoroalkyl polymer. The formulation is 8.76 percent active and the solvent consists of a 67:13:20 weight ratio of water, ethylene glycol and 2-propanol.
    A solution containing 0.0718 g of the ammonium salt of a polymeric polycarboxylate with an equivalent weight of about 1550, prepared from Jeffamine™ D-400 and adipic acid, and 0.0157 g of the above IPO/MMA copolymer in a solvent consisting of 33.3:49.8:33 weight ratio of water, propylene glycol and 2-propanol, respectively, is added to 10 g of the fluoroalkyl formulation.
    Both the modified and unmodified formulations are cast on microscope slides and a piece of Armstrong™ floor tile. After curing for 30 minutes at 130° C. the coatings prepared from the modified formulations had the best adhesion via the previously described cross hatch test.
    The terpolymer is prepared under nitrogen by using syringe pumps (Sage Model 352, Orian Research Inc.) to simultaneously-continuously add four solutions to an 82° C., stirred, initiator solution 1.13 g, Vazo™-67 (DuPont), 30 g methylethyl ketone (MEK), 20 g propylene glycol. The four solutions: (1) FX-13 (30.0 g) (available from 3M), lauryl methacrylate (5.0 g), 15 g MEK; (2) β-CEA (15.0 g), 10 g MEK, (3) Vazo™-67 (1.13 g), 8 g MEK and (4) mercaptoethanol (0.04 g), 8 g MEK are added over a three-hour period.
    The polymer solution is mixed with 100 g water and 2.5 g ammonium hydroxide (28% NH3). The stirred solution is warmed to 50° C. and exposed to a stream of nitrogen to remove MEK and excess NH4 OH. After dialysis against distilled water (Spectrapor™ membrane tubing M.W. cutoff 6000 to 8000) for 72 hours, the solution is centrifuged (Model CM Centrifuge from International Centrifuge) and concentrated under a stream of nitrogen to 16.3 weight percent solids.
    The aqueous terpolymeric surfactant solution described above (7.46 g, 16.3 weight percent solids, 0.00214 molar equiv. carboxylate) is combined with: (1) Polymeric Polycarboxylate (Starting Material C) (0.60 g, 20.0 weight percent solids in ethylene glycol, 0.00003 molar equiv. carboxylate), (2) poly-(IPO/MMA) (3.04 g, 9.85 weight percent aqueous 0.00127 molar equiv. oxazoline, and (3) 2.5 g ethylene glycol and 2.0 g 2-propanol.
    The above formulation containing the polymeric polycarboxylate and a similar formulation containing all the ingredients except the polymeric polycarboxylate and its molar equivalent of the IPO/MMA copolymer are both cast with a number 46 wire wound rod onto 1/32 inch mild steel panels. The coatings are cured at 130° C. for one hour which produced films with a thickness of about 0.0006 inch. The film adhesion is evaluated by scratching a grid or cross-hatch pattern with a steel scribe. The coating containing the polymeric polycarboxylate could not be removed by 3M Scotch™ transparent tape 600. The unmodified coating could be completely removed. Impact resistance is determined with a Gardner Impact tester. The modified coating had a direct impact resistance (ASTM 2795) of 20 in./lb. The unmodified coating had an impact resistance of only 4 in./lb. In addition, markings applied with a black permanent marker (Stanford-Sharpe™) could easily be wiped off both coatings with tissue paper.
    A polymeric polycarboxylate is prepared as follows:
    Preparation of a Polymeric Polycarboxylate Based on Jeffamine™ D-400 and Sebacic Acid; Acid:Amine Molar Ratio=1.25; Molecular Weight=3127.
    Jeffamine™ D-400 (188.39 g; 0.4126 mol, MW=456.6) and sebacic acid (104.31 g; 0.5157 mol) are combined in the same reaction set up used in the preparation of Starting Material C. The system is flushed with N2 and maintained under an N2 blanket. The contents of the reactor are heated to 150° C. at atmospheric pressure to form the corresponding amine salt. The system is then evacuated to 2 mm Hg and maintained at this reduced pressure and 150° C. for 5 hours while the by-product water from amide formation is collected in the -78° C. trap. After cooling to ambient temperature under N2, the crude product is dissolved in methanol (200 mL) and stirred overnight with Dowex™ 50W ion exchange resin (available from The Dow Chemical Company) to adsorb any amino compounds. The methanol solution is then filtered to remove resin beads and stripped on a rotary evaporator to remove the methanol. The product is obtained as a viscous, amber liquid: Brookfield viscosity, >2,000,000 cps at 24° C.; 0.6396 meq/g by titration with 0.1N NaOH; molecular weight is 3127 by end group titration (10.3 amide moieties/average molecule). Carbon-13 NMR (CDCl3) shows amide moieties and carboxylic acid moieties.
    A portion of the above product is neutralized with ammonium hydroxide to a pH of about 9 and additional water is added to give the corresponding ammonium salt at about 5 percent solids. Carbon-13 NMR (DMSO-d6) shows amide carbonyl moieties and carboxylate anion carbonyl moieties.
    ______________________________________                                    
CEA Terpolymer                                                            
Component        mol %   wt %      Amount                                 
______________________________________                                    
β-Carboxyethyl Acrylate*                                             
                 27.7    33.5      25.1 g                                 
Methyl Methacrylate                                                       
                 59.5    46.5      34.9 g                                 
n-Butyl Methacrylate                                                      
                 16.8    20.0      15.0 g                                 
VAZO 64 (1.0 g in 10 ml            11.0 ml                                
MEK)                                                                      
Tertiary Butanol                   75.0 g                                 
______________________________________                                    
 *Alcolac SIPOMER.sup.™ CEA available from Alcolac.                    
    
    The terpolymer is made in a 250-mL, 3-necked round-bottomed flask equipped with condenser, claisen adapter, thermometer, two addition funnels, nitrogen sparger and temperature controller. The monomers and t-butanol (25 g) are placed in one of the addition funnels, the VAZO™-64 is placed in a second funnel and t-butanol (50 g) is charged to the reactor. The reactor is heated to 82° C., sparged with N2 and maintained at 82° C. during monomer addition. The initiator solution is added at 1 mL/5 min and the monomer feed is added at 8 mL/5 min. After addition is complete, the reactor is heated for 2.5 additional hours at 82° C., cooled to ambient temperature and cleared by the addition of a small amount of water. Concentrated ammonium hydroxide (25 ml, 15N) and water (600 mL) are added and the volatiles are stripped on a rotary evaporator. The clear solution is dialyzed (12,000 to 14,000 molecular weight cutoff) to give a polymer solution at 5.50 percent solids containing 51.4 g polymer.
    The following formulation was prepared in a 10 mL bottle. Each component is added in the order given below. The IPO Polymer is prepared as described above for Starting Material D.
    ______________________________________                                    
Coating Formulation                                                       
______________________________________                                    
Polymeric      0.98 g    0.25 meq CO.sub.2.sup.⊖                  
Polycarboxylate                                                           
β-CEA Terpolymer                                                     
               2.21 g    1.25 meq CO.sub.2.sup.⊖                  
15 N NH.sub.4 OH                                                          
               0.10 g                                                     
i-Propanol     0.50 g                                                     
IPO Polymer    1.89 g    1.50 meq oxazoline                               
i-Propanol to clear                                                       
                >1 g                                                      
FC-129 (1% in water)                                                      
               0.22 g                                                     
Ethylene Glycol                                                           
               1.10 g                                                     
______________________________________                                    
    
    A portion of the solution is cast on a panel of cold rolled steel (previously wiped with a 1 percent solution of a silane compound in methanol (Z-6020, available from Dow Corning Corp.)) and is drawn down using a #46 wire rod. After air drying at ambient temperature, the panel is placed in a cold oven and heated to 125° C. (about 15 minutes to heat up, then 45 minutes at 125° C.). The panel is removed and air cooled (about 0.4 mil coating). A second application is applied using a similar procedure to increase the coating thickness. Results are given in Table I.
    The following formulation is prepared in a 10 mL bottle. Each component is added in the order given below. This comparative example contains no polymeric polycarboxylate and uses additional β-CEA Terpolymer to balance the reactants' stoichiometry.
    ______________________________________                                    
Coating Formulation                                                       
______________________________________                                    
β-CEA Terpolymer                                                     
               2.65 g    1.50 meq CO.sub.2.sup.⊖                  
15 N NH.sub.4 OH                                                          
               0.10 g                                                     
i-Propanol     0.50 g                                                     
IPO Polymer    1.89 g    1.50 meq oxazoline                               
i-Propanol to clear                                                       
                <1 g                                                      
FC-129 (1% in water)                                                      
               0.22 g                                                     
Ethylene Glycol                                                           
               1.10 g                                                     
______________________________________                                    
    
    A coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
    A polymeric polycarboxylate is prepared as follows:
    Preparation of a polymeric polycarboxylate Based on Jeffamine™ D-400 and Sebacic Acid; Acid:Amine Molar Ratio=1.33; Molecular Weight=1866.
    Jeffamine™ D-400 (206.76 g, 0.4528 mol, MW=456.6) and sebacic acid (122.11 g; 0.6038 mol) are combined in the same reaction set-up used in the preparation of Starting Material C. The system is flushed with N2 and maintained under an N2 blanket. The contents of the reactor are heated to 150° C. at atmospheric pressure to form the corresponding amine salt. The system is then evacuated to 2 mm Hg and maintained at this reduced pressure and 150° C. for 5 hours while the by-product water from amide formation is collected in the -78° C. trap. After cooling to ambient temperature under N2, the crude product is dissolved in methanol (200 mL) and stirred overnight with Dowex™ 50W ion exchange resin to adsorb any amino compounds. The methanol solution is then filtered to remove resin beads and stripped on a rotary evaporator to remove the methanol. The product is obtained as a viscous, amber liquid: 1.075 meq/g by titration with 0.1000N NaOH; molecular weight is 1866 by end group titration (5.9 amide moieties/average molecule). Carbon-13 NMR (CDCl3) shows amide moieties and carboxylic acid moieties.
    A portion of the above product is neutralized with ammonium hydroxide to a pH of about 9 and additional water is added to give the corresponding ammonium salt at about 10 percent solids. Carbon-13 NMR (DMSO-d6) shows amide carbonyl moieties and carboxylate anion carbonyl moieties.
    The following formulation is prepared in a 10 mL bottle. The IPO Polymer is prepared as in Starting Material D. The β-CEA terpolymer is prepared as described in Example 4. Each component is added in the order given below.
    ______________________________________                                    
Coating Formulation                                                       
______________________________________                                    
Polymeric      0.62 g     0.25 meq CO.sub.2.sup.⊖                 
Polycarboxylate                                                           
β-CEA Terpolymer                                                     
               2.21 g     1.25 meq CO.sub.2.sup.⊖                 
15 N NH.sub.4 OH                                                          
               0.10 g                                                     
i-Propanol     0.50 g                                                     
IPO Polymer    1.89 g     1.50 meq oxazoline                              
i-Propanol to clear                                                       
               <1.0 g                                                     
FC-129 (1% in water)                                                      
               0.20 g                                                     
Ethylene Glycol                                                           
               1.10 g                                                     
______________________________________                                    
    
    A coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
    A polymeric polycarboxylate is prepared as follows:
    Preparation of a Polymeric Polycarboxylate Based on Jeffamine™ D-400 and Adipic Acid; Acid:Amine Molar Ratio=1.33; Molecular Weight=2199.
    Jeffamine™ D-400 (211.95 g, 0.4642 mol, MW=456.6, an aminated poly(propylene glycol) manufactured by Texaco) and adipic acid (90.45 g; 0.6189 mol) are combined in the same reaction set-up used in the preparation of Starting Material C. The system is flushed with N2 and maintained under an N2 blanket. The contents of the reactor are heated to 150° C. at atmospheric pressure to form the corresponding amine salt. The system is then evacuated to 2 mm Hg and maintained at this reduced pressure and 150° C. for 5 hours while the by-product water from amide formation is collected in the -78° C. trap. After cooling to ambient temperature under N2, the crude product is dissolved in methanol (200 mL) and stirred overnight with Dowex™ 50W ion exchange resin to adsorb any amino compounds. The methanol solution is then filtered to remove resin beads and stripped on a rotary evaporator to remove the methanol. The product is obtained as a viscous, amber liquid: Brookfield viscosity, 614,000 cps at 22° C.; 0.9094 meq/g by titration with 0.1000N NaOH; molecular weight is 2199 by end group titration (8.0 amide moieties/average molecule). Carbon-13 NMR (CDCl3) shows amide moieties and carboxylic acid moieties.
    A portion of the above product is neutralized with ammonium hydroxide to pH of about 9 and additional water is added to give the corresponding ammonium salt at about 15 percent solids. Carbon-13 NMR (DMSO-d6) shows amide carbonyl moieties and carboxylate anion carbonyl moieties.
    The following formulation is prepared in a 10 mL bottle. The IPO Polymer is prepared as in Starting Material D. The β-CEA terpolymer is prepared as described in Example 4. Each component is added in the order given below.
    ______________________________________                                    
Coating Formulation                                                       
______________________________________                                    
Polymeric      0.52 g     0.25 meq CO.sub.2.sup.⊖                 
Polycarboxylate                                                           
β-CEA Terpolymer                                                     
               2.21 g     1.25 meq CO.sub.2.sup.⊖                 
15 N NH.sub.4 OH                                                          
               0.10 g                                                     
i-Propanol     0.50 g                                                     
IPO Polymer    1.89 g     1.50 meq oxazoline                              
i-Propanol to clear                                                       
               <1.0 g                                                     
FC-129 (1% in water)                                                      
               0.20 g                                                     
Ethylene Glycol                                                           
               1.10 g                                                     
______________________________________                                    
    
    A coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
    A polymeric polycarboxylate is prepared as follows:
    Preparation of a Polymeric Polycarboxylate Based on Jeffamine™ D-400 and Succinic Anhydride; Molecular Weight=687.
    Jeffamine™ D-400 (201.52 g; 0.4413 mol, MW=456.6), succinic anhydride (88.33 g; 0.8827 mol) and triethylamine (2.90 g) are combined in a 500 mL, 3-necked round-bottomed flask equipped with a temperature controller, overhead stirrer, thermometer and a condenser. The system is flushed with N2 and maintained under an N2 blanket. The contents of the reactor are heated slowly to 50° C. to 55° C., at which time the reaction becomes exothermic. An ice water cooling bath is used to maintain the reactor temperature at 70° C. to 80° C. After the exotherm subsides, the reactor is maintained at 80° C. for 6 hours. After cooling to ambient temperature under N2, the product is obtained as a viscous, amber liquid: 2.912 meq/g by titration with 0.1000N NaOH; molecular weight is 687 by end group titration. Carbon-13 NMR (CDCl3) shows amide moieties and carboxylic acid moieties.
    A portion of the above product is neutralized with ammonium hydroxide to a pH of about 9 and additional water is added to give the corresponding ammonium salt at about 15 percent solids.
    The following formulation is prepared in a 10 mL bottle. The IPO Polymer is prepared as in Starting Material D. The β-CEA terpolymer is prepared as described in Example 4. Each component is added in the order given below. FC-129 is a fluorochemical surfactant available as Fluororad™ FC-129 from 3M.
    ______________________________________                                    
Coating Formulation                                                       
______________________________________                                    
Polymeric      0.16 g     0.25 meq CO.sub.2.sup.⊖                 
Polycarboxylate                                                           
β-CEA Terpolymer                                                     
               2.21 g     1.25 meq CO.sub.2.sup.⊖                 
15 N NH.sub.4 OH                                                          
               0.10 g                                                     
i-Propanol     0.50 g                                                     
IPO Polymer    1.89 g     1.50 meq oxazoline                              
i-Propanol to clear                                                       
               <1.0 g                                                     
FC-129 (1% in water)                                                      
               0.16 g                                                     
Ethylene Glycol                                                           
               1.10 g                                                     
______________________________________                                    
    
    A coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
    A polymeric polycarboxylate is prepared as follows:
    Preparation of a Polymeric Polycarboxylate Based on Jeffamine™ T-403 and Succinic Anhydride; Equivalent Weight=259.
    Jeffamine™ T-403 (164.86 g, 0.3556 mol, MW=463.6), succinic anhydride (106.76 g; 1.0668 mol) and triethylamine (2.72 g, ) are combined in the same equipment used in Example 7. The system is flushed with N2 and maintained under an N2 blanket. The contents of the reactor are heated slowly to a temperature of from 50° C. to 55° C., at which time the reaction becomes exothermic. An ice water cooling bath is used to maintain the reactor temperature at 70° C. to 80° C. After the exotherm subsides, the reactor is maintained at 80° C. for 6 hours. After cooling to ambient temperature under N2, the product is obtained as a viscous, amber liquid: Brookfield viscosity, >2,000,000 cps at 24° C.; 3.86 meq/g by titration with 0.1000N NaOH; equivalent weight is 259 by end group titration. Carbon-13 NMR (CDCl3) shows amide moieties and carboxylic acid moieties.
    A portion of the product from Example 8 is neutralized with ammonium hydroxide to about pH 9 and additional water is added to give the corresponding ammonium salt at about 10 percent solids. Carbon-13 NMR (DMSO-d6) shows amide carbonyl moieties and carboxylate anion carbonyl moieties.
    The following formulation is prepared in a 10 mL bottle. The IPO Polymer is prepared as in Starting Material D. The β-CEA terpolymer is prepared as described in Example 4. Each component is added in the order given below.
    ______________________________________                                    
Coating Formulation                                                       
______________________________________                                    
Polymeric      0.16 g     0.25 meq CO.sub.2.sup.⊖                 
Polycarboxylate                                                           
β-CEA Terpolymer                                                     
               2.21 g     1.25 meq CO.sub.2.sup.⊖                 
15 N NH.sub.4 OH                                                          
               0.10 g                                                     
i-Propanol     0.50 g                                                     
IPO Polymer    1.89 g     1.50 meq oxazoline                              
i-Propanol to clear                                                       
               <1.0 g                                                     
FC-129 (1% in water)                                                      
               0.16 g                                                     
Ethylene Glycol                                                           
               1.10 g                                                     
______________________________________                                    
    
    A coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
    A polymeric polycarboxylate is prepared as follows:
    Preparation of a Polymeric Polycarboxylate Based on Jeffamine™ D-2000 and Succinic Anhydride; Equivalent Weight=918.
    Jeffamine™ D-2000 (297.81 g, 0.1495 mol, MW=1991.5), succinic anhydride (29.93 g; 0.2991 mol) and triethylamine (3.28 g) are combined in the same equipment used in Example 7. The system is flushed with N2 and maintained under an N2 blanket. The contents of the reactor are heated slowly to a temperature of about 50° C. to 55° C., at which time the reaction becomes exothermic. An ice-water cooling bath is used to maintain the reactor temperature at 70° C. to 80° C. After the exotherm subsides, the reactor is maintained at 80° C. for 6 hours. After cooling to ambient temperature under N2, the product is obtained as a viscous, amber liquid: Brookfield viscosity, 7,890 cps at 24° C.; 1.09 meq/g by titration with 0.1000N NaOH; molecular weight is 1837 by end group titration. Carbon-13 NMR (CDCl3) shows amide moieties and carboxylic acid moieties.
    A portion of the above product is neutralized with ammonium hydroxide to a pH of about 9 and additional water is added to give the corresponding ammonium salt at about 15 percent solids.
    The following formulation is prepared in a 10 mL bottle. The IPO Polymer is prepared as in Starting Material D. The β-CEA terpolymer is prepared as described in Example 4. Each component is added in the order given below.
    ______________________________________                                    
Coating Formulation                                                       
______________________________________                                    
Polymeric      1.03 g     0.25 meq CO.sub.2.sup.⊖                 
Polycarboxylate                                                           
β-CEA Terpolymer                                                     
               2.21 g     1.25 meq CO.sub.2.sup.⊖                 
15 N NH.sub.4 OH                                                          
               0.10 g                                                     
i-Propanol     0.50 g                                                     
IPO Polymer    1.89 g     1.50 meq oxazoline                              
i-Propanol to clear                                                       
               <1.0 g                                                     
FC-129 (1% in water)                                                      
               0.20 g                                                     
Ethylene Glycol                                                           
               1.10 g                                                     
______________________________________                                    
    
    A coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
    A methacrylate terpolymer is prepared as described above for Starting Material A. The following formulation is prepared in a 10 mL bottle. The polymeric polycarboxylate is prepared as in Example 7. The IPO Polymer is prepared as described above for the preparation of Starting Material D. Each component is added in the order given below.
    ______________________________________                                    
Coating Formulation                                                       
______________________________________                                    
Polymeric      0.16 g     0.25 meq CO.sub.2.sup.⊖                 
Polycarboxylate                                                           
Methacrylate   2.47 g     1.26 meq CO.sub.2.sup.⊖                 
Terpolymer                                                                
15 N NH.sub.4 OH                                                          
               0.10 g                                                     
i-Propanol     0.50 g                                                     
IPO Polymer    1.89 g     1.50 meq oxazoline                              
i-Propanol to clear                                                       
               <1.0 g                                                     
FC-129 (1% in water)                                                      
               0.20 g                                                     
Ethylene Glycol                                                           
               1.10 g                                                     
______________________________________                                    
    
    A coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
    The following formulation is prepared in a 10 mL bottle. Each component is added in the order given below. This comparative example contains no polymeric polycarboxylate and uses additional methacrylate terpolymer (Starting Material A) to balance the reactants stoichiometry.
    ______________________________________                                    
Coating Formulation                                                       
______________________________________                                    
Methacrylate    2.94   g      1.50 meq CO.sub.2.sup.⊖             
Terpolymer                                                                
15 N NH.sub.4 OH                                                          
                0.10   g                                                  
i-Propanol      0.50   g                                                  
IPO Polymer     1.89   g      1.50 meq oxazoline                          
i-Propanol to clear                                                       
                <1.0   g                                                  
FC-129 (1% in water)                                                      
                0.22   g                                                  
Ethylene Glycol 1.10   g                                                  
______________________________________                                    
    
    A coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
    The following formulation is prepared in a 10 mL bottle. The polymeric polycarboxylate is prepared as in Example 8. The methacrylate terpolymer is prepared using the procedure described above for the preparation of Starting Material A. The IPO Polymer is prepared as described above for the preparation of Starting Material D. Each component is added in the order given below.
    ______________________________________                                    
Coating Formulation                                                       
______________________________________                                    
Polymeric       0.16   g      0.25 meq CO.sub.2.sup.⊖             
polycarboxylate                                                           
Methacrylate    2.47   g      1.26 meq CO.sub.2.sup.⊖             
Terpolymer                                                                
15 N NH.sub.4 OH                                                          
                0.10   g                                                  
i-Propanol      0.50   g                                                  
IPO Polymer     1.89   g      1.50 meq oxazoline                          
i-Propanol to clear                                                       
                <1.0   g                                                  
FC-129 (1% in water)                                                      
                0.20   g                                                  
Ethylene Glycol 1.10   g                                                  
______________________________________                                    
    
    A coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
    ______________________________________                                    
Component        mol %     wt %    Parts                                  
______________________________________                                    
Methacrylic Acid 17.4      10      10.0                                   
Methyl Methacrylate                                                       
                 64.7      60      60.0                                   
N-Butyl Methacrylate                                                      
                 22.8      30      30.0                                   
VAZO 64 (1.5 g in 10 ml            11.5                                   
MEK)                                                                      
Tertiary Butanol                   100.0                                  
______________________________________                                    
    
    A methacrylate terpolymer (MMA 2) is prepared from the above components using the procedure described above for the preparation of Starting Material A. An aqueous polymer solution is prepared containing 11.0 percent solids (87.3 g) polymer.
    The following coating formulation is prepared in a 10 mL bottle. The polymeric polycarboxylate is prepared as in Example 7. The IPO Polymer is prepared using the procedure described above for the preparation of Starting Material D. Each component is added in the order given below.
    ______________________________________                                    
Coating Formulation                                                       
______________________________________                                    
Polymeric       0.16   g      0.25 meq CO.sub.2.sup.⊖             
Polycarboxylate                                                           
MMA 2           8.28   g      1.25 meq CO.sub.2.sup.⊖             
15 N NH.sub.4 OH                                                          
                0.10   g                                                  
i-Propanol      0.50   g                                                  
IPO Polymer     1.89   g      1.50 meq oxazoline                          
i-Propanol to clear                                                       
                <1.0   g                                                  
FC-129 (1% in water)                                                      
                0.20   g                                                  
Ethylene Glycol 1.10   g                                                  
______________________________________                                    
    
    A coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
    The following formulation is prepared in a 10 mL bottle. Each component is added in the order given below. This comparative example contains no polymeric polycarboxylate and uses additional MMA 2 to balance the reactants stoichiometry.
    ______________________________________                                    
Coating Formulation                                                       
______________________________________                                    
MMA 2           9.94   g      1.50 meq CO.sub.2.sup.⊖             
15 N NH.sub.4 OH                                                          
                0.10   g                                                  
i-Propanol      0.50   g                                                  
IPO Polymer     1.89   g      1.50 meq oxazoline                          
i-Propanol to clear                                                       
                <1.0   g                                                  
FC-129 (1% in water)                                                      
                0.22   g                                                  
Ethylene Glycol 1.10   g                                                  
______________________________________                                    
    
    A coating is prepared using the identical procedure used in Example 4. Results are given in Table I.
    The following formulation is prepared in a 10 mL bottle. The polymeric polycarboxylate is prepared as in Example 5. The methacrylate terpolymer 2 (MMA 2) is prepared as in Example 12. The IPO Polymer is prepared as described above for the preparation of Starting Material D. Each component is added in the order given below.
    ______________________________________                                    
Coating Formulation                                                       
______________________________________                                    
Polymeric       1.24   g      0.50 meq CO.sub.2.sup.⊖             
Polycarboxylate                                                           
MMA 2 Terpolymer                                                          
                16.44  g      2.50 meq CO.sub.2.sup.⊖             
15 N NH.sub.4 OH                                                          
                0.20   g                                                  
i-Propanol      1.00   g                                                  
IPO Polymer     3.97   g      3.15 meq oxazoline                          
i-Propanol to clear                                                       
                <1.0   g                                                  
FC-129 (1% in water)                                                      
                0.20   g                                                  
Ethylene Glycol 2.20   g                                                  
______________________________________                                    
    
    A coating is prepared using the identical procedure used in Example 4, except three cure schedules are used: (a) 1 hour at 125° C., (b) 1 hour at 100° C. and (c) 30 minutes at 85° C. Results are given in Table I.
                                      TABLE I                                 
__________________________________________________________________________
Test Results of Coated Panels                                             
     Polymeric                                                            
     Polycar-    Number of           Knoop                                
Example                                                                   
     boxylate                                                             
           Polymer                                                        
                 Coatings                                                 
                       Results       Hardness                             
__________________________________________________________________________
4    yes   β-CEA                                                     
                 2     Hazy, softened by water,                           
                                     nm                                   
           terpolymer  NH.sub.4 OH, i-propanol                            
Comp 1                                                                    
     none  β-CEA                                                     
                 1     Poor coating, brittle,                             
           terpolymer  cracked, no adhesion                               
5    yes   β-CEA                                                     
                 2     Hazy, softened by water,                           
                                     nm                                   
           terpolymer  NH.sub.4 OH, i-propanol                            
6    yes   β-CEA                                                     
                 2     Hazy, softened by water,                           
                                     nm                                   
           terpolymer  NH.sub.4 OH, i-propanol                            
7    yes   β-CEA                                                     
                 4     Clear, impervious to water,                        
                                     34.2                                 
           terpolymer  NH.sub.4 OH, i-propanol                            
8    yes   β-CEA                                                     
                 4     Clear, impervious to water,                        
                                     34.2                                 
           terpolymer  NH.sub.4 OH, i-propanol                            
9    yes   β-CEA                                                     
                 2     Hazy, softened by water,                           
                                     nm                                   
           terpolymer  NH.sub.4 OH, i-propanol                            
10   yes   Starting                                                       
                 4     Clear, tough, impervious to                        
                                     31.5                                 
           Mat'l A     water and i-propanol;                              
                       softened by NH.sub.4 OH                            
Comp 2                                                                    
     none  Starting                                                       
                 1     Poor coating, brittle,                             
           Mat'l A     cracked, no adhesion                               
11   yes   Starting                                                       
                 4     Some haziness, impervious to                       
                                     34.5                                 
           Mat'l A     water and i-propanol;                              
                       softened by NH.sub.4 OH                            
12   yes   MMA 2 3     Clear, tough, impervious to                        
                                     27.4                                 
                       water and i-propanol;                              
                       softened by NH.sub.4 OH                            
Comp 3                                                                    
     none  MMA 2 1     Poor coating, brittle,                             
                       cracked, no adhesion                               
13(a)                                                                     
     yes   MMA 2 1     Clear, tough, impervious to                        
                                     38.4                                 
                       water and i-propanol;                              
                       softened by NH.sub.4 OH                            
13(b)                                                                     
     yes   MMA 2 1     Clear, tough, impervious to                        
                                     36.4                                 
                       water and i-propanol;                              
                       softened by NH.sub.4 OH                            
13(c)                                                                     
     yes   MMA 2 1     Clear, tough, impervious to                        
                                     26.9                                 
                       water and i-propanol;                              
                       softened by NH.sub.4 OH                            
__________________________________________________________________________
 nm = not measured; (a) = cured 1 hr/125° C.: (b) = cured 1        
 hr/100° C.; (c) = cured 30 min/85° C.                      
    
    In Table 1, all three comparative examples are made without using Polymeric Polycarboxylates in the formulations based on either the β-CEA terpolymer or the methyl methacrylate terpolymer systems. In all cases the coatings are very poor-brittle, cracked, no adhesion. By contrast, all coatings in which a carboxylic acid functional polyamide is included in the formulation show improved physical properties. Coatings based on polymeric polycarboxylates described in Examples 7 and 8 gave coatings with especially good performance-clear, hard coatings impervious to water, NH4 OH and isopropanol. Example 13(c) indicates that useful coatings can be obtained using cures as low as 85° C. for 30 minutes.
    The following formulation is prepared in a 10 mL bottle. The polymeric polycarboxylate is prepared as in Example 6. The IPO Polymer is prepared as described above for the preparation of Starting Material D. The β-CEA terpolymer is prepared as described above for the preparation of Example 4. Each component is added in the order given below.
    ______________________________________                                    
Coating Formulation                                                       
______________________________________                                    
Polymeric     0.0079 g   0.00282 meq CO.sub.2.sup.⊖               
Polycarboxylate                                                           
β-CEA Terpolymer                                                     
              0.2000 g   0.02819 meq CO.sub.2.sup.⊖               
15 N NH.sub.4 OH                                                          
               0.02 g                                                     
i-Propanol    0.0475 g                                                    
IPO Polymer   0.0751 g   0.03382 meq oxazoline                            
______________________________________                                    
    
    The formulation is cast on an untreated glass slide and cured for 1 hour at 125° C. The resulting film is clear, colorless, smooth and homogeneous and is resistant to hexane, isopropanol and water. The film is hard and resisted being scratched by a #6H pencil.
    The Polymeric Polycarboxylate used in Example 14 is purified by dissolving in ammonium hydroxide solution and washing with ethyl acetate (a little toluene is added to facilitate phase separation). The aqueous phase is acidified with hydrochloric acid solution (2 percent) and the polymeric polycarboxylate is allowed to separate out. The water is removed and the polymeric polycarboxylate is dissolved in ethyl acetate. The organic phase is washed with water (salt needed to break up emulsion), dried with anhydrous Na2 SO4 and concentrated in vacuum. This purified material is used in the same formulation as used in Example 14. The films on glass are cured as above. They are clear, colorless, smooth, homogeneous and have a somewhat better appearance than the coatings made in Example 14; pencil hardness is #6H.
    An additional quantity of the formulation used in Example 15 is prepared. A piece of Armstrong floor tile is cleaned with soapy water and rinsed with isopropanol. A thick coating (No. 40 wire rod) is applied and cured at 105° C. for 1 hour. A clear, tough, adherent, flexible coating is obtained.
    
  Claims (20)
1. A composition comprising at least 10 percent by weight of water and, based on the weight of components (a), (b), and (c);
    (a) 0 to about 95 percent by weight of a water-compatible polymer having at least two pendant carboxylate groups;
 (b) 1 to about 60 percent by weight of a polymeric polycarboxylate different from component (a) which has (1) at least two pendant carboxylate groups and (2) at least one internal amide, thioamide, urea, thiourea, biuret, dithiobiuret, or urethane group; and
 (c) 2 to about 70 percent by weight of a polyfunctional crosslinking agent having ionic or potentially ionic moeity counter ions capable of reacting with the carboxylate groups of (a) and (b).
 2. The composition of claim 1 wherein component (a) is present in an amount, based on the weight of components (a), (b), and (c), of at least about 10 percent.
    3. The composition of claim 1 wherein component (a) is present in an amount, based on the weight of components (a), (b), and (c), of no greater than about 70 percent.
    4. The composition of claim 1 wherein component (b) contains at least one internal amide group.
    5. The composition of claim 1 wherein component (b) is present in an amount, based on the weight of components (a), (b), and (c), of at least about 1 percent.
    6. The composition of claim 1 wherein component (b) is present in an amount, based on the weight of components (a), (b), and (c), of at least about 5 percent.
    7. The composition of claim 1 wherein component (c) is present in an amount, based on the weight of components (a), (b), and (c), of at least about 1 percent.
    8. The composition of claim 1 wherein component (b) is present in an amount, based on the weight of components (a), (b), and (c), of at least about 20 percent.
    9. The composition of claim 1 wherein component (a) contains at least one pendant fluoroalkyl moiety.
    10. The composition of claim 9 wherein the fluroalkyl moiety is a C6 -C9 fluoroaliphatic group containing at least three fully fluorinated carbon atoms, including a terminal --CF3 group.
    11. The composition of claim 9 wherein component (a) is present in an amount, based on the weight of components (a), (b), and (c), of at least about 10 percent.
    12. The composition of claim 9 wherein component (a) is present in an amount, based on the weight of components (a), (b), and (c), of no greater than about 90 percent.
    13. The composition of claim 9 wherein component (b) contains at least one internal amide group per molecule.
    14. The composition of claim 9 wherein component (b) contains at least two internal amide groups per molecule.
    15. The composition of claim 9 wherein component (b) is present in an amount, based on the weight of components (a), (b), and (c), of at least about 5 percent.
    16. The composition of claim 9 wherein component (c) is present in an amount, based on the weight of components (a), (b), and (c), of at least about 10 percent.
    17. The composition of claim 9 wherein component (c) is present in an amount, based on the weight of components (a), (b), and (c), of at least about 20 percent.
    18. The composition of claim 1 wherein component (c) is poly-(2-isopropenyl-2-oxazoline).
    19. The composition of claim 1 wherein component (c) is a copolymer of 2-isopropenyl-2-oxazoline and methyl methacrylate.
    20. The composition of claim 1 wherein component (b) is the salt form of the reaction product of a C2-8 aliphatic dicarboxylic acid and a polyalkyleneoxy polyamine, which reaction product has a molecular weight in the range of from about 300 to about 5,000.
    Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| US08/144,924 US5470908A (en) | 1993-10-28 | 1993-10-28 | Water-based acrylic coating compositions | 
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| US08/144,924 US5470908A (en) | 1993-10-28 | 1993-10-28 | Water-based acrylic coating compositions | 
Publications (1)
| Publication Number | Publication Date | 
|---|---|
| US5470908A true US5470908A (en) | 1995-11-28 | 
Family
ID=22510777
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| US08/144,924 Expired - Fee Related US5470908A (en) | 1993-10-28 | 1993-10-28 | Water-based acrylic coating compositions | 
Country Status (1)
| Country | Link | 
|---|---|
| US (1) | US5470908A (en) | 
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US5760126A (en) * | 1996-12-20 | 1998-06-02 | Minnesota Mining And Manufacturing Company | Aqueous fluorochemical compositions and abrasion-resistant coatings therefrom | 
| US5910532A (en) * | 1997-05-29 | 1999-06-08 | The Dow Chemical Company | Multisolvent-based film-forming compositions | 
| US5959016A (en) * | 1997-07-31 | 1999-09-28 | The Dow Chemical Company | Composition for preparing a solvent-resistant coating | 
| US6191211B1 (en) | 1998-09-11 | 2001-02-20 | The Dow Chemical Company | Quick-set film-forming compositions | 
| US6548182B1 (en) * | 1998-08-04 | 2003-04-15 | Esprit Chemical Co. | Coating agent for ink jet recording materials and ink jet recording material | 
| US20030190485A1 (en) * | 2002-03-26 | 2003-10-09 | Hirotsugu Takatsuki | Metallically decorated sheet and metallically decorated sheet intermediate | 
| US20040191504A1 (en) * | 2002-10-22 | 2004-09-30 | Luna Innovations, Inc. | Contamination-resistant coated substrates | 
| WO2006079643A1 (en) * | 2005-01-28 | 2006-08-03 | Basf Aktiengesellschaft | Anti-corrosion coatings containing thioamide groups | 
| WO2006079627A1 (en) * | 2005-01-28 | 2006-08-03 | Basf Aktiengesellschaft | Method for applying corrosion protection layers comprising thioamides to metallic surfaces | 
| WO2006079630A3 (en) * | 2005-01-28 | 2006-12-07 | Basf Ag | Copolymer comprising monoethylenically unsaturated dicarboxylic acid derivatives | 
| US20090143502A1 (en) * | 2005-07-11 | 2009-06-04 | Wood Coatings Research Group, Inc. | Aqueous dispersions utilizing carboxyalkyl cellulose esters and water reducible polymers | 
| WO2009149301A1 (en) * | 2008-06-06 | 2009-12-10 | Questech Corporation | Compositions and methods for sealing natural stone tiles and natural stone articles | 
| CN101111571B (en) * | 2005-01-28 | 2011-07-06 | 巴斯福股份公司 | Anti-corrosion coatings containing thioamide groups | 
| JP2012214804A (en) * | 2011-03-31 | 2012-11-08 | Nippon Shokubai Co Ltd | Aqueous resin composition | 
| US10053597B2 (en) | 2013-01-18 | 2018-08-21 | Basf Se | Acrylic dispersion-based coating compositions | 
Citations (25)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US2781383A (en) * | 1956-02-14 | 1957-02-12 | Hans S Mannheimer | Detergent sulphonic acid and sulphate salts of certain amphoteric detergents | 
| US2921960A (en) * | 1956-03-16 | 1960-01-19 | Bohme Fettchemie Gmbh | Substituted amino-carboxylic acid amides and method of making the same | 
| US4177178A (en) * | 1978-04-17 | 1979-12-04 | Ppg Industries, Inc. | Thermosetting acrylic copolymer compositions | 
| US4214102A (en) * | 1978-04-14 | 1980-07-22 | Henkel Inc. | Amino-ether amphoteric surface-active compounds | 
| US4239635A (en) * | 1979-06-11 | 1980-12-16 | Cincinnati Milacron Inc. | Novel diamide and lubricants containing same | 
| US4250183A (en) * | 1977-12-30 | 1981-02-10 | Byk Gulden Lomberg Chemische Fabrik Gmbh | N-(Substituted amino)alkanoyl-aminoalkanoic acids and salts, their use and their compositions | 
| US4285849A (en) * | 1979-11-27 | 1981-08-25 | Ppg Industries, Inc. | Amidation reaction products of polyamines and polycarboxyl containing materials and coating compositions containing same | 
| US4344993A (en) * | 1980-09-02 | 1982-08-17 | The Dow Chemical Company | Perfluorocarbon-polymeric coatings having low critical surface tensions | 
| US4424239A (en) * | 1981-12-24 | 1984-01-03 | Astral Societe De Peintures Et Vernis | Liquid coating composition for metal surfaces, and a process for coating them with such a coating composition | 
| US4469836A (en) * | 1983-10-04 | 1984-09-04 | The Dow Chemical Company | Perfluorocarbon based polymeric coatings having low critical surface tensions | 
| US4552678A (en) * | 1982-10-25 | 1985-11-12 | Francesco Cargnino | Corrosion inhibitors for aqueous liquids for the working of metals, and a process for their preparation | 
| US4554325A (en) * | 1984-05-11 | 1985-11-19 | The Dow Chemical Company | Perfluorocarbon based polymeric coatings having low critical surface tensions | 
| US4588643A (en) * | 1983-03-18 | 1986-05-13 | The Dow Chemical Company | Perfluorocarbon polymeric coatings having low critical surface tensions | 
| US4592930A (en) * | 1984-05-11 | 1986-06-03 | The Dow Chemical Company | Perfluorocarbon based polymeric coatings having low critical surface tensions | 
| US4602058A (en) * | 1984-07-02 | 1986-07-22 | The Dow Chemical Company | Compatibility and stability of blends of polyamide and ethylene copolymers | 
| US4696965A (en) * | 1985-07-23 | 1987-09-29 | Minnesota Mining And Manufacturing Company | Polyamide-acrylic blends | 
| US4705889A (en) * | 1985-03-19 | 1987-11-10 | Bayer Aktiengesellschaft | Aminosuccinic acid derivatives and their use as emulsifiers for polymer dispersions | 
| US4764564A (en) * | 1984-05-11 | 1988-08-16 | The Dow Chemical Company | Perfluorocarbon based polymeric coatings having low critical surface tensions | 
| US4764291A (en) * | 1985-05-16 | 1988-08-16 | Colgate-Palmolive Company | Process for treating laundry with multiamide antistatic agents | 
| US4769285A (en) * | 1985-07-23 | 1988-09-06 | Minnesota Mining And Manufacturing Company | Polyamide-acrylate blends | 
| US4837290A (en) * | 1981-10-29 | 1989-06-06 | Minnesota Mining And Manufacturing Company | Acrylamidoacylated oligomers | 
| US4929666A (en) * | 1987-05-14 | 1990-05-29 | The Dow Chemical Company | Fluorocarbon containing, reactive polymeric surfactants and coating compositions therefrom | 
| US5006624A (en) * | 1987-05-14 | 1991-04-09 | The Dow Chemical Company | Fluorocarbon containing, reactive polymeric surfactants and coating compositions therefrom | 
| US5045615A (en) * | 1988-11-04 | 1991-09-03 | Minnesota Mining And Manufacturing Company | Fluorinated polymers derived from acrylamide-functional monomers | 
| US5055544A (en) * | 1987-09-21 | 1991-10-08 | The Dow Chemical Company | Amino-functional polyesters containing urea, biuret, thiourea, dithiobiuret, thioamide, and/or amide moieties in their backbone and urethane/urea prepolymers and polymers made therefrom | 
- 
        1993
        
- 1993-10-28 US US08/144,924 patent/US5470908A/en not_active Expired - Fee Related
 
 
Patent Citations (25)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US2781383A (en) * | 1956-02-14 | 1957-02-12 | Hans S Mannheimer | Detergent sulphonic acid and sulphate salts of certain amphoteric detergents | 
| US2921960A (en) * | 1956-03-16 | 1960-01-19 | Bohme Fettchemie Gmbh | Substituted amino-carboxylic acid amides and method of making the same | 
| US4250183A (en) * | 1977-12-30 | 1981-02-10 | Byk Gulden Lomberg Chemische Fabrik Gmbh | N-(Substituted amino)alkanoyl-aminoalkanoic acids and salts, their use and their compositions | 
| US4214102A (en) * | 1978-04-14 | 1980-07-22 | Henkel Inc. | Amino-ether amphoteric surface-active compounds | 
| US4177178A (en) * | 1978-04-17 | 1979-12-04 | Ppg Industries, Inc. | Thermosetting acrylic copolymer compositions | 
| US4239635A (en) * | 1979-06-11 | 1980-12-16 | Cincinnati Milacron Inc. | Novel diamide and lubricants containing same | 
| US4285849A (en) * | 1979-11-27 | 1981-08-25 | Ppg Industries, Inc. | Amidation reaction products of polyamines and polycarboxyl containing materials and coating compositions containing same | 
| US4344993A (en) * | 1980-09-02 | 1982-08-17 | The Dow Chemical Company | Perfluorocarbon-polymeric coatings having low critical surface tensions | 
| US4837290A (en) * | 1981-10-29 | 1989-06-06 | Minnesota Mining And Manufacturing Company | Acrylamidoacylated oligomers | 
| US4424239A (en) * | 1981-12-24 | 1984-01-03 | Astral Societe De Peintures Et Vernis | Liquid coating composition for metal surfaces, and a process for coating them with such a coating composition | 
| US4552678A (en) * | 1982-10-25 | 1985-11-12 | Francesco Cargnino | Corrosion inhibitors for aqueous liquids for the working of metals, and a process for their preparation | 
| US4588643A (en) * | 1983-03-18 | 1986-05-13 | The Dow Chemical Company | Perfluorocarbon polymeric coatings having low critical surface tensions | 
| US4469836A (en) * | 1983-10-04 | 1984-09-04 | The Dow Chemical Company | Perfluorocarbon based polymeric coatings having low critical surface tensions | 
| US4592930A (en) * | 1984-05-11 | 1986-06-03 | The Dow Chemical Company | Perfluorocarbon based polymeric coatings having low critical surface tensions | 
| US4554325A (en) * | 1984-05-11 | 1985-11-19 | The Dow Chemical Company | Perfluorocarbon based polymeric coatings having low critical surface tensions | 
| US4764564A (en) * | 1984-05-11 | 1988-08-16 | The Dow Chemical Company | Perfluorocarbon based polymeric coatings having low critical surface tensions | 
| US4602058A (en) * | 1984-07-02 | 1986-07-22 | The Dow Chemical Company | Compatibility and stability of blends of polyamide and ethylene copolymers | 
| US4705889A (en) * | 1985-03-19 | 1987-11-10 | Bayer Aktiengesellschaft | Aminosuccinic acid derivatives and their use as emulsifiers for polymer dispersions | 
| US4764291A (en) * | 1985-05-16 | 1988-08-16 | Colgate-Palmolive Company | Process for treating laundry with multiamide antistatic agents | 
| US4696965A (en) * | 1985-07-23 | 1987-09-29 | Minnesota Mining And Manufacturing Company | Polyamide-acrylic blends | 
| US4769285A (en) * | 1985-07-23 | 1988-09-06 | Minnesota Mining And Manufacturing Company | Polyamide-acrylate blends | 
| US4929666A (en) * | 1987-05-14 | 1990-05-29 | The Dow Chemical Company | Fluorocarbon containing, reactive polymeric surfactants and coating compositions therefrom | 
| US5006624A (en) * | 1987-05-14 | 1991-04-09 | The Dow Chemical Company | Fluorocarbon containing, reactive polymeric surfactants and coating compositions therefrom | 
| US5055544A (en) * | 1987-09-21 | 1991-10-08 | The Dow Chemical Company | Amino-functional polyesters containing urea, biuret, thiourea, dithiobiuret, thioamide, and/or amide moieties in their backbone and urethane/urea prepolymers and polymers made therefrom | 
| US5045615A (en) * | 1988-11-04 | 1991-09-03 | Minnesota Mining And Manufacturing Company | Fluorinated polymers derived from acrylamide-functional monomers | 
Non-Patent Citations (10)
| Title | 
|---|
| ASTM Designation: D 2794 92, Standard Test Method for Resistance of Organic Coatings to the Effects of Rapid Deeformation (Impact), pp. 394 395. * | 
| ASTM Designation: D 2794-92, Standard Test Method for Resistance of Organic Coatings to the Effects of Rapid Deeformation (Impact), pp. 394-395. | 
| ASTM Designation: D 4060 90, Standard Test Method for Abrasion Resistance of Organic Coatings by the Taber Abraser, pp. 559 561. * | 
| ASTM Designation: D 4060-90, Standard Test Method for Abrasion Resistance of Organic Coatings by the Taber Abraser, pp. 559-561. | 
| Derwent Publications, 66627 E/32, Japan. * | 
| Derwent Publications, 86 024322/04, Japan. * | 
| Derwent Publications, 86-024322/04, Japan. | 
| Lysaght, Vincent E., ASTM Bulletin, "The Knoop Indenter as Applied to Testing Nonmetallic Materials Ranging from Plastics to Diamonds", Jan. 1946, pp. 39-43. | 
| Lysaght, Vincent E., ASTM Bulletin, The Knoop Indenter as Applied to Testing Nonmetallic Materials Ranging from Plastics to Diamonds , Jan. 1946, pp. 39 43. * | 
| U. S. Patent Application Serial No. 08/144,752, filed Oct. 28, 1993. * | 
Cited By (27)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US5760126A (en) * | 1996-12-20 | 1998-06-02 | Minnesota Mining And Manufacturing Company | Aqueous fluorochemical compositions and abrasion-resistant coatings therefrom | 
| US5910532A (en) * | 1997-05-29 | 1999-06-08 | The Dow Chemical Company | Multisolvent-based film-forming compositions | 
| US5959016A (en) * | 1997-07-31 | 1999-09-28 | The Dow Chemical Company | Composition for preparing a solvent-resistant coating | 
| US6548182B1 (en) * | 1998-08-04 | 2003-04-15 | Esprit Chemical Co. | Coating agent for ink jet recording materials and ink jet recording material | 
| US6191211B1 (en) | 1998-09-11 | 2001-02-20 | The Dow Chemical Company | Quick-set film-forming compositions | 
| US6359110B1 (en) | 1998-09-11 | 2002-03-19 | The Dow Chemical Company | Quick-set film-forming compositions | 
| US7666497B2 (en) * | 2002-03-26 | 2010-02-23 | Japan Wavelock Co., Ltd. | Metallically decorated sheet and metallically decorated sheet intermediate | 
| US20030190485A1 (en) * | 2002-03-26 | 2003-10-09 | Hirotsugu Takatsuki | Metallically decorated sheet and metallically decorated sheet intermediate | 
| US7018709B2 (en) | 2002-10-22 | 2006-03-28 | Luna Innovations Incorporated | Contamination-resistant coated substrates | 
| US20040191504A1 (en) * | 2002-10-22 | 2004-09-30 | Luna Innovations, Inc. | Contamination-resistant coated substrates | 
| US8273412B2 (en) | 2005-01-28 | 2012-09-25 | Basf Aktiengesellschaft | Method for applying corrosion protection layers comprising thioamides to metallic surfaces | 
| CN101111571B (en) * | 2005-01-28 | 2011-07-06 | 巴斯福股份公司 | Anti-corrosion coatings containing thioamide groups | 
| US20080131687A1 (en) * | 2005-01-28 | 2008-06-05 | Basf Aktiengesellschaft | Method For Applying Corrosion Protection Layers Comprising Thioamides To Metallic Surfaces | 
| US20080139770A1 (en) * | 2005-01-28 | 2008-06-12 | Basf Aktiengesellschaft | Copolymer Comprising Monoethylenically Unsaturated Dicarboxylic Acid Derivatives | 
| KR101342836B1 (en) | 2005-01-28 | 2013-12-17 | 바스프 에스이 | Anti Corrosion Coatings Containing Thioamide Groups | 
| US20090156736A1 (en) * | 2005-01-28 | 2009-06-18 | Basf Aktiengesellschaft | Anti-corrosion coatings containing thioamide groups | 
| KR101278867B1 (en) * | 2005-01-28 | 2013-07-02 | 바스프 에스이 | Method for applying corrosion protection layers comprising thioamides to metallic surfaces | 
| WO2006079643A1 (en) * | 2005-01-28 | 2006-08-03 | Basf Aktiengesellschaft | Anti-corrosion coatings containing thioamide groups | 
| WO2006079627A1 (en) * | 2005-01-28 | 2006-08-03 | Basf Aktiengesellschaft | Method for applying corrosion protection layers comprising thioamides to metallic surfaces | 
| WO2006079630A3 (en) * | 2005-01-28 | 2006-12-07 | Basf Ag | Copolymer comprising monoethylenically unsaturated dicarboxylic acid derivatives | 
| US7981954B2 (en) * | 2005-01-28 | 2011-07-19 | Basf Aktiengesellschaft | Anti-corrosion coatings containing thioamide groups | 
| CN101111573B (en) * | 2005-01-28 | 2012-03-28 | 巴斯夫股份有限公司 | Method for applying corrosion protection layers comprising thioamides to metallic surfaces | 
| US20090143502A1 (en) * | 2005-07-11 | 2009-06-04 | Wood Coatings Research Group, Inc. | Aqueous dispersions utilizing carboxyalkyl cellulose esters and water reducible polymers | 
| US20090301027A1 (en) * | 2008-06-06 | 2009-12-10 | David Pelletier | Compositions and methods for sealing natural stone tiles and natural stone articles | 
| WO2009149301A1 (en) * | 2008-06-06 | 2009-12-10 | Questech Corporation | Compositions and methods for sealing natural stone tiles and natural stone articles | 
| JP2012214804A (en) * | 2011-03-31 | 2012-11-08 | Nippon Shokubai Co Ltd | Aqueous resin composition | 
| US10053597B2 (en) | 2013-01-18 | 2018-08-21 | Basf Se | Acrylic dispersion-based coating compositions | 
Similar Documents
| Publication | Publication Date | Title | 
|---|---|---|
| US5470908A (en) | Water-based acrylic coating compositions | |
| US4929666A (en) | Fluorocarbon containing, reactive polymeric surfactants and coating compositions therefrom | |
| US5006624A (en) | Fluorocarbon containing, reactive polymeric surfactants and coating compositions therefrom | |
| US4120839A (en) | Oligomeric amino-containing aminolysis products of polymethacrylates or polyacrylates, and epoxy resin coating compositions containing such aminolysis products as curing agents | |
| EP0811020B1 (en) | Copolymers containing 1,3-dioxolan-2-one-4-yl groups and coatings made therefrom | |
| EP0161804B1 (en) | Method for modifying the surface of polymer materials | |
| US4804709A (en) | Fluorine-containing coating agents | |
| EP0504630A2 (en) | Improved acrylic sealant composition and methods relating thereto | |
| EP1219650A2 (en) | Star polymer colloidal stabilizers | |
| US4230772A (en) | Amine crosslinked methacrolein copolymers for coatings, binders and adhesives | |
| US4740536A (en) | Water-based binder, coating and adhesive compositions from alkaline-curable latex polymers, epoxies and amines | |
| CA1314353C (en) | Fluorocarbon containing, reactive polymeric surfactants and coating compositions therefrom | |
| US5451653A (en) | Curable crosslinking system with monobenzaldimine as crosslinker | |
| US4238579A (en) | Vinylamine aromatic copolymers and salts thereof | |
| CN112341604B (en) | Emulsion type epoxy curing agent and preparation method thereof | |
| US4260714A (en) | Acetamidoethylene copolymers | |
| US5882799A (en) | Polymeric coupling agents for the adhesion of macromolecular materials and metal substrates | |
| EP0172460B2 (en) | Water-based coating compositions comprising epoxy-containing acrylic polymers and polyfunctional water-soluble amines | |
| US5208290A (en) | Epoxy resin crosslinked with polyamine and chlorosulfonated polyolefin | |
| AU639254B2 (en) | Alkyl vinyl ether polymers containing a lactam functionality | |
| US4137392A (en) | Carboxylated vinyl pyrrolidone copolymers | |
| US5156897A (en) | Aromatic vinyl ether siloxanes | |
| US5157094A (en) | Aromatic vinyl ether siloxanes | |
| US6599987B1 (en) | Water soluble, curable copolymers, methods of preparation and uses thereof | |
| US4004060A (en) | Binding agents | 
Legal Events
| Date | Code | Title | Description | 
|---|---|---|---|
| AS | Assignment | 
             Owner name: DOW CHEMICAL COMPANY, THE, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHMIDT, DONALD L.;HARRIS, ROBERT F.;COBURN, CHARLES;REEL/FRAME:007555/0615;SIGNING DATES FROM 19931026 TO 19931028  | 
        |
| FEPP | Fee payment procedure | 
             Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY  | 
        |
| FPAY | Fee payment | 
             Year of fee payment: 4  | 
        |
| REMI | Maintenance fee reminder mailed | ||
| LAPS | Lapse for failure to pay maintenance fees | ||
| FP | Lapsed due to failure to pay maintenance fee | 
             Effective date: 20031128  | 
        |
| STCH | Information on status: patent discontinuation | 
             Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362  |